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DESIGN OF AN IMAGE GENERATION TRUTH MODEL FOR TESTING 

ATTITUDE DETERMINATION METHODS

FOR A STAR TRACKER

by

Adriana Y. Fukuzato

The objective of this project was to create software that would replicate the functionality

of a star tracker in attitude acquisition mode. The software produced was written in Matlab and

solves the “lost-in-space” problem where the quaternion output defines a rotation from the ICRF

frame to the camera frame. This project consists of two parts: image generation and algorithm

testing. Image generation yields unique star field images with star centroids accurate up to 1/10

of a pixel. Algorithm testing takes those images as inputs and runs a star identification and star

matching  algorithm  to  form  a  triangular  feature  [17]  and  find  a  star  match.  Attitude

determination is completed using Davenport’s Q Method, which outputs the same quaternion

with an average loss function value of 1.61e-4 after a Monte Carlo simulation of 1000 runs. The

star identification and star matching algorithms runs on average in 1.9 seconds, with a 99.1%

probability of finding a star match. The Hipparcos catalog was used as the main star catalog, of

which stars as dim as magnitude 6 were assumed visible to the detector. This project defines

camera specifications similar to a star tracker being used on a small satellite in Low Earth Orbit. 
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1. Introduction

Traditional Attitude Determination systems consist of an absolute attitude reference system

and an inertial attitude reference system. The absolute attitude sensor determines the pointing

direction  of  the  spacecraft,  which  is  then  used  to  calibrate  the  inertial  attitude  sensor  that

measures the changes in attitude between the absolute calibrations [1]. Star trackers fall under

the  category  of  absolute  attitude  sensor.  Compared  to  magnetometers,  sun  sensors,  horizon

sensors and others, star trackers are by far the most accurate. They provide arc second accuracy

in three axes and serve as the most important type of attitude determination on a spacecraft [1]. 

In effect, it is necessary that star trackers are reliable in providing attitude. For small satellites

in low earth orbit,  star  trackers  are  needed to track the stars  and obtain lock even with the

satellite’s changing pointing direction.  A star tracker  functions  in  two modes:  initial  attitude

acquisition and tracking mode [2]. The objective of this project is to replicate the initial attitude

acquisition  mode  of  a  star  tracker.  Matlab  will  be  the  used  as  the  main  tool  to  design  the

software.  First,  test  images of the night sky will  be generated using a random quaternion to

represent a portion of the sky that the star tracker would be pointing towards. Then an algorithm

will  run  star  identification  and  attitude  determination  on  those  images  to  output  the

corresponding attitude. 

1.1 Motivation

In  January  2014,  I  started  an  internship  at  Skybox  Imaging  working  as  a  satellite

controller of their recently launched SkySat-A. At the time, Skybox was a start-up company with

a vision of launching a constellation of imaging satellites. They then became acquired by Google

in the summer of 2014 and are continuing to work towards delivering data analytics and will be
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launching their third satellite in December 2015. During the first week of training, we received a

lecture from the lead Guidance, Navigation, and Control engineer. He discussed star trackers and

their role for SkySat-A. Star tracker functionality interested me, especially with their application

to the celestial sky. I decided to make a Masters project out of this and sought help from the

GNC lead who was very passionate about the subject himself. 

Initially, the project began with the goal of taking pictures of the night sky and using

those in determining attitude information. However, this proved difficult with the camera that I

had  available  and  decided  to  get  clearer  direction  from a  potential  mentor  at  Skybox  who

suggested that  generating my own images would be more effective.  This  process essentially

yielded a truth model based on the fundamental physics behind star light and image detectors.

With the help of the lead GNC engineer at Skybox, this project was made possible. 

1.2 Literature Review

Star  tracker  sensors  have  undergone  a  huge  development  in  the  last  ten  years.  An

overview of major advancements and papers on star trackers will be presented in this section.

Second  generation  star  trackers  will  be  compared  to  first  generation  star  trackers.  Then

developments in the algorithms used in the processing computers will be reviewed. Although the

star  tracker  design  presented  in  this  paper  does  not  account  for  tracking  mode,  the  papers

summarized include both initial attitude acquisition and tracking mode. Finally, recent papers

involving expectations for future models will be discussed.  

1.2.1 Second Generation Star Trackers

First generation star trackers, the first of which used charge coupled devices (CCDs) were

pioneered at the Jet Propulsion Laboratory in Pasadena, CA [3]. They were considered a first
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generation model in that they were not able to directly output attitude information in the inertial

reference frame, rather relied on an external computer to process the spacecraft attitude data. The

JPL ASTROS star tracker, shown in Fig. 1, was able to detect two to six star images per frame.

The  data  coming  from the  detected  stars  would  then  be  transferred  to  the  satellite’s  main

computer or sent to the ground to be processed later [3]. In this case, additional information like

the sun vector may have been necessary in order to completely determine the attitude of the

spacecraft. 

Figure 1-1: JPL Astros Star Tracker [3]

In  comparison,  second  generation  star  trackers  are  able  to  output  three  axis  attitude

autonomously  without  requiring  external  processing.  Second  generation  sensors  have  been

developed in the last decade and have major improvements compared to previous versions. Star

pattern recognition can be done autonomously by the microcomputers which are attached to the

cameras.  These microcomputers have internal star  catalogs  and can solve the “lost-in-space”

problem. In addition, they utilize an average of 25 to 65 stars in the field of view (FOV) for each

data frame [3]. The attitude obtained is also based on a signal which is much larger and which

improves  accuracy  over  the  entire  sky.  Because  these  star  tracker  models  can  function

autonomously they can be integrated into the spacecraft more economically as well. Figure 2

shows the Doug Sinclair ST-16 star trackers currently used on-board Skybox Imaging’s SkySat-1

and SkySat-2 [4].
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Figure 1-2: Doug Sinclair ST-16 star trackers [4].

A star tracker functions in two modes: initial attitude acquisition and tracking mode. The

first mode, initial attitude acquisition, requires pattern recognition of the stars in FOV. A second

generation star tracker determines which stars are present in the FOV using an algorithm; the

output is computed very quickly, all within a few seconds or less [3]. The image provided in the

FOV represents less than 1% of the night sky and it is important for star trackers to use efficient

star patter recognition algorithms. 

According to Eisenman, the most important parameter that allow second generation STs

to  function  autonomously  is  the  FOV. They range  from a  few degrees  to  over  30  degrees

diagonally [3]. The FOV can be measured horizontally, vertically, or from one corner to the

corner diagonally. The smaller the field of view, the better the individual angular resolution. This

results in an increased accuracy in pitch and yaw. The roll accuracy will remain constant. For a

smaller field of view, the camera needs to have a lens aperture with a larger diameter in order for

the ST to detect the same average number of stars. This will cause an increase in the mass of the

ST since the focal length is increased as well. The number of stars in the internal catalog must

also be bigger with a larger aperture since dimmer stars can be detected in the FOV [3]. Camera

specifications are parameters that should be considered first when deciding what type of ST to
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choose  for  a  spacecraft  mission.  This  will  determine  how  much  space  should  be  allocated

economically in the spacecraft, how complex the pattern recognition algorithm will be, and thus

the  cost  of  the  ST.  This  paper  describes  the  fundamental  importance  of  the  camera’s

specifications in choosing what denotes optimal star tracker hardware. 

The mass of the ST is important especially for the increasing market of CubeSats and

microsatellites. The mass varies from a few hundred grams to more than 20 kg. The processing

electronics and the optics are what determine the mass of a ST [3]. Typically, larger star trackers

are more accurate and more expensive.  

Because second generation STs are highly sensitive, they detect many stars in the FOV.

Sky coverage denotes the percentage of the sky over which the ST can lock onto stars and track

stars [3]. If the number of stars in the FOV are too low, then the algorithm will reject the image.

The acquisition  catalog  is  also much smaller  than  the  full  tracking mode catalog.  A typical

second generation ST will have sky coverage close to 100% [3]. The star catalog size that a ST

has depends on the sensitivity of the system. A large star catalog is required for cameras with

larger aperture and longer exposure time [3]. Figure 3 shows catalog size as a function of the

FOV. For a larger diagonal FOV with lower average stars in its FOV, a smaller catalog size is

needed. For a diagonal FOV with an average of 75 stars, a much larger star catalog is required. In

contrast, a ST with a diagonal FOV with a lower average number of stars requires a smaller

catalog.  It  is  better  to  have  a  smaller  star  catalog  because  larger  catalogs  occupy  more

nonvolatile  memory  space  and  complicate  the  initial  attitude  acquisition  algorithm.  The

processing power is also thus increased. 
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Figure 1-3: Star catalog size vs diagonal FOV [3].

The accuracy of a ST depends on the star catalog used. As of 1997, the HIPPARCOS star

catalog became available which contains the most recent, accurate star positions. The purpose of

the  HIPPARCOS satellite,  sent  by the  European  Space  Agency, was  to  record  the  120,000

brightest stars with an accuracy of 1 milli-arcseconds. Using this catalog, STs are able to provide

accuracy in the range of 0.1 – 20 arcseconds [2]. These accuracies in roll, pitch, and yaw are

specified  about  the  optical  boresight.  Sub-pixel  accuracy  in  particular  can  be  achieved  by

calculating the centroid of star regions. Therefore it is better to have a smeared image instead of

a sharp image. If the light coming from a star is spread over a few pixels, compared to it being

focused  onto  one  pixel,  then  it  becomes  possible  to  determine  the  position  of  the  star  by

calculating the centroid of that region. The location can be determined to a fraction of a single

pixel [2].

Angular resolution is also based on having multiple stars in each frame. The stars present

on the focal plane can be translated to a right handed coordinate inertial reference frame, one of

which is  the Earth Centered Inertial  J2000 reference frame. This conversion depends on the

camera and CCD specifications such as the focal length, pixel width and height. Lens distortion
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can also be corrected through calibration [2]. As mentioned before, the roll or twist angle is about

4 to 12 times less accurate compared to the yaw and pitch angles. The noise equivalent angle is

the variation of the attitude estimate when there is a constant input. This measures accuracy and

can be found through mounted simulations.   

In  terms of  future  advancements,  Eisenman expects  STs to  undergo developments  in

accuracy and miniaturization. STs are used on all sort of missions and for an increasing market of

microsatellites, STs will be developed for use on both large and small missions. In particular,

active pixel sensor technology has become an alternative to CCDs. They have an advantage over

CCDs  in  that  they  include  enhanced  radiation  resistance  and  control  over  individual  pixel

integration times [3]. It has also been thought of to combine a ST with a GPS receiver for low –

Earth applications, where the two components use the same microcomputer. This may be able to

replace the standard GPS system on satellites [3]. 

It has even been proposed that star tracker devices are accurate enough to be used as the

only form of attitude determination on small satellites orbiting Earth [5]. A STOAE system has

never been implemented before on-board a satellite mission, although many tests have been run

in  particular  with  an  S3S  star  tracker.  Typical  Low-Earth-Orbit  (LEO)  satellites  use

magnetometers and sun sensors and other types of sensors in conjunction with each other to

produce three angles of attitude, whereas star trackers don’t need to work with other devices to

output the data. There is a great significance in implementing STOAE on nanosatellites in terms

of mass and cost reduction; removing extra sensors may decrease the mass and thus cost of the

satellite. One disadvantage is the fact that building a new algorithm to account for it being the

only attitude information bank will be difficult [5] and most likely increase their overall cost.

Star trackers range in the price range of $100K to 1 million dollars. 
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1.2.2 Star Tracker Algorithms

The initial attitude acquisition mode of a star tracker is dependent on the “lost-in-space”

star pattern recognition algorithm which can determine what stars are present in the field of view

and convert them into useful attitude determination without having a priori knowledge. Spratling

and Mortari provide a very good review of star identification algorithms since the beginning of

their  development.  Star  identification  typically  follows  the  workflow  shown  in  Fig.  4  [6].

Previously, star trackers needed a priori knowledge of the attitude in order for their algorithms to

work. In 1981, Junkins et al. published a star pattern recognition algorithm which could parse a

star catalog but the attitude estimate, besides requiring a priori knowledge, would only updated

once or twice a minute in real time [4]. It wasn’t until 1997 that Mortari a faster database search

technique called the Search-Less Algorithm (SLA) [6]. This algorithm was tested in an Indian

satellite. Mortari later on developed the “Pyramid” algorithm which is on exclusive contract to

StarVision Technologies and has been tested on Draper’s “Inertial Stellar Compass” star tracker

and  on  MIT’s  satellites  HETE  and  HETE-2  [6].  Currently  star  pattern  recognition  can  be

accomplished  through  different  processes  such  as  least-squares,  TRIAD,  or  QUEST  [6].

