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Abstract 

Design of a Linear Quadratic Gaussian Control System for a Thrust Vector 

Controlled Rocket 

 
Alex Ganbold  

There are several different types of control methods that can be used for linear and non-linear 

systems. These control methods require simple to complex controllers. In this project, the pitch 

stability of a finless rocket is analyzed by obtaining the state space model and examining the open 

and the closed loop response of different control methods. Also, the response of a simple, yet 

robust Proportional, Integral, Derivative (PID) controller is evaluated against the response of a 

Linear Quadratic Regulator (LQR). Due to the limitation of real-life applications and cases, a 

Kalman Filter (optimal estimator), was developed to fully observe and obtain the necessary state 

variables. Ultimately, the LQG and Kalman Filter results and the gains will be combined to obtain 

the Linear Quadratic Gaussian (LQG) controller response. Each section will define, derive, and 

implement the necessary functions into MATLAB and Simulink for optimal responses.  
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Symbols Definition Units (SI) 
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𝐻 Angular Momentum 𝑘𝑔 ∗ 𝑚2/𝑠 
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𝛼 Angle of attack 𝑟𝑎𝑑 
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𝜑 Euler angle rotation  − − − 

𝜖 Euler angle rotation − − − 

   

Subscripts   
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()𝛿 Parameter that is affected by elevator pitch − − − 
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Chapter 1: Introduction 

1.1 Motivation 

Guidance Navigation and Control (GNC) is a crucial subsystem for any aerial vehicle to operate 

as desired. Reliable guidance and control for a rocket or a missile is a necessity for its maximum 

potential. For many years, aerodynamic control surfaces were used as the medium to actuate the 

vehicle. Surfaces such as fins or canards did an excellent job of controlling the attitude of a 

rocket and reaching its destination. For many of the benefits of control surfaces, there are also 

several shortcomings that need to be addressed. Some of the shortcomings include the inability 

of control surfaces to effectively function at altitudes with little to no atmosphere and requiring 

different surfaces for different pitch angle corrections. To overcome these shortcomings, thrust 

vector control (TVC) was invented and optimized for both rocket and aircraft use. With less 

dependency on aerodynamic properties, a vehicle with a TVC system can maneuver without the 

absence of an atmosphere and is able to provide control moments at high angles of attack. With 

the first usage of exhaust vanes on V2 missiles and the first testing of NASA’s X-31 in 1990, 

several different types of TVC systems were invented, including vertical take or landing (VTOL) 

capable aircraft.  

For most of the aerospace industry, classical control theory has been implemented for decades as 

it provides simple and working control system to fulfill the necessary objectives. A control 

theory such as PID is simple and great to use, even on non-linear dynamic models. However, 

there are several modern control theories that also optimize the best gains and compensate for 

any possible inadequacies that either the software or the hardware might have.  
 

1.2 Literature Review  

Ever since Robert Goddard started the age of space with his revolutionary works on propulsion 

and rocketry, humans have developed various types of propulsion systems to accomplish the 

diverse needs of spaceflight. From the use of solid propellant rockets, dating back to ancient 

China, to liquid bi-propellant rockets and to even electric and jet engines, there are applications 

of propulsion in every aspect of human society. With the increased need of complex propulsive 

vehicles, there is also an increased need to control them. For rocketry, there exists few physical 

control systems including fins, canards, wings and/or attitude control using thrust vectoring. 

There are benefits and drawbacks to each configuration, thus they are often grouped together to 

optimize the control system. One of the most unconventional yet very crucial systems is thrust 

vectoring. The most important advantage of a thrust vector control is its use in space where there 

is no atmosphere for aerodynamic control surfaces. Even at low atmospheric pressures, 

aerodynamic surfaces lose their efficacy at an alarming rate; so, it is increasingly crucial to 

implement TVC systems in most rockets or missiles.  

There are several physical ways to employ thrust vectoring, including: engine gimbaling, 

reactive fluid injection, vernier thrusters, and exhaust vanes or jet vanes.  

The first uses of TVC were implemented during WWII on V-2 rockets by Wernher Von Braun. 

V-2 rockets utilized four static fins for stability and graphite jet vanes for TVC. Since then, there 

have been numerous implementations of TVC design in every aeronautical and astronautical 
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application. There are also several control system methods that can be implemented to actuate 

the necessary physical hardware.  

 

 

Figure 1: V-2 Jet vanes [4] 

Although there were no defensive measures against the V-2 at the time, due to the inaccuracy of 

the missiles, the program proved to be very inefficient due to its cost of production.  

The most common method, for rocketry and aircraft alike, is to gimbal the whole engine or the 

nozzles. By creating a torque on the center of gravity of the rocket, either yaw or pitch of the 

rocket can be manipulated through controlled inputs. Thrust gimbaling is illustrated in Figure 2.  
 

  

Figure 2: Engine Gimbaling [5] 
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1.3 Proposal  

In this paper, a simple rocket with thrust vector control system will be analyzed for its attitude 

due to disturbance, thrust input and/or sensor noise using different types of optimal control 

theories. For its proven efforts in industry and its robust behavior, PID control will be first 

implemented for a given thrust angle. PID is a classical control theory that is simple, efficient, 

and very robust to use. With numerous modern control theories being designed and developed, 

PID control systems are still overwhelmingly preferred by the majority of engineers in the 

industry. The results from the classical theory will be compared to modern techniques including 

Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG). Linear Quadratic 

Regulator is an optimal control system method that finds the optimal gain and influences the 

input signal to correct error signal. With LQG, LQR relates to Kalman Filter theory and obtains 

the optimal controller gain with observer gain to fully estimate the optimal state of the model and 

the output.  
 

1.4 Methodology 

Using the equations of motion for a thrust vector-controlled rocket, a linear and continuous state 

space model will be created. Using aerodynamic characteristics of a known rocket, the necessary 

matrices for a linear rocket are designed. With fully built state space, various types of control 

system theories can be implemented to observe the attitude and stability changes. With classical 

control theory, the PID method will be implemented on the pitch angle disturbance. Since the 

rocket is inherently unstable with no static stability fins, it is necessary to tune the P, I, and D 

gains to efficiently reach a desired attitude. Next, LQR will be designed and implemented using 

MATLAB and Simulink to find the necessary Q and R gains for the cost function and obtain the 

optimal gain. Since the plant is fully controllable and fully observable, a Kalman Filter will be 

designed to estimate the optimal rocket state from its output signals. Using the separation 

principle, LQR and Kalman Filter can be combined to find the optimal response. 
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Chapter 2: Rocket Model 

2.1 Frame of Reference  

For any object in space, there exist two frames of references to describe it. There are earth and 

body reference frames, with each reference frame fixed to earth itself and the body of the object. 

