
Development of CR3BP, ER3BP and N-

Body Orbit Simulations Using Matlab

a project presented to

The Faculty of the Department of Aerospace Engineering San José State

University

in partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

by

Andrew Torricelli

December 2017

approved by

Prof. Jeanine Hunter

Faculty Advisor

1

Development of CR3BP, ER3BP and N-Body Orbit

Simulations Using Matlab

A Torricelli1

San Jose State University, San Jose, CA, 95192

The Three-Body and N-body Problem has confounded the greatest physicists and

mathematicians for centuries. In the many attempts for an elegant solution, this deceptively

difficult problem has led to numerable advancements in mathematics. However, since its

formulation by Newton, no closed-form solution has been found. Presently it is accepted that

no such solution to the general three-body problem exists and never will. However, with some

restrictions and computational tools, accurate simulations are possible. This paper will delve

into the history of the Three-body problem and introduce mathematical concepts for solving

the Circular Restricted Three-Body Problem (CR3BP), the Elliptic Restricted Three-Body

Problem (ER3BP), and develop methods for solving an unrestricted N-Body Problem.

Solutions to the restricted cases as well as the N-body are applied to Apollo missions for

evaluation. The N-body goes a step further, simulating a wide range of orbital systems in

various reference frames for evaluation.

𝑟⃗ 𝑖

=

Nomenclature

Position vector of object i
𝑅 = Radius

𝑅𝐸 = Earth Radius

𝑅𝑆 = Sun Radius
𝑎 = Semi-major axis

𝐺 = Gravitational Constant

𝐷 = Distance from Earth to Moon

𝜌 = Mass ratio

𝑖 = Inclination

𝑑𝑡 = Time step

𝜔 = Argument of Perigee

𝑃 = Orbit Period

𝑒 = Eccentricity

𝜃̇ = Angular Velocity

𝑀 = Mean Anomaly
𝑛 = Mean Motion

𝜇 = Gravitation Parameter

𝜈 = True Anomaly

𝑉 𝑖 = Velocity vector of object i
Δ𝑉 = Delta-V, Change in velocity

𝑝0 = Initial position

𝑉0 = Initial velocity
𝑡 = Time

𝑚𝑖 = Mass

|𝑟⃗ 1 − 𝑟⃗ 2| = Distance between objects 1 & 2

1 SJSU MSAE Student, Aerospace Engineering, 1 Washington Square, San Jose, CA 95112

2

T
I. Introduction

HE three-body problem seeks to determine movements of three bodies in space under mutual gravitational

interaction. A solution hopes to determine all future and past spatial locations of three bodies based solely on

positions and velocities from a single instant in time. A general solution for the problem known as the general three-

body problem, would describe these movements in 3 dimensions with no restrictions in mass, initial position or

velocity. While the two-body problem has been solved completely from its inception, including an additional body to

the problem has proven to be much more difficult. For centuries, physicists and mathematicians have been

unsuccessful in their attempts to discover a closed-form solution, and as it is now known, no closed-form solution

exists for the general three-body problem. Three-body motion is considered generally unpredictable. However, with

some restrictions, namely one mass taken to be negligible, the problem becomes much easier. This is called the

restricted three-body problem. There are two paths that can be taken in solving the restricted three-body problem, the

simpler circular restricted three-body problem (CR3BP) where the two larger masses have circular orbits around their

shared center of mass, or the more complicated but accurate elliptic three-body problem (ER3BP) where the larger

masses move in elliptical orbits around their shared center of mass.

The three-body problem was first formulated by Isaac Newton in 1687 in the Principia. He extensively studied

the motion of the Earth around the Sun and the Moon around the Earth, but found the problem difficult. Newton was

only able to obtain approximate solutions to within 8% of known observations.

Later in 1767, Euler proposed a special form of the general three-body problem where the three bodies were places

in a straight line. With sufficient initial conditions, the three bodies would move in elliptical orbits while preserving

the straight line positions seen in 9Figure 1. Euler was also the first to study the three-body problem in a co-rotating,

or synodic, reference frame by placing the origin at the barycenter. This was an important step in the eventual

development of the circular restricted three-body problem.

9Figure 1. Special form solution developed by Euler where three bodies are in a line.

Soon after, in 1772, Lagrange discovered another special class of orbits. When the positions of three bodies formed

an equilateral triangle with a certain set of specified initial velocities, the equilateral configuration stayed consistent

over time. This configuration is shown in9Figure 2. Lagrange also greatly contributed to the CR3BP when he

discovered 5 positions in a circular orbit where the gravitational force equaled the centrifugal force for negligible

masses. These positions are now called the Lagrange points, where L1, L2, and L3 were determined unstable and L4

and L5 we determined to be stable. Figure 3 shows the positions of the five Lagrange points.

3

9Figure 2. Lagrange's special solution with 3 objects in an equilateral triangle.

Figure 3. Lagrange Points for a circular orbit

Then in 1836, using the synodic barycenter coordinate system developed by Euler, Carl Gustav Jacob Jacobi was

able show an integral of motion exists for a three body system. Now called the Jacobi integral, it is the only known

conserved value in the circular restricted three-body problem. The constant of integration discovered by Jacobi is

shown below,

𝐶 = 𝑛2(𝑥2 + 𝑦2) + 2 (
𝜇1

+
𝜇2
) − (𝑥 2 + 𝑦 2 + 𝑧̇ 2)𝑅 = −𝜔𝐿

𝐽 𝑟⃗1 𝑟⃗2
𝐵

(1)

where 𝑛 is the mean motion, 𝜇 is the GM or gravitational constant and mass multiple and 𝑟⃗1 and 𝑟⃗2 are distances from

the two large masses. The integral equation is,

𝑥 𝑥 + 𝑦 𝑦 + 𝑧̇ 𝑧̇ =
𝛿𝑈

𝑥 +
𝛿𝑈

𝑦 +
𝛿𝑈

𝑧̇ =
𝑑𝑈

𝛿𝑥 𝛿𝑦 𝛿𝑧̇ 𝑑𝑡

(2)

After integration of Eq. (2) the formula becomes,

4

𝑥 2 + 𝑦 2 + 𝑧̇ 2 = 2𝑈 − 𝐶𝐽 (3)

This integral was essential to George William Hill in 1878 when he applied it to the motion of the infinitesimally

small masses of asteroids. This led to Hill conceptualizing zero velocity curves as a visualization tool still in use today.

An example of zero velocity curves or surfaces is shown in Figure 4. This led Hill to his eventual formulation of a

version of Lunar Theory also still in use today. Hill’s Lunar Theory approached the circular restricted three-body

problem from a new angle by analyzing perturbations on special cases of lunar orbits to find positions to a relative

high degree of accuracy. Applying perturbations to special orbits and analyzing the results became an important

avenue for later CR2BP contributions.

Figure 4. Zero Velocity Curves or Surfaces developed by George William Hill

One of the most important contributions to the three-body problem came from Poincaré between 1892 and 1899.

Poincaré published a series of books on methods for solving differential equations. More importantly, he developed

methods for identifying systems of equations that were non-integrable. These new methods allowed Poincaré to

identify the three-body problem as unpredictable or unsolvable which changed the focus of the problem to techniques

used today. Poincaré later developed this farther into a theory of chaos.

With this new knowledge, finding a closed form solution became highly unlikely. Future efforts were therefore

focused on solutions using infinite series. Sundman in 1912 was able to find a complete solution to the three-body
problem using a power series, however, this solution converged very slowly and restricted its use from any reasonable

applications. Despite Sundman’s power series implying an overarching solution exists for the three-body problem, his

method only gave results indirectly so the three-body problem’s unpredictability was preserved. Computational

methods with series continued to develop through the first half of the 20th century, and as computers continued to

advance into the latter half of the 20th century, numerical solutions of the three-body problem became easier and faster.
Solutions to greater degrees of accuracy were calculated at increasing speeds allowing precise and accurate trajectories

to be found for trajectories to the moon and beyond.

5

II. The Circular Restricted Three-Body Problem

 Earth Moon

Mass 5.9723 × 1024 𝑘𝑔 Mass 7.346 × 1022 𝑘𝑔
Equatorial Radius 6378.1 𝑘𝑚 Equatorial Radius 1738.1 𝑘𝑚

Semimajor Axis 149.60 × 106 𝑘𝑚 Semimajor Axis 0.3844 × 106 𝑘𝑚
Mean orbital velocity 29.78 𝑘𝑚/𝑠 Mean orbital velocity 1.022 𝑘𝑚/𝑠

GM 0.39860 × 106 𝑘𝑚3/𝑠2
 GM 0.00490 × 106 𝑘𝑚3/𝑠2

Perihelion 147.09 × 106 𝑘𝑚 Perigee 0.3633 × 106 𝑘𝑚
Aphelion 152.10 × 106 𝑘𝑚 Apogee 0.4055 × 106 𝑘𝑚

Orbit inclination 0.000 𝑑𝑒𝑔 Revolution period 27.3217 𝑑𝑎𝑦𝑠
Orbit eccentricity 0.0167 Synodic period 29.53 𝑑𝑎𝑦𝑠

Sidereal rotation period 23.9345 ℎ𝑟⃗𝑠 Inclination to ecliptic 5.145 𝑑𝑒𝑔
Inclination of equator 23.44 𝑑𝑒𝑔 Inclination to Earth equator 18.28 − 28.58 𝑑𝑒𝑔

 Orbit eccentricity 0.0549
 Distance from Earth 3.78 × 105 𝑘𝑚

Table 1. Earth and Moon Parameters used in the proceeding chapters

The Three-Body Problem can be simplified into the restricted three-body problem if one of the masses is

infinitesimally small. This simplification can be readily applied to the motion of satellites in the Earth-Moon system.

The problem can be simplified even farther if the orbits of the two massive bodies are nearly circular, that is to say,

the eccentricity is nearly 0. This is called the Circular Restricted Three-Body Problem and reasonably accurate results

can be obtained for low eccentricity systems. In the Earth-Moon system, the Moon has an eccentricity of 0.0549 and

can be considered nearly circular. However, this approximation is not satisfactory for certain orbits due to increasing

resonate perturbations, but in many occurrences this simplification suffices.

The circular restricted three body problem in a rotating barycenter frame was first developed and utilized by Euler

in 1772. His efforts focused on studying the Moon’s motion around the Earth, however, this section will center on

satellite motion for which the same methods can be easily applied.

1Figure 5. Typical Circular Restricted Three-Body Problem Geometry

Since we are restricting the elliptical motion of the Earth and Moon to circular orbits about their barycenter, the
angular velocity is simply constant.

𝑛 =
𝐺(𝑀1 + 𝑀2)

√
𝐷3

(4)1

𝑀1 and 𝑀2 are the masses of the Earth and the Moon respectively and 𝐷 is the distance between the two. For the

circular restricted three-body problem, 𝐷 will also remain constant in time. 𝐺 is the gravitational constant and is taken

to be 6.67408 × 10−11 𝑚3𝑘𝑔−1𝑠−2.

6

The position of the spacecraft is expressed in Cartesian coordinates in the barycenter frame of reference. The origin

is therefore the combined center of mass of the Moon and the Earth

𝑅 = 𝑋 𝑖 + 𝑌 𝑗 + 𝑍 𝑘 (5)1

The spacecraft’s inertial acceleration or the 2nd derivative of Eq. (5) is expressed in equation,

𝑅

= (𝑋 − 2𝑛𝑌 − 𝑛2𝑋) 𝑖 + (𝑌 + 2𝑛𝑋 − 𝑛2𝑌) 𝑗 + 𝑍 𝑘 (6)1

2𝑛𝑌 and 2𝑛𝑋 are Coriolis accelerations and 𝑛2X and 𝑛2𝑌 are centrifugal accelerations that arise from the rotating
non-inertial frame. The equation of motion due to gravitational interactions is given by,

𝑚𝑅 = −
𝐺𝑀1𝑚

𝑟⃗ −
𝐺𝑀2𝑚

𝑟⃗
𝑟⃗3 1 𝑟⃗3 2
1 2

(7)1

where 𝑚 is the mass of the spacecraft and 𝑟⃗1 and 𝑟⃗2 are the radial magnitudes to the spacecraft from the Earth and the

Moon respectively. Vectors 𝑟⃗ 1 and 𝑟⃗ 2 are defined as,

𝑟⃗ 1 = (𝑋 − 𝐷1) 𝑖 + 𝑌 𝑗 + 𝑍 𝑘

𝑟⃗ 2 = (𝑋 − 𝐷2) 𝑖 + 𝑌 𝑗 + 𝑍 𝑘

(8)1

In Eq. (7) the mass 𝑚 of the spacecraft can be eliminated from the calculation by dividing it from both the left and

right sides.

By combining Eqs. (6) and (7), the equations of motion for the circular restricted three-body problem are

established. The equations of motion are displayed in the following:

𝑋 − 2𝑛𝑌 − 𝑛2𝑋 = −
𝐺𝑀1(𝑋 − 𝐷1)

−
𝐺𝑀2(𝑋 − 𝐷2)

𝑟⃗3 𝑟⃗3
1 2

(9)1

𝑌 + 2𝑛𝑋 − 𝑛2𝑌 = −
𝐺𝑀1𝑌

−
𝐺𝑀2𝑌

𝑟⃗3 𝑟⃗3
1 2

(10)1

𝑍 = −
𝐺𝑀1𝑍

−
𝐺𝑀2𝑍

𝑟⃗3 𝑟⃗3
1 2

(11)1

III. The Elliptic Restricted Three-Body Problem

The effects of eccentricity are ignored in the circular restricted three-body problem, but perturbations from even

small eccentricities can have larger influences than radiation pressure and gravity of the sun. Therefore, disbarring

special cases, the circular restricted three-body problem is generally inaccurate. To account for these eccentric

perturbations, formerly constant variables of distance and angular velocity are implemented in their dynamic form.

The Moon’s relatively small eccentricity (𝑒𝑚𝑜𝑜𝑛 = 0.05490) can drastically perturb satellites over time and

complicates calculations significantly. 1Figure 6 shows the general geometry of a three-body system but with an

arbitrary point of origin. We begin calculations from the most general depiction.

7

1Figure 6. Three Body System

Adding the gravitational influences of the two massive bodies gives the satellites equation of motion,

𝑚𝑅

3 = −(𝐺𝑀1𝑚⁄𝑟⃗3) 𝑟⃗ 1 − (𝐺𝑀2𝑚⁄𝑟⃗3) 𝑟⃗ 2

1 2
(12)1

whereby the satellites mass 𝑚 can be removed from both sides of the equation. The result is the equation of

acceleration,

𝑅

3 = −(𝐺𝑀1⁄𝑟⃗3) 𝑟⃗ 1 − (𝐺𝑀2⁄𝑟⃗3) 𝑟⃗ 2

1 2
(13)1

In order to find the equation of acceleration for 𝑀1 we must first define the position vector of mass 𝑀2 with respect

to mass 𝑀1,

𝑟⃗ 21 = 𝑅 2 − 𝑅 1 (14)1

Similar to the acceleration vector of the satellite, the acceleration equation of 𝑀1 is,

𝑅

1 = −(𝐺𝑀2⁄𝑟⃗3) 𝑟⃗ 21 + (𝐺𝑚⁄𝑟⃗3) 𝑟⃗ 1

21 1
(15)1

We can now combine the acceleration equations of masses 𝑚 and 𝑀1 into the relative motion of mass 𝑚 with

respect to mass 𝑀1 using 𝑟⃗ 21 = 𝑅

3 − 𝑅

1.

𝑟⃗ = −𝐺(𝑀 + 𝑚)
𝑟⃗ 1
− 𝐺𝑀 {

𝑟⃗ 2
+
𝑟⃗ 21

}
1 1 𝑟⃗3 2 𝑟⃗3 𝑟⃗3

1 2 21

(16)1

Again using the same procedure outlined above, the relative motion of the infinitesimal mass 𝑚 with respect to mass

𝑀2 is given by,

𝑟⃗ = −𝐺(𝑀 + 𝑚)
𝑟⃗ 2

− 𝐺𝑀 {
𝑟⃗ 1

+
𝑟⃗ 21

}
2 2 𝑟⃗3 1 𝑟⃗3 𝑟⃗3

2 1 21

(17)1

If you recall, in the circular restricted three-body problem above, the angular velocity was considered constant

because the distances between the large masses 𝑀1 and 𝑀2 were also constant. In the elliptic three-body problem this

is not the case, the farther in orbit an object is, the slower its orbital speed and angular velocity. An object at apoapsis

moves slower than at its periapsis. Therefore the rotational speed or angular velocity is a dynamic quantity changing

8

over time. However, a position constant can be found from the ratio of the distance 𝐷 and the libration points 𝑙1 and 𝑙2.

1Figure 7 shows the libration points and the typical elliptic restricted three-body system setup.

1Figure 7. Elliptic Three-Body Problem

The instantaneous distance 𝐷 with either of the instantaneous libration points 𝑙1 or 𝑙2 is constant,

𝑙1/𝐷 = 𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (18)1

We can now define the position of the spacecraft with respect to libration point 1 or 2 in order to eventually describe

its motion.

