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Abstract

This report intends to recommend preliminary numerical integrator settings for low to
medium fidelity orbit determination models based on orbital elements. Solutions from
numerical simulations of propagated satellite orbit trajectory states are first used to quantify
the relationship between computational cost of each algorithm and accuracy of each solution.
This relationship is generally dependent on integrator characteristics and tolerance settings.
Once the relationship between computation cost and accuracy is quantified, orbital element
dependencies of each numerical integrator are explored. These dependencies are found to be
primarily limited to some combination of eccentricity, semi-major axis, and orbital period or
angular velocity. The combined analysis of integrators as well as orbital elements enables a
refinement of algorithm recommendations for various types of orbit determination problems.
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I1. Introduction

Propagation in astrodynamics is concerned with the determination of trajectory states over time. These states may
be propagated by use of numerical integrators which approximate a solution to a nonlinear ODE initial value problem
of the general form

y'(x) = fFx, y(x)G, y(xn) = yu 1)

In this case of orbit propagation, the specific ODE to consider is Cowell’s formulation of the Kepler problem
which captures two body dynamics in Eq. (2).

Fo=—u )
T'K

Due to the vectorized formulation of Keplerian dynamics, perturbing accelerations may easily be included to
capture the influence of additional bodies, solar radiation, drag, etc. By introducing additional perturbation forces to
the simplified two body formulation, the nonlinear ODE of interest may be defined with initial time, position, and
velocity state conditions by Vallado [1] as

r
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This formulation suggests that the trajectory path then depends on the combined planetary and perturbation forces
which act on the system over time. By solving the associated differential equations with numerical solvers, it is
possible to propagate or predict trajectories over time. The accuracy of the solution then depends on a combination of
factors including model fidelity, quality of numerical integrator, and orbital elements.

I11. Background

A. Orbit Types
The orbits to be propagated for this analysis may be considered to belong to one of five broad categories. Four of
these are Earth orbiting (EO) while the fifth is a general case for interplanetary missions which can be called Transfer
orbits (TO). Each Earth orbit has a unique set of use cases and can be identified in terms of the orbital elements which
define them. Three dimensional representations of each orbit are presented as results in Fig. 3 through Fig. 8 for
reference. These five orbit categories include:
e GEO: Geostationary Orbit
GEO is defined by a constant altitude of approximately 35,786km. This ensures that the orbit matches Earth’s
rotation frequency and appears stationary from a perspective on the surface of Earth.
¢ HEO: Highly Eccentric Orbit
HEO does not specifically depend on orbit altitude and is instead defined by the Keplerian element
eccentricity which describes the elliptical shape of an orbit. Orbits with eccentricities in therange 1 > e >
0.5 are typically categorized as HEO.
e LEO: Low Earth Orbit
LEO is defined by a range of orbital altitudes that place a satellite relatively close to the Earth’s surface. LEO
satellites typically orbit at altitudes between 200km and 2,000km. The minimal altitude gives these satellites
very short orbital periods (t) between 84 and 127 minutes.
e MEO: Medium Earth Orbit
MEOQ, otherwise referred to as Intermediate Circular Orbit (ICO) encompasses the region of near circular
orbital space between LEO and GEO. That is above 2000km and below 35,786km. Many HEO satellites
including GOES-14 are placed into semi-synchronous orbits with altitudes of approximately 20,200km. This
causes the satellite to orbit with a period of about 12 hours.
e TO: Transfer Orbit (Mars Transfer Orbit, MTO & Venus Transfer Orbit, VTO)



In order to simplify mathematical modeling and analyze the relationship between orbital elements and
computational cost, TO is considered as a fifth category of orbits. This is accomplished by shifting the inertial
frame of a propagated orbit from Earth-centered inertial (ECI) to Sun-centered inertial (SCI). Consequently,
TOs are not strictly defined by Keplerian elements but are instead defined by the implementation of SCI as
the reference frame of choice for propagation. Although EO and TO are defined relative to inertial reference
frame, they tend to have dramatically different semi major axes and orbital periods. While EO have relatively
small semi major axes and short orbital periods, TO have very large semi major axes and long orbital periods
by comparison.

B. Orbital Elements
The set of orbital elements considered for analysis include the classical Keplerian elements as well as orbital period
(7). Orbital period is included as it provides a method to relate angular velocity (8) of a satellite orbit to the
performance results of various integrators. The Keplerian system is defined by six orbital elements. These elements
may be categorized in one of three ways. They describe either the shape and size of the orbit, the orientation of the
reference frame, or the position of the particle on the defined orbit. The combined Keplerian elements define an orbit
as presented in Fig. 1.
e Shape and Size of Orbit (e, a) K 7
The two elements which define the shape and size of an - i
orbit are the eccentricity (e) and semi-major axis (a). The
eccentricity specifies the elliptical shape of the orbit in the
range 0 < e < 1. A value of 0 specifies a perfectly circular
orbit while values of e > 1 relate to hyperbolic projectiles.
Semi-major axis specifies the size of the orbit. It is a
measure of one-half of the total major axis length from the Ecliptic plane (" ? ) 3
center of the ellipse through the focus and to one end. | AL ’
e Orientation of Orbit (Q, i, w)
The three elements which define the orientation of an orbit )
are the right ascension (Q), inclination (i), and argument of X &
periapsis (w). Right ascension is an angular measure ofthe !
orientation of the orbit from the Line of Nodes whichisthe
linear intersection between the orbit plane and reference  Fig. 1 Planetary Orbit in the heliocentric
(equatorial) plane. Inclination is an angular measure of the  ecliptic frame [2]
tilt of an orbit relative to the reference plane used to define
the Line of Nodes. Argument of periapsis, the final orbit orienting element, spins the obit it the plane defined
by its right ascension and inclination. It is an angular measure of periapsis from the ascending node.
e Position Along Orbit ()
The element which defines the position of a particle along its orbit is true anomaly (8). It is an angular
measure between the direction of periapsis and the position of the body with respect to the primary focus of
the ellipse.