The earth centered inertial (ECI) frame has the origin at the middle with each directional axes 

perpendicular to each other, with Z locating at the geographical north pole. The ECI frame can 

be seen in Figure 3: 

 

 
Figure 3: Earth centered inertial reference frame [1] 

ECI directional vectors are often described as 𝑖̂e, �̂�e, �̂�e and can be used to describe a position of 

an object compared to the earth. The body refence frame, however, emphasizes the directions 

from the perspective of the object with t = 0 as seen from the object itself. Similar to ECI, body 

frames are described as 𝑖̂b, �̂�b, �̂�b and is illustrated in Figure 4.  
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Figure 4: ECI and body frame [2] 

 

 

2.2 Equations of Motion  

In any control design process, whether it is aerial or not, the modeling of the plant is a necessity. 

Any dynamic object can be defined by a set of mathematical equations that will predict its 

response to any disturbance or inputs. Equations of motion of a system describe the full non-

linear characteristics of the plant in time domain. For any rigid body in space, there are three 

ways to describe its motion: translational, rotational and with Euler angles.  

Translational motion, as the name states, looks at the physical location and the movements of a 

plant from ECI frame and can be used to predict the location at given time.  

 

Table 1: Coefficients symbols 
 

 Roll Pitch Yaw 

Angular Rates p q r 

Velocity u v w 

Aerodynamic Force FAx
 FAy

 FAz
 

Aerodynamic Force Coefficients CD CY CL 

Aerodynamic Moment Coefficients CL CM CN 

Angular Rates 𝜔𝑥  𝜔𝑦  𝜔𝑧  

 

Since rocket body is symmetric along XY and XZ planes, the products of inertial: Ixy, Ixz and 

Iyz, become zero. 

For simplicity and since the rocket will be well within the atmosphere, the aerodynamic 

coefficients will be constant, and the air will be incompressible. Rocket dynamics can be divided 

into six degrees of freedom: three translational and three rotational degrees of freedom with 

additional Euler angles for angular representation.  
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Translational Motion 

Considering Newton’s second law of motion: 

 

 ∑𝐹 = 𝑚𝑎 
(2.1) 

 

 
∑𝑇 =

𝑑

𝑑𝑡
(𝑟 x 𝑚𝑉) 

(2.2) 

 

   

with the net force, F, on the rocket and net torque, T, as foundational equations for the 

translational movement, the final equations can be derived: 

 

 
�̇� =

𝐹𝐴𝑥
+ 𝐹𝑃𝑥

+ 𝐹𝑔𝑥

𝑚
+ 𝑟𝑣 − 𝑞𝑤 

�̇� =
𝐹𝐴𝑦

+ 𝐹𝑃𝑦
+ 𝐹𝑔𝑦

𝑚
+ 𝑝𝑤 − 𝑟𝑢 

�̇� =
𝐹𝐴𝑧

+ 𝐹𝑃𝑧
+ 𝐹𝑔𝑧

𝑚
+ 𝑞𝑢 − 𝑝𝑣 

�̇� =
𝐿𝐴 + 𝐹𝑃 − 𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
, 𝑟𝑎𝑑/𝑠2 

�̇� =
𝑀𝐴 + 𝑀𝑃 − 𝑟𝑝(𝐼𝑥 − 𝐼𝑧)

𝐼𝑦
, 𝑟𝑎𝑑/𝑠2 

�̇� =
𝐿𝐴 + 𝐹𝑃 + 𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
, 𝑟𝑎𝑑/𝑠2 

(2.3) 

 

 

(The full derivation of the EOM is found in Appendix 1) 

 

For dynamic systems, it is necessary to describe the motion using the correct frame of reference. 

The Euler angles, 𝜃, 𝜑, 𝑎𝑛𝑑 𝜖 are used to convert the frames of reference through series of 

rotations. As shown in Figure 5, there can be multiple different types of rotations to reach the 

desired reference.  

 

 
Figure 5: Euler angle rotations [16] 

The full rotation follows the sequence of, 
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 𝑎 → 𝑎′ → 𝑎′′ → 𝑏 

 

(2.4) 

and there exists a matrix, called the Direct Cosine Matrix (DCM), that represents the relation 

between axes and used as a conversion matrix between vectors. The DCM follows the equation: 
 

 𝑐𝑖𝑗 = 𝑏𝑗 ∙ 𝑎𝑗 (2.5) 

with each element representing different rotation: 

 

 

𝑐𝑏/𝑎 = [

𝑏1 ∙ 𝑎1 𝑏1 ∙ 𝑎2 𝑏1 ∙ 𝑎3

𝑏2 ∙ 𝑎1 𝑏2 ∙ 𝑎2 𝑏2 ∙ 𝑎3

𝑏3 ∙ 𝑎1 𝑏3 ∙ 𝑎2 𝑏3 ∙ 𝑎3

] 

 

(2.6) 

The DCM matrix rotations can be simplified by the notation of 𝑐𝑏/𝑎, 𝑎 → 𝑏, or 𝑐𝑎/𝑏, 𝑏 → 𝑎. 
 

 

2.3 Linearization  

Although equations of motion describe the full dynamics of a system, the DCM describes non-

linear dynamics that restrict the ability to implement most of the classical or modern control 

theories. A linear time-invariant system is often the pre-requisite for any control design as most 

methods were developed for a linearized model. 

To linearize any model, the equations of motion must be rewritten in the form of state-variable, 

as shown in Eq. 2.7. 

 

 𝑥1̇ = 𝑓1(𝑥1, … , 𝑥𝑛, 𝑢)
𝑥2̇ = 𝑓2(𝑥2, … , 𝑥𝑛, 𝑢)

⋮
𝑥�̇� = 𝑓𝑛(𝑥1, … , 𝑥𝑛, 𝑢
𝑦 = ℎ(𝑥1, … , 𝑥𝑛, 𝑢)

 (2.7) 

  
 

Eq. 2.7 shows the necessary state variables, input scalars and the system output in a clear and 

concise manner. The equations take the form of:  

 

 

𝑓(𝑥, 𝑢) = [

𝑓1(𝑥1, … , 𝑥𝑛, 𝑢)
𝑓2(𝑥1, … , 𝑥𝑛, 𝑢)

⋮
𝑓𝑛(𝑥1, … , 𝑥𝑛, 𝑢)

] 

 

(2.8) 

Since the end goal of the linearization is to turn the non-linear EOMs into linear state space form, 

the system must be trimmer or reach an equilibrium point. The equilibrium points, 

𝑥∗[𝑥1
∗, … , 𝑥𝑛

∗]𝑇, are the parameters when the system or the rocket is in their designated 

equilibrium state (i.e. flying straight and level in the longitudinal plane). With assumed 

equilibrium points and denoting ∆𝑥 = 𝑥 = 𝑥∗, ∆𝑢 = 𝑢 − 𝑢∗ and ∆𝑦 = 𝑦 − ℎ(𝑥∗, 𝑢∗), the state 

space can be formed using the new variations of ∆𝑥, ∆𝑢 𝑎𝑛𝑑 ∆𝑦 from x, u and y.  
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By taking the partial derivatives of the function by each state variable and the inputs, the state 

space matrices are formed.  
 