𝑟⃗ = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧̇ 𝑘 (19)1

Relating 1Figure 6 and 1Figure 7, and using Eqs. (18) and (19), we can describe the position vectors in the

following new formulas:

𝑟⃗ 21 = −𝐷 𝑖 (20)1

𝑟⃗ 1 = [−(1 + 𝛾)𝐷 + 𝑥] 𝑖 + 𝑦 𝑗 + 𝑧̇ 𝑘 (21)1

𝑟⃗ 2 = (−𝛾𝐷 + 𝑥) 𝑖 + 𝑦 𝑗 + 𝑧̇ 𝑘 (22)1

Please note that in the three equations above, the distance 𝐷 is not constant, changing at every instance during orbit.

We then solve for the 2nd derivative, or acceleration of 𝑟⃗ 1 shown below,

𝑟⃗ 1 = {−(1 + 𝛾)𝐷 + 𝑥 − 𝜃̇ 𝑦 − 2𝜃̇ 𝑦 − 𝜃̇ 2[−(1 + 𝛾)𝐷 + 𝑥]} 𝑖

+ {𝑦 − 𝜃̇ (1 + 𝛾)𝐷 − 2𝜃̇ (1 + 𝛾)𝐷 + 𝜃̇ 𝑥 + 2𝜃̇ 𝑥 − 𝜃̇ 2𝑦} 𝑗 + 𝑧̇ 𝑘

(23)1

Please also note that the angular velocity 𝜃̇ is not constant during orbit for the elliptic restricted three-body problem.

Lastly, before writing the equations of motion, 𝜌 is introduced as the mass ratio of the two large bodies.

𝜌 = 𝑀2/(𝑀1 + 𝑀2)

1 − 𝜌 = 𝑀1/(𝑀1 + 𝑀2)

(24)1

Finally the equations of motion for the spacecraft can be obtained in non-dimensional form by removing

gravitational constant 𝐺 and combining Eqs. (16) and (23) in the following:

9

𝑥 − 𝜃̇ 𝑦 − 2𝜃̇ 𝑦 − 𝜃̇ 2[𝑥 − (1 + 𝛾)𝐷]
= (1 + 𝛾)𝐷 − (1 − 𝜌)[𝑥 − (1 + 𝛾)𝐷]/𝑟⃗3 − 𝜌(𝑥 − 𝛾𝐷)/𝑟⃗3 + 𝜌/𝐷2

1 2

(25)1

𝑦 − 𝜃̇ (1 + 𝛾)𝐷 − 2𝜃̇ (1 + 𝛾)𝐷 + 𝜃̇ 𝑥 + 2𝜃̇ 𝑥 − 𝜃̇ 2𝑦

= −2𝜃̇ [𝑥 − (1 + 𝛾)𝐷] − (1 − 𝜌)𝑦/𝑟⃗3 − 𝜌𝑦/𝑟⃗3
1 2

(26)1

𝑧̇ = −(1 − 𝜌)𝑧̇/𝑟⃗3 − 𝜌𝑧̇/𝑟⃗2
1 2 (27)1

To reiterate, 𝑟⃗1 and 𝑟⃗2 are the magnitudes of vectors 𝑟⃗ 1 and 𝑟⃗ 2 respectively and are defined as

𝑟⃗1 = √[𝑥 − (1 + 𝛾)𝐷]2 + 𝑦2 + 𝑧̇2

𝑟⃗2 = √(𝑥 − 𝛾𝐷)2 + 𝑦2 + 𝑧̇2

(28)1

It’s important to recognize that Eqs.

(25), (26), and (27) are non-dimensional. The distances 𝑥, 𝑦, 𝑧̇, 𝑟⃗1, 𝑟⃗2 𝑎𝑛𝑑 𝐷 are in units of the semimajor axis 𝑎, the

angular velocity 𝜃̇ is in units of mean angular rate 𝑛 and time is in units of 𝑛−1.

Due to the dynamic nature of values 𝐷 and 𝜃̇ in the elliptic restricted three-body problem, an equation is necessary
to represent their changing values. To simplify these equations and easily solve for their derivatives, a series expansion

is used in terms of eccentricity and the mean anomaly 𝑀 = 𝑡 − 𝑡𝑝. The time of perigee passage is 𝑡𝑝. It is common to

assume that 𝑡𝑝 = 0 for simplification, meaning the start of an orbit is at periapsis. The nondimensional series

expansions for distance 𝐷 between masses 𝑀1 and 𝑀2 and the radial velocity 𝜃̇ are shown below:

𝐷 = 1 +
1
𝑒2 + (−𝑒 +

3
𝑒3 −

5
𝑒5 +

7
𝑒7) cos 𝑀

2 8 192 9216

+ (−
1
𝑒2 +

1
𝑒4 −

1
𝑒6) cos 2𝑀

2 3 16

+ (−
3
𝑒3 +

45
𝑒5 −

567
𝑒7) cos 3𝑀

8 128 5120

+ (−
1
𝑒4 +

2
𝑒6) cos 4𝑀

3 5

+ (−
125

e5 +
4375

e7) cos 5𝑀
384 9216

−
27

𝑒6 cos 6𝑀 −
16807

𝑒7 cos 7𝑀 + ⋯
80 46080

(29)1

𝜃̇ = 1 + (2𝑒 −
1
𝑒3 +

5
𝑒5 +

107
𝑒7) cos 𝑀

4 96 4608

+ 2 (
5
𝑒2 −

11
𝑒4 +

17
𝑒6) cos 2𝑀

4 24 192

+ 3 (
13

𝑒3 −
43

𝑒5 +
95

𝑒7) cos 3𝑀
12 64 512

+ 4 (
103

𝑒4 −
451

𝑒6) cos 4𝑀
96 480

+ 5 (
1097

𝑒5 −
5957

𝑒7) cos 5𝑀
960 4608

+ 6
1223

𝑒6 cos 6𝑀 + 7
47273

𝑒7 cos 7𝑀 + ⋯
960 32256

(30)1

10

IV. The N-Body Problem

The n-body problem is the historically difficult problem of mathematically modeling the motion of 3 or more

bodies in mutual interaction. This type of interaction, which is typically gravitational but can be electrical or other

forms, is generally considered chaotic and unpredictable. However with the help of computers and increasingly fast

computational speed, a numerical estimation is possible to a desired degree of accuracy. The problem is formulated

by creating 𝑁 functions with 𝑁 − 1 terms each, where 𝑁 is the number of bodies in the system. This can be shown in

simplistic form by the following equation,

𝑁

𝐹 = − ∑ 𝐺
𝑚𝑖𝑚𝑗

𝑟⃗ − 𝑟⃗ 𝑖 = 1,2, … , 𝑁
𝑖 2 𝑖 𝑗

𝑗=1 |𝑟⃗ 𝑖 − 𝑟⃗ 𝑗|
𝑖≠𝑗

(31)

where, 𝑟⃗𝑖 and 𝑟⃗𝑗 are the position vectors of objects 𝑖 and 𝑗. 𝐺 is the gravitational constant and 𝑚𝑖,𝑗 are the masses of

objects 𝑖 and 𝑗. 𝐹𝑖 is the force on object 𝑖 which is equal to 𝐹𝑖 = 𝑎𝑖𝑚𝑖 or 𝐹𝑖 = 𝑚𝑖 (𝑑2𝑟⃗ 𝑖/𝑑𝑡2). This expression allows

the mass 𝑚𝑖 to be divided from both sides of Eq. (31) to obtain,

𝑑2𝑟⃗
𝑁

𝑚 𝑟⃗
 𝑖

= − ∑ 𝐺 𝑗 𝑖𝑗 𝑟⃗ 𝑖𝑗 = 𝑟⃗ 𝑖 − 𝑟⃗ 𝑗 & 𝑖 = 1,2, … , 𝑁
𝑑𝑡2

|𝑟⃗ |
3

𝑗=1 𝑖𝑗
𝑖≠𝑗

(32)

This equation is used to develop 𝑁 second order differential equations. This system is nonlinear and highly

coupled causing three main difficulties for integration. First, this system is highly chaotic and no analytical solution
exists, only numerical methods are capable of producing solutions. Second, due to numerical integration being

necessary, the system grows in computational time by 𝑁2 with an increase in bodies. This makes the study of large

systems, such as galaxies, difficult and presents a limitation on its usefulness depending on the computational speeds

available and the size of the system being modeled. Lastly, singularities and instabilities are encountered when two
objects come into very close proximity, usually only encountered when an object moves inside a planets radius, except

in the case of super dense objects such as neutron stars or black holes.

Figure 8. As the number of objects increase, the number of calculations increases to 𝑁2,

greatly increasing the computational time to reach a solution.

As an example, for 3-bodies you would obtain 3 equations of motion with 6 terms or interactions. You have 3

total terms on the left and 6 total terms on the right so you have 9 terms in total to numerically solve for. The equations

of motions for 3-bodies is shown here.

11

𝑟⃗ = −𝐺
𝑚2𝑟⃗ 12

+
𝑚3𝑟⃗ 13

)
1 (

|𝑟⃗ |3 |𝑟⃗ |3
12 13

𝑟⃗ = −𝐺
𝑚1𝑟⃗ 12

+
𝑚3𝑟⃗ 23

)
 2 (

|𝑟⃗ |3 |𝑟⃗ |3
12 23

𝑟⃗ = −𝐺
𝑚1𝑟⃗ 13

+
𝑚2𝑟⃗ 23

)
 3 (

|𝑟⃗ |3 |𝑟⃗ |3
13 23

(33)

Figure 9. 3-body system where each line represents 2 interactions for a total of 6
interactions, or 2 for each of the 3 bodies.

You can then infer that 4 bodies will require 4 equations of motions with 3 interactions for each individual body.

Therefore the number of terms that must be solved for are 4 on the left and 12 on the right of Eq. (34) so 16 in total or

𝑁2 for 𝑁 = 4. As one can see, adding additional bodies demands exponentially more computational time.

𝑟⃗ = −𝐺
𝑚2𝑟⃗ 12

+
𝑚3𝑟⃗ 13

+
𝑚4𝑟⃗ 14

)

1 (
|𝑟⃗ |3 |𝑟⃗ |3 |𝑟⃗ |3

12 13 14

𝑟⃗ = −𝐺
𝑚1𝑟⃗ 12

+
𝑚3𝑟⃗ 23

+
𝑚4𝑟⃗ 24

)

2 (
|𝑟⃗ |3 |𝑟⃗ |3 |𝑟⃗ |3

12 23 24

𝑟⃗ = −𝐺
𝑚1𝑟⃗ 13

+
𝑚2𝑟⃗ 23

+
𝑚4𝑟⃗ 34

)

 3 (
|𝑟⃗ |3 |𝑟⃗ |3 |𝑟⃗ |3

13 23 34

𝑟⃗ = −𝐺
𝑚1𝑟⃗ 14

+
𝑚2𝑟⃗ 24

+
𝑚3𝑟⃗ 34

)

4 (
|𝑟⃗ |3 |𝑟⃗ |3 |𝑟⃗ |3

14 24 34

(34)

12

Figure 10. 4-body system with 12 interactions, or 3 for each of the 4 bodies.

V. Translunar Injection Orbit Parameters and Initial Conditions

2Table 2. Translunar Injection Initial Conditions from Apollo By The Numbers, Richard
Orloff

In order to determine the translunar injection (TLI) orbit parameters and to benchmark the initial flight path before

the Moon’s influence is significant, some orbit calculations must be made from the above parameters. We first want

to retrieve the accurate radius of the TLI from the altitudes listed above. The altitude represents the distance from the

spacecraft to the surface of the Earth as a Fischer Ellipsoid. To find the radius of the Earth at the point of TLI, the

following equation is used,

13

𝑅 =
𝑎𝑏

𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑
√(𝑏 cos 𝜓)2 + (𝑎 sin 𝜓)2

(35)2

where 𝑎 and 𝑏 are the equatorial and polar radii of earth respectively. 𝜓 is the Geocentric Latitude (deg N) of the point

on the ellipsoid directly below the spacecraft. 𝜓 can be found in 2Table 2. The radius magnitude of the spacecraft

from the center of the Earth is simply,

𝑟⃗𝑆𝐶 = 𝑅𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (36)

The perigee and apogee radii is then calculated using,

𝑅 /𝑟⃗ = −𝐶 ±
√𝐶2 − 4(1 − 𝐶)(− cos2 𝜙)

𝑝,𝑎 2(1 − 𝐶) (37)2

where 𝜙 is the flight path angle from 2Table 2, 𝐶 = 2𝐺𝑀/(𝑟⃗𝑉2) and 𝑉 is the space-fixed velocity from 2Table 2. The
eccentricity is given by,

𝑟⃗𝑉2 2

𝑒 = √(
𝐺𝑀

− 1) cos2 𝜙 sin2 𝜙 (38)

or is given by 2Table 2. The true anomaly is calculated using,

(
𝑟⃗𝑉2

) cos 𝜙 sin 𝜙

𝜈 = tan−1 𝐺𝑀

(
𝑟⃗𝑉2

) cos2 𝜙 − 1
𝐺𝑀

(39)2

The semi-major axis can be calculated from two formulas,

𝑎 =
1

=
𝑅𝑝 + 𝑅𝑎

(
 2
−
𝑉2

) 2
𝑟⃗ 𝐺𝑀

(40)

Next we need a way to transform coordinates between planes. This can be accomplished with the following

equations:

tan 𝛼 =
sin 𝜆 cos 𝑖 − tan 𝛽 sin 𝑖

cos 𝜆

sin 𝛿 = sin 𝛽 cos 𝑖 + cos 𝛽 sin 𝑖 sin 𝜆

(41)2

where 𝛼 is the equatorial longitude, 𝛿 is the equatorial latitude, 𝜆 is the orbital longitude, 𝛽 is the orbital latitude, and

𝑖 is the orbital plane inclination. Note, in this case we are ignoring the influence of the moon, so 𝛽 is equal to 0 since

the spacecraft will not deviate from its original orbital plane. Therefore the equations can be rewritten as,

tan 𝛼 = tan 𝜆 cos 𝑖

sin 𝛿 = sin 𝑖 sin 𝜆

(42)

In Table 1 above, we are given 𝛿 and 𝑖 as the geocentric latitude and inclination respectively. With the above two

equations we have two unknowns which can be solved for, 𝛼, the equatorial longitude and 𝜆, the orbital longitude.

With the orbital longitude in hand, the argument of perigee 𝜔 can be found with,

14

𝜔 = 𝜆 − 𝜈 (43)

Then, the time of perigee passage is calculated. We will need to calculate the time between the spacecraft’s true

anomaly at translunar injection and the last perigee. To do this, we first need the Eccentric Anomaly, given by,

𝐸 = cos−1 (
 𝑒 + cos 𝜈

1 + 𝑒 cos 𝜈
)

(44)

Then the Mean Anomaly is found using,

𝑀 = 𝐸 − 𝑒 sin 𝐸 (45)

Which allows us to calculate the Mean Motion 𝑛, given by

𝑛 =
𝐺𝑀

√
𝑎3

(46)

Finally we can solve for the time from perigee. The Mean Anomaly is in units of radians and the mean motion is in

units of radians per second. So dividing the Mean Anomaly by the Mean Motion gives the time from perigee,

Δ𝑡 𝑝𝑎𝑟⃗𝑖𝑔𝑒𝑒 = 𝑀/𝑛 (47)

With this, all the orbital parameters of the Apollo missions at translunar injection are known. The MATLAB code

used for finding these parameters is in Appendix A. These parameters will be used as the initial conditions for the

circular restricted three-body problem and the elliptic restricted three-body problem discussed in the following

sections. The main orbital elements for Apollo 11 through 17 are shown in the table below and the top-down view of

each Apollo mission’s orbit without the influence of the moon is shown.

 Apollo 11 Apollo 12 Apollo 13 Apollo 14 Apollo 15 Apollo 16 Apollo 17

Semi-Major Axis (m) 286534624 217313692 291363850 237209195 274456600 254303965 236452232

Eccentricity 0.976965 0.969664 0.977362 0.972206 0.976016 0.974125 0.972173

Inclination (deg) 31.383 30.555 31.817 30.834 29.696 32.511 28.466
Argument of Perigee (deg) 4.4102 15.573 -22.791 -55.664 42.928 -37.705 -5.1089

Longitude of Ascen. Node (deg) 358.380 159.004 341.843 302.899 354.851 335.249 147.315
Time from perigee (sec) 158.95 186.71 164.66 161.78 159.82 160.64 159.07

Table 3: Calculated Orbit Elements of Apollo 11 through 17

15

16

Figure 11. The trajectories of Apollo missions 11-17 without moon influence in cartesian
coordinates derived from celestial ccoordinates. These are derived using the common
orbital equations in this section so that a comparison to the initial trajectories from the
restricted three-body problems can be matached for benchmarking.

VI. CR3BP Simulation

The MATLAB code for the Circular Restricted Three-Body Problem can be found in Appendix B. In this code,

the methods found in Section 2 are used to find the Equations of motion. The equations of motion are written into a

function, called cr3bp3.m. In this function, variables are separated into new variables in a similar fashion to a Multi-

Input Multi-Output (MIMO) for Ordinary Differential Equations (ODE). This format can be used by the ODE45

numerical solver to calculate the position and velocity of the satellite incrementally from initial to final time with a

specified step size.