e - Perihelion

Planetary
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C. Physical Model & Perturbations

The vector representation of Cowell’s formulation of Kepler’s problem with perturbing accelerations in Eq. (3) is
ideal for modeling in Cartesian reference frames. The advantage of the vector representation is the ability to easily
add any number of relevant perturbation forces and n-body interactions. Depending on the level of accuracy required
for a simulation, the model fidelity may be scaled accordingly with the addition or omission of perturbing forces. In
EO for example it is crucial to include J- since the magnitude of the perturbing force due to the oblateness of Earth is
large. For TO systems in the SCI frame, however, perturbation due to oblateness is relatively negligible. For TO
systems it would be more important to include perturbations due to solar gravity and solar radiation depending on the
specific mission. For reference, estimated magnitudes of various perturbing accelerations are provided by Curtis[2]
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From Eq. (4) Earth’s oblateness (J*) perturbation is identified as having the greatest magnitude. It is strong
enough to produce phenomena including precession of the right ascension of the ascending node and apsidal nodal
regression [1]. For this reason, it is critical to model J- dynamics for any satellite orbit propagation in EO. A
vectorized mathematical model of J- is given by [2] as
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Based on the summary of magnitudes of perturbing forces for EO satellites in Eq. (4), a second perturbing
acceleration to consider is lunar gravity. The associated dynamics of both J- and lunar gravity perturbations are
introduced to Eq. (4) which produces an updated formulation of the ODE in Eq. (3) as

r r
r= —U _+ u . _+a (T, T ’ t)
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The results presented in this report for EO cases primarily depend on the dynamics of Eq. (6). Some cases of EO
and all cases of TO are instead modeled with simplified two body dynamics of Eqg. (2).

D. Numeric Integrator Characteristics
e Explicit vs. Implicit
Traditional propagation algorithms estimate states by use of explicit numerical methods. The simple
mathematics of explicit numerical methods is presented in Eq. (7). When using an explicit method, the IVP is
solved independently at each step by calculating the subsequent state from an existing state. Examples of
explicit integrators include the Runge-Kutta (RK) and Dormand-Prince (DP) variations used in thisreport.

Ykaa = Yk + hf (tk, ) @)

Alternatively, implicit methods solve an IVVP though a prediction and correction of future states based on
both existing and future states. Consequently, implicit methods rely on determination of the state xsa as a
function of itself as presented in Eq. 8. Due to the nonlinearity of system dynamics, implicit methods cannot
be solved analytically. Instead, they must use Newtonian iterations to determine a solution for xksa. The
advantage of implicit numeric integration is improved system stability. Stability ensures that truncation errors
decay as a propagation moves from one step to the next. This tends to produce superior convergence
characteristics but does not necessarily improve solution accuracy. An example of implicit integrators is the
Adams-Bashforth-Moulton (ABM) method used in this report.

Viaa = Yk + hf (tras, Ykaa) (8)

e Single-step vs. Multi-step

Single-step methods determine subsequent steps solely from calculated information of the most recent
previous state. The RK and DP methods considered in this analysis are single step integrators.

Multi-step methods determine subsequent steps from information of several previously calculated steps.
The use of additional existing steps allows for multi-step methods to achieve higher orders of accuracy
compared to single-step methods. This is done by determining and correcting the local truncation error at each
step. Because multi-step methods continually update future states, it is possible to determine if a step size is
small enough to satisfy tolerance conditions for ywa and simultaneously determine if a step size is large
enough to avoid erroneous calculations. This feature optimizes calculations in a way that minimizes
computational cost associated with solution determination.

The ABM integrator considered in this analysis is an example of a multi-step method. Specifically, it uses
Vkak, Ykm™, Ykma, and Yk to generate a solution for yksa. A caveat to this style of multi-step integration is that
the four states ykmx, Ykm*, Ykma, and yx must be determined in advance. Therefore, ABM must be initialized
with an alternative single-step integrator such as RK or DP.



Fixed-step vs. Variable-step

Classical numerical integrators including the RK4 method rely on fixed-step integration. With fixed-step
integrators, the total propagation distance is divided into equal time or distance spaced steps. This simplifies
mathematics while sacrificing computational cost and efficiency performance characteristics.

Unlike the constant step size formulation of the RK4 method, modern numerical integrators use prediction-
correction mathematics to dynamically adjust step size. Variable-step size algorithms incorporate tolerance
criteria to determine the accuracy at each step by considering two methods at each step. This allows for step-
size adjustments to be made at each step. RKF45 for example compares a fourth order solution and a fifth
order solution in order to calculate local error.