𝐴 = [
𝜕𝑓

𝜕𝑢
]
𝑥∗,𝑢∗

=

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗) ⋯
𝜕𝑓1
𝜕𝑥𝑛

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗)

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗) ⋯
𝜕𝑓𝑛
𝜕𝑥𝑛

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗)
]
 
 
 
 

 

𝐵 =  [
𝜕𝑓

𝜕𝑢
]
𝑥∗,𝑢∗

=

[
 
 
 
 
𝜕𝑓1
𝜕𝑢

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗)

⋮
𝜕𝑓𝑛
𝜕𝑢

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗)
]
 
 
 
 

 

𝐶 =  [
𝜕ℎ

𝜕𝑢
]
𝑥∗,𝑢∗

= [
𝜕ℎ

𝜕𝑥1

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗) …
𝜕ℎ

𝜕𝑥𝑛

(𝑥1
∗, … , 𝑥𝑛

∗, 𝑢∗)] 

𝐷 =  [
𝜕ℎ

𝜕𝑢
]
𝑥∗,𝑢∗

 

(2.9) 

For the C matrix, a gain, often a gain of 1, is placed on the respective dimension in the matrix to 

output the response. In this case, if the pitch angle is the desired output response, then the C 

matrix would become [1 0 0]. The feedforward matrix, D, is often zero as the system and the 

control method is a feedback response method.  
 

2.4 State Space Modeling and System Stability  

State space modeling of any dynamic system provides a simple, matrix-based representation of 

the plant. With known aerodynamic characteristics of the vehicle, state space representation can 

become a linear, time-invariant model of the specific system that can fully represent the motion 

with any input. This paper will be using known aerodynamic characteristics of a rocket or use 

values from another paper for proof of concept.  
 

 �̇⃗� = 𝐴�⃗� + 𝐵�⃗⃗� 

�⃗� = 𝐶�⃗� + 𝐷�⃗⃗� 

 

(2.10) 

State space model consists of state vector, �⃗�, and matrix, A, input vector, �⃗⃗�, and matrix, B, the 

output vector, �⃗�, and matrix C and the feedforward matrix, D. A simple block diagram of a state 

space is shown in Figure 6 below with all matrices and logical paths represented. 
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Figure 6: State space block diagram [20] 

All the necessary states, such as position, rotation, or the rates of each variable, of a system are 

represented by the state vector and is manipulated by the input states. Although the state and 

input matrices are constant for the system, the C matrix is dependent on the desired output of the 

designer.  

 

Using the aerodynamic characteristics of a known rocket (15), the state space model of the 

system is given in Equation 2.11.  

 

 

𝑑

𝑑𝑡
[
𝜃
�̇�
�̇�

] =

[
 
 
 
 

0 1 0

𝑀𝛼 0
𝑀𝛼

𝑉
(𝐷 − 𝐹 − 𝑁𝛼)

𝑚
0 −

𝑁𝛼

𝑚𝑉]
 
 
 
 

[
𝜃
�̇�
�̇�

] + [

0 0
𝑀𝛿 𝑀𝛼

𝑇𝛿

𝑚
−

𝑁𝛼

𝑚

] [
𝛿
𝛼𝑤

] 

 

(2.11) 

The reference parameters of the vehicle at 60 second time point are given in Table 2.  

 

Table 2: Vehicle parameters [15] 
 

Data Value Unit 

𝑚 567718 Kg 

𝐼𝑦 296.4*106 Kgm2 

𝑇𝑜 10506450 N 

𝑇𝛿 10506450 N 

𝑉 410.56 m/s 

𝑁𝛼 3056.34 kN/rad 

𝑀𝛼 0.3807 s-2 

𝑀𝛿 0.5726 s-2 

𝑥𝑐𝑔 16.21 m 

𝑥𝑐𝑝 39.94 m 

𝑀 1.4 -- 

ℎ 10.0 Km 

𝐷 903.3 kN 
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The state space model is for the whole rocket with all matrices provided. This paper will be 

focusing on the pitch attitude due to pitch angle input. The pitch state space equation is given in 

Eq. 2.12.  

 

 

𝑑

𝑑𝑡
[
𝜃
�̇�
�̇�

] =

[
 
 
 
 

0 1 0

𝑀𝛼 0
𝑀𝛼

𝑉
(𝐷 − 𝐹 − 𝑁𝛼)

𝑚
0 −

𝑁𝛼

𝑚𝑉]
 
 
 
 

[
𝜃
�̇�
�̇�

] + [

0
𝑀𝛿

𝑇𝛿

𝑚

]𝛿 (2.12) 

 

For the C matrix, since the pitch angle of the rocket is considered: 

 

 𝐶 =  [1 0 0] 
 

(2.13) 

For MATLAB and Simulink implementation:  

 

 
Figure 7: MATLAB state space setup 

 

For any system, it is necessary for the system to be controllable before any type of control 

system is designed for it. Similarly, it is also crucial for the system to be observable, meaning 

that the states of a system can be estimated from a simulated output behavior. If the ranks of the 

controllability and the observability matrices are the rank of N, then, it is said that the system is 

controllable and observable.  

 

Controllability  

 

𝑟𝑎𝑛𝑘

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

= 𝑛 

 

(2.14) 

Observability  

 

 𝑟𝑎𝑛𝑘[𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵] = 𝑛 

 
(2.15) 

In MATLAB, both matrices and ranks can be easily checked with simple code.  

 

 𝑟𝑎𝑛𝑘(𝑐𝑡𝑟𝑏(𝐴, 𝐵𝑝) (2.16) 

 𝑟𝑎𝑛𝑘(𝑜𝑏𝑠𝑣(𝐴, 𝐶𝑝)) (2.17) 
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Using the given code, the ranks of both matrices were found to be 3. This proves that the given 

system is both controllable and observable.  

Since the rocket does not possess any control surfaces that provide inherent static stability such 

as fins or wings, it is expected that the attitude of the rocket would be extremely unstable. To 

check for the inherent behavior of the rocket without any active control system, the Open Loop 

response can be simulated.  

 

In Simulink environment, an open loop model is a simple feed forward path with external input 

attached.  

 

 
Figure 8: Open loop model in simulink 

 

The open loop response of the system after the simulation is shown in figure 9: 

 

 
Figure 9: Open loop response  

 

The response is according to the prediction as it is very unstable and diverges quickly to infinity. 

This response can be calculated quantitatively shown through the eigenvalues of the system with 

MATLAB.  

Using pre-programmed code to create a state space model in MATLAB:  

 

system =  ss(A, B, C, D) 
(2.18) 

and use: 

𝑒𝑖𝑔(𝑠𝑦𝑠𝑡𝑒𝑚) 
(2.19) 

the eigenvalue of the system is shown in Table 3: 
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Table 3: Eigenvalues of the open loop 
 

Eigenvalues 

-0.6579 

0.5657 

0.0922 
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Chapter 3: PID  

3.1 Introduction to Classical Control 

Classical control has been in use since the early 1900s with different ways to manipulate and 

control the desired outcome of a vehicle. There are several methods that were developed to 

analyze, and design closed control loops including Laplace transform, Bode plots, Nyquist 

stability criterion, root locus, etc... Using Laplace transform to change ordinary differential 

equations (ODE) into a simple function that represents the output for each possible input and 

using Bode plot to find the gain and phase margins of a system, classical control methods are 

proven to be valuable in a successful design. One of the most important and still relevant control 

system methods for a closed loop system is a Proportional, Integral and Derivative (PID) 

controller. PID was first developed in 1939 and, due to its simplicity and ease of understanding, 

it has been in use for the majority of control systems in the technological world.  