Simulated star fields can be used to  test  the effectivity of these algorithms [6].  A three-axis

spacecraft  simulator  provides  the  reference  frame  for  these  algorithms  to  work  with.  The

difference between TRIAD and QUEST is that QUEST produces better accuracy, while TRIAD

produces good accuracy and a lower computation time [6]. 
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Figure 1-4: Typical Attitude Determination flow chart for Star Trackers [6].

Before stars vectors can be used in attitude determination algorithms, they must first be

detected by the camera sensor. Star detection is dependent on a given threshold. The stars that are

detected in an image will be used in finding a matching triad only if they pass a pre-defined

brightness threshold. This value is chosen empirically and is proportional to the exposure time of

the star tracker [7]. In the case that there is a low threshold, then noise objects that may not be

actual stars will be detected. For a high thresholds, pixels nearby bright stars can be detected due

to the spreading of the light on the pixels. Kandiyil eliminates this by setting a minimum distance

between any two stars as well as through centroiding [7]. 

The  star  recognition  method  is  usually  based  on having  a  triad  of  stars  that  form a

triangle. The detected stars will have vectors in the spacecraft frame, and those stars will be

compared to the vectors of stars in the inertial frame. One method of matching stars is through

area and polar moment calculations. The areas and moments of the stars, using the sides of the

triangle and the star vectors in the inertial frame, are calculated and compared to a Look Up

Table. The Look Up Table, as referred to in Kandiyil’s Master’s thesis, includes all the areas and

moments of the stars in the catalog. If there are any matches, then those stars are considered to be

detected  [7].  Another  pattern  method  is  the  planar  moment  method.  This  method  requires

calculating the angles between the sides of the triangle. They are then compared with the Look
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Up Table that has all the angles between the stars in the star catalog, calculated. The vector angle

method is another method carried out by finding the angle between each set of two star vectors

and comparing those to the Look Up Table as well [7]. 

Once a triad of stars are detected, their centroids must be calculated in order to rule out

any noise objects and to provide sub-pixel accuracy. A typical centroiding algorithm will give a

precision of 1/10 of a pixel [2]. A point spread function is used to measure how much light will

spread across the CCD array. With this and the magnitude of the star, the size of the array can be

determined for the algorithm. The size of the array is basically the number of pixels surrounding

the brightest pixel that will be used in the centroid equation. Kandiyil points out that it is a good

idea to rule out bright regions that have multiple adjacent pixels with equal intensity values since

it  would  be  hard  to  apply  the  centroiding  algorithm to  that  region  and  could  result  in  an

inaccurate center [7].  

Because a  star  tracker  can’t  cover  the entirety of a constellation in  its  FOV, specific

parameters need to be set in order to identify which stars make up a triad of stars. Kandiyil

specifies that from one detected star, the angular distance to neighboring stars, spherical angles

between close stars, and magnitude are all useful in identifying a star triad. He shows that from

the pivot start, or first detected star, to the second and third star, there is a higher frequency of

stars within the 6-8 degree angular distance range [7]. These stars are then compared with the

stars selected in the star catalog. In Kandiyil’s thesis, two separate catalogs are constructed from

the  main  HIPPARCOS  catalog:  the  Base  catalog  and  the  Oriented  catalog.  This  way,  less

processing power is required in the star triad formation. 

In summary, the image analysis process defined by Kandiyil takes the following form.

From a given image, all the stars that pass a predefined threshold are detected and put through an
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algorithm to find their centroids. The brightest of those stars is then taken as the pivot star, and

the second and third star are chosen to form a triad. Using the planar moment method, a match

between the selected triad and those in the base catalog is chosen [7]. The unit vectors in the

spacecraft frame are then calculated. The corresponding unit vectors in the Oriented catalog are

then found and used as the unit vectors in the ECI frame. These inertial frame vectors are then

put through a TRIAD algorithm which output a quaternion and thus the attitude information. 

The  HIPPARCOS catalog  contains  around  115,000  stars  that  have  magnitudes  up  to

values of 11. A higher magnitude denotes a fainter star. Figure 5 shows how the number of stars

in the catalog increases with magnitude [7]. Typical low cost star trackers only detect stars with

magnitude as faint as 6 [7]. It can be seen from Fig. 5 that more sophisticated STs are required to

process and detect stars with higher magnitude. The Base catalog in Kandiyil’s thesis truncates

stars that have magnitude greater than 6, leaving only 5029 stars to process.

2 Attitude Determination Sensors

Compared to other attitude determination devices, star trackers can provide greater than

arcsecond accuracy, as well as all three angles in attitude. They are considered to be the most

accurate devices used for attitude determination. Some sensor devices typically used in Attitude

Determination  Systems  (ADS)  include  magnetometers,  sun  sensors  and  gyroscopes,  for

comparison. 

Magnetometers  can  detect  the  strength  of  the  Earth’s  magnetic  field  and  align  the

spacecraft accordingly. They provide the direction and magnitude of the Earth’s magnetic field.

They are not accurate inertial attitude sensors for the reason that the Earth’s magnetic field is not

entirely known and the models used to predict its direction can cause errors [8]. In addition,
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because the Earth’s magnetic field decreases with 1/r3, the spacecraft’s magnetic biases dominate

the magnetic field measurement and thus magnetometers are only most effective on spacecraft in

orbits less than 1000 km [9]. 

Sun sensors can track the sun in various ways to determine where the satellite is, but only

provide two degrees of freedom in attitude and arcminute accuracy. Gyroscopes are spinning

flywheels that apply torques which align the axes of the satellite. Star trackers, on the other hand,

have powerful microcomputers that can determine the spacecraft’s motion and extrapolate the

attitude  from mathematical  information  internally,  and  provide  three  degrees  of  freedom in

attitude as well as arcsecond accuracy [9]. 

3 Project Overview

The objective of  this  project  was to  replicate  the  fundamental  functionality of  a  star

tracker in initial attitude acquisition mode. This required star images with known stars in the

field of view in order to accurately test attitude determination algorithms. For this reason, image

generation was incorporated into the project as the first part. 

Overall,  this  project  can  be  split  up  into  two parts:  image  generation  and  algorithm

testing.  Image  generation  will  focus  on  outputting  star  field  images  before  the  attitude

determination process. This creates a truth model for testing whether the algorithm method is

accurate. The steps for generating a star image are shown in Fig. 3-1. This process begins with a

random quaternion. The quaternion represents a rotation from the spacecraft (S/C) frame to the

Earth-Centered Inertial (ECI) frame. Therefore, the vector component can be considered the bore

sight of the star tracker camera. Using this information, the vectors of all the stars in field of

view can be obtained for both the ECI frame and star tracker frame. Noise was not incorporated
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into image generation. A quantum efficiency is defined with respect to the camera specifications

which prevent the detector from being perfect and is thus more realistic. However, because noise

was not incorporated, the star identification algorithm was written with less restrictions as will be

defined in Section 8. Overall, the output is an accurate representation of a portion of the night

sky that a star tracker would see in orbit. 

Figure 3-5: Flow Diagram for Image Generation

After star  images were generated,  the attitude determination process was started.  The

images were put through algorithms to output the correct attitude information. In theory, the

quaternion that is output after attitude determination should match the quaternion that is used to

generate the star image in part one. The steps for algorithm testing are shown in Fig. 3-2. Since a

majority of this project involves transformations to other reference frames, the specific reference

frames will be defined in the next section. 

13



Input: 
Star Image 

Matrix

Input: 
Star Image 

Matrix

Star 
Identification

Star 
Identification

CentroidingCentroiding

Form a 
Triangular 
Feature

Form a 
Triangular 
Feature

Obtain ECI 
star vectors
Obtain ECI 

star vectors

Obtain 
camera star 

vectors

Obtain 
camera star 

vectors

Find a match 
of stars

Find a match 
of stars

Search 
internal 
Catalog

Search 
internal 
Catalog

Davenport Q 
Method 
Attitude 

Determinatio
n

Davenport Q 
Method 
Attitude 

Determinatio
n

Output: 
Quaternion

Output: 
Quaternion

Figure 3-6: Algorithm Testing Flow Chart.

The attitude determination method that will be used is Davenport’s Q-method.  Once the

image is read into Matlab, stars that pass a certain threshold will be chosen and centroided. The

three brightest starts are selected to form a triad, which will be used in comparing to stars in the

Hiparcos star catalog. After a match is made between the image’s stars and the catalog’s stars, the

coordinates  of  the  set  of  stars  can  be  put  through  the  Q-method  in  order  to  output  the

corresponding quaternion that relates the two reference frames. 

4 Reference Frames

There are many reference frames used for attitude analysis. They are usually defined by the

location of their origin and orientation of their axes. An inertial reference frame in particular is

one in which Newton’s laws of motion are valid. Any frame that is moving at a constant velocity

and without rotation with respect to an inertial frame is also considered inertial [8].
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4.1 Earth Centered Inertial Frame

The Earth Centered Inertial frame, or ECI, is one of many inertial reference frames used

in spacecraft dynamics. Its center is fixed with the Earth’s center; the x axis points along the

vernal equinox, the z axis points through the North Pole, and the y axis completes the orthogonal

system. Although the frame is rotating itself with respect to the Earth’s rotation around the sun,

this can be neglected when dealing with distances to celestial objects. This may not be the case,

though,  when dealing with problems where nearby planets  are  taken into account.  The stars

contained  in  the  Hipparcos  catalog  are  measured  with  respect  to  the  International  Celestial

Reference Frame (ICRF) as are other star catalogs [8]. The origin of the ICRF is at the center of

mass of the solar system. 

The J2000 frame defines the ECI frame as derived on January 1, 2000 at 12:00 [9] with the

vernal equinox at a particular position with respect to the sun. The reason why this derivation is

important is because the Earth’s precession has an effect on the location of the vectors measured

in the ECI frame. In other words, an epoch is used to denote the starting time of the frame [9].

Epoch is important when defining observations of celestial objects. 

The vectors of celestial objects measured from the ECI are usually given in coordinates of

Right Ascension, RA, and Declination, De. Right Ascension is measured from the vernal equinox

in a unit of time. At the vernal equinox the RA has a value of 0 hours, 0 minutes, and 0 seconds.

The declination is measured in terms of degrees and ranges from 0 to positive 90 degrees or to

negative 90 degrees. In order to make RA and Dec useful coordinates in this project they need to

be transformed from RA, Dec to a spherical coordinate system. This is what will be done in

creating the truncated catalog in Section 9. It is useful to note that the entire rotation matrix is not

necessary in  converting  these  coordinates  to  an  x,  y,  and  z  location.  The  derivation  of  the
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conversion has been omitted but the equations that convert a star’s RA, Dec values to a spherical

coordinate system are presented in Eq. (1).

 xstar=cos (Dec )∗cos (RA )                                                              (1-1)

 ystar=cos (Dec )∗sin (RA )                                                             (1-2)

 zstar=sin (Dec )                                                                   (1-3)

4.2 Spacecraft Frame

The spacecraft’s reference frame is usually defined with the origin at some point in the

spacecraft  body. However,  because  components  of  the  spacecraft  can  shift  after  launch and

possibly even due to thermal effects, the axes are usually aligned with a navigational base that

will stay rigid enough [8]. This navigational base includes the most critical payload instruments

and attitude sensors. The spacecraft’s reference frame is oriented with respect to some external

reference frame, with that being the ECI in this project. The spacecraft reference frame in this

project will be assumed as the star tracker’s body; the z axis will point outwards toward the bore

sight, and the x and y axes form the focal plane. A reference for the spacecraft’s orbit can also be

called the Local-Vertical Local-Horizontal reference frame [8]. This is usually defined for Earth-

pointing spacecraft. The z axis points toward the center of the Earth along the bore sight of the

spacecraft,  the  y  axis  points  along  the  negative  orbit  normal  and  the  x  axis  completes  the

orthogonal system. Figure 4-1 depicts this type of reference frame.  
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Figure 4-7: Local Vertical Local Horizontal spacecraft reference frame [10]

5 Attitude Representations

The importance of reference frames is tied to attitude determination. The attitude of a body

is defined as the coordinate transformation that transforms the ECI reference coordinates into the

body coordinates of the spacecraft.  In other words, the attitude of a spacecraft represents an

orientation of the body in space. This representation is obtained through attitude determination

which  involves  solving  for  a  particular  matrix  using  vectors  defined  with  respect  to  two

difference  reference  frames.  The  following  are  different  ways  of  representing  that  attitude

transformation [11]. 