Rotations are implemented to the initial position and velocity vectors found in Section IV to account for the

barycenter coordinates. In this instance, the barycenter or synodic coordinate system places the moon on the negative

x-axis. However, the position of the translunar injection (TLI) is rotated around the Z-axis so that the spacecraft

intercepts or rendezvous with the Moon as it traverses its orbit path in time. The purpose of the rotations on the initial

values from Section IV are to match the TLI with the phase difference of the Moon’s location.

Figure 12. The Apollo 11 translunar injection orbit in the circular restricted three-body
problem

17

VII. ER3BP Simulation

The MATLAB code for the Elliptic Restricted Three-Body Problem is displayed in Appendix C. The primary

difference between the CR3BP and the ER3BP is found inside the function used by the ODE45 solver. The initial

ODE45 parameters in both circular and elliptic restricted three-body problems is formatted identically as 𝑥0.

𝑥0 = [𝑋, 𝑌, 𝑍, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧̇] (48)

The first three elements of the array represent the Cartesian coordinates of the spacecraft in the non-inertial, Earth-

Moon barycenter frame. The last three elements represent the component velocities of the spacecraft in the same

rotating frame.

Reviewing the methods and steps outlined in Section III for the elliptic restricted three-body problem, decidedly
more complicated, dynamic equations of motion are presented. No longer are the mass distances and radial velocities
constant. Closer inspection of the ER3BP equations of motion reveal single and double derivatives of the dynamic

values of 𝐷 and 𝜃̇ . Fortunately, 𝐷 and 𝜃̇ can be approximated by a series in eccentricity, making differentiation
simpler. However, symbolic solvers are computationally taxing in MATLAB, so the pre-derived equations of Eqs.

(29)1 and (30)1 are included in the ODE45 function at the bottom of Appendix C for faster results. After implementing
the derivatives into the equations of motion, solving the ODEs is very similar to solving the CR3BP.

However, certain graphical challenges are presented when displaying a dynamic system and the code displays
changing graphical plots over time. Obviously, displaying dynamic plots is not possible in a paper, so some graphs

display snapshots of the Moon’s position in multiple locations to hopefully give the impression of a dynamic and

moving plot.

Figure 13. This is a random satellite orbit of the Moon. The rotating barycenter frame is

on the left, and the inertial barycenter frame is on the right. This shows the stark difference
in visualization a frame of reference can make.

18

Figure 14. Here the satellite is positioned near one of the stable Lagrangian points. As can

be seen in the left graph, the satellite never strays far from the location over many orbits.

The Moon’s eccentric orbit can also be seen in the lower left corner at positions between

apogee and perigee. The graph on the right shows the same satellite with less orbits but in

an inertial frame. The end of the blue line is the satellite position and the Moon is in the

top right. In this particular position, the satellite stays at a similar position from the moon

during the entirety of orbit motion. You can also see the eccentric orbit of the Moon from

the carrying distances of the satellites path.

Figure 15. Here we see the rotating frame of Apollo 11's translunar orbit on the left and

the inertial frame of the same orbit on the right. Using the initial conditions from Section

IV and rotational transformations for proper orientation with the Moon, we can see that the

initial conditions in a ER3BP simulation get the spacecraft close enough to the Moon to

have a major trajectory change. In the actual Apollo 11 mission, a retrograde burn would

slow the S/C down to orbit the Moon once it’s in close proximity. On the Right, The Moon

moves in a counterclockwise direction. There initial position, rendezvous position and the

final position are shown so the trajectory of Apollo 11 is clear.

19

Figure 16. Here the same Apollo 11 orbit trajectory from the right plot in Figure 15 is
shown in 3 dimensions. The path of the vehicle as it leaves the earth is much clearer and
its rendezvous with the Moon more dramatic.

VIII. N-Body Simulation

This section will introduce a method for modeling the n-body problem in MATLAB, however the same techniques

could apply to other coding languages as well. As stated in previous sections, the n-body problem, or any system of 3

or more bodies, has no analytical solution and must be solved numerically. Therefore a numerical solver, sometimes

called a numerical integrator, is required. There are many different types of solvers available but it is not difficult to

write one’s own solver once the concept is understood. Each solver has advantages and disadvantages that can greatly

influence the speed and accuracy of a solution’s results. For this paper’s code, the family of Runge-Kutta solvers are

primarily used, particularly the RK89. However, many types of solvers exist that are optimized for specific types of

problems. One such example is presented in the paper by Ahmad11 which describes a more efficient method of

numerical integration for the n-body problem. A more in-depth overview of solvers will be discussed in Section C.

Methods for coding the equations of motion (EOM) for any chosen number of bodies is discussed next.

A. Creating Dynamic Equations of Motion (EOM) Using For-Loops

For a relatively small number of bodies, one could simply hard-code the equations of motion, such Eqs. (33) and

(34), into MATLAB and be able to solve any orbital problems with the same number of bodies. This would very

quickly become a tedious method as the number of bodies, N increase. Every unique value of N-bodies would require

a unique set of equations. If you never required a solution to anything other than 5-body systems, then it may be more

efficient to just use the EOM for 5-bodies. However, the spirit of the n-body problem is to have a solution that works

for any numbers of objects. To have a robust orbit simulator, it’s required to build the equations of motion

automatically. Probably the most obvious method would be to use for-loops. This method is shown in the following

MATLAB function.

20

j ij ij

Here we have a function with inputs of time t and combined position velocity vector xv. The variable t is not used

in the function but is required for the integrator to incrementally solve the system over time. The vector xv is simply

an array of the initial position and velocity coordinates in the format of Equation (49).

xv = [x1, y1, z1, x2, y2, z2, … , xN, yn, zN, vx1 , vy1 , vz1 , vx2 , vy2 , vz2 , … , vxN , vyN , vzN] (49)

Combining the state vectors of position and velocity is not required, it simply reduced 2 arrays into one in a previous

section of code. The first line of the function reshapes the array into 3 rows of [xi; yi; zi] and N columns. Space is then

allocated for variable acc_RHS (accelerations on Right Hand Side). A nested for-loop is created for i equations with

j-1 terms. The situation of i = j computationally the acceleration of body i acting on itself, which is 0. The distance

vector is calculated and input into the acceleration equation for variable acc_term. Here you can make out components

of Newton’s equation for gravitational acceleration with mu(j) = G m , r__ij = r and norm(r_ij)^3 = |r |
3
. This

is one term from the sum in Eq. (32). This is saved in acc_RHS before repeating the inner loop to find the next

acceleration term using object j+1. After finishing the inner loop, the process starts again for body i+1, finding the

individual accelerations from every other body. This process repeats until N equations with N − 1 acceleration terms

(recall that axyz is set to 0 when i = j) in x y z components, are saved in array acc_RHS. acc_RHS is reshaped into a

3N x N matrix, with xyz components lined vertically and acceleration terms summed horizontally. The result is a

column vector of the total acceleration of each xyz component for every system object.

acc_Sum = [ax1
, ay1, az1

, ax2
, ay

2
, az2

, … , axN
, ay

n
, azN

] (50)

The differential solvers are designed to expect a function output in [𝑟⃗′; 𝑟⃗′′] format or in State-Space format,

𝑥1 𝑥1 = 𝑥
[
𝑥1′] = [

𝐴11 𝐴12] [] 𝑤ℎ𝑒𝑟⃗𝑒,
𝑥2′ 𝐴21 𝐴22 𝑥2 𝑥2 = 𝑥′

(51)

In short 𝑥′ 𝑎𝑛𝑑 𝑥′ are equal to velocity and acceleration respectively. Thus the initial state vector velocities from

1 2

function input xv are combined with the sum of acceleration terms to obtain array ss_vec,

%%%%% N-body Eq of Motion (EOM) Construction Function (For-Loop Method)%%%%%

N = length(mu); % number of bodies

function ss_vec = nBodyFunc(t,xv)

pos = reshape(xv(1:3*N),3,N); % Separate/reshape position vectors

acc_RHS = zeros(3,size(pos,2)^2); % Allocate space to RHS terms

for i = 1:size(pos,2) % Reference body

for j = 1:size(pos,2) % Interacting bodies

if i ~= j

r_ij = pos(:,i) - pos(:,j); % Distance vector

acc_term = -mu(j)*r_ij/norm(r_ij)^3; % Acceleration term

else

acc_term = [0;0;0]; % Zero acceleration for i=j

end

acc_RHS(:,i*j) = acc_term; % Acceleration terms on RHS

end

end

acc_Sum = sum(reshape(acc_RHS,3*N,N),2); % Sum of acceleration on RHS

ss_vec = [xv(3*N+1:end);acc_Sum]; % state-space vector

end

21

ss_vec = [vx1 , vy1 , vz1 , vx2 , vy2 , vz2 , … , vxN , vyN , vzN ,

ax1, ay1 , az1, ax2, ay
2
, az2, … , axN, ay

n
, azN]

(52)

Equation (52) is the result equating to the left side of Equation (51) and used in solving for the next iteration’s

position and velocity [𝑥1 𝑥2]𝑇.

B. Creating Dynamic Equations of Motion (EOM) Using Vectorization

Another method for building the n-body’s EOM is to vectorize the function. Although for-loops are simple to

understand and manipulate, they can be computationally slow for a large number of iterations. Vectorization is

essentially creating arrays and matrices before the calculation which recreate the looping process so for-loop processes

can be avoided. From the MathWorks (MATLAB) webpage on Vectorization,

MATLAB® is optimized for operations involving matrices and vectors. The process

of revising loop-based, scalar-oriented code to use MATLAB matrix and vector operations

is called vectorization. Vectorizing your code is worthwhile for several reasons:

 Appearance: Vectorized mathematical code appears more like the mathematical

expressions found in textbooks, making the code easier to understand.

 Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines of code mean

fewer opportunities to introduce programming errors.

 Performance: Vectorized code often runs much faster than the corresponding code

containing loops.

This is done by creating vectors of pointers repeated and arranged in such a way as to recreate the i and j values

in the previous section’s for-loops. Two useful functions in MATLAB, repmat() and reshape(), are invaluable for
vectorization. The function repmat() is short for ‘repeat matrix’ and simply repeats the desired array or matrix

vertically and/or horizontally a specified number of times. The function reshape() creates an equal element sized but

differently shaped matrix, i.e. a 3x4 into a 6x2 or 12x1 matrix. If we evaluate 3 bodies, or 𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑢) = 3, then
x123, x1214, x23, and x11 from the above code are,

x123 = [1 2 3 1 2 3 1 2 3]
x23 = [2 3 1 3 1 2]
x12_34 = [1 2; 3 4; 5 6]
x11 = [1 1 2 2 3 3]

(53)

end

% state-space vector

acc_Sum = sum(reshape(acc_RHS(:,x12_34(:)),3*N,N-1),2); % Acceleration Sum RHS

ss_vec = [xv(3*N+1:end);acc_Sum];

mu_diag = diag(mu(x23)); % Diagonal Matrix of Grav Param

acc_RHS = r_ij*r3*mu_diag; % Acceleration terms on RHS

= diag(1./sqrt(sum(r_ij.^2)).^3); % |r_ij|^3

% Separate/reshape position vectors

% Distance vector

= reshape(xv(1:3*N),3,N);

= pos(:,x23) - pos(:,x11);

pos

r_ij

r3

%%%%% N-body Eq of Motion (EOM) Construction Function (Vectorization Method)%%%%%

N = length(mu);

x123 = repmat(1:N,1,N);

x23 = x123(logical(ones(N) - eye(N)));

x12_34 = reshape(1:N*(N-1),N-1,N)';

x11 = reshape(repmat(1:N,N-1,1),1,N*(N-1));

function [ss_vec] = nBodyFunc(t,xv)

22

Here x11 would represent the value of i and x23 the value of j in every loop of the previous section. So it would be

the force on object 1 from object 2, then the force on object 1 from object 3, then the force on object 2 from object 1,

then the force on object 2 from object 3 and so on. Vector x123 is just the list of objects (in this case 3) repeated in

an array so that the values where i=j, can be removed to create x23. The formation of x23 can be complicated but it

is shown here for clarity.

(ones(N) - eye(N))

1 1 1 1 0 0 0 1 1
([1 1 1] − [0 1 0]) = [1 0 1]

1 1 1 0 0 1 1 1 0

(54)

logical(ones(N) - eye(N))

0 1 1 False True True
logical [1 0 1] = [True False True]

1 1 0 True True False

(55)

x123(logical(ones(N) - eye(N)))

False True True
𝑥123 ([True False True]) = [2 3 1 3 1 2] = 𝑥23

True True False

(56)

Therefore x23 is only the instances where i≠j, avoiding a redundant calculation or loop not required when i=j. For 3

objects, saving this step can be trivial, but for a large number of bodies and iterations, this step can save a significant

amount of computational time.

Lastly, x12_34 is the vector of forces in acc_Sum reshaped so that all forces acting on a single body are

oriented into one row. So all forces on body 1 are collected in row 1, then all the forces on body 2 are collected in

row 2 and so on. Ss_vec is then the sum of all the columns of each row to give the total force on each body given in

a single column vector in one instance of time or one iteration of the numerical solver.

This entire process of vectorization seems overcomplicated for 3 bodies, but is actually computationally simpler

as the number of bodies increase, taking advantage of MATLAB’s optimization for vector and matrix calculations.

A 70 object simulation would involve 70x70 sized matrices, but matrix calculations are much faster than 70 × 70 =

4900 loops of individual calculations per iteration.

C. Numerical Solvers

Once the functions containing the equations of motion are developed from Section A and B, and the initial state

vectors of position and velocity are saved in variables p0 and v0, one of many numerical integrators can be used to

propagate the orbital system. The ones used here are variations of the Runge-Kutta methods which are a group of

implicit and explicit iterative methods for approximating solutions to differential equations. These methods are

extremely useful in approximately solving (to the desired accuracy) problems without analytical solutions. However,

the cost of higher complexity and accuracy is required computational time. The same or very similar methods are used

by NASA for their simulations, but to an extreme degree of accuracy, using super computers.

While the majority of numerical differential solvers use the same fundamental framework, they can have

massively different results and run times depending on the type of problems they are applied to. For very

computationally heavy problems, solvers are sometimes specifically developed to optimize the specific simulation.

The solvers tried during the development of this code are shown in the code below.

23

Solvers included in the MATLAB library are ode23 and ode113. These are considered nonstiff solvers, which

are better suited for orbital mechanics equations. It is difficult to describe the difference between stiff and nonstiff

problems, but one analogy is to imagine a ball rolling down a winding U-shaped slide versus a straight V-shaped

slide. The ball will tend towards the center (the solution) of both slides, but disturbances in the U-slide will correct

slowly and smoothly. In the V-shaped slide, a disturbance may correct quickly enough to bounce the ball back-and-

forth between the sides (stable but erratic). A deflated ball (stiff solver) on the straight V-slide would reach the

bottom faster than an inflated ball (nonstiff solver) bouncing erratically between the steep sides. An inflated ball

would reach the bottom of winding U-shaped slide faster than a deflated ball due to less friction and a single bounce

not overshooting the equilibrium point every time. The “stiffness” in this analogy refers to the straightness and

steepness of the slide’s walls (the equation/problem), whereas the ball is the type of solver

Figure 17. Nonstiff solver, ode23, used on a stiff problem (left) and stiff solver, ode23s,
used on the same stiff problem (right). The bottom figures are zoomed in on the corner of
vertical to horizontal transition. It shows the nonstiff solver (left) jumping around the
solution while the stiff solver immediately finds the solution in much fewer steps.

For a lot of orbital mechanics problems, such as the movement of the planets in the solar system, the gravity

gradient is very smooth. So a nonstiff solver such as ode113 or even ode23 is accurate and very fast over long

propagations. However, orbits that come into close proximity of a planet where the gravity gradient is much higher

slow down considerably or sacrifice accuracy. In these cases, a stiff solver would also be slow as the true solution is

also changing rapidly near periapsis. In these cases, the rkn86, rkn1210 and rk89 are more efficient because they

decrease step sizes, increasing resolution, in areas of large gradients. For rkn86 and rkn1210, the rkn stands for

Runge-Kutta-Nyström, which is a slightly different method than just Runge-Kutta. The rk89 however, has proven to

be the best solver for both accuracy and speed with rkn86 coming in 2nd. The rkn1210 is highly accurate but

unnecessarily slow for most applications. The GMAT program developed by NASA uses the rk89 solver by default

because of its balance of high accuracy and speed for most simulations conducted on personal computers. Although,

the nonstiff solvers, like ode113, seem to be more efficient for large propagation times of low eccentricity orbits.

D. Dynamic Code for introducing Satellite Burns

Many orbital simulations do not have a Δ𝑉, but for deep space probes and orbit insertions, it necessary to have a

framework to add rocket burns into the equation. This is very necessary in simulating the Apollo missions as the

capsule could not enter and leave lunar orbit without multiple burns taking place. For this code, all burns are

%%%%% Choice of Numerical Solvers for Use %%%%%

switch solv

case 1; [t,dz] = ode113(@nBodyFunc,tt,[p0;v0]);

case 2; [t,x,dx] = rkn86(@nBodyFunc,tt(1),tt(end),p0,v0);

case 3; [t,dz] = ode23(@nBodyFunc,tt,[p0;v0]);

case 4; [t,x,dx] = rkn1210(@nBodyFunc2, tt, p0, v0);

case 5; [t,dz] = rk89(@nBodyFunc,[tt(1),tt(end)],[p0;v0], tol);

end

24

considered impulse burns, which is a reasonable approximation for the majority of chemical thrusters, which

typically fire for seconds at a time.