PID acts as a compensator for the whole system by manipulating the error signal e into a new 

input signal and obtaining the desired response. Figure 10 shows a basic PID block diagram with 

each gain:  

 

 
Figure 10: PID block diagram [6] 

 

The error is defined as: 

 

 𝑒(𝑡) =  𝑟 − 𝑦 

 
(3.1) 

Where r and y are the reference and output signals, respectively. 

 

The error signal is fed into the controller where it is subjected to a proportional, integral, and 

derivative functions with specific gains, which can be optimized intuitively and easily, and the 

desired response signal is acquired.  
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3.2 PID Usage and Gains 

The transfer function of a PID can be written in the Laplace domain as: 

 

 
𝐺(𝑠) = 𝐾𝑃 +

𝐾𝐼

𝑠
+ 𝐾𝐷𝑠 

 
(3.2) 

With time domain being:  

 

 
𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 

 

(3.3) 

Essentially, the error signal is proportionally multiplied, integrated, and derived to obtain a 

desired, new input signal.  

 

To obtain the optimal response for an input or disturbance, the gains for each control mechanism 

must be tuned and tested. There are several ways to tune the PID gains but first, it is necessary to 

understand each gain and its effects on the response. 

Table 4 shows the relationship between response parameters and stability with increasing 

different PID gains. 

 

Table 4: PID gains effects [3] 

 

 Rise time Overshoot Settling time Steady-State 

Error 

Stability 

Increase KP Decrease Increase Small 

Increase 

Decrease Degrade 

Increase KI Small 

Decrease 

Increase Increase Large Decrease Degrade 

Increase 

KD 

Small 

Decrease 

Decrease Decrease Minor Change Improve 

 

For this PID controller, Simulink auto-tuner that is programmed into the PID block will be used 

to optimize the gains.  
 

3.3 Implementation of PID and Tuning 

In MATLAB and Simulink, it is very simple to create a full closed loop response system with 

pre-programmed PID and state space blocks. Since the controller is affecting the whole system 

compared to a controller such as a servo motor, the PID block will be connected to a continuous, 

linear state space block. Figure 11 shows the full closed loop control diagram.  
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Figure 11: PID control  

 

The PID block may be tuned using different methods, however, Simulink auto-tuning option in 

the PID block diagram properties will be used. Once certain gains are obtained, trial and error 

can be used to obtain an even more optimized response.  

Tuned values for P, I, D are: 

 

Table 5: PID gains 

P I D 

157.71 75.26 48.55 

 

With a pitch angle reference signal of 0.5 amplitude, and tuned PID gains, the full closed loop 

response is obtained and graphed (Figure 12).  

 

 
Figure 12: Closed loop PID controlled response 
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In comparison to the open loop, PID controlled response is converging to the desired response 

within 7 – 8 seconds with very minimal overshoot.  
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Chapter 4: LQR Controller Implementation 

4.1 Theory 

LQR is an optimal control law that uses a quadratic performance index J function, or a cost 

function, to obtain the optimal weighing factors Q and R and find the LQR gain matrix K.  

 

 
Figure 13: LQR block diagram [7]  

 

For linear time-invariant system, an optimal control law seeks to find an input that allows the 

system to follow an optimal, predetermined path that minimizes the cost function. The system, 

 

  �̇� = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

 

(4.1) 

requires a cost function or a performance criterion: 

 

 
𝐽 = ∫ ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡

𝑡1

𝑡0

 

 

(4.2) 

for optimal control. Hamilton-Jacobi equation can be solved using a quadratic performance 

criterion to obtain the necessary parameters for an optimal gain K. Defining a function: 

  

 
𝑓(𝑥, 𝑡) = 𝑚𝑖𝑛 ∫ ℎ(𝑥, 𝑢)𝑑𝑡

𝑡1

𝑡0

 

 

(4.3) 

the Hamilton-Jacobi equation becomes:  

 

 𝜕𝑓

𝜕𝑡
= −𝑚𝑖𝑛 [ℎ(𝑥, 𝑢) + (

𝜕𝑓

𝜕𝑥
)
𝑇

𝑔(𝑥, 𝑢)] 

 

(4.4) 

where, if Eq 4.2 is a quadratic function, then the quadratic performance index becomes: 
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𝐽 = ∫ (𝑥𝑇

∞

0

𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 

 

(4.5) 

Substituting equations 4.4 and 4.5 turns to: 

 

 𝜕𝑓

𝜕𝑡
= −𝑚𝑖𝑛 [𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + (

𝜕𝑓

𝜕𝑥
)
𝑇

(𝐴𝑥 + 𝐵𝑢)] 

 

(4.6) 

Once the LQR gain is found, the new input becomes: 

  

 𝑢 = −𝐾𝑥 

 
(4.7) 

Where K is defined as: 

 

 𝐾 =  𝑅−1𝐵𝑇𝑃 

 
(4.8) 

and P is found from the Riccati equation: 

 

 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 

 
(4.9) 

Since all the other matrices are known or already pre-defined, the solution to the LQR gain can 

be calculated. 
 

4.2 Cost Function 

The Q and R matrices are l x l and m x m symmetric positive-definite matrices that represent the 

weights assigned to the state and the input parameters. Looking at the cost function: 

 

 
𝐽 = ∫ (𝑥𝑇

∞

0

𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (4.10) 

the parameters can be independently configured to reach an optimal solution. In this system, Q 

would be correlated with the pitch, pitch rate or the drift of the rocket. By increasing or 

decreasing the value of Q, the state parameters are affected according to the “weight” that is 

placed upon them. Similarly, the R value would affect both input vectors, pitch in this case, and 

can adjusted according to the designer’s need or hardware limitations. 

 

The Q and R matrices for this rocket underwent a trial-and-error method to find the most optimal 

path for a desired input.  

 

𝑄 = [
10000 0 0

0 150000 0
0 0 7000

] 

 

𝑅 = [
0.1 0
0 0.1

] 

(4.11) 
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4.3 MATLAB and Simulink of LQR Controller 

For MATLAB and Simulink approach, it is simple to find the necessary gains of the LQR, the 

eigenvalues and the P value of the Riccati equation. First, the state space of the model must be 

created in MATLAB using 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑠(𝐴, 𝐵, 𝐶, 𝐷) code and the parameters using:  

 
[𝐾 𝑃 𝐸] = 𝑙𝑞𝑟(𝑠𝑦𝑠𝑡𝑒𝑚, 𝑄, 𝑅) 

 
(4.12) 

Once the gain is found, using a preset initial condition (Eq 4.12) and a reference input (Eq 4.11) 

for pitch, the SIMULINK block diagram can be created for simulations.  