5.1 Direction Cosine Matrix

All coordinate transformations that give the attitude of a body are based on the direction

cosine  matrix  (DCM).  The  DCM  can  also  be  called  the  attitude  matrix.  This  matrix  will

transform vectors in the ECI frame, or reference frame, into the spacecraft frame. The DCM can

be represented by Eq 2.
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[A ]=[
u1 u2 u3

v1 v2 v3

w1 w2 w3
]                                                               (2)

The unit vectors u, v, and w are the components of the unit vectors along the three axes of the

ECI reference frame. If there exists a vector in the ECI frame, a = [a1 a2 a3]T, then multiplying it

by the  attitude  matrix,  A,  will  express  that  vector  in  the  spacecraft  frame.  See Eq.  3  for  a

representation of this.

[A ] a=[
u ∙a
v ∙a
w ∙a]=[

au
av
aw

]=aB                                                      (3)

5.1.1 Properties of the Direction Cosine Matrix

Basic properties of the A matrix are defined as follows and represented by Eq. 4 – Eq. 6 .

1. Each element in A is the cosine of the angle between the body unit vector and the 

ECI reference axis

2. Each vector in the spacecraft frame u, v, w are of unit length and therefore:

∑
i=1

3

ui
2
=1,∑

i=1

3

vi
2
=1 ,∑

i=1

3

wi
2
=1                         (4) 

3. The unit vectors u, v, w are orthogonal to each other and therefore:

∑
i=1

3

ui v i=0 ,∑
i=1

3

uiwi=0 ,∑
i=1

3

v iwi=0                     (5)
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4. Since the unit vectors are of unit length and are orthogonal to each other we get 

the follow relationships, aB is the vector in the ECI frame mapped into the 

spacecraft frame. 

[A ] [ A ]T=1, [A ]T=[A ]−1
                                             (6-1)

det [A ]=1                                                           (6-2)

a=[A ]T aB                                                           (6-3)

The A matrix is considered a proper, real orthogonal matrix. It can be shown that this matrix 

transformation preserves the lengths of vectors and also the angles between them and so 

represents a rotation. If two proper real orthogonal matrices are multiplied, such as [A] = [A1]

[A2], then two successive rotations result. First there is a rotation by [A1] and then by [A2].

5.2 Euler Angles

Euler angle rotations are defined as rotations about three orthogonal frame axes. If we

have three orthogonal axes defined in the spacecraft frame, i, j, k, and axes in the ECI reference

frame defined as I, J, K then there are several combinations of rotations that can be done. There

are two distinct types of rotations. 

1. Successive rotations about each of the three axes i, j, k. There are six possible 

order of rotation: i-j-k, i-k-j, j-i-k, j-k-I, k-i-j, k-j-i

2. First and third rotations about the same axis and the second rotation about one of 

the two remaining axes. There are 6 possibilities: i-j-i, i-k-i, j-i-j, j-k-j, k-i-k, k-j-k
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The second type of rotation may be useful in avoiding singularities. The type of rotation depends

on the situation. It is common to define the roll angle, ϕ , as a rotation about the x-body axis,

the pitch angle, θ , as a rotation about the y-body axis, and the yaw angle, ψ , as a rotation

about the z-body axis. 

5.3 Quaternions

Quaternions are another form of attitude representation. Through linear algebra it can be

shown that a proper real orthogonal matrix, such as the DCM, has at least one eigenvector with

eigenvalue of unity. The eigenvector is therefore unchanged by the matrix A, meaning that it has

the same components along the body axes as those along the reference frame axes: [A] e1 = 1e1.
The existence of this eigenvector demonstrates Euler’s famous theorem which says that

“The most general displacement of a rigid body with one point fixed is a rotation about some

axis,” where the rotation is about the eigenvector, e1. Any attitude transformation by consecutive

rotations  about  three orthogonal  unit  vectors can be achieved by a  single rotation about  the

eigenvector with unity eigenvalue. This means that if A is a proper, real, orthogonal matrix which

all  attitude  matrices  are,  then  there  must  exist  an  eigenvalue  of  unity.  The  eigenvector

corresponding to this eigenvalue is going to be the vector about which the rotation is done and

also corresponds to the quaternion.  
A quaternion is a vector defined by Eq. 7, and is composed of a scalar quantity, q4, and a

vector component, q.

q=q4+i q1+ j q2+k q3≡q4+q                                              (7)

20



The  conjugate  of  q,  is  q∗¿q4−i q1− j q2−k q3 .  Elements  of  a  quaternion  are  sometimes

referred to as the Euler symmetric parameters. They can be expressed in terms of the principal

eigenvector, e, of the DCM as shown in Eq. 8. 

q1=cos( α2 )                                                   (8-1)

q2=e1sin(α2 )                                                  (8-2)

q3=e2sin( α2 )                                                 (8-3)

q4=e3 sin(α2 )                                                 (8-4)

One important property is that q1
2
+q2

2
+q3

2
+q4

2
=1 , where |q|=1 . The DCM can therefore 

also be expressed in terms of the quaternion as shown by Eq. 8. Where the matrix Q in A(q) is 

defined as that given by Eq. 9.

[A (q ) ]=(q4
2
−q2 )1+2qqT−2q4 [Q ]                                      (9)

[Q ]=[
0 −q3 q2

q3 0 −q1

−q2 q1 0 ]                                      (10)

A quaternion is similar to the DCM in that it represents attitude. It can be of advantage to

use a quaternion over a DCM since a quaternion gives a complete attitude representation without

having to deal with singularities. An example of a singularity is gimbal lock; the case where two

of a spacecraft’s axes are aligned which results in two degrees of freedom. A quaternion can

represent attitude without having to deal with this and avoids any ambiguity when transforming
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from one attitude to another. With regards to Euler angles, there may be several ways, even an

infinite amount of ways, to represent attitude using Euler angles. Pitching up by 90 degrees and

then rolling by 90 degrees gives the same attitude that does yawing by 90 degrees and then

pitching up by 90 degrees. A quaternion is simple and complete in that it gives a clear and unique

attitude representation. 

6 Attitude Determination Methods

There are many ways to solve the attitude determination problem. Among these are Triaxial 

Attitude Determination (TRIAD) method, Davenport’s q Method, and Quaternion Estimator 

(QUEST). Given two sets of vector measurements in different reference frames, the attitude 

matrix or representation can be solved for directly with some margin of inaccuracy, or also 

approximately using a least squares method. Davenport’s q Method and QUEST both aim to 

solve Wahba’s problem which was developed in 1965 by Grace Wahba [8]. Her problem was 

posed to solve for the orthogonal matrix, A, with determinant equal to +1 that would minimize 

the loss function and essentially provide an optimal least squares solution. The loss function is 

represented by Eq. 11.

L ( A )=
1
2
∑
i=1

N

ai‖b i−Ari‖
2

                                            (11)

In comparison, TRIAD takes a set of two measurements in each reference frame and 

obtains an orthonormal right-handed triad of vectors from each. However, this assumes that one 

of two unit vectors in the body frame is more accurately determined than the other. In other 

words, the estimate for attitude will satisfy Avr1 = vb1 exactly but only Avr2 = vb2 

approximately. Using the two orthonormal right-handed triad of vectors, {v1, v2, v3} in the 
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reference frame and {w1, w2, w3} in the spacecraft frame, the attitude matrix is estimated to 

be represented by Eq. 11 via TRIAD [8].

A= [w1w2w3 ] [v1 v2 v3 ]
T
=∑

i=1

3

w i v i
T

                              (12)

Paul Davenport’s Q Method was the first presented useful solution to Wahba’s problem. It 

involves solving the loss function, L(A), and allows the expression of the loss function in terms 

of the quaternion as shown in Eq. 12. K(B) is the symmetric traceless matrix as represented by 

Eq. 14. Paul Davenport proved that the eigenvector corresponding to the largest eigenvalue of 

this matrix is equal to the quaternion. The matrix B is composed of the product between the 

weights, ai, and the measurement vectors in the body frame, bi, and reference frame, ri. A weight

value of ai = 1 was chosen as suggested by Markley [8].

L ( A (q ) )= λ0−∑
i=1

N

aibi
T A (q )r i                                       (13) 

K (B )=[B+BT−tr (B ) I 3 z

zT tr (B)]                                          (14)

z=[
B23−B32

B31−B13

B12−B21
]                                                                  (15)

B=∑
i=1

N

a ib iri
T

                                                   (16)
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QUEST improves on the solution to the q-method and is the most widely used method since 

it can provide more frequent attitude computations [8]. However, the efficiency of QUEST is in 

not having to iteratively solve 4x4 matrices as required by Davenport’s q-method. However, 

numerical analysts consider QUEST to be not as robust since it has to solve the characteristic 

equation for the eigenvalues [8]. Davenport’s eigenvalue condition is expressed as Eq. 17 and the

optimized loss function can be written as Eq. 18.

K (B )=∑
i=1

4

λi q iq i
T

                                                            (17)

L ( A (q ) )= λ0− λmax                                                               (18)

7 Project Design Methodology

An overview of the project goals were outlined in  Project Overview, and background was

given with regards to the applied attitude determination theory in  Attitude Representations and

Attitude Determination Methods.  This  section will  cover  the design specifications,  including

assumptions made and a holistic introduction to the Matlab function files that were written. 

As defined previously, reference frames are an important aspect of attitude determination.

There are two main reference frames that need to be defined for this project: the body frame and

the inertial frame. The body frame is assumed to be aligned with the star tracker detector as it

orbits the Earth. The reason why the body frame is assumed to be aligned with the axes of the

star tracker is to simplify the problem. Otherwise, once star vectors in the camera’s frame are

obtained, an additional rotation from the star tracker’s camera frame to the main spacecraft body

frame would have been necessary. For completion, it will be assumed that the star tracker is

orbiting the Earth at an altitude of 600 km in Low-Earth-Orbit (LEO). As the star tracker goes
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along in its  orbit,  its  field of view (FOV) encounters different regions of the night sky. The

region of the sky that the camera sees is defined by a quaternion and will be replicated in image

generation.

The inertial frame in this project will be the ECI frame, which was defined in Section 4.1.

However, for the purposes of this project the star vectors in the reference frame will be assumed

to be measured from the ECI frame. Table 7-1 summarizes the reference frames used in this

project. 

Table 7-1: Project design reference frames.  

S/C Frame The origin is at the center of the Star Tracker focal plane

  +x is in bore sight of camera

 y and z form the focal plane

Inertial Frame Earth-Centered-Inertial J2000

  +x along the vernal equinox

 +z through the Earth's North Pole

 +y completing the orthogonal system

The first part of this project will be called the Image Generation Truth Model and is 

purely dependent on the physics of the problem. A realistic image of the night sky will be 

generated by putting together numerous 25x25 pixel stars of varying magnitude, but not to 

exceed a magnitude of 6. This step will require three main Matlab functions. The first script will 

calculate the number of photons coming from any individual star and convert them to a digital 
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count number that a camera detector would normally interpret. The second will generate the star 

using a Gaussian distribution and output a matrix representation with those count values. Camera

specifications will be discussed later.  The third script will find star coordinates in pixel space, of 

where the individual stars belong, and place them in a large matrix that is then plotted as a star 

field image. Image generation makes use of the Hipparcos Star Catalog which will be covered in 

the next section. See Table 7-2 for a summary of Matlab function descriptions.

Table 7-2: Function files used in the Image Simulation Truth Model.

MATLAB Function with Inputs Description
1. NumPhotons(Vmag,bv,specs)  Vmag – visual magnitude of star

 Bv – BV Color Index
 Specs – camera’s specifications

The number of photons coming from an x-

magnitude star is determined from this function. 

They are converted to electron counts in order to 

be interpreted by a camera detector. 

2. GenerateStar (Vmag,bv , specs ,u , v )  Vmag – visual magnitude of star
 Bv – BV Color Index
 Specs – camera’s specifications 
 u,v – pixel coordinates of stars

Each star is generated by applying a Gaussian 

distribution, or brightness, to a 25x25 block 

given the inputs above. For each star, there are a 

certain number of photons or electron counts that 

should be displayed on the star image as defined 

by Function 1. 
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3. GenerateStarField(q)  q – quaternion 

Takes the star images generated from function 

file 2 and places them in the FOV with correct 

coordinates. 