Fixed-step h: constant 9)
Variable-step h: not constant

RK, DP, ABM

The Runge-Kutta (RK) family of numeric integrators originate from RKp methods where p represents
order of the method. These are explicit single step methods meaning the states y,4a at time t, + h, are
obtained from the equation

Ykaa = Yk + h ¢p(tx, yx, h) (10)

where ¢ represents an incrementation function that averages multiple derivative evaluations over the time
interval [tq: tq + h]. The average is obtained through evaluation of the derivative of the ODE of interest at
some number of stages s within the specified time interval. For the fourth order RK4 method with s = 4
stages, Eq. (10) becomes

(ka + 2k + 2kx + ko) (11)
6
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with ¢ being substituted for an expression of the weighted average of the four stages evaluated. In this
formulation kg represents the sd¢ increment based on the slope (derivative) at a particular subinterval of the
time interval being considered. Fig. 2 provides a visual representation of the four slopes evaluated for an RK4
method. The process of evaluating the value of each kg is to first evaluate ks, the slope at the originating point
in time. This slope is then traced to the midpoint of the time interval where a new slope k- is evaluated. From
the originating point in time k- is traced to the
midpoint of the time interval where a third slope
kk is evaluated. This third slope is traced from
the originating point in time to the final point in
time where a final slope k¢ is evaluated. The final
slope is then traced from the originating point in
time to the final point in time where a new Yo
solution is obtained by evaluating Eq. (11) with
ks. A more detailed derivation of the RK4
method is provided by [2], however the family of
RK methods may be represented in similar ways.
Unlike the constant step size nature of the RK4
method, modern adaptions of RK produce  yo+hk;/2
variable step-size capabilities by considering two
methods at each step. Adaptive step sizes are Yo
estimated based on the local truncation error at
each step by comparing a g€ order solution with
a (g — 1)% order solution. In theexplicit Runge-
Kutta-Fehlberg (RKF) family of algorithms for
example, the RKF4(5) method tests a fourth
order solution against a fifth order error estimate b L+h/2 lo+h

Fig. 2 RK4 Interpolation [1]

+ hks

yo+hky/2




[3]. If local error € meets the tolerance & setting then the higher fifth order solution is propagated forward,
otherwise known as local interpolation.

The explicit DP family of integrators, on the other hand, interpolate with the lower order of two solutions
once the tolerance criteria is satisfied. In the case of the DP5(4) [4], fourth order interpolation is applied
although a fifth order solution is calculated. Since DP is a subclass of RK, they are also traditionally explicit
single step methods. Newer mathematical formulations of DP methods, however are considered to have
different stability characteristics compared to RKF due to lower order interpolation. Analysis of the stability
characteristics of both styles of interpolation in RK and DP is presented in [4][5][6].

The only additional style of integrator used for this analysis is the ABM variation of MATLAB’s ODE113
integrator [7]. This method differs from both the RKF and DP families in that it is a variable order method as
opposed to a fixed order method. ABM relies on a combination of Adams-Bashforth (AB) for explicit
BP0 S AR AIMOR AN Jor pplietcoueslion i redii sipclapagics
This function evaluation is then inserted into the AM method which corrects yksa and then evaluates
f(txaa, yraa). The ABM method must satisfy the local truncation error formulation expressed in Eq. (12)
which differs slightly from the local truncation error formulation of Eq. (15). The main difference being that
Eg. (12) depends on predicted which may change at various steps which is not the case for explicit RK and
explicit DP methods. Additionally, the variable order nature of ABM means that the order of the two methods
considered for error estimation and interpolation are not necessarily consistent at each step as is the case in
RKF and DP. The ABM method is a variable step, variable order integrator of orders 1 to 13.

C /zs 12
€kaa =~ ﬁ Vkaa — Yiad (12)

In general, higher order integrators produce more accurate solutions for orbit determination. Other
considerations for numerical methods include local and global error estimates, stiffness, etc. Analysis of local
truncation error can be found by Verner [3] for select RK integrators. Butcher tableaus for each of the
integrators used in the analysis are provided in appendix [A].

E. Tolerance Control

Numeric integrators use tolerance settings to control the accuracy of a solution. Integrators from the RKF family
run on a single defined tolerance while others, including those from the DOPRI and ABM families distinguish between
Absolute tolerance (AbsTol) and Relative tolerances (RelTol). Tolerance is Relative by default and therefore the RKF
family of integrators used in this report only utilize RelTol settings.

RelTol specifies the allowable percent error at any step during simulation. Percent error is relative to the states
being calculated at each step. Setting RelTol to 1.0e-2 (0.01) thus specifies a 1% error limit relative to each state value
at each step. RelTol may be thought of as a control for the number of significant figures which must be accurate for a
solution.

AbsTol controls allowable error specifically when the value of a solution approaches 0. It sets a threshold below
which the accuracy of a solution may be ignored under the assumption that very small state values have insignificant
errors. AbsTol settings therefor specify the decimal place in a solution beyond which variation may be ignored.

When used in conjunction, RelTol specifies the accuracy of a solution as a number of significant digits for each
state at each step except for when the absolute error falls below the threshold set by the AbsTol. At each step i the
numeric integrator estimates local error € for each j state to satisfy. If the error tolerance is not initially met, then the
integrator must reduce the time step i until the calculated error of each state satisfies Eq. (15).