 

𝑟 = [
0.05
0
0

] 

 

𝑥0 = [
0.012

0
0

] 

 

(4.13) 

 
Figure 14: LQR SIMULINK block diagram  

 

With the full closed loop response with LQR gain for the error signal, the convergence of pitch 

angle of the rocket, the pitch rate and the lateral drift were found.  



20 
 

 
Figure 15: LQR pitch angle rate (deg/s) 

 

 
Figure 16: LQR pitch angle response (deg) 

 

The LQR controller sufficiently controls the response to the input, however, the response 

converges at much slower speeds than expected. It takes about 5-6 seconds to reach the 

commanded pitch angle. 
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Figure 17: LQR lateral drift (m) 

 

The miniscule change in the lateral drift doesn’t affect the rocket dynamics as significantly, thus 

resulting in a satisfying response from the LQR controller.  
 

4.4 Comparison of Classical and Modern Control 

There are lot of merits for both PID and LQR control methods. Considering the advantages and 

the disadvantages, both theories converged to the reference input at a similar rate. Although PID 

has a small amount of overshoot and instability in maintaining the response, simple tuning of 

each gain for their respective parameters will be sufficient in fully implementing the controller 

on the rocket.  



22 
 

 
Figure 18: LQR vs PID controller pitch response comparison (deg) 

 

Compared to PID, LQR controller holds its stability very well, which can attribute to high tuned 

optimal gains and the weighing matrices. Overall, although LQR seems to obtain results with 

less overshoot for this rocket plant, PID is able to converge faster to the given input with little 

overshoot and a minimal steady state error. Even if LQR is an optimal feedback controller with 

better cost function to obtain optimal gain, PID control is more intuitive and robust in its control 

and able to bring forth superior results. 
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Chapter 5: Kalman Filter 

5.1 Overview of KF 

In real life application of control theory, there are numerous uncertainties that must be 

considered during the design process of any system. When analyzing any system, it is crucial for 

the control engineer to understand the full states, which are the variables that are necessary in the 

dynamics of a system, that are involved in the behavior to implement a correct method. Although 

it is necessary, the states of the system are often not known, thus requiring ways to obtain them 

indirectly. Observers, primarily Kalman Filter, are one of the methods that can be used to 

estimate the full state of the system, using the input and the output of the system response. 

Kalman filter is an optimal state estimator that used the process and the measurement noises, 

including the input and the output, to estimate the full state of the system. Since there are 

numerous disturbances in real life cases, including sensor and environmental noise, that must be 

considered as it can affect the performance of a system, Kalman Filter becomes a powerful 

analysis tool for a control engineer. 

 

Suppose we have estimate state �⃗� which estimates the full state vector x: 

 

 �̇⃗� = 𝐴𝑥 + 𝐵𝑢 

�̇� = 𝐴𝑥 − 𝐴�⃗� 

 

(5.1) 

(5.2) 

then the state estimation error becomes: 

 

 𝑒 = 𝑥 − �⃗� 

 
(5.3) 

Combining the equations 5.2 and 5.3, we can see that, 

 

 �̇� = 𝐴𝑒 

 
(5.4) 

This means that if matrix A is asymptotically stable, the error will converge to zero for any input; 

meaning that as time reaches to infinity, the estimated state �⃗� will converge to the true state x. 

Alternatively, if A is an unstable vector, then the estimated state will diverge away from the 

actual state values. In order for the error term to reach a desired value (i.e. zero), a necessary 

Kalman gain value L is applied to equation.  

 

 �̇⃗� = 𝐴𝑥 + 𝐵𝑢 + 𝐿(𝑦 − �⃗�) 

�⃗� = 𝐶�⃗� 

 

(5.5) 

It is important to note that in Eq 5.5, as �⃗� converges to x, �⃗� also converges to y, negating the gain 

value and the system reaching its true state. 

 

The error term, on the other hand, becomes: 

 

 �̇� = 𝐴𝑥 − 𝐴�⃗� − 𝐿(𝐶𝑥 − 𝐶�⃗�) = (𝐴 − 𝐿𝐶)𝑒 

�̇⃗� = (𝐴 − 𝐿𝐶)𝑥 + 𝐵𝑢 + 𝐿𝑦 

(5.6) 

(5.7) 
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Eq 5.7 is what is known as the full order observer (as shown in Fig. 19), which considers both 

input and the output for its estimation method. 

 

 
Figure 19: Full-order observer [9] 

 

For Kalman Filter, an optimal estimator compared to an observer, introduces two different 

parameters:  

 �̇⃗� = 𝐴�⃗� + 𝐵�⃗⃗� + 𝐺𝑤(𝑡) 

�⃗� = 𝐶�⃗� + 𝑣(𝑡) 

𝑆𝑤(𝜔) = 𝑄𝑁 

𝑆𝑣(𝜔) = 𝑅𝑁 

 

(5.8) 

where 𝑤(𝑡) and 𝑣(𝑡) are zero-mean Gaussian noises with Q and R being process noise 

covariance and measurement noise covariance matrices, respectively.  

 

5.2 State Estimation 

The most important parameter of the system that must be considered when an observer is 

involved, is to verify if the system is observable or not. The observability of a system can be 

calculated by finding the rank of the system, using Eq. 5.9. If the system has n number of 

unknowns, then the system is only observable if the rank of the observability matrix is also n.  

 

𝑟𝑎𝑛𝑘[𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵] = 𝑛 

 
(5.9) 

From Chapter 2, we found that the rank of the system to be full rank and the observability 

matrix: 

 

𝑟𝑎𝑛𝑘[𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵] = 𝑛 (5.10) 

𝑂𝑏 = [
1 0 0
0 1 0

0.3807 0 0.0009
] 

 

Using the pre-programmed MATLAB function for observability, it is determined that the system 

is fully observable, thus a full Kalman Filter estimator can be implemented.  

 For the noise and measurement covariance parameters, simple trial and error to find the most 

optimal Kalman Filter gain were found and utilized: 
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𝑆𝑤(𝜔) = 𝑄𝑁 = 0.1 (5.11) 

 

𝑆𝑣(𝜔) = 𝑅𝑁 = (
1 0 0
0 1 0
0 0 1

) 

 

(5.12) 

Using the given model with disturbances, MATLAB function: 

 
[𝐾𝑒𝑠𝑡 𝐿 𝑃] = 𝑘𝑎𝑙𝑚𝑎𝑛(𝑠𝑦𝑠𝑡𝑒𝑚,𝑄, 𝑅, 𝑁) 

 
(5.13) 

can be used to find the Kalman gain, the Riccati equation matrix P and the estimated states Kest.  
 

5.3 Optimal State Estimation and MATLAB Implementation 

In Simulink and MATLAB, the Kalman Filter observer is calculated using the input with B gain 

matrix and the output. As shown in Figure 20, different gains were used to separate each 

parameter for better comparison of the response.  