The second part of this project is Algorithm testing. This requires testing the generated 

star images in part one and running attitude determination on them. Attitude determination as 

defined previously, involves solving for the matrix that transforms vectors from one frame to 

another. The two reference frames are the star tracker frame and the ECI frame. The attitude is 

represented here by a quaternion. There are different methods that can solve for the quaternion 

given two sets of vectors. The one used in this project is Davenport’s Q-Method. The difficulty 

with solving for the attitude is that the problem is over-determined when there are several vector 

measurements. For this reason, certain attitude determination methods have an advantage over 

others. Different methods include TRIAD, QUEST, and SVD. Fig. 7-1 shows the two main 

reference frames from which each set of star vectors is measured. Pixel space in comparison to 

the camera frame is where the photons of light get stored as electrons.  
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(a)

 (b)

(c)

Figure 7-8: (a) 1-2-3 represents the ECI frame, u-v-w the spacecraft frame (b) stars measured
from the camera reference frame (c) stars on the focal plane
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8 Hipparcos Star Catalog

The star vector measurements used in image generation and then later in finding a star 

match in attitude determination are taken from the Hipparcos Star Catalog. In 1989 the European

Space Agency launched the Hipparcos satellite and for 3 years it collected star light in efforts to 

map the celestial sky. As a result, the Hipparcos catalog [12] maps the 120,000 brightest stars in 

the night sky with high accuracy as well as dimmer stars with not as high accuracy. The catalog 

contains information about each star including star ID, BV-color index, right ascension and 

declination coordinates, and many other parameters. The most important values necessary for use

in this project’s code are the following:

 Hipparcos ID
 Henry Draper ID
 Right Ascension in Radians
 Declination in Radians
 BV Color Index
 Visual Magnitude

The Hipparcos ID and Hendry Draper ID (HDID) numbers are useful for differentiating 

each star. For a given identification number, the corresponding vector and magnitude among 

other characteristics can be looked up. The HDID numbers were not obtained from the same 

archive [13]. The right ascension and declination, in radians, define the location of the star in a 

spherical coordinate system. From these values the unit vector of the star can be obtained. The 

BV Color Index [14] is a parameter that gives the color and thus temperature of a star. This is 

useful for defining the radiation coming from a star. The visual magnitude is important for 
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defining a threshold of stars that the camera is limited to detect. The visual magnitude indicates 

how bright a star appears. 

8.1 Star Properties

Stars in general can be categorized into spectral types. Each spectral type is defined by a 

temperature range, where the star’s surface temperature categorizes it into either O, B, A, F, G, 

K, or M type. O denotes the hottest stars and M, the coolest stars. This classification scheme 

assumes that stars are black body radiators and re-emit all the incident electromagnetic radiation 

upon them. The radiation coming from stars is therefore only dependent on temperature and 

wavelength and is represented by Planck’s radiation formula, Eq. 19.

e

λ5(¿¿
hc
kT

−1)

I ( λ ,T )=
2πhc2

¿

                                                  (19)

 The temperature represents how hot a star is and how much radiation is being given off 

by the star. This allows for spectral type classification. Within each spectral type, stars are 

defined by their apparent magnitude or how bright they appear. In terms of apparent magnitude, 

a bright star will have a small value and a dim star will have a high magnitude. For reference, our

sun has an apparent magnitude of Mv = -26.7. The Hipparcos catalog contains stars as dim as 

Mv = 11. The software defined in this project is assuming a star tracker that is able to detect stars

as dim as visual magnitude of 6.

The amount of radiation or light that reaches a star tracker is dependent on the range of 

wavelengths that the detector is made to sensitize. In this project, the range is 400 – 800 nm and 

encompasses the visual spectrum.  As mentioned previously, the stars will be assumed to be 

30



black body radiators and emit a certain amount of flux dependent on its surface temperature. 

Using the first law of Thermal Radiation, Stefan-Boltzmann’s Law [15], the energy density 

emitted from a star at some temperature can be calculated more simply as shown by Eq. 20. This 

can be derived using Planck’s radiation formula by taking the limit as wavelength goes to 

infinity. Stefan-Boltzmann’s Law represents a star’s flux as being dependent only on surface 

temperature. 

σ T 4
=5.7 x 10−8 W

m2K 4
T 4

                                               (20)

It is also important to note that not all the blackbody radiation coming from a star will 

reach the camera’s detector, especially since it is designed for only a certain range of 

wavelengths. In order to account for this, the Johnson V curve is used. The Johnson V Curve is a 

transmission curve that defines real radiation spectra as opposed to a black body spectrum [16]. 

8.2 Stored Catalog Variations

The Hipparcos star catalog is used as the main source for obtaining star properties. The 

Hipparcos catalog is available for free online and although it was originally put together in the 

early 1990’s, updates are made every so often to account for the Earth’s precession and other 

factors that may affect the location of stars as measured from the ICRF. A truncated catalog is 

also created to include only stars that are as dim as visual magnitude 6. This truncated catalog is 

saved as a structure in Matlab called mag6, and includes 4559 stars. This is a small quantity 

compared to the hundreds of thousands that are originally included in the catalog. This is the 

catalog that would be stored on the star tracker and is used in creating star images as well since 

the detector will ignore stars that have brightness dimmer than the threshold value of 6. 
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An additional catalog database is created for the purpose of star matching. A star match 

occurs when stars in the field of view are matched with stars in the star catalog. The star 

identification algorithm searches for bright regions and saves them as potential stars. After 

finding the angular distance to those stars as well as the spherical coordinates between the two 

closest neighbors, the algorithm creates a triangular feature (TF). This TF is then searched for in 

a separate database called the StarCatalogDatabase, which is saved as a structure in Matlab as 

well. Once a match is found between the chosen TF in the FOV and the TF in the 

StarCatalogDatabase, the corresponding HDID numbers of the stars are searched for in the mag6

truncated catalog. The star parameters are then found from there. Table 8-1 summarizes the 

different catalogs created for this project.

Table 8-3: Star Catalog Variations

Catalog Variation Description
Original Hipparcos Catalog  May not be stored in the star tracker

 Contains the 120,000 brightest stars in 

the night sky and their properties with 

high accuracy
mag6  Matlab structure containing only stars 

with visual magnitude 6 or lower
 4559 stars

StarCatalogDatabase  Contains 4559 triangular features (TF)
 A TF includes each star and its two 

closest neighbors

9 Part One: Image Generation Truth Model

As mentioned in Project Design Methodology, part one will focus on creating a truth 

model that can be used for algorithm testing in part two. The truth model is essentially an image 
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generation process that will output star fields that accurately represent portions of the night sky. 

Matlab functions were created, which collectively generate a star field image given a quaternion 

(Appendix C). 

A quaternion is the input that defines what region of the sky the star tracker is pointing 

towards. Using the stars in the truncated Hipparcos catalog called mag6, the quaternion can be 

used to obtain the stars that are in the camera’s field of view. Stars within the FOV are kept and 

are used to generate the star field. Using the physics of the stars as covered in Star Properties, 

and after taking into consideration camera specifications which are defined later, a star field is 

generated using coordinates of the stars within the FOV. An example of a star field produced 

with quaternion, q =  [-0.9632    0.1788    0.1988    0.0279], is shown in Fig. 9.1. Note that the 

colors have been inverted in order to visually represent what the star field image looks like. 

Appendix E contains the raw image outputs without color inversion. Table 9-1 shows the time 

spent in image generation for a Monte Carlo run of 1000 trials. The average time to generate a 

star field image is 0.1375 seconds. 

Table 9-4: Image Generation Results

Monte Carlo Trial Runs Avg. Time Spent in Image Generation [sec]
1000 0.137518
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Figure 9-9: Star field generated with Matlab, Inverted Colors

9.1 Theory behind Image Generation

The following summarizes the steps and theory behind the function files listed in Table 6-

1. As an overview, there are three main functions used in image generation: NumPhotons, 

GenerateStar, and GenerateStarField. The first function calculates the number of photons coming

from a star and converts that number to electron counts. The second applies a Gaussian 

distribution to generate an individual star, and the third function puts together all the individual 

stars in the right location to represent a star field image. 

The physics behind stars, in addition to the camera specifications, need to be taken into 

consideration in order to accurately represent how they would appear on a detector. Starlight 

hitting the focal plane of the camera is proportional to the around the amount of radiation that the
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star gives off after taking into account the limitations of the camera in capturing 100% of this. 

Planck’s radiation formula, as stated by Eq. 18, is integrated over the 400 – 800 nm wavelength 

range. The temperature is found by plugging in the B-V color index specified in the catalog into 

Eq. 20. Knowing the temperature and integrating Eq. 18 gives the flux coming from a star in 

Watts per meters cubed. Fig. 9-2 shows the power flux vs. wavelength plot of a star with 

magnitude 5 and temperate 7641 Kelvin. 
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Figure 9-10: Power flux vs. Wavelength

The flux is then divided by photon energy, represented by Eq. 22, which outputs the 

number of photons coming from that star. In addition, a useful relation between flux and 

magnitude is also used in finding the flux coming from an x-magnitude star given some 

reference star. This is represented by Eq. 23, where m1 and m2 are the visual magnitudes and F1 
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and F2 are the fluxes. The reference star used in this project was the sun which has a known flux 

of 1300 W/m3 and a visual magnitude of -26.7. Figure 9-3 shows the star’s flux versus 

wavelength.

 m1−m2=−2.5 log( F1

F2
)                                            (23)
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Figure 9-11: Sun’s flux vs wavelength

However, the star tracker detector cannot capture all of the photons emitted from a star 

since some of the radiation gets lost as it travels through interstellar space. In addition, no 

detector is perfect and many factors affect its capability of capturing light including quantum 

efficiency and sources of noise. After taking into account quantum efficiency, although noise is 

not, the photons are converted into digital counts by using the relation presented in Eq. 23. First 
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the photons are converted into electrons by multiplying by the quantum efficiency, QE. This 

specifies how many photons actually get detected by the camera. Next the normalized value of 

electrons is divided by the quantum step equivalence (QSE) and multiplied by a digital gain 

(DG) which are both scaling factors. 

T=4600( 1
0.92 (B−V )+1.7

+
1

0.92 (B−V )+0.62 )                               (21)

E=
hc
λ                                                                  (22)

e−¿ photons∗QE                                                     (23-1)

e−¿
¿
¿

counts=¿
                                           (23-2)

Once the count values are known that should appear on the detector for a given star of 

magnitude and temperature, a Gaussian star is created. With a chosen PSF radius, or standard 

deviation, a Gaussian function is used to spread the light from a star onto a 25x25 pixel block. 

Equation 24 represents this function.

I (u , v )=
1

2π σ 2 e
−1
2σ 2‖r (u , v )−rrel ( u ,v )‖

2

                    (24)

 If the radius or standard deviation were 3, then the function would spread the star light with 

maximum peak at the center of the square and decrease from there. Using a pinhole model, it is 

important for the light coming from a star to disperse onto the focal plane over several pixels. 

Fig. 9-4 shows a pinhole model of a star tracker. The dashed line represents the bore sight of the 
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camera. In the center picture, the focal plane is visible where the starlight will fall. On the far 

right the lens is replaced with a pinhole. An example of an individual star generated is shown in 

Fig. 9-5. 

Figure 9-12: Pinhole model  [2]
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Figure 9-13: Gaussian Star Distribution created in Matlab

9.2 Camera Specifications

The camera’s specifications affect the kind of images that are produced. A list of the 

specs used in image generation are listed Table 9-2.  
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Table 9-5: Camera Specs used in generating images. 

Camera Spec Value
QE: Quantum Efficiency 0.6
Int: Integration 0.1 [s]
D: Detector diameter 0.016 [m]
A: Detector Area π∗D2

4
=¿  2.0106e-4  [m2]

Individual Star Size 25 x 25 pixels
pp: Pixel Pitch 2.5e-6 [m]
f: Focal Length 0.016 [m]
U: Detector Size in x-direction 2000 [pixels]
V: Detector Size in y-direction 1000 [pixels]
FOVx: Field of View in U-Direction 2 tan−1 V∗pp

2 f
=0.1559

FOVy: Field of View in V-Direction 2 tan−1U∗pp
2 f

=0.3100

FOV: Half Angle Field of View √FOV x2
+FOV y2

2
=0.1735

σ  = Sigma 2

QSE: Quantum Step Equivalence N well

NDR

=
30000
212 ≅7.3

# of Bits in Detector 12
Digital Gain 10

Depending on the focal length, there will either be high magnification or low 

magnification of stars. The F# is sometimes used to specify the amount of magnification. The F# 

is the ratio of the focal length to aperture diameter. The higher an F#, the higher the 

magnification. 