RelTol: abs(X —Y) (13)
min (abs(X), abs(Y))

AbsTol: abs(X —Y) (14)

le(i, )| < max (RelTol = |y(i, j)| ,AbsTol(i, ))) (15)

The above formulation requires that state values with large magnitudes have their accuracy determined by the
specified RelTol while the state values with small magnitudes have their accuracy determined by the specified AbsTol.
Depending on the application, tolerances may either be increased (or loosened) to speed up simulation time at the cost



of accuracy or decreased (or tightened) to increase accuracy at the cost of simulation time. For orbit propagation
applications we will see that very small tolerances are necessary in order to produce useful solutions [8].

F. Literature Review

A number of studies which compare various integration methods for the purpose of orbit propagation have been
conducted in recent years. These studies commonly focus on optimizing a single integration method for a particular
type of orbit and compare the results with a few other methods. Some popular integrators include variations of RK
and Gauss-Jackson for orbit analysis. As there are many studies with data on computational cost and accuracy of
integrators they will be used to compare results for a wider range of solvers.

A paper by Jones discusses Gauss-Legendre collocation for orbit propagation. Jones describes a variable-step
implementation for propagation which is designed to be more effective for eccentric orbits. Variable-time steps are
favorable over fixed-time orbits due to the nature of constant acceleration and deceleration along eccentric orbits. By
using a fixed distance propagator, accuracy would be lost along the perigee where satellite speed is the fastest. Because
orbits are inherently eccentric to some degree, variable step propagators are essential for high fidelity models. Jones
continues by comparing the Gauss-Legendre collocation model to ordinary differential equation solvers. Furthermore,
this method implements Gauss-Legendre in the form of an implicit RK scheme. The advantage gained by the RK
scheme is the development of variable-step techniques which may autonomously determine step sizes based on
tolerances. One of the models that Jones compares the Gauss-Legendre collocation results against is the DOPRI 8(7)
and DORPI 5(4) methods which also implements step size control. An additional advantage by the implicit RK scheme
used by Jones is parallelization. The majority of explicit methods cannot utilize multi core processing and suffer from
long computation times on the force mode. The conclusions drawn from this report indicate that integration with
Gauss-Legendre nodes with variable-step implementation outperformed DP 8(7) and 5(4) embedded RK, but not the
Gauss-Jackson 8 integrator r=r3rin terms of computational cost for circular orbits. For Molniya orbits however, this
method outperformed DP 5(4) and Gauss-Jackson 8 while matching DP 8(7).

Another paper by Berry and Healy specifically compares speed and accuracy of the variable-step Stormer-Cowell
Integrator. Like the Gauss Legendre collocation method, this integrator utilizes autonomous step size control from
local error approximations. Berry and Healy then compare results of the Stormer-Cowell method with two Gauss-
Jackson methods and the Shampine Gordon method. There is a focus in this paper around multi-step integrators which
are designed to be faster that single-step integrators. Additionally, double-integration methods have the advantage of
computing second-order differential equations such as the Cowell second order formulation of two body equations of
motion. This is in contrast to single integration methods which solve first-order differential equations and must be
applied twice in order to compute the same variables.

More recently, Jones and Anderson have explored both symplectic and collocation methods for orbit propagation.
The symplectic method is examined as it preserves the Hamiltonian and tends to reduce integration error as a result
of truncation. This allows for large time steps during integration which reduces overall computational cost while
maintaining accuracy. Node spacing for various collocation methods is also explored in this report as it relates to the
varying distance between time steps. Gauss, Lobatto, and Chebyshev nodes are explored which all have variations in
node density for propagation.

IV. Propagation Parameters

A. Satellites

Six satellites are propagated for this analysis for each of the EO cases while two satellites are propagated for TO
cases. Initial conditions for each satellite are cartesian states retrieved from JPL Horizons [9] as ephemeris data. The
four Earth orbiting satellites are propagated from ephemeris data for 2018-Jan-01 while MTO and VTO are propagated
from 2011-Dec-01 and 2005-Dec-01, respectively. Table 1 presents a summary of initial orbital elements.

Initial Orbital Data
Orbit Satellite T (min) e (deg) a(km) Q(deg) i(deg) w(deg)
GEO GOES-14 1436.1 0.00100297 42166  351.341 0.0337605 251.33
HEO MMS-4 4053.0 0.910034 6778 308.958  19.0751 161.86
LEO ISS 92.7 0.00123243 26562 131.92 51.6956 64.97
MEO | NAVSTAR-68 718.0 0.00529487 84187  32.1793  55.9997 20.22
MTO MSL 750601 (~521 days) 0.223352 1.90e08 6.21437 0.396572  1.00094
VTO VEX 410678 (~285 days) 0.171225 1.27e08  6.2748  0.406136  3.79567

Table 1 Initial Orbital Data



B. Variables

Initial States

Six sets of initial states which represent the satellites listed in Table 1 are considered for propagation.
Further discussion on accuracy and computational cost of a solution for different orbit types, thus various
initial orbital elements, are provided by Aristoff [10]. By association, initial states are explored to quantify
this relationship.

Numerical Integrator

Six explicit numerical integrators are used to propagate the set of states presented for each satellite listed
in Table 1. While implicit integrators are known to have favorable performance characteristics for many orbit
propagation applications [10], explicit integrators are employed to reduce the complexity of the presented
problem by reducing the number of variables under consideration.

The RKF45 integrator is taken from [2] while the RKF 89 is an adaptation of the RKF45 formulation to fit
the higher order terms. Integrators ODE45 and ODE113 are a part of MATLAB’s ODE suite [7] while
DOPRI54 and DOPRI87 are taken from [11] and [12]. Note that DOPRI54 and ODEA45 are based on the
same DP integrator mathematics. The programming for the two methods differs and provide different results.