One of the problems with simulating a burn is that it interrupts the solver with a sudden change of velocity and

subsequent change of the equations of motion. There is no easy way of avoiding this interruption, so the goal is to

have the burn interruption, then use the solver for the next section and then stich the section back together. For

impulse burns, simulation is sectioned into pieces, where each burn is the start of a new section with a new velocity

from a Δ𝑉. Each section has a new velocity vector but uses the final position vector from the previous section. So

the initial state vectors are used to propagate to the 1st burn time. Then a new simulation is initialized using the last

position and new velocity vectors to propagate to the next burn, repeating until the total simulation time is reached.

Summarized, each burn is a separate simulation using values from the previous simulation and then patched at the

end into one combined simulation. The code for this is shown below:

Here the time of burn, tob, and the burn vector, bvec, are specified in the function used to store the initial data,

described in detail in the next section. The time of burn is simply the seconds after the start of the simulation that 1

or more burns occur in an array. The start and ending times of the simulation are tacked on to the ends as seen in the

Apollo 11 example shown in Equation (57). The Δ𝑉 burn vectors are listed in columns with the coordinates listed by

column [𝑉𝑥 𝑉𝑦 𝑉𝑧̇] . Equation (58) shows the 3x3 matrix for bvec of Apollo 11.

tob =
Start Burn 1 Burn 2 End

0 258119.75 467432.4 680400
(57)

% Burn Variable Initialization

dt = iter/time;

pos(1,:) = p0;

vel(1,:) = v0;

tob = horzcat(0,tob,time);

bvec = [bvec; 0 0 1e-10];

% Satellite Burn Segments Loop

for i = 1:length(tob)-1

% Sets section time and iteration for each burn segment

iter2(i) = round((tob(i+1)-tob(i))*dt);

tt = linspace(tob(i),tob(i+1),iter2(i));

% Burn Segment Solver/Propagation

[t1, x1, dx1, ddx1] = nBodySolver(pos(i,:)', vel(i,:)', mu, tt', sol);

% Set next burn segment initial values to previous end values

% with adjusted velocity from Delta V burn

pos(i+1,:) = x1(end,:);

vsat = dx1(end,(3*n-2):3*n);

dx1(end,(3*n-2):3*n) = vsat/norm(vsat)*norm(([norm(vsat) 0 0]+bvec(i,:)));

vel(i+1,:) = dx1(end,:);

% Pos Vel Acc Patching of solver segments

x = [x;x1];

dx = [dx;dx1];

ddx = [ddx;dx];

t = [t;t1];

end

% Removes duplicate values from patching

dup = find(hist(t,unique(t))>1);

t(dup)=[];

x(dup,:)=[];

dx(dup,:)=[];

ddx(dup,:)=[];

25

Vx Vy Vz

bvec = Burn 1 −0.88142064 −0.13200888 0.00621792
Burn 2 0.97941384 0.214884 −0.04230624

End 0 0 0

(58)

The first segment simulation segment starts at time 0 and ends at time 258119.75 sec using the initial state

vectors from translunar injection. The 2nd segment starts at time 258119.75 and ends at 467432.4 sec with Δ𝑉 Burn 1

applied to the start of segment 2 and with the ending position vector of segment 1 applied to the start of segment 2.

This continues until the last segment where the ending time is the end of the whole simulation. 0 Δ𝑉 always added to

the last step when all the segments are completed. Each segment is combined in x and dx variables for position and

velocity respectively. Lastly, because the end of one segment equals the start of the next segment, the duplicate

positions and velocities are removed in the final section of the above code. The end result is a matrix of positions

and a matrix of velocities that are continuous from the initial to the final simulation time with impulse Δ𝑉 burns

included.

E. Inputting Initial State Vectors and Orbiting Body Info

This section is dedicated to explaining how data is input into the simulator. Unfortunately, a graphical user

interface was not able to be made, so the less user friendly method is explained here. In order to input the desired data

for the program required for a simulation, a function is created to store and pass on various initial values to the main

code. The 6 required types of data passed are:

1. Mass

2. Object radius

3. Position vector

4. Velocity vector

5. Burn time

6. Burn Δ𝑉 vector

which are stored in vector arrays. Other types of data that can be passed on are:

1. Object color

2. Objects to omit

The purpose of storing the initial values in a function not only keeps simulations contained in their own

sections, but it allows different sets of data, possibly from different sources, to be adjusted uniquely if needed in

preparation for the solver. For example, state vectors from one source may be in a matrix format while another

source has it in an array. The function allows different methods of preparation. An example of a function for

simulating the solar system is given in the code below.

26

function [p0, v0, mu, scale, tob, bvec, cA] = StateVecInit

M = [1988500, 0.33011, 4.8675, 5.9723, 0.07346, 0.64171, 1898.19, 568.34, 86.813,

102.413, 0.01303]' * 1e24;

scale = [695700, 2439.7, 6051.8, 6371.008, 1737.4, 3389.5, 69911, 58232, 25362, 24622, 1187];

cA = 1:length(M); % Which objects to simulate

% Time: 1945-Jan-1 0:0:0 (Ref

p0 = [-6.514853452736166E+04

Sun)

6.923075832509800E+05

2.969644123669676E+04;

%

Sun

-4.090224402811901E+07 3.092971988307618E+07 6.251586293432735E+06; % Mercury

8.649626519565648E+07 6.558753100815241E+07 -4.093465503005635E+06; % Venus

-2.812655902373333E+07 1.450840122031818E+08 4.736565603273362E+04; % Earth

-2.837642934184081E+07 1.453856908325931E+08 6.006681243879348E+04; % Moon

-4.575332432237922E+07 -2.160750372389238E+08 -3.379480787481025E+06; % Mars

-7.937071694877126E+08 1.708772517514482E+08 1.711521054427497E+07; % Jupiter

-1.923795039832259E+08 1.337735118153997E+09 -1.574714310247427E+07; % Saturn

8.814142859265038E+08 2.748130246512144E+09 -1.196667562167048E+06; % Uranus

-4.507715302467741E+09 -4.203358655158987E+08 1.125516845885302E+08; % Neptune

-3.580075486462851E+09 4.304575097306495E+09 5.745302970305955E+08];% Pluto

v0 = [-1.970463223071625E+00

-4.089492060880693E+01

-2.308493963878707E+01

-3.168839597240482E+01

-3.248928443141775E+01

2.266216276795534E+01

-4.873042121510281E+00

-1.205496403155248E+01

-8.512076610641467E+00

-1.500221047078075E+00

-1.955899360310175E-01

-3.731269883404487E+01

2.767558092658806E+01

-5.981403599180973E+00

-6.584149383830741E+00

-3.115518389430809E+00

-1.236602989967739E+01

-1.599677934190488E+00

1.557251793473381E+00

-5.585955645339683E+00

2.369174320448657E-01;

7.856996007483481E-01;

1.833208420054525E+00;

2.348307120914044E-01;

3.229759698734869E-01;

-4.325189489577113E-01;

3.519065081987538E-01;

6.612639993819801E-01;

3.284969194625559E-01;

3.363419003462520E-01;

%

%

%

%

%

%

%

%

%

%

Sun

Mercury

Venus

Earth

Moon

Mars

Jupiter

Saturn

Uranus

Neptune

-4.659388787869598E+00 -4.189821186825673E+00 1.441438596050844E+00];% Pluto

tob = []; % Time of Burn

bvec = []; % Burn Vector

% Position of Barycenter in reference frame

pBary = [-1.070183387116344E+06 1.335013302913338E+06 4.721272103390069E+04];

vBary = [-1.976510629978190E+00 -2.077526912802563E-01 2.371613343498015E-01];

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant

mu = M * G; % Calculates Grav Parameter

n = size(M, 1); % number of bodies

% Reshape P0 and V0 for subtraction of Barycenter state vectors

p0 = reshape(p0',[1,3*n]);

v0 = reshape(v0',[1,3*n]);

% reshape vectors into arrays

for i = 1:size(p0,2)/3

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pBary;

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vBary;

end

% Reshape p0 and v0 into vertical arrays.

p0 = reshape(p0,n*3,1);

v0 = reshape(v0,n*3,1);

end

All the required information for simulating the solar system is in this function. It has the Sun, all planets, the

Moon and Pluto (now considered a dwarf planet). The first line is an array of all the masses in 1024 kg values in the

order that they will appear in the state vectors. The scale variable is the radius in km for all the objects in the same

order as M. The cA variable is simply an array of [1 2 3 . . .] that indicates which object data to use in the

simulation. Here it shows that all objects will be simulated. Next the initial position vectors are stored in p0 as a

matrix in [𝑋, 𝑌, 𝑍] Cartesian coordinates obtained from the JPL Horizons website. Each row is a body and each

column is a coordinate. The same applies for the velocity state vectors in v0. There are no satellites in this

simulation so no Δ𝑉 burns are taking place, but the variables must still be initialized. The 𝑣𝑎𝑟⃗ = [] initializes a

27

variable as NULL in MATLAB. At this point, all the externally sourced data is inputted. The lower half of the

function is dedicated to calculations and matrix manipulations preparing it for the main code to read.

Due to the way in which the JPL Horizons website gives positioning information, a reference object must be

chosen, in this case the Sun. However, it was desired to have the solar system barycenter as point 0. Therefore the

initial state vectors of the solar system barycenter, in reference to the Sun, was found in JPL Horizons to subtract

from all the planet state vectors and moving the reference frame to the barycenter. Lastly the gravitational

parameters are calculated and the p0 and v0 matrices are reshaped into one vector array for output to the main code.

F. Graphical Output

For a time dependent simulation such as orbital trajectories, it is really necessary to view the movements over

time. Just viewing the entire path of a satellite at the end of a simulation does not give the fill picture, as the

gravitational interaction with other bodies is dependent on both the time and location at rendezvous. A still image does

not provide this information. Therefore the program is designed to play through simulation in an easy to view plot.

Obviously this paper is restricted to showing still images, but the true usefulness of this simulator is watching the

dynamics of orbits in real time.

IX. Benchmarking and Results

In order to benchmark the code to ensure that the results are accurate, several n-body scenarios were simulated

and matched with known outcomes. One way to benchmark the code was to use GMAT, a free mission analysis tool

by NASA. Figure 18 shows the results of from GMAT on the left and the MATALB code on the right. Here the solar

system is modeled over the same time interval and with the Earth as the reference frame. In the Earth centered frame,

the planets move in spirals due to the Earth’s motion around the Sun. This view led to many problematic theories

before the Sun centered view was adopted, but here we can see that the results of GMAT and the MATLAB code are

the same.

Figure 18. The motion of the planets in the earth centered ecliptic frame over 1 year. Left

side shows predictions from GMAT, right side shows predictions of the MATLAB

propagator

28

Using the same MATLAB code from the previous example but from the Sun’s reference frame, we can see the

movement of the solar system barycenter. Both this, and the previous example, use starting state vectors for the solar

system at midnight of January 1st 1945. This date was chosen to match the same starting date of the benchmark

shown in Figure 19. The barycenter is calculated using,

∑𝑁
1 𝑟⃗ 𝑖 ∙ 𝑀𝑖

r 𝑏𝑎𝑟⃗𝑦𝑐𝑒𝑛𝑡𝑒𝑟⃗ =
𝑖=

∑𝑁 𝑀𝑖
𝑖=1

(59)

where 𝑟⃗ 𝑖 is the position vector of each body and 𝑀𝑖 is the mass of each body. The barycenter is calculated in the

MATLAB code,

where mu is the array of gravitational parameters and x is the matrix position for each solar system object at every

point in time iterated.

Figure 19. On the left, the barycenter and its path starting in 1945 is shown in white moving

in the Sun centered frame from a simulation of the solar system. The image on the right
shows the historic path of the solar system barycenter in the same time frame.

Figure 19 shows the MATLAB results for the movement of the solar system’s barycenter. It can easily be seen

that the results closely match the recorded movement over 50 years. It is interesting to note that the solar system’s

barycenter is at times inside the envelope of the Sun, even passing through the nucleus, but also at times quite far. To

an observer outside of our solar system, the Sun would seem to increase and decrease its “wobble” drastically over a

short time. The earliest methods for discovering extra-solar planets used Doppler spectroscopy to measure “wobble”

of a star around its barycenter as an indication of a large planetary object in orbit. It is fascinating to think that far

observers could be measuring the complicated movement of our Sun now! Figure 20 shows the barycenter movement

over 300 years.

% Barycenter calculation

bary = zeros(size(x,1),3);

if ApNum == 0

for i = 1:size(x,1)

bary(i,:) = ([dot(mu,x(i,1:3:end)), dot(mu,x(i,2:3:end)),...

dot(mu,x(i,3:3:end))]/sum(mu));

end

end

29

Figure 20. Solar system barycenter movement over 300 years starting in 1945.

To show that the 3-body problem of the Earth-Moon system is working correctly, a satellite was place in the 5th

Lagrangian point (L5). L5 is one of the 2 stable Lagrangian points, points of neutral gravitational pull, in the Earth

Moon system. A spacecraft placed at this point should stay relatively close to its original location in the Earth-Moon

barycenter frame as the complicated interaction of gravitational forces of Earth and Moon create a gravitational

potential valley in this region. Looking at Figure 21, we can see that the satellite moves in a complicated path, but

always returns to the zone, even after 10 years, as seen in Figure 21.

Figure 21. Movement of 1 year (left) and 10 years (right) of a satellite placed at the stable Lagrangian point
L5 of the Earth Moon system.

30

Next, the Apollo 11 Mission starting at translunar injection (TLI), with Lunar orbit insertion, trans-earth

injection (TEI) and ending at Earth atmosphere entry is shown. These images show different views centered at the

E-M barycenter in the inertial ecliptic frame. Looking closely, you can see the (0, 0) coordinate which is the

barycenter of the Earth and Moon is close to the surface but still inside the Earth as expected, but unlike the previous
example of the Solar System barycenter moving in and out of the Sun’s radius. Another thing to note is the

interesting movement of Apollo 11 as it orbits the Moon. This is caused by the Moon’s movement during its orbit,
but in the non-inertial frame seen in Figure 25, the spacecraft moves in nearly circular orbits around the Moon.

Figure 22. Apollo 11 trajectory from Earth to Lunar orbit and back again. (Top Inertial view)

31

Figure 23. Apollo 11 trajectory from Earth to Lunar orbit and back again. (2nd Inertial view)

Figure 24. Apollo 11 trajectory from Earth to Lunar orbit and back again. (3rd Inertial view)

Here the Apollo 11 Mission is shown in the rotating E-M barycenter frame.

Figure 25. Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again.

32

Figure 26. 2nd view of Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again.

Figure 27. 3rd view of Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again.

To benchmark the Apollo 11 mission, hourly data points were obtained from JPL Horizons. The only available Apollo

11 data is for the S-IVB which was used for TLI and Lunar orbit insertion before being discarded. It is shown in red
in the next figures and does not enter Lunar Orbit. So only the Apollo 11 trajectory up until Lunar orbit can be

compared with.

33

Figure 28. Apollo 11 trajectory from Earth to Lunar orbit and back again with the S-IVB
location shown in red. (Top Inertial view).

Figure 29. Apollo 11 trajectory from Earth to Lunar orbit and back again. S-IVB trajectory
shown in red. (2nd Inertial view)

34

Figure 28 and Figure 29 show the MATLAB results very closely matching the S-IVB trajectory from JPL

Horizons initially, but slightly diverging as it moves closer to the Moon. The reasoning for this is unclear. Possible

explanations could be from unaccounted perturbation, such as solar wind, gravitational pull from the Sun or other

solar system planets, and/or J2 perturbations during the initial translunar injection. These possibilities are considered

very unlikely however, as these effects are expected to be extremely small for such a short flight.

Other, more likely reasonings could stem from a midcourse correction that was unaccounted for. Although the

Apollo 11 flight plan called for a possible midcourse correction, from documents, it was stated as Nominally Zero.

Figure 30. Apollo 11 Burn Schedule from Flight Plan. The Midcourse correction is stated
as Nominally Zero.

One would have to assume a burn small enough to be stated as “Nominally Zero” would not have a noticeable

difference in trajectory at arrival to the Moon. Other possibilities are slightly different values of constants, such as

the gravitational constant. Another possibility is a mistake in the code, but usually a coding mistake leads to large

discrepancies, not small ones where every other simulation produces expected results.

Lastly, I believe the most likely scenario is failure to match JPL Horizons data in the frame of reference used in

the simulation. JPL cannot give state vectors from the Earth-Moon barycenter, it must use a body for reference. So I

hypothesize that converting JPL data to the barycenter frame may have cause an issue that may stem from the

Earth’s movement around the barycenter during the 3 days of travel. This would explain the gradual shifting of the

trajectory of the S-IVB away from the MATLAB prediction. However, attempting to account for this did not give

the desired results. Finding the cause of the discrepancy should be looked into further in a future examination.