9.3 Obtaining Star Vectors in the FOV

In order to generate the star image using the camera specifications, the star vectors that 

are in the field of view need to be obtained from the star catalog. The bore sight of the camera 
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corresponds to the vector component of the quaternion. The stars in the camera’s FOV can be 

found using the simple cosine property represented by Eq. 25. If the dot product of the bore sight

vector with the vector of the star in the ECI frame, obtained from the star catalog, is greater than 

or equal to the cosine of the FOV diagonal angle, then the star can be considered in the star 

tracker’s field of view. 

V bore ∙V ECI≥ cos (FOV )                                              (25)

V cam=qV ECI                                                      (26)

The stars that are in the camera’s FOV are unit vectors that were picked out from the 

truncated star catalog. The truncated catalog as specified in Section 8.2, contains stars with visual

magnitude up to 6. This is the dimmest star that was included. From this truncated catalog, the 

star vectors that are in the camera’s FOV are then transformed from the ECI frame to the camera 

frame using the quaternion and a simple multiplication as represented in Eq. 26. This was also 

discussed in more detail in Section 5. The vectors in the camera frame then need to be translated 

onto the detector’s focal plane, where the photons of light get stored as electron counts a focal 

length distance, f, away.  

10 Part Two: Algorithm Testing

Part  two  deals  with  running  a  star  identification  algorithm  as  well  as  an  attitude

determination algorithm on the images generated in part one. Figure 10-1 shows a block diagram

of the process that the images go through with the corresponding Matlab “m” file right above

each process. Star identification involves detecting regions of interest that could potentially be
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stars. The attitude determination algorithm solves the lost-in-space problem by outputting the

spacecraft’s orientation in the form of a quaternion. Matlab script files were created to do this

(Appendix 10). The processes presented in this section are those that a typical star tracker would

go through while functioning. Part one was done in efforts to validate attitude determination

methods. 

Figure 10-14: Star Tracker Code Block Diagram

10.1 Star Identification Algorithm

The first step in the algorithm testing process was to run star identification. The algorithm

presented follows the pattern recognition method suggested by Liebe [17]. As satellites orbit the

Earth its star trackers will point to different regions of the sky and identify stars their  FOV.

Identifying those stars requires an algorithm that searches for potential regions of interest (ROI).
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Because part one essentially simulates images of the sky that a star tracker would see, those

images were fed directly into the star identification algorithm (Appendix 10.1).  

Identifying  bright  ROIs  that  could  potentially  be  stars  involves  searching  for  pixels

values that pass a certain threshold. This threshold is defined by the specifications of the camera.

The star tracker design presented in this project assumes a maximum detection threshold of stars

as dim as magnitude 6. Therefore, the threshold could be assigned as the maximum count value

in a magnitude 6 star. In typical star trackers, noise is something that needs to be taken into

account and thus there are other considerations that would affect the threshold. In this project,

noise was not incorporated. The minimum threshold value was chosen as a count value of 5 since

all pixels with a count value greater than 5 are guaranteed to be pixels in a star. 

The star image is read into Matlab as a matrix of count values; each element corresponds

to an intensity value in the range [0, 4095]. This range is dependent on the detector’s bit count

which is 12 for the ST presented here. A count value of 4095 corresponds to the highest intensity

or brightness. This step size is determined by Eq. 27.  

steps=2bit−1                                                                (27)

For each ROI that the algorithm detects,  the centroid is calculated in order to obtain

subpixel accuracy. Equation 28 represents the centroid of a given region. The centroid locates the

star in pixel space. In other words, it represents the coordinates of the star on the focal plane of

the charge-coupled device (CCD), or the camera detector. The focal plane is where the photons

of light get converted into a digital signal and saved as a count value. Once the coordinates are

located in pixel space, the location of the star gets converted into a unit vector measured from the

camera frame. This requires a simple translation as represented by Eq. 29. The values for Uc and
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Vc correspond to the center of the overall star field, which represents a 1000 by 2000 pixel

detector. Table 9-2 also lists other camera specs used in the equation. This translation is the

reverse of what was done in image generation, where stars in the FOV were converted from

camera space into pixel space. This step creates a list of potential star vectors as measured from

the camera’s reference frame. 

 C x=
Σi=1
N I ( x , y )∗x
Σ I (x , y )

,C y=
Σi=1
N I ( x , y )∗y
Σ I (x , y )                                                (28)

V xcam

V zcam

=(U c−V xpix )
pp
f                                                      (29-1)

V ycam

V zcam

=(V c−V ypix )
pp
f                                                     (29-2)

V zcam=√1−(V xcam

V zcam
)
2

−(V ycam

V zcam
)
2

                                             (29-3)

Star  trackers  are  affected  by  different  types  of  noise  and  aren’t  perfect  detectors.

Therefore the stars in the center of a star tracker’s FOV appear brighter. This is due to the fact

that stars closest to the rim are reflected the most and thus transmitted the least. A typical ST may

ignore rim stars;  Liebe’s algorithm first has all stars discarded whose distance to the second

closest neighbor is larger than that star’s distance to the rim [17]. However, because no noise is

accounted for in image generation and the stars appear the same regardless of where they are in

the FOV, the rim stars are not discarded in this project. 

In the star matching algorithm, the first star that is tried is the first star detected in the list

of potential stars. This star is defined as the pivot star. A triangular feature (TF) is then created
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which consists of the pivot star and its two closest neighboring stars. Three star parameters are

saved in the TF: the angular distance to the first star, the angular distance to the second star, and

the spherical angle between them. Figure 10-2 illustrates a TF, where only the angle  θ2  is

saved.  

Figure 10-15: Three stars form a Triangular Feature (TF)

A separate catalog database is then searched, which is called StarCatalogDatabase and

was outlined in Section 8.2. If the TF found in the FOV matches a TF saved in this separate

database  with  angular  distances  within  1% difference,  a  star  match  is  found and the  HDID

numbers corresponding to those stars are output. If the first TF tried does not output a star match,

the next star  in the list  is  chosen as the pivot star  and a different TF is  chosen. The HDID

numbers are used in looking up the vectors of the stars in the mag6 truncated star catalog, also

summarized in Section 8.2.  Now two sets of vectors are known, one in the camera frame and the

other in the inertial reference frame. These vectors are then fed into the attitude determination

problem.  Figures 10-3 and 10-4 show a star image after stars in the FOV have been centroided.

The red crosses pinpoint the centroids of each star. Colors have been inverted in order to more
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clearly represent the star image. Figure 10-4 shows the triangular feature. Images without an

inverted colormap are included in Appendix E.
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Figure 10-16: Image after Star Identification
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Figure 10-17: Triangular Feature after Star Matching

10.2 Attitude Determination 

There  are  many attitude  determination  methods  that  can  solve  for  the  quaternion  or

attitude matrix as covered in Section 6. The simplest one is TRIAD which solves for an attitude

matrix using two vector measurements.  An improvement to the TRIAD solution was presented

by Grace Wahba in 1965 [8]. Wahba’s problem is essentially an optimization problem where the

aim is  to  minimize the loss function as represented previously by Eq.  12 and restated here.

Minimizing the loss function yields the optimal least squares solution of the attitude matrix. 

L ( A )=
1
2
∑
i=1

N

ai‖b i−Ari‖
2

                                                (12)

46



Davenport’s Q Method and Quaternion Estimator (QUEST) are two methods that can 

solve Wahba’s problem and in effect minimize the loss function, L(A). The method of attitude 

determination used in this project is Davenport’s Q Method [8]. This method involves solving for

the symmetric, traceless matrix K restated here by Eq. 14. It has been proven that the attitude 

which represents the rotation of the star vectors from the reference frame, ri, to the star tracker 

frame, bi, is given by the largest eigenvector of the matrix K. A Matlab Script file was created 

that solves the eigenvalue problem and outputs the estimated quaternion using Q Method 

(Appendix D.9). 

K (B )=[B+BT−tr (B ) I 3 z

zT tr (B)]                                            (14)

z=[
B23−B32

B31−B13

B12−B21
]                                                                  (15)

B=∑
i=1

N

a ib ir i
T

                                                               (16)

The same quaternion that was used to generate the image is the true quaternion which 

should match the quaternion output after going through attitude determination, the estimated 

quaternion. An example of star vectors in the body frame are given by Eq. 30 and the star vectors

in the reference frame are given by Eq. 31. The estimated quaternion, output from attitude 

determination and represented by Eq. 32, will transform the “inertialVectors” into “starVectors.” 

This is essentially rotating from the inertial reference frame – ECI , to the body frame – the star 

tracker. Sometimes a negative of the expected quaternion is output. A negative quaternion 
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represents a vector in the opposite direction, however the rotation is still the same. A rotation of 0

degrees is equivalent to a rotation of 360 degrees. 

starVectors=[
0.0826 0.0753 0.1128
0.0670 0.0343 0.0255
0.9943 0.9965 0.9932]                                   (30)

inertialVectors=[
−0.2866 −0.2982 −0.2636
0.4176 0.3877 0.3790
0.8623 0.8722 0.8871 ]                            (31)

q=[
−0.9632
0.1788
0.1988
0.0279

]                                                            (32)

One way of verifying whether the estimated attitude is accurate is by finding an attitude error 

of the output. This can be found by making use of the orthonormal nature of the rotation matrix 

and of the quaternion through the property expressed by Eq. 33. The principal Euler angle, θ , 

will ideally be as close to 0 degrees, or 360 degrees, as possible.

 
q́×q−1

=δ q=(
cos (θ2 )
é sin( θ2 ))                                                          (33)

10.3 Algorithm Testing Results

In order to validate the scripts created in this part of the project, various tests were 

completed. A Monte Carlo simulation was performed on the code for 1000 trial runs beginning 

with image generation and ending with outputting the attitude quaternion result. Out of the 1000 
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runs, there were 9 cases where a star match was not found. This results in a 99.1 % efficiency in 

star identification. In some images generated, there may only be 2 stars identified in the FOV and

since three are required to form a triangular feature, a star match is not found. Other factors that 

could have affected this include edge stars that are not fully within the FOV and so their 

centroids were not resolvable. The attitude error was also found for the Monte Carlo simulation. 

The average attitude error was 0.001 degrees and 359.999 degrees, where an error of 0 or 360 

degrees represents a perfect estimate of the true attitude. Table 10-1 shows the results of the 

Monte Carlo simulation. An attitude error of exactly 0 degrees or 360 degrees represent zero 

error due to the fact that a negative quaternion is equal to its positive. The standard deviation 

values are presented as well.

Table 10-2 summarizes the amount of time spent in both Matlab algorithms – Star 

Identification and Attitude Determination. Run time for finding a star match is also included. The

amount of time spent in each script is dependent on a few parameters including the efficiency of 

the algorithm, but also on camera specs like integration time and computing power available. 

Star trackers are extremely expensive due to the computation power required for its performance.

The average loss function after the Monte Carlo run is also presented which is an average of 

0.000161 and represents a very accurate estimate of the quaternion. The closer the value is to 

zero, the smaller the difference between the expected and estimated attitude and the more 

accurate the result. 

Table 10-6: Monte Carlo average error and standard deviation

0 degrees 360 degrees
θavgatt error θstdev θavgatt error θstdev

0.0010 0.0073 359.9994 0.0053
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Table 10-7: Monte Carlo Simulation Summary

Monte Carlo
Runs

Avg. # Stars
in FOV

Avg. Time in
Star

Identificatio
n [sec]

Avg. Time in
Finding Star

Match 
[sec]

Avg. Time in
Attitude

Determinatio
n [sec]

Avg. Loss
Function

Value

1000 16.3 1.903358 0.054212 0.000095 0.000161

11 Applications and Future Work

The truth model designed in this project can be applied towards a Hardware in the Loop 

(HITL) simulation, where the star tracker algorithm can be tested over a spacecraft’s orbit in 

time. A Two Line Element (TLE) can be propagated, assuming the spacecraft holds an LVLH 

position at 0, 0, 0 degrees. The quaternion in this case is constantly changing over the course of 

the orbit and when plotted versus time would yield a sinusoidal curve. 

Another extension of this project is to take real pictures of the night sky with a telescope. 

Using a long exposure and integration time will allow the telescope to get refined images of the 

night sky. The same algorithms presented in this project can be used on those images to see if 

they are robust in handling noise.  