Numerical Methods
RKF45
RK54 (ODE45)
RK54 (DOPRI54)
RK87 (DOPRI87)
RKF89
ABM (ODE113)

Table 2 Numerical Methods

Tolerance
The combined range of tolerances used for propagation in this reportis 1e — 4 < § < 1e — 16.

Model Fidelity

Two model fidelities are used to analyze the effect of additional perturbations on computational cost and
tendency of a solution to converge. This only applies to the EO satellites as the applied perturbations have
greater relative effects in the vicinity of Earth as opposed to solar system scale. The TO satellites are
propagated with simple two body dynamics.

Physical Models
Two-Body Three-Body + J2
All satellites EO satellites only
Table 4 Physical Models

Propagation Time & Propagation Distance

A single propagation time of At = 25 days (600 hours) is modeled across all orbits. Results for shorter
propagation times are not presented as they do not accurately capture long term trends for variation of
previously stated variables.

Additionally, a single angular propagation distance of A8 = 100 orbits (100*2m) is modeled across all
orbits. The wide range of orbital periods across the six satellites forces numerical integrators to propagate
through vastly different final times. The purpose of considering constant angular distance is to isolate results
for variation of Keplerian elements without a dependence on physical time.

Propagation Time & Distance
At = 25days (2,160,000s)
A8 = 100orbits (100 * 2m)

Table 5 Propagation Time & Distance




V. Results

Two graphical sets of data are presented for each propagation. The first is a set of computational cost as a function
of tolerance. This includes total run time, number of steps for a solution, and number of erroneous steps for each
solution. The second is a set of converge results for estimated states. For convergence results, two variables are
measured as a function of computational cost. One is the actual state value of each solution while the other is the log
scaled difference between the states of the current tolerance solution and the states of a reference solution. The
resulting value give the decimal place accuracy with respect to the reference solution. This is further discussed in the
analysis of “Accuracy of Integrator Solutions.”

A. 3D Models
Three dimensional models of each satellite orbit are presented to illustrate the scale of each orbit. Important
aspects to note are the size and shape of each ellipse which relate to semi-major axis and eccentricity measures.
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Fig. 3 GEO 3-D Orbit

Fig. 4 HEO 3-D Orbit



km

Fig. 5 LEO 3-D Orbit Fig. 6 MEO 3-D Orbit
R ) <
2 /<-1.5 E ™ /(/ )
3 \\ S -05:\\ 05
a = S 05 «10° 10 = /ff 10°
" TR T 5
km ” \“\4/ ka km J \.\/ km
Fig. 7 MTO 3-D Orbit Fig. 8 VTO 3-D Orbit

B. Absolute & Relative Tolerance

To analyze the importance of AbsTol and RelTol in orbit determination, a single set of initial states are propagated
with one tolerance held constant at § = 1e — 8 and the other varied from 1le — 4 < § < 1e — 12. This data set is
propagated from the LEO ephemeris for 600 hours using ODE45 with a physical model which includes both lunar and
J2 perturbations. The AbsTol and RelTol relations observed for ODE45 are representative of all other integrators
considered in this report and may be applicable to orbit determination problems in general.

In both the computational and convergence results presented in Fig. 9 and Fig. 10 there is a crossover between
data sets at 1e-8 where both the RelTol and AbsTol are § = 1e — 8, thus producing equivalent results. In the case
varying AbsTol there is an early plateau in run times due to the plateau in computational steps as seen in Fig. 9. The
convergence results reveal an inability for ODE45 to converge when reducing AbsTol below 6 = 1e — 6. Recall that
AbsTol specifies decimal place accuracy and this plateau can be attributed to the large magnitude of orbital states. For
the X position state which is measured in the thousands of kilometers, AbsTol response at § = 1e — 6 reflects ten
significant figures of control. The exact number of significant figures that each integrator is responsive to does vary
primarily depending on the order of the integrator.

In the case varying RelTol there is a consistent increase in run times due to increased computational steps at each
tolerance step. The convergence results reveal continued convergence through the minimum tested RelTol of 1e-12.
Recall that RelTol specifies percent error accuracy and this trend reveals that solution accuracy may be manipulated
at stringent RelTol settings. Based on VX results, a minimum RelTol setting of 6 = 1e — 10 may be recommended
due to the ability of the solution to continue converging at tighter tolerances. RelTol settings which are less stringent
would not necessarily ensure accurate results.

10
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C. Accuracy of Integrator Solutions

This accuracy analysis begins with a discussion of the mathematical process used to quantify convergence and
accuracy of integrator solutions throughout the report. This accuracy analysis is independent of computational cost
associated with obtaining each solution. Table 6 presents final state data of a single set of LEO ephemeris
propagations. These solutions are for a 24-hour propagation using the perturbation model of Eq. (6) which includes
J2 and Lunar gravity with a RelTol setting of § = 1e — 10 for all numerical integrators. The first row of data in Table
6 presents final ephemeris data from JPL Horizons while the following rows present final propagation states for each
integrator. Table 7 then presents absolute final state error between the ephemeris states and the calculated states for
each integrator by taking the difference between the states.