 

 
Figure 20: Simulink kalman filter diagram 

 

With a simple step input of 0.05 amplitude, each state has a different response. Since an observer 

is being applied to an open loop system, the response is very unstable and diverges fast. It is 

shown that in Figures 21, 23 and 23, the Kalman Filter is able to closely estimate the true state of 

the system.  
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Figure 21: KF true vs estimated angle (deg) 

 

 
Figure 22: KF true vs estimated angle rate (deg/s) 
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Figure 23: KF true vs estimated lateral drift (m) 
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Chapter 6: LQG Control 

6.1 Overview of LQG 

With the LQR controller obtaining the optimal control gain K and the Kalman Filter estimating 

the true states of a system, the Linear Quadratic Gaussian controller can be obtained by 

combining LQR and Kalman Filter. The prerequisite of a LQR controller is to have every state 

variable known beforehand. As it is improbable to obtain every state of the system, the Kalman 

Filter is to compensate for it. This is one of the most important advantages of an LQG controller 

and the primary reason for its use in control design.  

 

 
Figure 24: LQG general setup [10] 

 

With a LQR controller gain connected to the estimated open loop response, an optimal closed 

loop response can be generated, and the error signal will converge to zero.  

 

 
Figure 25: LQG detailed block diagram [11] 
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It is important to note that, although LQG controller is applicable to most systems, the 

disadvantage of Kalman filter based LQR design is that it makes the open-loop system have very 

low stability margins.  

 

6.2 Separation Principle 

For a linear time-invariant system, the separation principle states that an optimal observer and a 

feedback controller can be designed separately and combined to create a stable response of a 

system. From the observer equations, 

 

 �̇⃗� = (𝐴 − 𝐿𝐶)�⃗� + 𝐵�⃗⃗� + 𝐿𝑦 

 
(6.1) 

the estimated state variables �⃗� are obtained and is used in the LQR gain equation, 

 

 𝑢 = −𝐾�⃗� 

 
(6.2) 

to obtain the optimal controlled input for the system. Substituting eq. 6.1 and 6.2 to the error 

equation 𝑒 = 𝑥 − �̂�,  

 

 �̇� = (𝐴 − 𝐿𝐶)𝑒 

𝑢 =  −𝐾(𝑥 − 𝑒) 

 

(6.3) 

the matrix form of closed loop dynamics can be obtained,  

 

 [
�̇�
�̇�
] = [

𝐴 − 𝐵𝐾 𝐵𝐾
0 𝐴 − 𝐾𝐶

] [
𝑥
𝑒
] 

 
(6.4) 

Since the eigenvalues of the matrix consist of A-BK and A-KC, both parameters are independent 

of each other. 
 

6.3 Combination of LQR and Kalman Filter 

The Simulink implementation of the LQG is simple as it combines the block diagram of Kalman 

Filter with the addition of LQR gain.  
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Figure 26: LQG Simulink block diagram 

 

A step input of 0.05 amplitude is also applied to the entire system and the response of each state 

variable, pitch angle, angle rate and the lateral drift, were documented for analysis.  

 

 
Figure 27: LQG estimated vs true angle (deg) 
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Figure 28: LQG estimate vs true angle rate (deg) 

 
Figure 29: LQG estimated vs true lateral drift (m) 

 

It is clear with LQR gain, the closed loop response is considerably stable for both pitch angle and 

the pitch angle rate, as predicted. The error term is also quite small for both of the states, 

excluding the lateral drift which is still noticeably unstable. Although the controller is 

compensating for the error term, the lateral drift is larger than expected.  
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Chapter 7: Discussion 
 
In the early 1940’s, simple PIDs were used to control the majority of the systems, but with the 

creation of parameter tuning, several different types of tuning were introduced to the method 

[22]. Introduction of auto-tuning, self-tuning, robust, optimal tuning and etc..., the simple PID 

controller was transformed into a system with a wide variety of applications and uses.  In 

addition to the use of PID in the aerospace industry, the PID control method is also used in 

process control, robotic fields, biomedical applications and in mechanical and power systems 

[22].  

 

Even though the open loop response of this system was significantly unstable, the feedback 

control systems were able to correct any errors that occurred for the state variables. Since the 

rocket doesn’t possess any control surfaces to provide static stability, PID provided simple, yet 

effective control over the response. With the given gains for P, I and D, and using the auto-

tuning software provided by Simulink block set, an acceptable response with minimal overshoot 

and damping was created. Even without any auto-tuning methods, with the provided table of PID 

gains and their effects, a simple trial-and-error method is sufficient in finding satisfying gains for 

the method. One of the main advantages of using PID is that it is very robust and intuitive 

compared to methods such as LQR or LQG due to its simplicity and implementation. If a system 

has a steady-state error, the I gain is increased until the error disappears or, if the system is under 

or overdamped, the D gain is manipulated until desired damping of the system is obtained.  

LQR, on the other hand, uses a cost function to find the optimal control gain, K. After deriving 

the Ricatti equation to find the P matrix and manipulating the Q and R weighting matrices, the 

LQR response of the system is obtained. In this case, the response converges on the input with 

no overshoot and no steady state error but the time to reach full convergence was an issue. The 

LQR solution took significantly longer than the PID to reach the desired command as the rise 

time for PID was considerably faster. Although it is possible to tune the LQR gain, the process is 

less intuitive and requires more in-depth knowledge of how LQR processes and matrices affect 

the gain.  

 

With the use of a linear quadratic estimator (LQE), the Kalman Filter gain of the system was also 

obtained to estimate the full state variables. Using the output, the input, process, and 

measurement noises, estimating the full state is a very powerful tool in real life applications. To 

fully utilize the LQR method on a system, Kalman Filter or any other LQE must be employed 

simultaneously to obtain the states and control the response after.  

As such, the Linear Quadratic Gaussian controller is formed to fully observe and control the 

given unstable system. By incorporating the KF gain for the state and manipulating the estimated 

states using LQR gain, the response of the combined methods is significantly more robust and 

optimized than individual control systems.   
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Chapter 8: Conclusion 

The design process included deriving the equations of motion of the rocket, linearizing the 

equations, and obtaining a linear time-invariant state space model. All of these steps are essential 

in designing a suitable control system for any rigid body. Depending on the type of system, there 

can be several different methods that can be used to control it. From classical to modern systems, 

different methods can be appropriate for different situations. With PID being the most robust and 

easy to use method, the majority of the engineering industry is implementing PID in most control 

architectures. PID also requires the least amount of derivation and knowledge to fully take 

advantage of its benefits. With its simplicity and ease of use, there are less avenues of error and 

simple troubleshooting. The usage of Kalman Filter estimator is necessary for any control 

problem due to its function in understanding the full system. By estimating every state variable 

of the system, a feedback control can be designed to command any of the observed state 

variables.  