Future work includes improving the image generation process to include noise factors. This 

will create even more useful applications for testing star tracker algorithms. As a result, when 

noise is incorporated the star identification algorithm will need to be updated. This will yield a 

better method for star matching that can catch errors atypical of a star tracker in orbit. In effect a 
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better star tracker algorithm can be created that is more efficient and susceptible to overcoming 

noise factors. 

One limitation of the truth model created here is that noise is not incorporated. In addition,

there is a case where a quaternion will output a star image with less than three stars in the FOV.

Because a TF requires three stars in order to find a star match, this algorithm will not output an

attitude. It may be that the stars are too dim for the detector to detect, with the camera specs

defined in this project. This may also suggest that the method of star identification is not robust

enough.  Although  there  are  limitations,  the  overall  star  tracker  algorithm presented  met  the

expectations of the proposal and fulfilled the objective with high accuracy.
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Appendix A: Star Catalog Matlab Files
A.1: catalog_mag6.m

% Description:  Loads the Hipparcos Star Catalog as a mat file and deletes
%     all entries for stars that have a magnitude > 6
% Inputs:       none
% Outputs:      *Saves* hip_data.mat file with updated 'new' structure

 
load('hip_data.mat')

 
i = 1;
while (i <= length(new.mag))

 
    if (new.mag(i) > 6)
        new.hip(i) = [];
        new.ra(i) = [];
        new.dec(i) = [];
        new.pmRa(i) = [];
        new.pmDec(i) = [];
        new.mag(i) = [];
        new.parallax(i) = [];
        new.bv(i) = [];
        new.vi(i) = [];
    else
        i = i + 1;
    end

 
end

A.2: HipID2HendryDraperID.m

% Description:  Gets the Henry Draper ID # (HDID) from csv file and adds
%               to the mag6 structure 
% Inputs:       none
% Outputs:      *Saves* mag6_HDID.mat file with updated 'new' structure

 
function [] = HipID2HenryDraperID()

 
fid = fopen('hygdata_v3.csv','r');
load('mag6.mat');
mag6.HDID = [];
i = 1;
while (1)
    tline = fgetl(fid);
    if tline == -1
        break;
    end 

    
    if sscanf(tline,'%*d,%d,%*d') == mag6.hip(i)
        if isempty(sscanf(tline,'%*d,%*d,%d'))
            mag6.HDID(i,1) = 0;

54



        else
            mag6.HDID(i,1) = sscanf(tline,'%*d,%*d,%d') ;      
        end
        i = i + 1;  
    else
        continue  
    end
    if i == 166,
        mag6.HDID(i,1) = 6595
        i = 167
    end
    if i == 602,
        mag6.HDID(i,1) = 23978
        i = 603
    end
    if i == 901,
        mag6.HDID(i,1) = 34310
        i = 902
    end
    if i == 1115,
        mag6.HDID(i,1) = 41695
        i = 1116
    end
    if i == 2529,
        mag6.HDID(i,1) = 114613
        i = 2530
    end
    if i == 3734,
        mag6.HDID(i,1) = 182416
        i = 3735
    end
    if i == 3868,
        mag6.HDID(i,1) = 189944
        i = 3869
    end
    if i == 4317,
        mag6.HDID(i,1) = 213179
        i = 4318
    end
    if i > numel(mag6.hip)
        break
    end
end 

 
fclose(fid);
save('mag6_HDID.mat');

 
end

A.3: RaDec2_Veci.m

% Description:  Converts RA, Dec to unit vectors in the ECI frame, adds
%               to the mag6 structure and saves as a new mat file
% Inputs:       none
% Outputs:      *Saves* mag6_ECI.mat file with updated 'new' structure
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function RaDec2_Veci()

 
load('mag6_HDID.mat')
mag6.ECIcoord = [];
for i = 1:numel(mag6.ra)

    
    mag6.ECIcoord(i,1) = cos(mag6.dec(i))*cos(mag6.ra(i));
    mag6.ECIcoord(i,2) = cos(mag6.dec(i))*sin(mag6.ra(i));
    mag6.ECIcoord(i,3) = sin(mag6.dec(i));

    
end

 
save('mag6_ECI.mat');

 
end

Appendix B: Constants Matlab Files
B.1: camera_specs.m

% Description:  Provides camera's specifications used in generating images
% Inputs:       none
% Outputs:      specs structure

 
 
function specs = camera_specs()

    
    specs.QE = 0.6;           % Quantum Efficiency
    specs.Int = 0.1;          % [sec]
    specs.A = (pi*0.016^2)/4; % [m^2]
    specs.Nsize = 25;         % [pixels] Individual Star Block Size: 25x25
    specs.pp = 2.5e-6;        % [m] Pixel Pitch
    specs.f = 0.016;          % [m] Focal Length
    specs.U = 2000;           % [pixels] Number of pixels vertically
    specs.V = 1000;           % [pixels] Number of pixels in horizontally 
    specs.FOVx = 2*atan((specs.V*specs.pp/(2*specs.f))); 
% [rad] Horizontal Field of View
    specs.FOVy = 2*atan((specs.U*specs.pp)/(2*specs.f));                    
% [rad] Vertical Field of View
    specs.FOV = sqrt(specs.FOVx^2 + specs.FOVy^2)/2;                        
% [rad] Diagonal Field of View
    specs.sigma = 2;          
% standard deviation, how much the star spreads over pixels
    specs.QSE = 7.3;          
% Quantum Step Equivalence = full well capacity/dynamic range
    specs.bits = 12;          % Bit size
    specs.DG = 10;            % Digital Gain scale factor

 
end
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B.2: constants.m

Appendix C: Image Generation Matlab Files
C.1: generate_random_quaternion.m

% Description:  Generates a random quaternion
% Inputs:       none
% Outputs:      4x1 quaternion, 1st element is scalar
% Fns used:     optionally use generate_random_ProperRealOrthogonal_matrix()

 
function [q] = generate_random_quaternion()    

    
%     angle = rand(1)*pi;
%     A = generate_random_ProperRealOrthogonal_matrix();
%     [vec, lambda] = eig(A);
%     e = vec(:,1);
%     q = [cos(angle/2); e(1)*sin(angle/2); e(2)*sin(angle/2); 
e(3)*sin(angle/2)];

 
e = rand(3,1);
e = e/norm(e);
theta = rand*2*pi;
q = [cos(theta/2);e(1)*sin(theta/2);e(2)*sin(theta/2);e(3)*sin(theta/2)];

 
end

C.2: get_Vbohr.m

% Description:  Obtain the bore sight vector of the camera
% Inputs:       quaternion
% Outputs:      Bore sight of the camera, along Z axis.

 
function Vbohr = get_Vbohr(q)

 
q_3x3 = [q(2)^2-q(3)^2-q(4)^2+q(1)^2 2*(q(2)*q(3)+q(4)*q(1)) 2*(q(2)*q(4)-
q(3)*q(1));...
    2*(q(3)*q(2)-q(4)*q(1)) -q(2)^2+q(3)^2-q(4)^2+q(1)^2 
2*(q(3)*q(4)+q(2)*q(1));...
    2*(q(4)*q(2)+q(3)*q(1)) 2*(q(4)*q(3)-q(2)*q(1)) -q(2)^2-
q(3)^2+q(4)^2+q(1)^2]; %bore sight

 
Vbohr = q_3x3(3,:);

 
end

C.3: Veci_2Vcam.m

57



% Description:  Converts a vector in the ECI frame to a vector in the
%               Camera frame
% Inputs:       quaternion, Vector in ECI
% Outputs:      Vector in Camera frame

 
function [Vcam] = Veci_2Vcam(q,Veci)

 
q_3x3 = [q(2)^2-q(3)^2-q(4)^2+q(1)^2 2*(q(2)*q(3)+q(4)*q(1)) 2*(q(2)*q(4)-
q(3)*q(1));...
    2*(q(3)*q(2)-q(4)*q(1)) -q(2)^2+q(3)^2-q(4)^2+q(1)^2 
2*(q(3)*q(4)+q(2)*q(1));...
    2*(q(4)*q(2)+q(3)*q(1)) 2*(q(4)*q(3)-q(2)*q(1)) -q(2)^2-
q(3)^2+q(4)^2+q(1)^2]; %bore sight

 
Vcam = q_3x3*(Veci');

 
end

C.4: CameraStarCoordinates.m

% Description:  Obtains all the star coordinates in the camera's FOV and
%               converts them from ECI to camera frame
% Inputs:       quaternion, camera specs
% Outputs:      mag6bore structure with star vector parameters including
%               Hipparcos ID, RA, Dec, mag, bv, HDID, ECI coordinates
% Fns used:     get_Vbohr, Veci_2Vcam

 
function mag6bore = CameraStarCoordinates(q,specs)

 
FOV = specs.FOV;
load('mag6_ECI.mat')
Vbore = get_Vbohr(q);
mag6bore = [];
k = 1;

 
for i=1:length(mag6.hip)
    j = (mag6.ECIcoord(i,:));
    if dot(j,Vbore) >= cos(FOV),
        mag6bore.hip(k,:) = mag6.hip(i,:);
        mag6bore.ra(k,:) = mag6.ra(i,:);
        mag6bore.dec(k,:) = mag6.dec(i,:);
        mag6bore.mag(k,:) = mag6.mag(i,:);
        mag6bore.bv(k,:) = mag6.bv(i,:);
        mag6bore.HDID(k,:) = mag6.HDID(i,:);
        mag6bore.ECIcoord(k,:) = mag6.ECIcoord(i,:);
        k = k + 1;
    else
        continue
    end
end       

 
for i = 1:length(mag6bore.ECIcoord)    
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    Veci = mag6bore.ECIcoord(i,:);                                            
    Vcam = Veci_2Vcam(q,Veci);
    mag6bore.CameraCoord(i,:) = Vcam';    
end
end

C.5: Camera2PixelSpace.m

% Description:  Converts the coordinates of stars from camera frame to pixel 
space
% Inputs:       camera specs, x,y,z coordinates in camera frame
% Outsputs:     u,v coordnates in Pixel Space

 
function [u,v] = Camera2PixelSpace(specs,vx,vy,vz)

 
f = specs.f;
pp = specs.pp;                                                               
U = specs.U;
V = specs.V;

 
uc = (U/2)+1;
vc = (V/2)+1;

 
d = f/vz;
u = uc - (vx*d)/pp;
v = vc - (vy*d)/pp;

 
end

C.6: PixelSpaceCoordinates.m 

% Description:  Calculates the pixel space coordinates of the stars in the
%               star tracker's FOV
% Inputs:       quaternion, camera specs, mag6bore structure
% Outsputs:     Updated mag6bore structure with pixel space coordinates
% Fns used:     Camera2PixelSpace

 
function mag6bore = PixelSpaceCoordinates(q,specs,mag6bore)

 
listCam = mag6bore.CameraCoord;
n = length(listCam);
for i = 1:n
    [u,v] = Camera2PixelSpace(specs,listCam(i,1),listCam(i,2),listCam(i,3));
    mag6bore.PixelCoord(i,1) = u;
    mag6bore.PixelCoord(i,2) = v;
end

 
end
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C.7: johnsonVcurve.m

% Description:  Johnson V filter transmission curve for real radiation spectra
%               (ftp://obsftp.unige.ch/pub/mermio/filters/ph01.Vj)
%               Transmission in Unity
% Inputs:       none
% Outputs:      range of wavelengths, Johnson V transmission curve for visual 
magnitudes

 
function [lambda,JVcurve] = johnsonVcurve()

                                          
lambda = (5:5:3500)*1e-9;                                                
top = zeros(89,1);
bottom = zeros(559,1);
A=[0.002
0.005
0.005
0.009
0.012
0.016
0.023
0.039
0.1
0.213
0.371
0.548
0.705
0.831
0.916
0.972
0.998
1
0.984
0.954
0.916
0.872
0.826
0.775
0.722
0.668
0.613
0.559
0.503
0.45
0.399
0.346
0.297
0.251
0.209
0.169
0.135
0.104
0.081
0.063
0.049
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0.042
0.037
0.035
0.03
0.028
0.023
0.019
0.016
0.014
0.012
0.009];
JVcurve = [top; A ;bottom];
end