The X,VX, aX, and AV X data is then taken from Table 6 and Table 7 and graphed in Fig. 11 to show a graphical
representation of convergence trends. The data in Table 6 and Table 7 only generates the data points at the tolerance
of § = 1e — 10. The rest of the data points are taken from solutions from each integrator at each of the tolerances in
the range 1e — 4 < § < 1e — 12. While the first row of graphs in Fig. 11 simply presents final states, the second row
of graphs are calculated by taking the mathematical log of the absolute final state errors as show in Eq. (16). Plotting
the log scaled difference presents a visual representation of the decimal place accuracy of each solution. For example,
the “VX Convergence Results (log)” plot reveals one decimal place of accuracy for the solution of RKF45 integrator
using a RelTol of § = 1e — 6. The graph then reveals two decimal places of accuracy for the solution of RKF45
integrator using RelTol in the range 1e — 8 < § < 1e — 12 since the resulting value settles at -2.

log(dif )~ = logau( AX), log(diff)™=logau( AVX) (16)
State X Y z VX VY VZ
EPH -3199.720073060143  -2728.382385352880  5314.021052617424 4.748436158196570  -6.018782640021895  -0.2282717591541034
RKF45 | -3207.436708283496  -2722.050539630536  5316.027065456157 4.740696716530949  -6.019181707087806  -0.2201508800557680
ODE45 | -3207.804466052152  -2722.334836360222  5316.617135270371 4.741209424356703  -6.019856467125762  -0.2201565787853040
DOPRI54| -3207.804553745828  -2722.334726954116  5316.617140827567 4.741209348864262  -6.019856529796083  -0.2201564541305700
RKF89 | -3195.490858013873  -2712.721129199226  5296.787748279240 4.723928954444030  -5.997203697572299  -0.2198964632547130
ODES87 | -3207.804058366658  -2722.335344953416  5316.617109406212 4.741209775409592  -6.019856175909346  -0.2201571582897830
ODE113 | -3207.804281190570  -2722.335066669972  5316.617123310268 4.741209584125698  -6.019856335383273  -0.2201568419190540
Table 6 Final States: LEO, 24hour, J2+Lunar, § = 1e — 10
State AX AY AZ AVX AVY AVZ
RKF45 | 7.716635223352569 | -6.331845722344042 | -2.006012838733113 | 0.007739441665621 0.000399067065911 -0.008120879098335
ODE45 | 8.084392992009271 | -6.047548992657994 | -2.596082652946279 | 0.007226733839867 0.001073827103867 -0.008115180368799
DOPRI54| 8.084480685685321 | -6.047658398763815 | -2.596088210143535 | 0.007226809332308 0.001073889774188 -0.008115305023534
RKF89 | -4.229215046269928 | -15.661256153653994 | 17.233304338185008 | 0.024507203752540 | -0.021578942449596 -0.008375295899390
ODE87 | 8.083985306514478 | -6.047040399464095 | -2.596056788787791 | 0.007226382786978 0.001073535887451 -0.008114600864320
ODE113 | 8.084208130427214 | -6.047318682907644 | -2.596070692843568 | 0.007226574070873 0.001073695361378 -0.008114917235049

Table 7 Final State Error: LEO, 24hour, J2+Lunar, 6§ = 1e — 10
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Fig. 11 Convergence Results: LEO, 24hour, J2+Lunar, § = 1e — 10

Using the data of Table 7, the magnitudes of the vectorized displacement error (aV, AY, AZ states) and vectorized
velocity error (AVX, AVY, AVZ) are calculated and presented in Table 8. This data set exposes RKF89 as an outlier in
terms of solution accuracy for the LEO propagation as it has over twice the position error and three times the velocity
error. To address this issue, an additional set of propagation error data for a RelTol setting of § = 1e — 14 is presented
in Table 9. This data set shows that RKF89 requires tighter RelTol settings in order to achieve the same level of
accuracy as the rest of the integrators. Beyond § = 1e — 14 there is no further minimization of absolute error for any
of the integrators. For this reason, the remaining propagations for accuracy analysis are calculated using RelTol in the

range le—8 <6 < le—14.

State Ar Ar

RKF45 10.181493845748481 0.011225279023188

ODE45 10.424485791096648 0.010919475219049
DOPRI54| 10.424618652986965 0.010919623986092

RKF89 23.667445629608348 0.033710523199942

ODES87 10.423868134205462 0.010918783571113

ODE113 10.424205839820633 0.010919160968800

Table 8 State Error Magnitude:
LEO, 24hour, J2+Lunar, § = 1e — 10

State Ar Ar
RKF45 10.414561874631506 0.010931086423464
ODE45 10.424278419121871 0.010919242984191
DOPRI54 | 10.424278441465431 0.010919243009171
RKF89 9.841156350946937 0.012256465525769
ODES87 10.424278343879379 0.010919242899941
ODE113 10.424278377056831 0.010919242936969
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Table 9 State Error Magnitude:
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Of the four EO cases considered, GEO is the most accurate across all integrators when comparing a two-body
propagation to ephemeris data. The associated magnitudes of displacement error and velocity error for 25-day, two-
body propagations is presented in Fig. 12 and Fig. 13. Even with GEO being the most accurate, the absolute errors for
two-body dynamics make the data unusable for practical purposes. The associated converged errors are approximately
430km for position and 0.031km/s for velocity. For comparison, the second most accurate orbit type is MEO with an
absolute position error that settles above 740km. It should be noted that each of the integrators eventually converge to
solutions with nearly identical absolute errors for both position and velocity states as shown in Fig. 12 and Fig. 13.
This trend occurs for all four EO types when using two-body dynamics. The primary factor to consider for simple
two-boy dynamics is tolerance. For such propagations it would be best to use easily implemented integrators such as
RKF45 and ODE54 with tolerances of between 1e — 10 < 6 < 1le — 14.
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Fig. 12: Position Error: GEO, 25day, 2-body Fig. 13: Velocity Error: GEO, 25day, 2-body