 

Each classical or modern control method has its own advantages and disadvantages. However, in 

comparing the responses of PID, LQR and LQG systems, given that the states are known or 

estimated, PID appears to be a superior and practical system out of all. For any method, the 

simplest and easiest, yet effective system will be highly prioritized. For most systems, the control 

engineer can estimate how the system behaves and implement a simple or complex PID 

controller that can negate most of the undesired responses that may arise.   
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Appendices 
 

A1 Derivations 
 

A1.1 Translational Motion 

 

The force and torque equations: 

 ∑𝑭 = 𝑚𝒂 (A1.1) 

 
∑𝑻 =

𝑑

𝑑𝑡
(𝑟 x 𝑚𝑽) 

(A1.2) 

can be considered as a conservation of linear and angular momentums:  

 
∑𝑭 =

𝑑(𝑚𝑽𝑚)

𝑑𝑡
 (A1.3) 

 
∑𝑴 =

𝑑𝑯

𝑑𝑡
 (A1.4) 

Considering the six degrees of freedom for the equations, Eq A1.1 and Eq A1.4 can be written in 

the forms of:  

 
𝐹𝑥 =

𝑑(𝑚𝑢)

𝑑𝑡
 

𝐹𝑦 =
𝑑(𝑚𝑣)

𝑑𝑡
 

𝐹𝑧 =
𝑑(𝑚𝑤)

𝑑𝑡
 

(A1.5) 

and  

 
𝐿𝑥 =

𝑑𝐻𝑥

𝑑𝑡
 

𝐿𝑦 =
𝑑𝐻𝑦

𝑑𝑡
 

𝐿𝑧 =
𝑑𝐻𝑧

𝑑𝑡
 

(A1.6) 
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For the translational degrees of freedom, the frame of reference must be changed from inertial to 

body frame using the Eq A1.7:  

 
(
𝑑𝑨

𝑑𝑡
)
𝑏𝑜𝑑𝑦

= (
𝑑𝑨

𝑑𝑡
)

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
+ 𝝎 × 𝑨  (A1.7) 

with A vector being the main vector. With inertial velocity vector, 𝑉𝑚, the equation becomes: 

 
(
𝑑𝑽𝑚

𝑑𝑡
)
𝑏𝑜𝑑𝑦

= (
𝑑𝑽𝑚

𝑑𝑡
)
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

+ 𝝎 × 𝑽𝒎 (A1.8) 

The vector product of the angular rates and the linear velocity can be calculated using vector 

multiplication: 

 
𝝎 × 𝑽𝑚 = (

𝑖 𝑗 𝑘
𝑝 𝑞 𝑟
𝑢 𝑣 𝑤

) = (𝑞𝑤 − 𝑟𝑣)𝑖 + (𝑢𝑟 − 𝑝𝑤)𝑗 + (𝑝𝑣 − 𝑞𝑢)𝑘 (A1.9) 

with Newton’s second law, the translational equations become:  

 
∑𝐹𝑥 = 𝑚(

𝑑𝑢

𝑑𝑡
+ 𝑞𝑤 − 𝑟𝑣) 

∑𝐹𝑦 = 𝑚(
𝑑𝑣

𝑑𝑡
+ 𝑟𝑢 − 𝑝𝑤) 

∑𝐹𝑧 = 𝑚(
𝑑𝑤

𝑑𝑡
+ 𝑝𝑣 − 𝑞𝑢) 

(A1.10) 

Rewriting Eq A1.2.1:  

 𝑑𝑢

𝑑𝑡
= (

∑𝐹𝑥

𝑚
) + 𝑟𝑣 − 𝑞𝑤 

𝑑𝑣

𝑑𝑡
= (

∑𝐹𝑦

𝑚
) + 𝑝𝑤 − 𝑟𝑢 

𝑑𝑤

𝑑𝑡
= (

∑𝐹𝑧

𝑚
) + 𝑞𝑢 − 𝑝𝑣 

(A1.11) 

with aerodynamic, propulsive, and gravitational forces included in the sum.  
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A1.2 Rotational Motion 

The net torque on the rocket is the rate of change of the angular momentum: 

 
∑𝑴 =

𝑑𝑯

𝑑𝑡
 (A1.12) 

with angular momentum vector and expressed in the form: 

 𝑯 = 𝐼𝝎 (A1.13) 

with the general inertial matrix: 

 

𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] (A1.14) 

Using the same multiplication rule from translational derivation, the reference frame is converted 

to the body frame:  

 
(
𝑑𝑯

𝑑𝑡
)
𝑏𝑜𝑑𝑦

= (
𝑑𝑯

𝑑𝑡
)
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

+ 𝝎 × 𝑯  (A1.15) 

with the cross product: 

 

𝝎 × 𝑯 = (

𝑖 𝑗 𝑘
𝑝 𝑞 𝑟
𝐻𝑥 𝐻𝑦 𝐻𝑧

) = (𝐻𝑧𝑞 − 𝐻𝑦𝑟)𝑖 + (𝐻𝑥𝑟 − 𝐻𝑧𝑝)𝑗 + (𝐻𝑦 − 𝐻𝑥𝑞)𝑘 (A1.16) 

Since the torque equals the derivative form of the angular momentum: 

 
𝑑𝑯

𝑑𝑡
= 𝑰 × �̇� = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] [
�̇�
�̇�
�̇�

] 

= (𝐼𝑥𝑥�̇� + 𝐼𝑥𝑦�̇� + 𝐼𝑧𝑧�̇�)𝑖̂ + (𝐼𝑦𝑥�̇� + 𝐼𝑦𝑦�̇� + 𝐼𝑦𝑧�̇�)𝑗̂ + (𝐼𝑧𝑥�̇� + 𝐼𝑧𝑦�̇� + 𝐼𝑧𝑧�̇�)�̂� 

(A1.17) 

Assuming the rocket is symmetric along xy, yz and xz planes, the angular momentum equations 

turn to: 

 𝑯 =  𝑰 × 𝝎 = (𝐼𝑥𝑥𝑝)𝑖̂ + (𝐼𝑦𝑦𝑞)𝑗̂ + (𝐼𝑧𝑧𝑟)�̂� (A1.18) 

Also, rewriting the cross product of eq. A1.16: 
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 𝝎 × 𝑯 = (−𝐼𝑦𝑦𝑟𝑞 + 𝐼𝑧𝑧𝑞𝑟)𝑖̂ + (𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑟𝑝)𝑗̂ + (𝐼𝑦𝑦𝑝𝑞 − 𝐼𝑥𝑥𝑞𝑝)�̂� (A1.19) 

Then, the body reference torque for each axis turns to:  

 
∑ 𝑳 = (

𝑑𝐻𝑥

𝑑𝑡
) = (𝐼𝑥𝑥�̇� + 𝐼𝑧𝑧𝑟𝑞 − 𝐼𝑦𝑦𝑞𝑟)𝑖 ̂

∑ 𝑴 = (
𝑑𝐻𝑦

𝑑𝑡
) = (𝐼𝑦𝑦�̇� + 𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑟𝑝)𝑗 ̂

∑𝑵 = (
𝑑𝐻𝑧

𝑑𝑡
) = (𝐼𝑧𝑧�̇� + 𝐼𝑦𝑦𝑝𝑞 − 𝐼𝑥𝑥𝑞𝑝)�̂� 

(A1.20) 

Simplifying 𝐼𝑥𝑥 = 𝐼𝑥, 𝐼𝑦𝑦 = 𝐼𝑦, 𝐼𝑧𝑧 = 𝐼𝑧 and re-arranging:  