C.7: ref_star.m

% Description:  Calculates the flux coming from the sun which is used as the
%               reference star for calculating photon numbers in NumPhotons
% Inputs:       none
% Outsputs:     sun's flux
% Fns used:     johnsonVcurve, Optionally check Wein's Displacement Law

 
function sun_flux = ref_star()

 
    h = 6.626*10^-34;             % [J s] Planck's constant
    k = 1.38065*10^-23;           % [J/K] Boltzmann's constant
    c = 2.997*10^8;               % [m/s] speed of light
    sunT = 5777;                  % [K]
    AU = 149597871000;            % [m] Astronomical Unit
    Rs = 695800000;               % [m] Sun's radius
    dist = (AU/Rs)^2;             % http://maths.ucd.ie/met/msc/fezzik/Phys-
Met/Ch04-2-Slides.pdf
    [lambda, JV] = johnsonVcurve();

 
    p = ((2*pi*h*c^2)./(lambda.^5.*(exp((h*c)./(lambda.*k*sunT))-1)))';
    flux = trapz(lambda,p.*JV);   % from sun's photosphere [W/m2]
    sun_flux = (flux/dist);       % from Earth's surface [W/m2/s]
    figure
    plot(lambda,p)
    title('Sun Flux')
    xlabel(' \lambda [m]')
    ylabel(' [W / m^2]')          % WeinsLaw(lambda,p.*JV,sunT);

    
end

C.9: BV2Temp.m

% Description:  Get the temperature of a star from its B-V color index
% Inputs:       B-V color index
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% Outputs:      Temperature of a star

 
function T = BV2Temp(bv)

 
    T = 4600*( 1/(.92*bv + 1.7) + 1/(.92*bv+.62) );  

 
end

C.10: NumPhotons.m

% Description:  Calculates the number of photons coming from an X-Magnitude
%               star, optionally plots the flux vs wavelength
% Inputs:       Visual magnitude, BV color index, camera specs
% Outputs:      range of wavelengths, number of photons
% Fns used:     johnsonVcurve

 
function [lambda,photons] = NumPhotons(Vmag,bv,specs)

 
    [h,k,c,sunT,solarConstant] = constants();
    Int = specs.Int;
    A = specs.A; 
    [lambda,JV] = johnsonVcurve();
    T = BV2Temp(bv);

        
    I = (((2*pi*h*c^2)./(lambda.^5.*(exp((h*c)./(lambda.*k*T))-1))))';
    Sint = solarConstant;                  % [W/m2] *JV
    Iint = trapz(lambda,I.*JV);            % [W/m2] 
    magn = 2.512^(-26.7-Vmag);
    E = ((h*c)./lambda)';

    
    starFlux = (Sint/Iint)*magn.*I;        % [W/m2/s]
    photonFlux = ((Sint/Iint)*magn.*I)./E; % [photons/m2/s]
    photons = photonFlux*Int*A;            % [photons]
    sum(starFlux);

    
    sun = (((2*pi*h*c^2)./(lambda.^5.*(exp((h*c)./(lambda.*k*sunT))-1))))';

    
%     figure(1)
%     plot(lambda,sun,'b')
%     title('Sun Flux - Reference Star')
%     legend('Vmag = -26.7')
%     xlabel('\lambda [m]'),ylabel('[W / m^2]')
%     
%     figure(2)
%     plot(lambda,starFlux,'r')
%     title('Star Flux')
%     legend(['Vmag = ',num2str(Vmag)])
%     xlabel('\lambda [m]'),ylabel('[W / m^2]')

    
%     WeinsLaw(lambda,starFlux,T);

    
end
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C.11: GenerateStar.m

% Description:  Creates a star image given visual magnitude, optionally
%               plot the star in its own figure
% Inputs:       Visual magnitude, BV color, camera specs, u,v coordinates
%               of star in pixel space
% Outputs:      number of counts from the electrons that get stored  on the
%               detector, ul,vl coordinates of the upper left pixel to be
%               placed on larger star image field
% Fns used:     NumPhotons

 
function [counts,ul,vl] = GenerateStar(Vmag,bv,specs,u,v)

                                                                              
Nsize = specs.Nsize;
QE = specs.QE;
sigma = specs.sigma;
QSE = specs.QSE;
bits = specs.bits;
DG = specs.DG;

 
R_l = [round(v - Nsize/2); round(u - Nsize/2)];
vl = R_l(1);
ul = R_l(2);
R_rel = [v; u] - R_l; 

 
K = zeros(Nsize,Nsize);
for i = 1:1:Nsize
for j = 1:1:Nsize
    K(i,j) = (1/(2*pi*sigma^2))*exp((-1/(2*sigma^2))*norm([i;j] - R_rel)^2);
end
end

 
sum1 = sum(K(:));
[lambda,p] = NumPhotons(Vmag,bv,specs);
photons = trapz(lambda,p);
e = photons*QE;
K = e*(K/sum1);
C = (K/QSE)*DG;
counts = min(max(round(C),0),2^bits-1);

 
% figure,
% imagesc(counts,[0 2^bits-1]);
% colormap(gray)

 
end

C.12: GenerateStarField.m
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% Description:  Plots a star field in a figure given a quaternion 
% Inputs:       quaternion
% Outputs:      Img matrix with count values, Stars structure with
%               parameters including: pixel coordinates, Visual magnitude, 
%               camera coordinates, HDID number
% Fns used:     CameraStarCoordinates, PixelSpaceCoordinates, GenerateStar

 
function [Img,Stars] = GenerateStarField(q)

 
specs = camera_specs();
mag6bore = CameraStarCoordinates(q,specs);
star_parameters = PixelSpaceCoordinates(q,specs,mag6bore); 

 
listUV = star_parameters.PixelCoord;
Vmag = star_parameters.mag;
bv = star_parameters.bv;
U = specs.U;
V = specs.V;
Nsize = specs.Nsize;
Img = zeros(V,U);

 
Stars = [];
Stars.UV = listUV;
Stars.coord = star_parameters.CameraCoord;
Stars.mag = Vmag;
Stars.HDID = star_parameters.HDID;

 
for i = 1:length(listUV)

    
    vmag = Vmag(i);
    BV = bv(i);
    u = listUV(i,1);
    v = listUV(i,2);
    [Inorm,ul,vl] = GenerateStar(vmag,BV,specs,u,v);  

 
    vcoord = vl+1:vl+Nsize;
    ucoord = ul+1:ul+Nsize;
    plc_v = vcoord > 0 & vcoord <= 1000;
    plc_u = ucoord > 0 & ucoord <= 2000;
    Img(vcoord(plc_v), ucoord(plc_u)) = Img(vcoord(plc_v), ucoord(plc_u)) + 
Inorm(plc_v,plc_u);
    % if a star falls on the edge, will only plot the portion that's in FOV
end

 
figure
imagesc(Img);
colormap(gray);

 
end
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Appendix D: Algorithm Testing Matlab Files
D.1: findCentroid.m

% Description:  Finds the centroid of a star given its upperleft coordinate
% Inputs:       k,m coordinates of upperleft pixel on star field, Region of
%               Interest (ROI)
% Outputs:      Centroid in X-dir, Centroid in Y-dir

 
function [CenX,CenY] = findCentroid(k,m,ROImg)

 
sx = length(ROImg(:,1));
sy = length(ROImg(1,:));
Cy = zeros(sx,sy);
Cx = zeros(sx,sy);

 
restartm = m;
for kk = 1:sx
    for mm = 1:sy
        Cy(kk,mm) = ROImg(kk,mm)*k;
        Cx(kk,mm) = ROImg(kk,mm)*m;
        m = m + 1;
    end
    k = k + 1;
    m = restartm;
end

 
CenY = sum(Cy(:))/sum(ROImg(:));
CenX = sum(Cx(:))/sum(ROImg(:));

 
end

D.2: starIdentification.m

% Description:  Identifies the regions of interest (ROI) given a star field
%               and calculates the centroids of each potential star window.
%               Will place red crosses over centroids of stars
% Inputs:       Img Matrix of star field
% Ouputs:       list of Centroids, ROI structure which includes: star's
%               centroid, star's max count value, star's ROI window
% Fns used:     findCentroid

 
function [ROI,Centroids] = starIdentification(Img)

 
specs = camera_specs();
Nsize = specs.Nsize;
maxcount_dimstar = 3;

 
IMG = Img;
ROI = [];
star = 1;
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startnewj = 25;

 
for ii = 25:length(IMG(:,1))-25;  
    for jj = startnewj:length(IMG(1,:))-25;
    i = ii;
    j = jj;

    
    if IMG(i,j) >= maxcount_dimstar
        countrj = 1;
        countlj = 1;
        countui = 1;
        countdi = 1;
        count2j = 1;
        while IMG(i,j+1) >= IMG(i,j) 
            j = j + 1;
            count2j = count2j + 1;
        end
        while IMG(i+1,j) >= IMG(i,j)
            i = i + 1;
        end
        newi = i; newj = j; % right 
        while IMG(newi,newj+1) ~= 0
            newj = newj + 1;
            countrj = countrj + 1;
            if newj == 1
                break
            end
        end
        newi = i; newj = j; % left         
        while IMG(newi,newj-1) ~= 0
            newj = newj - 1;
            countlj = countlj + 1;
            if newj == 1
                break
            end
        end
        newi = i; newj = j; % up
        while IMG(newi-1,newj) ~= 0
            newi = newi - 1;
            countui = countui + 1;
            if newi == 1 
                break
            end  
        end
        newi = i; newj = j; % down
        while IMG(newi+1,newj) ~= 0
            newi = newi + 1;
            countdi = countdi + 1;
            if newi == 1
                break
            end
        end

 
        StarR = ['star',num2str(star)];
        ROI.(StarR).C = IMG(i-countui:i+countdi,j-countlj:j+countrj);
        ROI.(StarR).ulvl(1,1) = i - countui;
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        ROI.(StarR).ulvl(1,2) = j - countlj;
        ROI.maxcounts(star) = max(ROI.(StarR).C(:));
        IMG(i-countui:i+countdi,j-countlj:j+countrj) = 0;
        star = star + 1;
        startnewj = count2j + countrj;
    end

    
    end
    startnewj = 25;
end

 
 
Centroids = zeros(star-1,2);
hold on
for starnum = 1:star-1
    StarR = ['star',num2str(starnum)];
    ROImg = ROI.(StarR).C;
    k = ROI.(StarR).ulvl(1,1);
    m = ROI.(StarR).ulvl(1,2);
    [CenX,CenY] = findCentroid(k,m,ROImg);
    Centroids(starnum,1) = CenX;
    Centroids(starnum,2) = CenY;
    ROI.(StarR).centroid(1,1) = CenX;
    ROI.(StarR).centroid(1,2) = CenY;                                         
    plot(CenX,CenY,'r+')
end
hold off 

 
end

D.3: createAnglesDatabase.m

% Description:  Creates a database of angular distances between each star 
%               vector in ECI coordinates and every other star in the catalog.
% Inputs:       none
% Outputs:      *Saves* all angular distances in a mat file

 
load ('mag6_ECI.mat')
ECIunitvectors = mag6.ECIcoord;
angulardist = [];

 
for i = 1:length(ECIunitvectors)
    for j = 1:length(ECIunitvectors)

        
        v1 = ECIunitvectors(i,:);
        v2 = ECIunitvectors(j,:);
        v = ['v',num2str(i)];
        angulardist.(v)(j,1) = acos(dot(v1,v2)/(norm(v1)*norm(v2)))*180/pi;
        angulardist.(v) (j,2) 

        
    end
end
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D.4: createStarCatalogDatabase.m

% Description:  Creates a database of local star parameters including: HDID
%               numbers of the three stars, smallest angular distance to 
%               the 2 closest stars and the spherical angle between the two
% Inputs:       loads the angulardist and mag6_ECI mat files
% Outputs:      *Saves* the Trianular Features in a StarCatalogDatabase.MAT

 
load('mag6_ECI.mat')
load('angulardist.mat')
StarCatalogDatabase = zeros(4559,6);

 
for i = 1:4559 % var instead?

 
    v = ['v',num2str(i)];
    [angles_sorted,b] = sort(angulardist.(v));
    StarCatalogDatabase(i,1) = i;
    StarCatalogDatabase(i,2) = b(2);
    StarCatalogDatabase(i,3) = b(3);
    StarCatalogDatabase(i,4) = angles_sorted(2);
    StarCatalogDatabase(i,5) = angles_sorted(3);
    V1 = mag6.ECIcoord(i,:);
    V2 = mag6.ECIcoord(b(2),:);
    V3 = mag6.ECIcoord(b(3),:);
    a = V1-V2; 
    B = V1-V3; 
    StarCatalogDatabase(i,6) = acos(dot(a,B)/(norm(a)*norm(B)))*180/pi;

      
end

D.5: findAngularDistance.m

% Description:  Finds the angular distance between two vectors
% Inputs:       two vectors
% Outputs:      angular distance between the two vectors

 
function angdist = findAngularDistance(v1,v2)

 
angdist = acos(dot(v1,v2)/(norm(v1)*norm(v2))); % [rad]

 
end

D.6: Pixel2CameraSpace.m
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% Description:  Converts a vector in pixel space to the camera's reference 
frame
% Inputs:       Camera specs, Pixel Space vector
% Outputs:      Corresponding vector in camera space

 
function CameraSpaceVector = Pixel2CameraSpace(specs, PSVec)

 
uc = (specs.U/2)+1;
vc = (specs.V/2)+1;