The remaining propagations for EO accuracy analysis consider 1-day, 5-day, 10-day, and 15-day propagations
using a force model which includes two-body dynamics (earth and satellite) with the addition of J.. For these
propagations we will consider only the absolute position error as a measure of accuracy for each solution. For the 1-
day propagations we once again see RKF integrators providing less accurate solutions across all cases except the for
a short range of tolerances in the HEO case of Fig. 15. Once all of the errors converge at a RelTol of \delta = 1e — 14
we see nearly equivalent accuracies across all integrators. In Fig. 16 we also see slightly improved accuracy for RKF45
compared to other integrators at low RelTol when propagation LEO. This behavior is amplified for long propagation
times in subsequent results. Across all data sets we see that ODE45, DOPRI54, DOPRI87, and ODE113 produce
nearly identical position errors at all tolerances. These position errors are also converged at low tolerances unlike RKF
integrator solutions which require tighter tolerances.
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Fig. 16 Position Error: LEO, 1day, 2-body

The 5-day propagation results reiterate the deviation of RKF solutions compared to DP and ABM. In all EO cases
we see that RKF89 performs poorly at equivalent tolerances. The exception to this is the LEO 5-day propagation
where the difference in absolute position error for RKF89 is much smaller. Also in the LEO results we see that RKF45
has better performance than ABM, DP, and RKF89 at low RelTol of § < 1e — 10. This is an amplification of what is
seen in the 1-day propagation solutions. Once the recommended minimum RelTol of § = 1e — 10 is implemented we
see that all solutions except RKF89 have nearly identical absolute errors.
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The 10-day propagation results introduce an anomaly in the trends discussed for the 1-day and 5-day propagations.
This is specifically for the HEO case where Fig. 23 shows both RKF45 and RKF89 producing significantly better
results than DP and ABM. It is important to note that RKF89 with a RelTol of § = 1e — 8 does not fit this
generalization as its absolute position error is approximately 50% greater than the average. If we consider the
minimum recommended tolerance of § = 1e — 10 then both RKF integrators produce equivalent or superior accuracy
for HEO results. From these results we may want to conclude that RKF handles highly eccentric orbits better than DP
and ABM and moderate tolerance setting as propagation time increases, however the trend of error growth contradicts
this conclusion. When analyzing Fig. 23 HEO 10-day propagation results we must compare the absolute error to those
in Fig. 15 and Fig. 19 for 1-day and 5-day propagations. 1-day propagations present a converged absolute error of
approximately 140km which is already significant. This grows to nearly 700km for the 5-day propagation. Because
the 10-day propagation presents a smaller absolute position error we must conclude that reasonable results cannot be
obtained using any integrator for HEO with a 10-day propagation using the current force model.

The large magnitudes of error presented in theis10-day propagation make it impossible to generate reasonable
results with the 2-body force model with J- perturbations, however it provides insight into the various performance
capabilities of each integrator across various EO types. We see that the RKF45 integrator provides better accuracy
than others at loose tolerances for LEO propagations. We also see that in all other cases DP and ABM have superior
convergence results and generally produce more accurate results.
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D. Model Fidelity

Two physical models are considered for the propagation of the four EO satellites in order to analyze the relationship
between model fidelity and computational cost at various tolerances. General trends for each of the four cases may be
summarized by LEO results presented in Fig. 26 through Fig. 33. The missing data point at § = 1e — 4 for two body
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propagation in Fig. 26,28,30,32 is caused by to one or more numerical integrators failing at such large tolerance
settings for a large model. RKF45 is usually the integrator which fails at extremely loose tolerances.

A comparison of the computational results of both models in Fig. 26 and Fig. 27 show intuitive results that higher
fidelity models require smaller steps to be taken in order to meet tolerance requirements. The smaller step sizes result
in at least 50% more steps needed to propagate with the added J- and Lunar perturbations. Consequently, run times
see anywhere from a 50%-100% increase across all integrators for the higher fidelity model. The only integrator which
seems to experience a proportional increase in number of failed steps is the RKF45 integrator. All others appear to
experience similar numbers of failed steps for each model fidelity.