X. Conclusion

The 3-body problem has played a surprisingly important role in math and physics for centuries, beginning with

the influential, Isaac Newtown and his concept of gravity itself. The seemingly simple yet deceptively complicated

addition of a single body, to a fully understood 2-body problem, must have been an extremely luring challenge for

every serious mathematician of their day. Over its long unsolved tenure, new math was invented and advanced in

pursuit of a solution, only to be proven to be unsolvable. Such an anticlimax to a century old question, yet despite

this, better and more accurate approximate solutions were still pursued. Thanks to these efforts, and the

advancement of computers, we can solve the 3-body and even n-body problems today, well almost solve. With such

an influential problem, it is important to understand the development and evolution of its solutions, such as the

circular restricted then elliptic restricted 3BPs. These solutions, along with computers, ultimately led to the n-body

35

solution used in this paper. As clearly illustrated in the sections above, the n-body problem is a very powerful tool

for evaluating almost any desired system. With these simulation tools, in development since 1687, we are now

beginning to understand and inch our way into the 99.99̅% of everything else out there.

Appendix A - Apollo Translunar Injection Keplerian Equations

 Contents

 Apollo Translunar Injection orbits

 Apollo 11-17 TLI parameters

 Initial orbit elements

 Elements past time = 0

 Data print
 Apollo Translunar Injection orbits

 Apollo 11-17 TLI parameters

EF_velocity = 34020.5; % [ft/s]

SF_vel = 35389.8; % [ft/s]

FP_angle = 8.584; % [deg]

GeoLat = 16.0791; % [deg N]

GeodeticLong = 16.176; % [deg N]

Longitude = -154.2798; % [deg E]

Inclin = 30.555; % [deg]

W = 159.004272511991;

case 3

% Apollo 13

Alt = 1108555; % [ft] Altitude

Alt2 = 182.445; % [nmi]

EF_velocity = 34195.3; % [ft/s]

SF_vel = 35538.4; % [ft/s]

GeoLat = -3.8635; % [deg N]

GeodeticLong = -3.8602; % [deg N]

Longitude = 167.2074; % [deg E]

FP_angle = 7.635; % [deg]

Inclin = 31.817; % [deg]

W = 341.843467490158;

% [ft] Altitude

% [nmi]

case 2

% Apollo 12

Alt = 1209284;

Alt2 = 199.023;

EF_velocity = 34195.6; % [ft/s]

SF_vel = 35545.6; % [ft/s]

FP_angle = 7.367; % [deg]

GeoLat = 9.9204; % [deg N]

GeodeticLong = 9.983; % [deg N]

Longitude = -164.8373; % [deg E]

Inclin = 31.383; % [deg]

W = 358.380069401768;

% [ft] Altitude

% [nmi]

for j = 1:7

switch j

case 1

% Apollo 11

Alt = 1097229;

Alt2 = 180.581;

clear all; close all; clc;

format shortg

36

% [deg E]

% [deg]

% [deg]

% [deg]

% [deg]

% [ft/s]

% [deg N]

 Initial orbit elements

GM = 3.986005e14; % [m^3/s^2]

R_eq = 6378166; % [m]

R_pol = 6356784.3; % [m]

Psi_elip = GeoLat; % [deg]

SF_vel = SF_vel * 0.3048; % [m/s] Space-Fixed velocity

Re_TLI = R_eq*R_pol/sqrt((R_pol*cosd(Psi_elip))^2 ...

+ (R_eq*sind(Psi_elip))^2); % [m] Earth Radius at TLI

r = Re_TLI + Alt*0.3048; % [m] Radial distance of spacecraft from Earth center

C = 2*GM/(r*SF_vel^2);

R_p = (-C + sqrt(C^2 - 4*(1-C)*-cosd(FP_angle)^2))/(2*(1-C))*r; % [m] Perigee distance

R_a = (-C - sqrt(C^2 - 4*(1-C)*-cosd(FP_angle)^2))/(2*(1-C))*r; % [m] apogee distance

end

EF_velocity = 34168.3; % [ft/s]

SF_vel = 35555.3; % [ft/s]

GeoLat = 4.6824; % [deg N]

GeodeticLong = 4.7100; % [deg N]

Longitude = -53.1190; % [deg E]

FP_angle = 7.379; % [deg]

Inclin = 28.466; % [deg]

W = 147.315250419378;

% [ft] Altitude

case 4

% Apollo 14

Alt = 1090930;

EF_velocity = 34151.5; % [ft/s]

SF_vel = 35511.6;

GeoLat = -19.4388;

Longitude = 141.7312; % [deg E]

FP_angle = 7.480;

Inclin = 30.834;

W = 302.898707272848;

case 5

% Apollo 15

Alt = 1055296;

Alt2 = 173.679;

% [ft] Altitude

% [nmi]

GeodeticLong = 24.9700; % [deg N]

Longitude = -142.1295;

FP_angle = 7.430;

Inclin = 29.696;

W = 354.850726982177;

case 6

% Apollo 16

Alt = 1040493; % [ft] Altitude

Alt2 = 171.243; % [nmi]

EF_velocity = 34236.6; % [ft/s]

SF_vel = 35566.1; % [ft/s]

GeoLat = -11.9117; % [deg N]

case 7

% Apollo 17

Alt = 1029299;

Alt2 = 169.401;

% [ft] Altitude

% [nmi]

% [deg]

% [deg]

GeodeticLong = -11.9881; % [deg N]

Longitude = 162.4820; % [deg E]

FP_angle = 7.461;

Inclin = 32.511;

W = 335.248934532989;

EF_velocity = 34202.2; % [ft/s]

SF_vel = 35579.1; % [ft/s]

GeoLat = 24.8341; % [deg N]

GeodeticLong = -19.554; % [deg N]

Alt2 = 179.544; % [nmi]

37

 Elements past time = 0

 Data print

[uu,nu,wu] = sphere;

ue = uu*6371e3;

ve = nu*6371e3;

numRun = 145;

Apollo = zeros(numRun,10);

for i=1:numRun+2

if i == 1

t_per = t+(i-1)*60;

elseif i < 33

t_per = t +(i-2)*15*60; %% end

elseif i < 103

t_per = t +(i-2)*1.5*60*15;

elseif i < 153

t_per = t+(i-2)*15*2*60;

% elseif i < 63

% t_per = 746+(i-2)*15*4*2*60;

% elseif i < 70

% t_per = 746+(i-2)*15*4*3*60;

end

M2 = t_per * n;

syms EE

E2 = double(vpasolve(EE == M2 + e*sin(EE),EE));

nu2 = acosd((cos(E2) - e) / (1 - e*cos(E2)));

r2 = a*(1-e^2)/(1 + e*cosd(nu2));

f2 = atan2d((e*sind(nu2)),(1+e*cosd(nu2)));

v2 = sqrt(GM*a*(1-e^2))/(r2*cosd(f2));

l2 = nu2 + w; % Orbit longitude

eq_long_asc = atan2d((sind(l2)*cosd(Inclin)),cosd(l2));

eq_long_cel = W + eq_long_asc - 360;

eq_lat_cel = asind(sind(l2)*sind(Inclin));

Apollo(i,1) = t_per; % [sec] time since perigee

Apollo(i,2) = nu2; % [deg] True Anomaly

Apollo(i,3) = f2; % [deg] Flight path angle

Apollo(i,4) = v2; % [m/s] velocity

Apollo(i,5) = r2; % [m] Distance from earth center

Apollo(i,6) = eq_long_cel; % [deg] Longitude Equitorial Coordinates celestial

Apollo(i,7) = eq_lat_cel; % [deg] Latitude Equitorial Coordinates celestial

Apollo(i,8) = r2*sind(90-eq_lat_cel)*cosd(eq_long_cel); % X-coordinates

Apollo(i,9) = r2*sind(90-eq_lat_cel)*sind(eq_long_cel); % Y-coordinates

Apollo(i,10) = r2*cosd(90-eq_lat_cel); % Z-coordinates

end

e = sqrt((r*SF_vel^2/GM - 1)^2 * cosd(FP_angle)^2 + sind(FP_angle)^2); % Eccentricity

nu = atand((r*SF_vel^2/GM)*cosd(FP_angle)*sind(FP_angle) ...

/ ((r*SF_vel^2/GM)*cosd(FP_angle)^2 - 1)); % [deg] True anomaly

a = (R_p + R_a)/2; % [m] Semi-major Axis

l_eqLat = asind(sind(GeoLat) / sind(Inclin)); % [deg] Orbital Longitude

a_eqLong = atand(tand(l_eqLat) * cosd(Inclin)); % [deg] Equitorial Longitude

w = l_eqLat - nu; % Argument of perigee

GeoLon_ascNode = Longitude - a_eqLong + 360; % [deg] Geographic Longitude of Ascending Node

E = acos((e + cosd(nu))/(1 + e*cosd(nu))); % [rad] Eccentric anomoly

M = E - e*sin(E); % [rad] Mean Anomoly

n = sqrt(GM/a^3); % [rad/s] Mean Motion

t = M/n; % [sec] time from parigee

38

 Appendix B - Circular Restricted Three-Body Problem (CR3BP)

 Contents

 Circular Restricted Three-Body Problem

 ODE45 numerical solver

 Plots and graphing
 Circular Restricted Three-Body Problem

we = wu*6371e3;

um = uu*1737400;

vm = nu*1737400;

wm = wu*1737400;

load('topo.mat','topo','topomap1');

topo2 = [topo(:,181:360) topo(:,1:180)];

pro.FaceColor= 'texture';

pro.EdgeColor = 'none';

pro.FaceLighting = 'phong';

pro.Cdata = topo2;

title1 = {'Apollo 11', 'Apollo 12', 'Apollo 13', 'Apollo 14', 'Apollo 15', 'Apollo 16',

'Apollo 17'};

subt = ' Orbit w/o Moon Influence';

% Apollo;

% [xt,yt,zt] = sphere(20);

% figure

% plot(Apollo(:,1),Apollo(:,5));

% figure

% plot3(Apollo(:,8),Apollo(:,9),Apollo(:,10));

% grid on

% hold on

% plot3(xt,yt,zt)

figure

plot(Apollo(:,8),Apollo(:,9))

hold on

h1 = surface(ue,ve,we,pro);

colormap(topomap1);

title(strcat(title1(j),subt));

xlabel('X - [m]');

ylabel('Y - [m]');

% hold on

% h2(i) = surf(um-384.4e6,vm,wm,'FaceColor', [.8 .8 .8]);

axis equal

% fprintf('a = %.9g\n',a);

% fprintf('e = %.6g\n',e);

% fprintf('i = %.5g\n',Inclin);

% fprintf('w = %.5g\n',w);

% fprintf('W = %.3f\n',W);

% fprintf('t = %.5g\n',t);

end

39

 ODE45 numerical solver

 Plots and graphing

figure

hold on

plot(-y(1,1),-y(1,2),'b')

xlabel('X [m]')

ylabel('Y [m]')

grid on

[u,v,w] = sphere;

hold on

u = u*6371e3;

v = v*6371e3;

w = w*6371e3;

surf(-u+MU*R,v,w)

[u,v,w] = sphere;

hold on

u = u*1737400;

v = v*1737400;

[t, y] = ode45('cr3bp3', [0:500:tout], xo1);

r1e = [-6.3851e+06 -1.7158e+06 -1.1563e+06]'; % initial position of Apollo 11

r1 = eul3*eul2*r1e; % YZ-rotations applied

r = (r1 - [R*MU 0 0]'); % radius magnitude converted to vector

v = 14.9087; % [deg] true anomaly

gamma = 7.367; % [deg] flight path angle

theta4 = -(90-v+gamma); % [deg] Velocity angle transormation

i = 31.383; % [deg] inclination

velu = [sind(90-i)*cosd(theta4); % Velocity Transform

sind(90-i)*sind(theta4);

cosd(90-i)];

vel_mag = 10834.3; % [m/s] Velocity

vel = eul3*eul2*velu*vel_mag; % [m/s] Velocity transformation

dt = 1500000*24*60*60;

P = sqrt((4*pi^2*R^3)/(G*(M1+M2))); % [sec] Orbit Period

tout = (2*pi*dt)/P;

% xo1 = [-.5 -sqrt(3)/2 0 0 0 0]'

xo1 = [r(1) r(2) r(3) vel(1) vel(2) vel(3)]'; % Initial conditions

tout = 259200; % final time

0;

1]; 0 0

sind(theta2) 0 cosd(theta2)];

theta3 = -39.485; % Z-rotation accounting for position of Moon

eul3 = [cosd(theta3) sind(theta3) 0;

-sind(theta3) cosd(theta3)

-sind(theta2); 0

0;

eul2 = [cosd(theta2)

0 1

clear all; close all; clc;

format shortg

global M1 M2 R G MU MU1

M1 = 5.9723e24; % [kg] Mass of Earth

M2 = 0.07346e24; % [kg] Mass of Moon

MU = M2 / (M1 + M2); % Mass ratio of Moon

MU1 = M1 / (M1 + M2); % Mass ratio of Earth

G = 6.67408e-11; % m^3/kg-s^2

R = 384400e3; % m

theta2 = -23.4 + 5.14; % Y-rotation accounting for Moon and Earth axis

40

w = w*1737400;

surf(-u-(R-MU*R),v,w)

title('Apollo 11 Circular Restricted Three-Body Problem')

axis equal

for i = 2:size(y)

hold on

plot(-y(1:i,1),-y(1:i,2),'b')

pause(.01)

axis equal

end

figure

plot3(-y(1,1),-y(1,2),-y(1,3),'b')

grid on

xlabel('X [m]')

ylabel('Y [m]')

zlabel('Z [m]')

axis equal

[u,v,w] = sphere;

hold on

u = u*6371e3;

v = v*6371e3;

w = w*6371e3;

surf(-u+MU*R,v,w)

[u,v,w] = sphere;

hold on

u = u*1737400;

v = v*1737400;

w = w*1737400;

surf(-u-(R-MU*R),v,w)

title('Apollo 11 Circular Restricted Three-Body Problem')

for i = 2:size(y)

plot3(-y(1:i,1),-y(1:i,2),-y(1:i,3),'b')

pause(.01)

end

function [xdot] = cr3bp2(t, x)

%UNTITLED11 Summary of this function goes here

% Detailed explanation goes here

global M1 M2 R G MU MU1 % Global constants

tau = 2*pi/sqrt(G*(M1+M2))*R^(3/2); % Period

w1 = 2*pi/tau; % angular velocity

r_eb_mag = R * MU; % radius magnitude to earth from barycenter

r_mb_mag = R * MU1; % radius magnitude to moon from barycenter

r_eb = r_eb_mag * [-1 0 0]'; % coversion to vector form

r_mb = r_mb_mag * [1 0 0]'; % conversion to vector form

xdot(1:3,1) = x(4:6,1); % velocity to xdot

rho = x(1:3,1); % barycenter to satalite

v = x(4:6,1); % velocity

r1 = r_eb - rho; % radius to earth from barycenter vector

r2 = r_mb - rho; % radius to moon from barycenter vector

r1_mag = norm(r1); % magnitude of earth to barycenter radius

r2_mag = norm(r2); % magnitude of moon to barycenter radius

% Equations of motion

xdd = 2*w1*v(2) + w1^2*rho(1) - (G*M1*(rho(1)+MU*R))/r1_mag^3 - G*M2*(rho(1)-MU1)/r2_mag^3;

ydd = -2*w1*v(1) + w1^2*rho(2) - (G*M1*(rho(2)))/r1_mag^3 - G*M2*(rho(2))/r2_mag^3;

zdd = - (G*M1*(rho(3)))/r1_mag^3 - G*M2*(rho(3))/r2_mag^3;

41

Appendix C - Elliptic Restricted Three-Body Problem (ER3BP)

 Contents

 Elliptic Restricted Three-Body Problem

 Main Code

 Apollo mission rotations and pos/vel calculations

 Initial conditions, Simulation Cases,

 1 Moon Orbit

 2 L4/L5 Stable Lagrangian Point

 Random

 ODE45 Function call

 Graphing and Calculations

 Plots 2D in Rotational Frame of Barycenter

 Plots 3D in Inertial Frame of Barycenter
 Elliptic Restricted Three-Body Problem

 Main Code

 Apollo mission rotations and pos/vel calculations

switch apm

case 11

% Apollo 11

r_pos = [-6.3851e+06 -1.7158e+06 -1.1563e+06]';

vel_mag = 10834.3;

inc = 31.383;

gamma_tj = 7.367;

global rho gamma

while 1

apm = 11;

prompt = 'Which simulation would you like to run?\nMoon Orbit[1] Stable Langrangian

Point[2] Apollo Missions[3] Random Trajectory[4]\n';

sim = input(prompt);

if sim ~= 0:4

fprintf(2,'\nError: Input not recognized.\n\n');

continue

end

if sim == 3

apm = input('Which Apollo mission [11, 12, 14, 15, 16, 17]: \n');

end

close all;

%%%%%% Constants/Variables

a = 384748e3; % [m] Semi-Major Axis

e = 0.05490; % Eccentricity

n = 2.661699e-6; % [rad/s] Mean angular rate

gammaL1 = -0.150935; % Instantaneous libration point 1

gammaL2 = 0.167833; % Instantaneous libration point 2

G = 6.67408e-11; % [m^3/(kg s^2)] Gravitational Constant

M1 = 5.9723e24; % [kg] Mass of Earth

M2 = 0.07346e24; % [kg] Mass of Moon

rho = M2 / (M1 + M2); % Mass Ratio

%%%%%% Constants/Variables

clear all; close all; clc;

xdot(4:6,1) = [xdd ydd zdd]';

end

42

offs = 7.52;

theta3 = -29.2;

nu = 14.9087;

case 12

% Apollo 12

r_pos = -[-6.4145e+06 -9.2785e+05 1.8682e+06]';

vel_mag = 10787;

inc = 30.555;

gamma_tj = 8.584;

offs = 15.573;

theta3 = 159.004;

nu = 17.439;

case 13

% Apollo 13

r_pos = -[6.1019e+06 -2.7687e+06 -4.5252e+05]';

vel_mag = 10832;

inc = 31.817;

gamma_tj = 7.635;

offs = 22.791;

theta3 = 341.843;

nu = 15.448;

case 14

% Apollo 14

r_pos = -[-3.6914e+05 -6.3151e+06 -2.2325e+06]';

vel_mag = 10824;

inc = 30.834;

gamma_tj = 7.48;

offs = -55.664;

theta3 = 302.899;

nu = 15.175;

case 15

% Apollo 15

r_pos = -[3.9794e+06 4.5926e+06 2.8123e+06]';

vel_mag = 10845;

inc = 29.696;

gamma_tj = 7.43;

offs = 7.52;

theta3 = -29.2;

nu = 15.044;

case 16

% Apollo 16

r_pos = -[4.7055e+06 -4.5567e+06 -1.3817e+06]';

vel_mag = 10841;

inc = 32.511;

gamma_tj = 7.461;

offs = 7.52;

theta3 = -29.2;

nu = 15.121;

end

case 17

% Apollo 17

r_pos = -[-6.093e+06 2.7123e+06 5.4626e+05]';

vel_mag = 10837;

inc = 28.466;

gamma_tj = 7.379;

offs = 7.52;

theta3 = -29.2;

nu = 14.97;

theta2 = -23.44 - 5.14 + offs;

% Tilt Offset

eul2 = ...