 
�̇� =

𝑳𝐴 + 𝑳𝑝 − 𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
 

�̇� =
𝑴𝐴 + 𝑴𝑝 − 𝑟𝑝(𝐼𝑥 − 𝐼𝑧)

𝐼𝑦
 

�̇� =
𝑵𝐴 + 𝑵𝑝 − 𝑝𝑞(𝐼𝑦 − 𝐼𝑥)

𝐼𝑧
 

 

(A1.21) 
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A2 MATLAB Code 
 

close all, clear all, clc 

  

% Initial Parameters and Characteristics 

m = 567718; % kg 

Iy = 296*10^6; % kgm^2 

T0 = 10506450; %N 

Td = 10506450; %N 

F = T0 + Td; % Total Thrust 

V = 410.56; % m/s 

N_alpha = 3056.34; % kN/rad 

M_alpha = 0.3807; % s^-2 

M_delta = 0.5726; % s^-2 

x_cg = 16.21; % m 

x_cp = 39.94; % m 

M = 1.4; 

h = 10; % km 

d = 903.3; % kN 

  

% State Space (*d are values for single input [Pitch]) 

A = [0 1 0; M_alpha 0 M_alpha/V; (d-F-N_alpha)/m 0 -N_alpha/(m*V)]; 

B = [0 0; M_delta M_alpha; Td/m -N_alpha/m]; 

Bp = [0; M_delta; Td/m]; 

C = [1 0 0; 0 1 0; 0 0 1]; 

Cp = [1 0 0]; 

D = [0 0; 0 0; 0 0]; 

Dp = 0;  

  

  

% Controllability and Observability check (good if rank = 3) 

rank(ctrb(A,Bp)) 

rank(obsv(A,Cp)) 

  

% System creation and Simulink 

system = ss(A,B,C,D); 

sys_P = ss(A,Bp,Cp,Dp);  % Pitch only system 

  

sys_B = ss(A,Bp,C,Dp); 

  

[b,a] = ss2tf(A,Bp,Cp,Dp); 

sys = tf(b,a); 

  

%% PID 

  

% PID gains 

P = 157.71; 

I = 75.26; 

D_PID = 48.55; 

  

pid_k = tf([P,I,D_PID],[1 0]); 
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CL = feedback(series(pid_k, sys),1); 

  

bode(sys) 

hold on 

bode(CL) 

legend('plant', 'CL') 

  

%% LQR  

  

% LQR gains 

Q = [100000 0 0; 0 150000 0; 0 0 7000]; 

R = [.1 0; 0 .1]; 

  

  

[K, S, E] = lqr(system,Q,R); 

  

% reference signal with initial conditions 

r = [0.05 0 0]'; 

x0 =[0.012  0 0]'; 

  

% separating vertices 

o = [1 0 0]; 

n = [0 1 0]; 

z = [0 0 1]; 

  

  

%% KF 

  

Qn = 0.1; 

Rn = [1 0 0; 0 1 0; 0 0 1]; 

  

Nkf = 0; 

[kalmf,L,P] = kalman(sys_B,Qn,Rn,Nkf); 

  

%% LQG  

Rlqg = 0.1; 

  

[Klqg, Slqg, Elqg] = lqr(sys_B,Q,Rlqg); 

  

%% Simulink 

open_system('State') 

sim('State') 

  

  

%% Plotting 

  

% PID  

  

figure 

plot(ans.ref(:,1),ans.ref(:,2),'--') 

hold on 
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plot(ans.pitchOL(:,1),ans.pitchOL(:,2)) 

hold on 

plot(ans.pitchCL(:,1),ans.pitchCL(:,2)) 

hold off 

ylim([-.5 2]) 

xlim([0 10]) 

legend('Reference Signal','Open Loop','Closed Loop') 

xlabel('Time (s)') 

ylabel('Amplitude') 

title('Pitch Angle for Closed Loop Response') 

  

% LQR 

figure % Pitch 

plot(ans.output(:,1),ans.output(:,5),'--') 

hold on  

plot(ans.lqr_theta(:,1),ans.lqr_theta(:,2)) 

hold off 

title('LQR Pitch angle response') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Pitch angle response') 

  

figure % Pitch Rate 

plot(ans.lqr_thetadot(:,1),ans.lqr_thetadot(:,2)) 

title('LQR Pitch angle rate') 

xlabel('Time (s)') 

ylabel('Amplitude') 

  

figure % Lateral Drift or Z dot 

plot(ans.lqr_zdot(:,1),ans.lqr_zdot(:,2),'r') 

title('LQR Lateral Drift') 

xlabel('Time (s)') 

ylabel('Amplitude') 

  

  

% PID vs LQR comparison 

figure  

plot(ans.output(:,1),ans.output(:,5),'--') 

hold on  

plot(ans.pitchCL(:,1),ans.pitchCL(:,2)) 

hold on  

plot(ans.lqr_theta(:,1),ans.lqr_theta(:,2)) 

hold off 

title('LQR vs PID pitch response') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','PID Pitch angle','LQR Pitch angle') 

  

%KF  

figure, 

plot(ans.KF_theta(:,1),ans.KF_theta(:,2),'--') 

hold on  
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plot(ans.KF_theta(:,1),ans.KF_theta(:,3)) 

axis([0 10 -5 5]) 

title('Pitch angle vs Estimated angle') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Pitch angle','Estimated angle') 

  

figure, 

plot(ans.KF_theta_dot(:,1),ans.KF_theta_dot(:,2),'--') 

hold on 

plot(ans.KF_theta_dot(:,1),ans.KF_theta_dot(:,3)) 

axis([0 10 -5 5]) 

title('Pitch angle rate vs Estimated rate') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Pitch angle rate','Estimated rate') 

  

figure, 

plot(ans.KF_Z_dot(:,1),ans.KF_Z_dot(:,2),'--') 

hold on 

plot(ans.KF_Z_dot(:,1),ans.KF_Z_dot(:,3)) 

axis([0 10 -5 10]) 

title('Lateral drift vs Estimated drift') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Lateral drift','Estimated drift') 

  

%LQG  

figure, 

plot(ans.LQG_theta(:,1),ans.LQG_theta(:,2),'--') 

hold on  

plot(ans.LQG_theta(:,1),ans.LQG_theta(:,3)) 

axis([0 10 -5 5]) 

title('LQG Pitch angle vs Estimated angle') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Pitch angle','Estimated angle') 

  

figure, 

plot(ans.LQG_theta_dot(:,1),ans.LQG_theta_dot(:,2),'--') 

hold on 

plot(ans.LQG_theta_dot(:,1),ans.LQG_theta_dot(:,3)) 

axis([0 10 -5 5]) 

title('LQG Pitch angle rate vs Estimated rate') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Pitch angle rate','Estimated rate') 

  

figure, 

plot(ans.LQG_z_dot(:,1),ans.LQG_z_dot(:,2),'--') 

hold on 

plot(ans.LQG_z_dot(:,1),ans.LQG_z_dot(:,3)) 
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axis([0 10 -5 10]) 

title('LQG Lateral drift vs Estimated drift') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend('Reference Signal','Lateral drift','Estimated drift') 

  

 

  

 