 
CameraSpaceVector = zeros(3,1);
Vx_Vz = (uc - PSVec(1))*specs.pp/specs.f;
Vy_Vz = (vc - PSVec(2))*specs.pp/specs.f;
Vz = sqrt(1- Vx_Vz^2 - Vy_Vz^2);
Vx = Vx_Vz*Vz;
Vy = Vy_Vz*Vz;
CameraSpaceVector(1,1) = Vx;
CameraSpaceVector(2,1) = Vy;
CameraSpaceVector(3,1) = Vz;

 
end

D.7: findAngles.m

% Description:  Calculates the spherical angle and angular distances 
%               between stars and outputs a triad of star vectors in the
%               camera frame and in pixel space. 
% Inputs:       list of star Centroids, pivot star number
% Outputs:      TF = triangular feature includes angular distances from the 
pivot
%               star to 2 closest stars and the spherical angle between them

 
function [starVectors,starVectors_PixelS,TF] = findAngles(Centroids,pivot)

 
specs = camera_specs();
Diff = zeros(length(Centroids)+2,length(Centroids));
for i = 1:length(Centroids)
    star1 = [Centroids(i,:) -specs.f/specs.pp]';
    star1cam = Pixel2CameraSpace(specs,star1);
    for j = 1:length(Centroids)
        starx = [Centroids(j,:) -specs.f/specs.pp]';
        starxcam = Pixel2CameraSpace(starx);
        Diff(j,i) = findAngularDistance(star1cam,starxcam);
    end
    [~,b] = sort(Diff(1:length(Centroids),i));
    Diff(length(Centroids)+1,i) = b(2); %Centroid(b(1),:) is 1st closest star
    Diff(length(Centroids)+2,i) = b(3); %Centroid(b(2),:) is 2nd closest star
end

 
pivotstar = Centroids(pivot,:);
firstNeighbor = Centroids(Diff(length(Centroids)+1,pivot),:);
secondNeighbor = Centroids(Diff(length(Centroids)+2,pivot),:);
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starVectors_PixelS = zeros(3,3);
starVectors_PixelS(:,1) = [firstNeighbor -specs.f/specs.pp]';
starVectors_PixelS(:,2) = [pivotstar -specs.f/specs.pp]';
starVectors_PixelS(:,3) = [secondNeighbor -specs.f/specs.pp]';

 
starVectors = zeros(3,3);
for i = 1:3
starVectors(:,i) = Pixel2CameraSpace(starVectors_PixelS(:,i));
end

 
TF = zeros(1,3);
V1 = starVectors(:,1); 
V2 = starVectors(:,2);  % pivot
V3 = starVectors(:,3);
v1 = starVectors_PixelS(:,2) - starVectors_PixelS(:,1);
v2 = starVectors_PixelS(:,2) - starVectors_PixelS(:,3);
A = findAngularDistance(V2,V1);
B = findAngularDistance(V2,V3);
C = findAngularDistance(v1,v2);
TF(1,1) = A*180/pi;
TF(1,2) = B*180/pi;
TF(1,3) = C*180/pi;

 
end

D.8: findStarMatch.m

% Description:  Find star match between star catalog and those in the FOV
% Inputs:       Structure called "Stars" which includes HDID numbers of
%               stars used in generating images, list of Centroids
%               identified in the FOV
% Outputs:      Vectors of stars in body and inertial reference frames

 
function [starVectors,inertialVectors] = findStarMatch(Stars,Centroids)

 
load('StarCatalogDatabase.mat')
load('mag6_ECI.mat')
pivot = 1;
iterate = 1;
limit = length(Centroids);

 
while iterate == 1 && pivot <= limit
[starVectors,starVectors_PixelS,TF] = findAngles(Centroids,pivot); 

 
for i = 1:length(StarCatalogDatabase)

    
    angdist1 = StarCatalogDatabase(i,4);
    angdist2 = StarCatalogDatabase(i,5);
    sphangle = StarCatalogDatabase(i,6); 

    
    if angdist1 < TF(1)+0.01 && angdist1 > TF(1)-0.01 && angdist2 ...
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            < TF(2)+0.01 && angdist2 > TF(2)-0.01 && sphangle < TF(3)+0.5...
            && sphangle > TF(3)-0.5
        match = StarCatalogDatabase(i,:);
        hold on
        plot(starVectors_PixelS(1,:),starVectors_PixelS(2,:),'r:')
        hold off
        iterate = 0;
        break
    end
end
pivot = pivot + 1;
if pivot > limit
    disp('There was no match found. There may not be enough stars in the FOV')
%     testingMonteCarlo  = 1;
end
end
if pivot <= limit
HDID = [mag6.HDID(match(2)) mag6.HDID(match(1)) mag6.HDID(match(3))];
LIA = ismember(HDID, Stars.HDID);

 
if sum(LIA) == 3
%     testingMonteCarlo = 0;
    disp(['You have found 3 stars with corresponding HDID numbers: 
',num2str(HDID)])
end
inertialVectors = [mag6.ECIcoord(match(2),:)' mag6.ECIcoord(match(1),:)' 
mag6.ECIcoord(match(3),:)'];

 
end

 
end

D.9: AttitudeDeterminationQMethod.m

% Description:  Obtains the quaternion given two sets of vectors in body 
%               and reference frame using the Q Method
% Inputs:       Vectors in body frame, Vectors in reference frame
% Ouputs:       Quaternion

 
function quat = AttitudeDeterminationQMethod(starVectors,inertialVectors)

 
vb = starVectors;
vr = inertialVectors;
ai = 1; % weight

 
Bi = zeros(3,3);
B = zeros(3,3);
for i = 1:3
    Bi = ai*vb(:,i)*transpose(vr(:,i));
    B = B + Bi;
end

 
z = [B(2,3)-B(3,2); B(3,1)-B(1,3); B(1,2)-B(2,1)];
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K = [B+transpose(B) - trace(B)*eye(3) z; transpose(z) trace(B)];
[eigV,lambda] = eig(K);
quat = [eigV(4,4); eigV(1:3,4)];
theta = (2*acos(eigV(4,4)))*180/pi;

 
end

D.10: getQuaternionError.m

% Description:  Obtain the error in estimated and true quaternion. fourth
%               parameter is the scalar
% Inputs:       Estimated quaternion, True quaternion
% Outputs:      Attitude error [deg]

 
 
function attitudeError = getQuaternionError(q_true,q_est)

 
 
q_true_inv = [q_true(1) q_true(4) -q_true(3) q_true(2);...
    -q_true(4) q_true(1) q_true(2) q_true(3);...
    q_true(3) -q_true(2) q_true(1) q_true(4);...
    -q_true(2) -q_true(3) -q_true(4) q_true(1)];
q_est = [-q_est(2:4); q_est(1)];

 
q_err = q_true_inv*q_est;

 
attitudeError = 2*acosd(q_err(4));

 
 
end

D.11: getLossFunctionValue.m

% Description:  Finds the loss function value solution to Wahba's problem
% Inputs:       Vectors of stars in the body and inertial reference frames
% Outputs:      Loss function value, J

 
 
function J = getLossFunctionValue(starVectors,inertialVectors)

 
vb = starVectors;
vr = inertialVectors;
ai = 1; % weight
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Bi = zeros(3,3);
B = zeros(3,3);
for i = 1:3
    Bi = ai*vb(:,i)*transpose(vr(:,i));
    B = B + Bi;
end

 
z = [B(2,3)-B(3,2); B(3,1)-B(1,3); B(1,2)-B(2,1)];
K = [B+transpose(B) - trace(B)*eye(3) z; transpose(z) trace(B)];
[eigV,lambda] = eig(K); %largest lambda is lambda(4,4)
lambdamax = lambda(4,4);
lambda0 = ai + ai + ai; %sum of the weights

 
J = lambda0- lambdamax;%(transpose(q)*K*q);

   
 
end

D.12: runMonteCarloQMethod.m

% Description:  Run code to generate a star image and output the
%               corresponding quaternion. Loads the StarCatalogDatabase and
%               mag6_ECI MAT files, generates a star field using a random
%               quaternion and runs the star identification algorithm to
%               find a match between the stars in the image and those in the
%               catalog. The code will then run attitude determination via 
%               the Q Method and outputting the same quaternion used to 
%               generate the image. *Saves* as a mat file
% Inputs:       None
% Outputs:      MonteCarloQMethod Structure

 
 
for i = 930:1000

    
    q_ImgGen = generate_random_quaternion();
    [Img,Stars] = GenerateStarField(q_ImgGen);
    [ROI,Centroids] = starIdentification(Img);
    [starVectors,inertialVectors,testingMonteCarlo] = 
findStarMatch(Stars,Centroids);

 
    if testingMonteCarlo == 1

        
        Run = ['run',num2str(i)];
        MonteCarloQMethod.q.(Run) = [0 0];
        MonteCarloQMethod.Centroids.(Run) = 0;
        MonteCarloQMethod.Vectors.(Run) = 0;
        MonteCarloQMethod.attitudeError(i) = 0;
    else
        q_AttDet = AttitudeDeterminationQMethod(starVectors,inertialVectors);
        attitudeError = getQuaternionError(q_ImgGen,q_AttDet)  ;
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        Run = ['run',num2str(i)];
        MonteCarloQMethod.q.(Run) = [q_ImgGen q_AttDet];
        MonteCarloQMethod.Centroids.(Run) = Centroids;
        MonteCarloQMethod.Vectors.(Run) = [starVectors inertialVectors];
        MonteCarloQMethod.attitudeError(i) = attitudeError;
    end

       
end

D.13: calcMonteCarloAttitudeErrror.m

% Description:  Calculate the attitude error from the Monte Carlo results
% Inputs:       None, loads mat file created from runMonteCarloQMethod.m
% Outputs:      Average error in attitude errors, both 0 and 360 degrees

 
load('MonteCarloQMethod.mat')
AttitudeError = MonteCarloQMethod.attitudeError;
zeroDeg = zeros(1000,1);
threesixtDeg = zeros(1000,1);
j = 1; k = 1;

 
for i = 1:length(AttitudeError)

    
   run = AttitudeError(i);
   if run < 1
       zeroDeg(j,1) = run;
       j = j + 1;
   end
   if run > 1
       threesixtDeg(k,1) = run;
       k = k + 1;
   end  

    
end

 
deletezeros = zeroDeg > 0;
zeroDeg = zeroDeg(deletezeros);
deletezeros = threesixtDeg > 0;
threesixtDeg = threesixtDeg(deletezeros); %0 = 360 degrees in rotation

 
avgZeroDeg = mean(zeroDeg(:));
stdZeroDeg = std(zeroDeg(:));
avgThreesixtDeg = mean(threesixtDeg(:));
stdThreesixtDeg = std(threesixtDeg(:));

 

D.14: runScript_StarTrackerforAttitudeDetermination.m

% runScript_StarTrackerforAttitudeDetermination.m
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% Created: 4/15/15
% Updated: 5/13/15
% Description:  Run code to generate a star image and output the
%               corresponding quaternion. Loads the StarCatalogDatabase and
%               mag6_ECI MAT files, generates a star field using a random
%               quaternion and runs the star identification algorithm to
%               find a match between the stars in the image and those in the
%               catalog. The code will then run attitude determination via 
%               the Q Method and outputting the same quaternion used to 
%               generate the image. 

 
close all; clear all; clc;
q_ImgGen = generate_random_quaternion()
[Img,Stars] = GenerateStarField(q_ImgGen);
[ROI,Centroids] = starIdentification(Img);
[starVectors,inertialVectors] = findStarMatch(Stars,Centroids);
q_AttDet = AttitudeDeterminationQMethod(starVectors,inertialVectors)
attitudeError = getQuaternionError(q_ImgGen,q_AttDet)
J = getLossFunctionValue(starVectors,inertialVectors)

Appendix E: MATLAB Script Figure Outputs

E.1 Example Raw Image Generation Outputs
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E.2 Example Star Identification / Star Matching Outputs
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