[cosd(theta2) 0 -sind(theta2);

43

 Initial conditions, Simulation Cases,

 1 Moon Orbit

 2 L4/L5 Stable Lagrangian Point

 Random

dt = .004;

dt = .2;

days = 2000;

x1 = [-0.5, sqrt(3)/2, 0, 0, 0, 0]'*Da

case 3

% %%% 3 Apollo 11 Lunar Injection

dt = .001;

days = 2.5;

x1 = [-r_SC(1), -r_SC(2), r_SC(3), -vel(1)/n, -vel(2)/n, vel(3)/n]'/a'

case 4

dt = .001;

days = 27.3217;

x1 = [-1.05, 0, 0, 0, 0, 0]'

case 2

syms M ti

D1(M) = 1 + 1/2*e^2 + (-e + 3/8*e^3 - 5/192*e^5 + 7/9216*e^7)*cos(M) + (-1/2*e^2 + 1/3*e^4

...

- 1/16*e^6)*cos(2*M) + (-3/8*e^3 + 45/128*e^5 - 567/5120*e^7)*cos(3*M) + (-1/3*e^4 +

2/5*e^6)*cos(4*M) ...

+ (-125/384*e^5 + 4375/9216*e^7)*cos(5*M) - 27/80*e^6*cos(6*M) -

16807/46080*e^7*cos(7*M);

gamma = 0;

Da = double(D1(0));

%%%%%% Initial Conditions

switch sim

case 1

r_rot = eul3*eul2*r_pos;

r_SC = (r_rot - [a*rho 0 0]');

theta4 = -(90-nu+gamma_tj);

vel_uvec = ...

[sind(90-inc)*cosd(theta4);

sind(90-inc)*sind(theta4);

cosd(90-inc)];

vel = eul3*eul2*vel_uvec*vel_mag;

sind(theta3) 0;

cosd(theta3) 0;

1]; 0 0

% Moon Position Offset

eul3 = ...

[cosd(theta3)

-sind(theta3)

cosd(theta2)]; 0

0; 1 0

sind(theta2)

44

 ODE45 Function call

 Graphing and Calculations

 Plots 2D in Rotational Frame of Barycenter

for i = 1:size(y)

if i > 1

delete(h1(i-1));

delete(h2(i-1));

delete(h3(i-1));

end

t2 = (i-1)*dt;

Dt = 1.001507005 - 0.000003017133411*cos(4.0*t2) - 0.0000001616320167*cos(5.0*t2) ...

- 0.0000618757641*cos(3.0*t2) - 0.000000009240763254*cos(6.0*t2) -

0.0000000005482569438*cos(7.0*t2) ...

- 0.05483796206*cos(t2) - 0.001503978626*cos(2.0*t2);

Dt = Dt*a;

y = y*a;

%%%%%% Rotational Matrix

rot(ti) = [cos(n*ti) -sin(n*ti) 0; sin(n*ti) cos(n*ti) 0; 0 0 1];

%%%%%% Planet Sphere Initialization

[u,n1,w] = sphere;

ue = u*6371e3;

ve = n1*6371e3;

we = w*6371e3;

um = u*1737400;

vm = n1*1737400;

wm = w*1737400;

%%%%%% Orbit Plotting

figure

xlabel('x')

ylabel('y')

axis equal

grid on

h1 = zeros(length(y));

h2 = zeros(length(y));

y_adj = zeros(length(y),3);

%%%%%% Earth Topography

load('topo.mat','topo','topomap1');

topo2 = [topo(:,181:360) topo(:,1:180)];

pro.FaceColor= 'texture';

pro.EdgeColor = 'none';

pro.FaceLighting = 'phong';

pro.Cdata = topo2;

%%%%%% ODE45 Calculation and Time

tf = days*24*3600*n;

[t, y] = ode45('er3bp2', 0:dt:tf, x0);

days = 50;

x1 = [.001, .045, 0, -6.39e3/n/a, 1.35e3/n/a, .26e3/n/a]'

case 0

break

end

x0 = x1 + [double(D1(0))*(1 - rho + gamma) 0 0 0 0 0]';

45

 Plots 3D in Inertial Frame of Barycenter

figure

xlabel('x')

ylabel('y')

zlabel('z')

axis equal

grid on

for i = 1:size(y)

if i > 1

delete(h1(i-1));

if i ~= 365 && i ~= 2

delete(h2(i-1));

end

delete(h3(i-1));

end

t2 = (i-1)*dt;

Dt = 1.001507005 - 0.000003017133411*cos(4.0*t2) - 0.0000001616320167*cos(5.0*t2) ...

- 0.0000618757641*cos(3.0*t2) - 0.000000009240763254*cos(6.0*t2) -

0.0000000005482569438*cos(7.0*t2) ...

- 0.05483796206*cos(t2) - 0.001503978626*cos(2.0*t2);

Dt = Dt*a;

hold on

uue = [+(Dt)*(rho) 0 0]';

uue = double(rot(t2/n)*uue);

h1(i) = surface(ue+uue(1),ve+uue(2),we+uue(3),pro);

colormap(topomap1);

rotate (h1(i), [0.47839,0,0.87815], 7.292115855377074e-005*t2/n*180/pi,uue');

hold on

uum = [-Dt*(1 - rho) 0 0]';

uum = double(rot(t2/n)*uum);

h2(i) = surf(um+uum(1),vm+uum(2),wm+uum(3),'FaceColor', [.8 .8 .8]);

hold on

y_adj(i,:) = double(rot(t2/n))*[y(i,1)-Dt*(1 - rho + gamma) y(i,2) y(i,3)]';

h3(i) = plot3(y_adj(1:i,1),y_adj(1:i,2),y_adj(1:i,3),'b', 'linewidth', 0.2);

title('Apollo 11 Elliptic Restricted 3-Body Problem');

xlabel('X [m]');

ylabel('Y [m]');

zlabel('Z [m]');

drawnow limitrate

end

end

hold on

h1(i) = surface(ue+(Dt)*(rho),ve,we,pro);

colormap(topomap1);

rotate(h1(i), [0.47839,0,0.87815], (7.292115855377074e-005-

0.00000265868)*t2/n*180/pi,[(Dt)*(rho),0,0]);

hold on

h2(i) = surf(um-(Dt)*(1 - rho),vm,wm,'FaceColor', [.8 .8 .8]);

hold on

y_adj(i,:) = [y(i,1)-Dt*(1 - rho + gamma), y(i,2), y(i,3)]';

h3(i) = plot(y_adj(1:i,1),y_adj(1:i,2),'b', 'linewidth', 0.2);

title('Apollo 11 Elliptic Restricted 3-Body Problem');

xlabel('X [m]');

ylabel('Y [m]');

drawnow limitrate

end

46

function [rdot] = er3bp2(t, x)

%Elliptic restricted three-body problem

% D and theta-dot derivatives calculated ahead of time for speed

global rho gamma D2 Dd2 Ddd2 thd2 thdd2

% J2 = 1.08265e-3;

% thdd = -3/2*n*J2*

rdot(1:3,1) = x(4:6,1);

v = x(4:6,1);

r = x(1:3,1);

M = t;

D = 1.001507005 - 0.000003017133411*cos(4.0*M) - 0.0000001616320167*cos(5.0*M) ...

- 0.0000618757641*cos(3.0*M) - 0.000000009240763254*cos(6.0*M) -

0.0000000005482569438*cos(7.0*M) ...

- 0.05483796206*cos(M) - 0.001503978626*cos(2.0*M);

Dd = 0.003007957252*sin(2.0*M) + 0.00001206853364*sin(4.0*M) + 0.0000008081600836*sin(5.0*M) ...

+ 0.0001856272923*sin(3.0*M) + 0.00000005544457952*sin(6.0*M) +

0.000000003837798606*sin(7.0*M) + 0.05483796206*sin(M);

Ddd = 0.006015914503*cos(2.0*M) + 0.00004827413458*cos(4.0*M) + 0.000004040800418*cos(5.0*M) ...

+ 0.0005568818769*cos(3.0*M) + 0.0000003326674771*cos(6.0*M) + 0.00000002686459025*cos(7.0*M)

+ 0.05483796206*cos(M);

thd = 0.007526702614*cos(2.0*M) + 0.00003888369655*cos(4.0*M) + 0.000002839773804*cos(5.0*M) ...

+ 0.000536770327*cos(3.0*M) + 0.0000002092861752*cos(6.0*M) + 0.00000001542080711*cos(7.0*M)

+ 0.1097586587*cos(M) + 1.0;

thdd = - 0.01505340523*sin(2.0*M) - 0.0001555347862*sin(4.0*M) - 0.00001419886902*sin(5.0*M) ...

- 0.001610310981*sin(3.0*M) - 0.000001255717051*sin(6.0*M) - 0.0000001079456497*sin(7.0*M) -

0.1097586587*sin(M);

r1 = sqrt((-(1+gamma)*D+r(1))^2 + r(2)^2 + r(3)^2);

r2 = sqrt((-gamma*D+r(1))^2 + r(2)^2 + r(3)^2);

xdd = 2*thd*v(2) + thdd*r(2) + thd^2*(-(1+gamma)*D + r(1)) + (1 + gamma)*Ddd - (1 - rho)*(-(1 +

gamma)*D + r(1))/r1^3 - rho*(-gamma*D + r(1))/r2^3 + rho/D^2;

ydd = -thdd*(-(1 + gamma)*D + r(1)) + thd^2*r(2) - 2*thd*(-(1 + gamma)*Dd + v(1)) - (1 -

rho)*r(2)/r1^3 - rho*r(2)/r2^3;

zdd = -(1 - rho)*r(3)/r1^3 - rho*r(3)/r2^3;

rdot(4:6,1) = [xdd ydd zdd]';

end

Appendix D – N-Body Problem

 N-Body Main

 Contents

 N-Body Problem

 Input

 Time Parameters

 Initial State Vectors and Masses

 N-Body Function for Numerical Integration Solver

 Graphical Setup

47

 Animation Loop for Orbit Visualization
 N-Body Problem

 Input

 Time Parameters

 Initial State Vectors and Masses

global tol

tol = 1e-19;

gravFab = 0;

centObj = 0;

barycen = 0;

tob = [];

bvec = [];

% iterations

iter = 1e5;

anim = 2;

rePlay = 0;

while 1

try

ApNum = input('Which Simulation: '); % Simulation number input

catch ME

fprintf(2,'%s\n', ME.message);

continue

end

if isempty(ApNum) % Usable value test

fprintf(2,'Error: input not recognized.\n'); % Error notification

continue

elseif ApNum >= 10 && ApNum <= 12 && rem(ApNum,1) == 0 || ApNum == 5 ...

|| ApNum == 0 || ApNum == 66 || ApNum == 6 || ApNum == 777 || ApNum == 3

break

else

fprintf(2,'Error: input not recognized.\n'); % Error notification

continue

end

end

if ApNum ~= 0

while 1

try

ref_Frame = input('Frame [Inertial(1), Rotational(2)]: '); % rot or inertial frame

catch ME

fprintf(2,'%s\n', ME.message);

continue

end

if isempty(ref_Frame) % Usable value test

fprintf(2,'Error: input not recognized.\n'); % Error notificati1on

continue

elseif ref_Frame == 1 || ref_Frame == 2

break

else

fprintf(2,'Error: input not recognized.\n'); % Error notification

continue

end

end

else

ref_Frame = 1;

end

clear all;

close all;

clc;

48

 G. N-Body Function for Numerical Integration Solver

tic

fprintf('\n working ...\n\n');

% Numerical Solver Function

t=[];

x=[];

dx=[];

ddx=[];

% Burn Variable Initialization

dt = iter/time;

pos(1,:) = p0;

vel(1,:) = v0;

tob = horzcat(0,tob,time);

bvec = [bvec; 0 0 0];

% Satellite Burn Segments Loop

for i = 1:length(tob)-1

if ApNum >= 10 && ApNum <= 12 && rem(ApNum,1) == 0;

if ApNum == 11; x11=apolloHor(); end

[p0, v0, mu, n, scale, cA, tob, bvec] = ApolloCoords(ApNum);

pFrame = 4:6;

yrs = 0; days = 7; hrs = 21; sec = 0;

spd = 2; solv = 5; blk = 0; gravFab = 0; centObj = 1;

elseif ApNum == 5;

[p0, v0, mu, n, scale, cA] = LagrangeP(ApNum);

pFrame = 4:6;

yrs = 1; days = 0; hrs = 0; sec = 0;

spd = 3; solv = 2; blk = 0;

elseif ApNum == 66;

[p0, v0, mu, n, scale, cA] = Rings2();

pFrame = 4:6;

yrs = 0; days = 5; hrs = 0; sec = 0;

spd = 1; solv = 3; blk = 0;

elseif ApNum == 777;

[p0, v0, mu, n, scale, cA] = Rings3();

pFrame = 4:6;

yrs = 0; days = 10; hrs = 0; sec = 0;

spd = 2; solv = 3; blk = 1;

elseif ApNum == 6;

[p0, v0, mu, n, scale, cA, tob, bvec, xvec] = CassiniCoord;

pFrame = 10:12;

yrs = 0; days = 2; hrs = 0; sec = 211939200;

spd = 4; solv = 2; blk = 0; centObj = 0;

xvec = [xvec; 0 0 1e-10];

elseif ApNum == 3;

[p0, v0, mu, n, scale, cA] = FallSolEr;

[p0, v0, mu, n, scale, cA] = FallNoP;

pFrame = 1:3;

yrs = 0; days = 0; hrs = 0; sec = 0;

spd = 1; solv = 5; blk = 0;

else

[p0, v0, mu, n, scale, cA] = StateVecInit;

yrs = 300; days = 0; hrs = 0; sec = 0;

spd = 1; solv = 1; centObj = 1; blk = 0; barycen = 1;

end

time = ((yrs*365.25+days)*24+hrs)*3600+sec;

49

% Sets section time and iteration for each burn segment

iter2(i) = round((tob(i+1)-tob(i))*dt);

tt = linspace(tob(i),tob(i+1),iter2(i));

% Burn Segment Solver/Propagation

[t1, x1, dx1, ddx1] = nBodySolver(pos(i,:)', vel(i,:)', mu, tt', solv);

% Set next burn segment initial values to previous end values

% with adjusted velocity from Delta V burn

if i ~= 0 && ApNum == 6;

x1(end,(3*n-2):3*n) = xvec(i,:);

end

pos(i+1,:) = x1(end,:);

vsat = dx1(end,(3*n-2):3*n);

if i ~= 0 && ApNum == 6

dx1(end,(3*n-2):3*n) = bvec(i,:);

else

end

dx1(end,(3*n-2):3*n) = vsat/norm(vsat)*norm(([norm(vsat) 0 0]+bvec(i,:)));

vel(i+1,:) = dx1(end,:);

end

% Pos Vel Acc Patching of solver segments

x = [x;x1];

dx = [dx;dx1];

ddx = [ddx;dx];

t = [t;t1];

% Removes duplicate values from patching

dup = find(hist(t,unique(t))>1);

t(dup)=[];

x(dup,:)=[];

dx(dup,:)=[];

ddx(dup,:)=[];

figN = 1;

if ref_Frame == 2

xR = zeros(size(x));

dxR = zeros(size(x));

ddxR = zeros(size(x));

Arot = vrrotvec2mat(vrrotvec(x(1,pFrame),[-1 0 0]));

for i = 1:size(x,2)/3

ip = 1+(i-1)*3;

fp = 3+(i-1)*3;

for j = 1:spd:size(x,1)

v1x = x(j,pFrame);

vec = x(1,pFrame);

Arot2 = Arot*vrrotvec2mat(vrrotvec(v1x,vec));

xR(j,ip:fp) = Arot2*x(j,ip:fp)';

dxR(j,ip:fp) = Arot2*dx(j,ip:fp)';

% ddxR(j,ip:fp) = Arot2*ddx(j,ip:fp)';

end

end

Arot = vrrotvec2mat(vrrotvec([0, xR(1,8:9)],[0 1 0]));

for i = 1:size(xR,2)/3

ip = 1+(i-1)*3;

fp = 3+(i-1)*3;

for j = 1:spd:size(xR,1)

v1x = xR(j,pFrame);

vec = xR(1,pFrame);

50

working ...

Elapsed time is 8.187602 seconds.

 H. Graphical Setup

% Barycenter calculation

bary = zeros(size(x,1),3);

if ApNum == 0

for i = 1:size(x,1)

bary(i,:) = ([dot(mu,x(i,1:3:end)), dot(mu,x(i,2:3:end)),...

dot(mu,x(i,3:3:end))]/sum(mu));

end

end

% Change of reference frame

x = horzcat(x,bary);

if centObj ~=0

objA = centObj*3-2:centObj*3;

mDiff = x(:,objA);

x = x - repmat(mDiff,1,size(x,2)/3);

bary = bary - repmat(mDiff,1,size(bary,2)/3);

end

while 1

while 1

try

anim = input('Animation [Yes(1), No(2)]: '); % Animate or show last frame?

catch ME

fprintf(2,'%s\n', ME.message);

continue

end

if isempty(anim) % Usable value test

fprintf(2,'Error: input not recognized.\n'); % Error notificati1on

continue

elseif anim == 1 || anim == 2

break

else

fprintf(2,'Error: input not recognized.\n'); % Error notification

continue

end

end

% anim = 2;

if anim == 1

plst = 1;

elseif anim == 2

plst = size(x,1);

end

Arot2 = Arot*vrrotvec2mat(vrrotvec(v1x,vec));

xR(j,ip:fp) = Arot2*xR(j,ip:fp)';

dxR(j,ip:fp) = Arot2*dxR(j,ip:fp)';

% ddxR(j,ip:fp) = Arot2*ddxR(j,ip:fp)';

end

end

x = xR;

dx = dxR;

% ddx = ddxR;

end

toc

51

 I. Animation Loop for Orbit Visualization

if ApNum == 11

plot3(x11(:,1), x11(:,2),...

x11(:,3), 'r-', 'markeredgecolor', 'r',...

'markers', .01); hold on

end

pColor = SetColor(n);

plotStep = plst:spd:size(x,1);

h1 = zeros(plotStep(end),n);

h2 = zeros(plotStep(end),n);

h0 = zeros(plotStep(end),1);

h01 = zeros(plotStep(end),1);

m = 0;

loops = size(plotStep,2);

F(loops) = struct('cdata',[],'colormap',[]);

for i = plotStep

if barycen == 1

h0(i) = surf(us*scale(4) + bary(i,1), vs*scale(4) +...

bary(i,2), ws*scale(4) + bary(i,3), 'FaceColor', 'none',...

'EdgeColor', 'w'); hold on;

h01(i) = plot3(bary(1:spd:i,1), bary(1:spd:i,2),...

bary(1:spd:i,3), 'w-', 'markeredgecolor', 'r',...

'markers', .1); hold on

end

if n > 1

for j = 1:n

if i <= (round(dup/spd)+50) & i >= (round(dup/spd)-50)

h1(i,j) = surf(us*scale(j) + x(i,1+(j-1)*3),...

vs*scale(j) + x(i,2+(j-1)*3),...

ws*scale(j) + x(i,3+(j-1)*3), 'FaceColor',...

'none', 'EdgeColor', pColor(cA(j),1:3)); hold on;

h2(i,j) = plot3(x(1:spd:i,1+(j-1)*3),...

x(1:spd:i,2+(j-1)*3), x(1:spd:i,3+(j-1)*3),...

'-', pColor(cA(j),1:3), 'markeredgecolor',...

pColor(cA(j),1:3), 'markers', .01); hold on

else

h1(i,j) = surf(us*scale(j) + x(i,1+(j-1)*3),...

vs*scale(j) + x(i,2+(j-1)*3),...

wmax = max(max(x(:,:))) * 1.05;

wmin = min(min(x(:,:))) * 1.05;

if abs(wmax)>abs(wmin);rnge=abs(wmax); else rnge=abs(wmin);end

ax_range = [-rnge,rnge, -rnge,rnge, -rnge, rnge];

if ishandle(figN) == 0

[u1,n1,w1] = sphere(16);

us = u1;

vs = n1;

ws = w1;

set(0,'defaultfigurecolor', [0 0 0])

figure

set(gcf,'position',[2561 219 1680 979]);

axis equal

if blk == 1; axis(ax_range,'square'); end

grid on

set(gca,'Color', [0 0 0])

ax2 = gca;

alpha(1)

xlabel('X [km]');

ylabel('Y [km]');

zlabel('Z [km]');

rotate3d on

end

52

end

end

end

ws*scale(j) + x(i,3+(j-1)*3), 'FaceColor',...

'none', 'EdgeColor', pColor(cA(j),1:3)); hold on;

h2(i,j) = plot3(x(1:spd:i,1+(j-1)*3),...

x(1:spd:i,2+(j-1)*3), x(1:spd:i,3+(j-1)*3),...

'-', 'color', pColor(cA(j),1:3),...

'markeredgecolor', pColor(cA(j),1:3),...

'markers', .01); hold on

if ApNum == 66 || ApNum == 777

h3 = plot3(x(i,7:3:end), x(i,8:3:end), x(i,9:3:end),...

'.', 'markeredgecolor', pColor(1,1:3), 'markers',...

12); hold on % Rings

end

% Gravitational Potential Surface

if gravFab == 1

[X,Y] = meshgrid(-wmin*1.5:wmin*1.5/100:wmin*1.5,...

-wmin*1.5:wmin*1.5/100:wmin*1.5);

Z = -(mu(1)./(sqrt((X-x(i,1)).^2+(Y-x(i,2)).^2)).^1 +...

mu(2)./(sqrt((X-x(i,4)).^2+(Y-x(i,5)).^2).^1))*.5e5-.1e5;

h4 = surf(X,Y,Z,'facecolor',[.3 .3 .3],'FaceAlpha',0.1,...

'EdgeColor',[.1 .1 .1]);

end

grid on

axis equal

if blk == 1; axis(ax_range,'square'); end

set(gca,'Color',[0 0 0])

ax2.XColor = [.4 .4 .4];

ax2.YColor = [.4 .4 .4];

ax2.ZColor = [.4 .4 .4];

ax2.GridAlpha = .4;

ax2 = gca;

ax2.GridColor = [1 1 1];

alpha(1)

xlabel('X [km]');

ylabel('Y [km]');

zlabel('Z [km]');

% m = m + 1;

% F(m) = getframe;

% drawnow()

pause(1e-20)

if i ~= plotStep(end)

if barycen == 1

delete(h0(i))

delete(h01(i))

end

delete(h2(i,:))

if ApNum == 66 || ApNum == 777

delete(h3)

end

if gravFab == 1;

delete(h4)

end

if n > 1

delete(h1(i,:))

end

end

end

% Requests user input to stop or run the animation again

while 1

try

rePlay = input('\nWould you like to graph again? \n Yes = 1, No = 0: ');

53

 N-Body Solver Function

catch ME

fprintf(2,'%s\n', ME.message);

continue

end

if isempty(rePlay) % Usable value test

fprintf(2,'Error: input not recognized.\n');%Error notification

continue

elseif rePlay == 1

fprintf('\n')

if ishandle(1)

if barycen == 1

delete(h0(i))

delete(h01(i))

end

delete(h2(i,:))

if ApNum == 66 || ApNum == 777

delete(h3)

end

if n > 1

delete(h1(i,:))

end

if gravFab == 1

delete(h4)

end

end

break

elseif rePlay == 0

break

else

fprintf(2, 'Error: Value was not 1 or 0.\n');

continue

end

end

if rePlay == 0

break

end

end

% myVideo = VideoWriter('CassiniRK86.avi');

% open(myVideo);

% writeVideo(myVideo, F);

% close(myVideo);

% end

= rk89(@nBodyFunc,[tt(1),tt(end)],[p0;v0], tol);

case 4; [t,x,dx] = rkn1210(@nBodyFunc2, tt, p0, v0);

case 5; [t,dz]

function [t,x,dx,ddx] = nBodySolver(p0, v0, mu, tt, solv)

global tol

N = length(mu);

x123 = repmat(1:N,1,N);

x23 = x123(logical(ones(N) - eye(N)));

x12_34 = reshape(1:N*(N-1),N-1,N)';

x11 = reshape(repmat(1:N,N-1,1),1,N*(N-1));

switch solv

case 1; [t,dz] = ode113(@nBodyFunc,tt,[p0;v0]);

case 2; [t,x,dx] = rkn86(@nBodyFunc,tt(1),tt(end),p0,v0);

case 3; [t,dz] = ode23(@nBodyFunc,tt,[p0;v0]);

54

 Solar System State Vectors

function [p0, v0, mu, n, scale, cA, tob, bvec, pBary, M] = StateVecInit

M = [1988500, 0.33011, 4.8675, 5.9723, 0.07346, 0.64171, 1898.19, 568.34, 86.813, 102.413, 0.01303]'

* 1e24;

scale = [695700, 2439.7, 6051.8, 6371.008, 1737.4, 3389.5, 69911, 58232, 25362, 24622, 1187];

% Time: 1945-Jan-1 0:0:0 (Ref Sun)

p0 = [-6.514853452736166E+04 6.923075832509800E+05 2.969644123669676E+04; % Sun

-4.090224402811901E+07 3.092971988307618E+07 6.251586293432735E+06; % Mercury

8.649626519565648E+07 6.558753100815241E+07 -4.093465503005635E+06; % Venus

-2.812655902373333E+07 1.450840122031818E+08 4.736565603273362E+04; % Earth

-2.837642934184081E+07 1.453856908325931E+08 6.006681243879348E+04; % Moon

-4.575332432237922E+07 -2.160750372389238E+08 -3.379480787481025E+06; % Mars

-7.937071694877126E+08 1.708772517514482E+08 1.711521054427497E+07; % Jupiter

-1.923795039832259E+08 1.337735118153997E+09 -1.574714310247427E+07; % Saturn

8.814142859265038E+08 2.748130246512144E+09 -1.196667562167048E+06; % Uranus

-4.507715302467741E+09 -4.203358655158987E+08 1.125516845885302E+08; % Neptune

-3.580075486462851E+09 4.304575097306495E+09 5.745302970305955E+08];% Pluto

v0 = [-1.970463223071625E+00 -1.955899360310175E-01 2.369174320448657E-01; % Sun

-4.089492060880693E+01 -3.731269883404487E+01 7.856996007483481E-01; % Mercury

-2.308493963878707E+01 2.767558092658806E+01 1.833208420054525E+00; % Venus

-3.168839597240482E+01 -5.981403599180973E+00 2.348307120914044E-01; % Earth

-3.248928443141775E+01 -6.584149383830741E+00 3.229759698734869E-01; % Moon

2.266216276795534E+01 -3.115518389430809E+00 -4.325189489577113E-01; % Mars

-4.873042121510281E+00 -1.236602989967739E+01 3.519065081987538E-01; % Jupiter

-1.205496403155248E+01 -1.599677934190488E+00 6.612639993819801E-01; % Saturn

-8.512076610641467E+00 1.557251793473381E+00 3.284969194625559E-01; % Uranus

-1.500221047078075E+00 -5.585955645339683E+00 3.363419003462520E-01; % Neptune

-4.659388787869598E+00 -4.189821186825673E+00 1.441438596050844E+00];% Pluto

tob = []; % Time of Burn

end

if solv ~= 2 && solv ~= 4

x = dz(:,1:3*N);

dx = dz(:,3*N+1:end);

end

xSize = size(x);

ddx = zeros(xSize);

% for i = 1:xSize(1)

% xv = [x(i,:)';dx(i,:)'];

% pos = reshape(xv(1:3*leng),3,leng);

% r = pos(:,x23) - pos(:,x11);

% r3 = diag(1./sqrt(sum(r.^2)).^3);

% gm = diag(mu(x23));

% dpos = r*r3*gm;

% ddx(i,:) = sum(reshape(dpos(:,x1214(:)),3*leng,leng-1),2);

% end

function [ss_vec] = nBodyFunc2(t,xv)

pos = reshape(xv(1:3*N),3,N);

r_ij = pos(:,x23) - pos(:,x11);

r3 = diag(1./sqrt(sum(r_ij.^2)).^3);

mu_diag = diag(mu(x23));

acc_Sum = r_ij*r3*mu_diag;

ss_vec = sum(reshape(acc_Sum(:,x12_34(:)),3*N,N-1),2);

end

%%%%% N-body Eq of Motion (EOM) Construction Function (Vectorized Method)%%%%%

function [ss_vec] = nBodyFunc(t,xv)

pos = reshape(xv(1:3*N),3,N); % Separate/reshape position vectors

r_ij = pos(:,x23) - pos(:,x11); % Distance vector

r3 = diag(1./sqrt(sum(r_ij.^2)).^3); % |r_ij|^3

mu_diag = diag(mu(x23)); % Diagnal Matrix of -G*m_j (Std. Grav Param)

acc_RHS = r_ij*r3*mu_diag; % Acceleration terms on RHS

acc_Sum = sum(reshape(acc_RHS(:,x12_34(:)),3*N,N-1),2); % Sum of acceleration on RHS

ss_vec = [xv(3*N+1:end);acc_Sum]; % state-space vector

end

end

55

 Apollo 10, 11, 12 Coordinates

M = [M_cent; M_moon; M_sat]; % [kg] mass vector

mu = M*G; % [km^3/s^2]gravitational parameter vector

n = size(M,1); % number of elements/bodies to calculate

scale = [6371.008, 1737.4, 500];

cA = [4 5 1];

switch ApNum

case 10

p0 = [

-7.938423193298528E+07 -1.281468857961604E+08 -7.148663508873433E+04;

-7.935307206546827E+07 -1.277448075089262E+08 -3.581297047458589E+04;

-7.937498435283971E+07 -1.281425552209317E+08 -7.014042292705178E+04];

v0 = [

2.380344596873252E+01 -1.414320514423730E+01 1.774069620155609E-01;

2.283432883606584E+01 -1.405442902850622E+01 1.834657257489427E-01;

2.543573433098150E+01 -5.677983640890194E+00 1.495517849936535E+00];

pMinus = [-7.938385332238917E+07 -1.281420003100482E+08 -7.105317922063172E+04];

vMinus = [2.379167062934461E+01 -1.414212646256195E+01 1.774805795348753E-01];

tob = []; bvec = [];

case 11

p0 = [

6.218930309131721E+07 -1.381040976798286E+08 7.338742270641029E+04;

6.189261520200559E+07 -1.378311813866535E+08 9.427421511062980E+04;

6.219089189323087E+07 -1.380934578742084E+08 7.489060787452012E+04];

v0 = [

= 5.9724 * 1e24; % [kg] central body mass

= 0.07346 * 1e24*1; % [kg] central body mass

= 721.9; % [kg] satellite mass (voyager 2)

M_cent

M_moon

M_sat

function [p0, v0, mu, n, scale, cA, tob, bvec] = ApolloCoords(ApNum)

% Apollo 10 date: 1969-MAY-18 19:44:21.9965

% Apollo 11 date: 1969-07-16 16:40:02.7475

% Apollo 12 date: 1969-NOV-14 19:32:44.9606

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant

fps = 0.0003048;

bvec = []; % Burn Vector

% Position of Barycenter in reference frame

pBary = [-1.070183387116344E+06 1.335013302913338E+06 4.721272103390069E+04];

vBary = [-1.976510629978190E+00 -2.077526912802563E-01 2.371613343498015E-01];

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant

mu = M * G; % Calculates Grav Parameter

n = size(M, 1); %

cA = 1:length(M); % Which objects to simulate

% Reshape P0 and V0 for subtraction of Barycenter state vectors

p0 = reshape(p0',[1,3*n]);

v0 = reshape(v0',[1,3*n]);

% reshape vectors into arrays

for i = 1:size(p0,2)/3

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pBary;

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vBary;

end

% Reshape p0 and v0 into vertical arrays.

p0 = reshape(p0,n*3,1);

v0 = reshape(v0,n*3,1);

end

56

 Lagrangia Point Simulation

2.554414977285855E+01 1.054079699013750E+01 8.710014369007490E-02;

2.489893178548856E+01 9.810915868269419E+00 1.572353597697207E-02;

1.974980780257676E+01 1.668804564195570E+01 8.599988484918057E-01];

pMinus = [6.218569816011626E+07 -1.381007815874097E+08 7.364120943764597E+04];

vMinus = [2.553630999733053E+01 1.053192850805920E+01 8.623287620315478E-02];

% [hr min sec burnTime[hr min sec]

b1 = ApBurn([75 54 28.4 0 5 58.9 4 44 44.9])+.5-.012;

b2 = ApBurn([135 24 33.8 0 2 29.4 4 44 44.9])+.5-.012-1.33;

tob = [b1, b2]*3600;

bvec = [-2891.8 -433.1 20.4;

3213.3 705.0 -138.8]*fps;

case 12

p0 = [

-6.217812098137438E+03, 1.296452154958064E+03, -5.819416748518005E+02;

1.683955442344367E+05, -3.213509647196801E+05, -2.585085769468364E+04;

-8.803658700360249E+03, -4.821380113666855E+03, 8.037374643977058E+03];

v0 = [

-1.036172498994042E-01, -4.161119718400264E-01, 1.800924936869037E-01;

8.429580735560637E-01, 7.043707572870070E-02, 2.381643866208534E-01;

4.959673801548565E+00, -5.256147488411352E+00, 4.908245942836967E+00];

pMinus = [-4.096157797361373E+03, -2.623902473255802E+03, -8.889737683608131E+02];

vMinus = [-9.211580666391250E-02, -4.102001166360834E-01, 1.807981011157126E-01];

tob = [];

bvec = [];

end

p0 = reshape(p0',[1,3*n]);

v0 = reshape(v0',[1,3*n]);

for i = 1:size(p0,2)/3

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pMinus;

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vMinus;

end

p0 = reshape(p0,n*3,1);

v0 = reshape(v0,n*3,1);

end

M = [M_cent; M_moon; M_sat]; % [kg] mass vector

mu = M*G; % [km^3/s^2]gravitational parameter vector

n = size(M,1); % number of elements/bodies to calculate

scale = [6371.008, 1737.4, 500];

cA = [4 5 1];

switch ApNum

% [kg] central body mass

% [kg] central body mass

% [kg] satellite mass (voyager 2)

= 5.9724 * 1e24;

= 0.07346 * 1e24;

= 721.9;

M_cent

M_moon

M_sat

function [p0, v0, mu, n, scale, cA, bt] = LagrangeP(ApNum)

% Lagrangian point 5

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant

57

case 5

p0 = [

-6.217816180618011E+03 1.296435760194887E+03 -5.819345792284226E+02;

1.683955774470052E+05 -3.213509619444179E+05 -2.585084831102862E+04;

-8.803463283383866E+03 -4.821587199650016E+03 8.037568025370150E+03];

v0 = [

-1.036159472140258E-01 -4.161122434560039E-01 1.800926156082740E-01;

8.429593196935455E-01 7.043690720315035E-02 2.381645166614605E-01;

4.959706422015502E+00 -5.256073099243214E+00 4.908140946707825E+00];

pMinus = [-4.096161426685309E+03 -2.623918635091969E+03 -8.889666449365138E+02];

vMinus = [-9.211450466562407E-02 -4.102003869994519E-01 1.807982231357364E-01];

end

p0 = reshape(p0',[1,3*n]);

v0 = reshape(v0',[1,3*n]);

for i = 1:size(p0,2)/3

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pMinus;

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vMinus;

end

switch ApNum

case 5

p0(7:9) = rot(cross(p0(4:6),v0(4:6)),-pi/3)*p0(4:6)';

v0(7:9) = rot(cross(p0(4:6),v0(4:6)),-pi/3)*v0(4:6)';

end

p0 = reshape(p0,n*3,1);

v0 = reshape(v0,n*3,1);

bt = [];

end

58

 Runge-Kutta 89

function [tout, yout] = rk89(ode_functions, tspan, init, tol)

c = [0 1/1 2 1/9 1/6 z(2,2)/15 z(6,1)/15 z(6, -1)/15 2/3 1/2 1/3 1/4 4/3 5/6 1 1/6 1];

b = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1/27 2/2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1/24 0 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0
 z(4,94)/375 0 z(-94,-84)/125 z(328,208)/375 0 0 0 0 0 0 0 0 0 0 0 0
 z(9,-1)/150 0 0 z(312,32)/1425 z(69,29)/570 0 0 0 0 0 0 0 0 0 0 0

z(927,-347)/1250 0 0 z(-16248,7328)/9375 z(-489,179)/3750 z(14268,-5798)/9375 0 0 0 0 0 0 0 0 0 0

2/27 0 0 0 0 z(16,-1)/54 z(16,1)/54 0 0 0 0 0 0 0 0 0

19/256 0 0 0 0 z(118,-23)/512 z(118,23)/512 -9/256 0 0 0 0 0 0 0 0

11/144 0 0 0 0 z(266,-1)/864 z(266,1)/864 -1/16 -8/27 0 0 0 0 0 0 0

z(5034,-271)/61440 0 0 0 0 0 z(7859,-1626)/10240 z(-2232,813)/20480 z(-594,271)/960 z(657,-813)/5120 0 0 0 0 0 0

z(5996,-3794)/405 0 0 0 0 z(-4342,-338)/9 z(154922,-40458)/135 z(-4176,3794)/45 z(-340864,242816)/405 z(26304, -15176)/45 -26624/81 0 0 0 0 0

z(3793,2168)/103680 0 0 0 0 z(4042,2263)/13824 z(-231278,40717)/69120 z(7947,-2168)/11520 z(1048,-542)/405 z(-1383,542)/720 2624/1053 3/1664 0 0 0 0

-137/1296 0 0 0 0 z(5642,-337)/864 z(5642,337)/864 -299/48 184/81 -44/9 -5120/1053 -11/468 16/9 0 0 0

z(33617,-2168)/518400 0 0 0 0 z(-3846,31)/13824 z(155338,-52807)/345600 z(-12537,2168)/57600 z(92,542)/2025 z(-1797,-542)/3600 320/567 -1/1920 4/105 0 0 0

z(-36487,-30352)/279600 0 0 0 0 z(-29666,-4499)/7456 z(2779182,-615973)/186400 z(-94329,91056)/93200 z(-232192,121408)/17475 z(101226,-22764)/5825 -169984/9087 -87/30290 492/1165 0 1260/233 0];

c8 = [103/1680 0 0 0 0 0 0 -27/140 76/105 -201/280 1024/1365 3/7280 12/35 9/280 0 0];

c9 = [23/525 0 0 0 0 0 0 171/1400 86/525 93/280 -2048/6825 -3/18200 39/175 0 9/25 233/4200];

if nargin < 4

tol = 1.e-14;

end

t0 = tspan(1);

tf = tspan(2);

t = t0;

y = init;

tout = t;

yout = y';

h = (tf-t0/100);

while t < tf

hmin = 16*eps(t);

ti = t;

yi = y;

for i = 1:size(b,1)

t_inner = ti + c(i)*h;

y_inner = yi;

for j = 1:i-1

y_inner = y_inner + h*b(i,j)*f(:,j);

end

end

f(:,i) = feval(ode_functions, t_inner, y_inner);

te_max = max(abs(h*f*(c8' - c9')));

te_allowed = tol*max(max(abs(y)),1.0);

delta = (te_allowed/(te_max + eps))^(1/9);

if te_max <= te_allowed

h = min(h, tf-t);

t = t + h;

y = yi + h*f*c9';

tout = [tout;t];

yout = [yout;y'];

end

h = min(delta*h, 4*h);

if h < hmin

fprintf(['\n\n Warning: Step size fell below its minimum\n'...

' allowable value (%g) at time %g.\n\n'], hmin, t)

end

end

end

return

59

 Runge-Kutta 86

function [tout, yout ,dyout,iaccept,ireject] = rkn86(FunFcn, t0, tfinal, y0, dy0, tol);

% rkn86 Integrates a special system of ordinary differential equations using

% an effectivelly 8-stages Runge-Kutta-Nystrom pair of orders 8 and 6.

%

% [T,Y,DY,IA,IR] = rkn86('yprime', T0, Tfinal, Y0, DY0) integrates the special system

% of second order ordinary differential equations of the form:

%

% y''=f(t,y), y(t0)=y0, y'(t0)=y'0

%

% described by the M-file YPRIME.M over the interval T0 to Tfinal.

%

% [T,Y,DY,IA,IR] = rkn86(F, T0, Tfinal, Y0, DY0, TOL) uses tolerance TOL

%

% INPUT:

% F - String containing name of user-supplied problem description.

% Call: yprime = fun(t,y) where F = 'fun'.

% t - Time (scalar).

% y - Solution column-vector.

% yprime - Returned derivative column-vector; yprime(i) = d^2y(i)/dt^2.

% t0 - Initial value of t.

% tfinal- Final value of t.

% y0 - Initial value column-vector.

% dy0 - Initial derivatives column vector

% tol - The desired accuracy. (Default: tol = 1.e-6).

%

% OUTPUT:

% T - Returned integration time points (row-vector).

% Y - Returned solution, one solution column-vector per tout-value.

% DY - Returned derivative solution,

% Iaccept - Returned number of accepted steps

% Ireject - Returned number of rejected steps

%

% The result can be displayed by: plot(tout, yout).

%

% Example: Solve two-body problem using inline

% the problem :

% y1''=-y1/(y1^2+y2^2)^1.5, y2''=-y2/(y1^2+y2^2)^1.5

% Initial contitions y1(0)=.5, y2(0)=0, y1'(0)=0, y2'(0)=3^0.5

% Matlab call :

% [x,y]=rkn86(inline('[-y(1)/sqrt(y(1)^2+y(2)^2)^3;-

y(2)/sqrt(y(1)^2+y(2)^2)^3]','x','y'), ...

% 0, 20, [.5 0]',[0 sqrt(3)]', 1e-11);

% write : plot(y(:,1),y(:,2),'-k'); % to get the elliptic orbit

%

% based on the code ODE86 by Ch. Tsitouras

%

% The coefficients of the Runge-Kutta-Nystrom pair NEW8(6) are taken from

% S. N. Papakostas and Ch. Tsitouras, "High phase-lag order Runge-Kutta and Nystrom pairs",

% SIAM J. Sci. Comput. 21(1999) 747-763.

%

% The error control is based on

% Ch. Tsitouras and S. N. Papakostas, "Cheap Error Estimation for Runge-Kutta

% methods", SIAM J. Sci. Comput. 20(1999) 2067-2088.

% Matlab version : 6.1

% Author : Ch. Tsitouras, 1996-2003.

% URL address: http://users.ntua.gr/tsitoura/

%---

% the coefficients

alpha=[0 6397/98811 12794/98811 14/37 8/13 17/22 43/46 1 1]';

function [val] = z(a,b)

val = (a+b*sqrt(6));

end

http://users.ntua.gr/tsitoura/

60

beta=[[0 0 0 0 0 0 0 0 0]

[21738209/10373173531 0 0 0 0 0 0 0 0]

[81843218/29290841163 82694821/14797810534 0 0 0 0 0 0 0]

[286557584/4330809711 -912003620/7090326959 2215175292/16525689869 0 0 0 0 0 0]

[-1732991908/3477246155 20699018807/16215676961 -8943798416/12438207277 711229321/5458138039 0 0

0 0 0]

[10259024870/9108477419 -25149249362/9340973033 4686267579/2513053636 -326162972/7839732939

556579829/13434269006 0 0 0 0]

[-32801447959/18176875798 31592171746/6958893399 -111550006196/40089394711 3451154231/7987305225

68790340/8728368029 123716081/2797556961 0 0 0]

[62469663917/6900212338 -171339392336/7672895439 262962495363/17824923050 -

22108842829/16963055973 661764535/1698709821 -238225641/2934789434 260644226/13286668711 0 0]

[257873323/6918876884 0 1503948753/8413843957 2236434251/13285504895 1069201912/15512587877

980034039/25364950097 92941557/11497613663 0 0]]';

gamma=[[257873323/6918876884 0 1503948753/8413843957 2236434251/13285504895

1069201912/15512587877 980034039/25364950097 92941557/11497613663 0 0]

[-108540447/9734693747 0 216990433/7248923167 -693180867/13981264399 783383731/11490287817 -

639183288/13156494967 143178476/12783609495 0 0]]';

dgamma=[[257873323/6918876884 0 1885846298/9184313637 10010095879/36964622736

576314810/3215962383 378512797/2226489968 1523915682/12294818705 13956454/1038655275 0]

[-108540447/9734693747 0 300730357/8745591283 -339555838/4257328827 4673474889/26364705520 -

1278366576/5980224985 1108173697/6452782413 411153357/5767449338 -3/20]*3]';

%--

ireject=0;iaccept=0;

pow = 1/8;

if nargin < 6, tol = 1.e-6; end

% Initialization

t=t0;

y=y0;

dy=dy0;

tout = t0(:)';

yout = y0(:)';

dyout = dy0(:)';

hmax = (tfinal - t)/1;

hmin = (tfinal - t)/100000000;

f = y0*zeros(1,length(alpha));

% initial step

f(:,1) = feval(FunFcn,t,y);

h=tol^pow/max(max(abs([dy' f(:,1)'])),1e-2);

h=min(hmax,max(h,hmin));

% The main loop

while (t < tfinal) & (h >= hmin)

if t + h > tfinal, h = tfinal - t; end

% Compute the slopes

for j = 1:length(alpha),

f(:,j) = feval(FunFcn, t+alpha(j)*h,y+alpha(j)*h*dy+h^2*f*beta(:,j));

end

% Estimate the error and the acceptable error

delta1 = max(abs(h^2*f*gamma(:,2)));

delta2 = max(abs(h*f*dgamma(:,2)));

delta=max(delta1,delta2)*h;

% Update the solution only if the error is acceptable

if delta <= tol,

t = t + h;

y = y + h*dy+h^2*f*gamma(:,1);

dy = dy +h*f*dgamma(:,1);

iaccept=iaccept+1;

tout=[tout; t];

yout=[yout;y'];

dyout=[dyout;dy'];

else

ireject=ireject+1;

61

function [color] = SetColor(BodyN)

color = [

]/255;

if BodyN > size(color,1)

r = randi([0 255],BodyN-size(color,1),3)/255;

color = vertcat(color, r);

end

end

 Set Color Function

249, 219, 026; % sun 1

122, 120, 122; % mercury 2

175, 107, 031; % venus 3

079, 082, 115; % earth 4

172, 159, 158; % moon 5

140, 083, 063; % mars 6

179, 166, 151; % jupiter 7

206, 172, 117; % saturn 8

185, 222, 226; % uranus 9

059, 089, 214; % neptune 10

171, 135, 112; % pluto 11

249, 219, 026; % Sat1 12

185, 222, 226; % Sat2 13

 Rotation Matrix Function

V(1)*V(2)*(1-cos(theta))+V(3)*sin(theta), V(2)^2+(1-V(2)^2)*cos(theta), V(2)*V(3)*(1-cos(theta))-V(1)*sin(theta);

V(1)*V(3)*(1-cos(theta))-V(2)*sin(theta), V(2)*V(3)*(1-cos(theta))+V(1)*sin(theta), V(3)^2+(1-V(3)^2)*cos(theta)];

end

V(1)*V(2)*(1-cos(theta))-V(3)*sin(theta), V(1)*V(3)*(1-cos(theta))+V(2)*sin(theta); R=[V(1)^2+(1-V(1)^2)*cos(theta),

function R= rot(V,theta)

%This function returns the 3D rotation matrix about an arbitary vector V

%passing the origin.

V=V/norm(V);

end

if delta ~= 0.0

h = min(hmax, .9*h*(tol/delta)^pow);

end

end;

if (t < tfinal)

disp('SINGULARITY LIKELY.')

end

62

References

1Wie, B. (1998). Space vehicle dynamics and control. Aiaa.

2Orloff, R., & Garber, S. (2000). Apollo by the numbers: a statistical reference.

3Curtis, H. D. (2013). Orbital mechanics for engineering students. Butterworth-Heinemann.Books

4Haber, L., Haber, R. N., Penningroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the

direction to objects: Data from blind adults. Perception, 22(1), 35-47.

5Betts, J. T. (1977). Optimal three-burn orbit transfer. AIAA Journal, 15(6), 861-864.

6Vallado, D. A. (2001). Fundamentals of astrodynamics and applications (Vol. 12). Springer Science & Business Media.

7Battin, R. H. (1999). An introduction to the mathematics and methods of astrodynamics. Aiaa.

8Bate, R. R., Mueller, D. D., & White, J. E. (1971). Fundamentals of astrodynamics. Courier Corporation.

9Musielak, Z. E., & Quarles, B. (2014). The three-body problem. Reports on Progress in Physics, 77(6), 065901.

10Chobotov, V. A. (2002). Orbital mechanics. Aiaa.

11Ahmad, A., & Cohen, L. (1973). A numerical integration scheme for the N-body gravitational problem. Journal of

Computational Physics, 12(3), 389-402.