A comparison of the convergence results for final position states in Figs. 28-33 reveal that convergence for all
states does not occur until at least a tolerance of § = 1e — 10. This applies to both physical models. When considering
the log scale results relative to a solution with tolerance § = 1e — 13, reasonable convergence does not occur until a
tolerance of 6 = 1e — 12. For position states this is when the log scale difference falls below 0 meaning accuracy at
the decimal place is achieved. Because position states are measured in the thousands of kilometers, this represents
four significant figures of accuracy compared to the lowest tolerance solution. For velocity states this is when the log

scale difference falls below -2 meaning accuracy at the hundredth’s place is achieved. Because velocity states do not
exceed the ones place in km/s measurements this represents three significant figures of accuracy compared to the
lowest tolerance solution. Log scale difference convergence results appear identical between both physical models.
As with the bulk of previously discusses solutions, the log scale results in Figs. 28-33 show that DP and ABM
converge more quickly than RKF. At lower tolerances we see that DP models show the best convergence while at
higher tolerances, ABM shows the best convergence. In all cases RKF have the worst convergence with agrees with

the fact that RKF requires tighter tolerances to converge.
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E. Earth Orbit
The four EO propagations show a wide range of computational costs in terms of number of steps to solution and

run times. For the 25-day propagation, run times vary from about a half of a second for the fastest integrator to around
350 seconds for the slowest integrator. In order of increasing run times, the EO cases are as follows: HEO, GEO,
MEO, LEO with LEO being the outlier of the set. This is attributed to a strong dependency on orbital period 7. Table
10 lists run times and 7 for the EO cases in increasing order of maximum run times. Maximum run times from
DOPRI54 are considered to be representative of the trends across all other solution sets. The trend of lower order
solutions taking longer to generate a solution in Figs. 34,36,38 and 40 is common across all propagation results when
time is help constant. Consequently, computational time becomes more important as the number of orbits increases.
General conclusion to be drawn from the EO propagation data is that computational time is primarily a function
of angular distance traveled (A8). LEO, with the largest computation cost has the smallest orbital period by nearly a
factor of 10. This means that for any given period of time it will complete 10 times the number of orbits compared to
MEOQ and over 43 times the number of orbits compared to HEO. This trend is less important for Transfer Orbits.

EO Period & Computation Time

Orbit | T (min) | tcomp (sec)
HEO 4053.0 ~3.1
HEO 1436.1 ~5.0
MEO 718.0 ~12.5
LEO 92.7 ~350

Table 10 Earth Orbit Period & Computation Time

17



Run Times <10° #Steps # Failed
8 25 4000
——RKFIS RKFAS ——— RKFAS
——— ODEdS —— ODE4S —— ODEdS
—— DOPRISI —— DOPRIS 3500 | | ——DoPRIS4
5 RKF89 RKF29 RKF29
——DOPRIET 2 —— DOPRIZ7 —— DOPRIZ7
ODEN3 ODE113 ——ODEN3 I
3000
|
2500

time (s}

# Steps
# Failed Steps
h
2
]

e & 10 112
tolerance 8-n

tolerance e-n

tolerance e-n

Fig. 34 Computation Results:
GEO, 600hour, J2+Lunar

Run Times # Steps # Failed
35 14000 4000
RKFAS RIKFAS RKFA5
—— ODEdS —— ODE4S
—— DOPRISA as0q |- |——DOPRISA
3 RICFES. |
——— DOPRIBT ——popRIBT | |
ODEN13 ooens | |
3000 |
f
2500 |
o
4
o g
= 7] /
g g 2000
£ 5
a
1500
1000
500
0
4 & 8 10 12 4 & 8 10 12 5 10
tolerance e-n tolerance e-n tolerance e-n
Fig. 36 Computation Results:
HEO, 600hour, J2+Lunar
Run Ti 5 # St “  # Failed
i un Times 510 eps. 1o 10 ailes
—— RKFIS
—— ODE45
as0 DOPRISA
i RKFED
——— DOPRIBT
————ODE{13
300
8
250 /
2
s g
2 5]
g 200 3 6
= g
=
150
4
100

4 & 8 10 12
folerance e-n

folerance e-n

tolerance e-n

Fig. 38 Computation Results:
LEO, 600hour, J2+Lunar

18

X {km)
=

logidiff)

X (km)

4

2 ;
£ £
5 g

VX Convergence Results

10° X Conwergence Results

VX (kmv's)
U o

1
2 ;i ;
-+ st
4 € B 10 12 4 & 8 10 12
tolerance e-n tolerance e-n

X Convergence Results (log) VX Convergence Results (log)

. . ™
2 L
4| |[——DoPRie7
ODE113

4 [} 8 10 12 4 8 & 10 12
tolerance e-n

tolerance e-n

Fig. 35 X & VX Convergence Results:
GEO, 600hour, J2+Lunar

.10* X Convergence Results VX Convergence Results
&

@

= & g
* 2
e
4 4
-2 -5
4 & 8 10 12 4 6 8 10 12
tolerance e-n tolerance e-n
X Convergence Results (log) VX Convergence Results (log)

log diff)

4 ] k] 10 12

tolerance e-n tolerance e-n

Fig. 37 X & VX Convergence Results:
HEO, 600hour, J2+Lunar

10¢ X Convergence Results 10° VX Convergence Results

f

£

22
5

1

_f a

4 6 a 10 12 4 6 8 10 2
tolerance e-n tolerance &-n
- X Convergence Results (log) i VX Convergence Results (log)

logdiff)

E FB9
4| |[——noerisr
ODET13

4 [ 8 10 12 4 6 8 10 13

tolerance e-n tolerance e-n

Fig. 39 X & VX Convergence Results:
LEO, 600hour, J2+Lunar



10° X Convergence Results VX Convergence Results

Run Times .1p° #Steps # Failed s
5 16000
—— R RIFIS —— R | A
ODEA, i ODEdS —— ODE4 | 2 P
—— DOPRIS ——DOPRIS 14000 | |——DOPRIS [ | \ _ P |
2 KB RKFED RKFED { = 10\ = 7 '\
——— DOPRIT 4| | ——Dopra ——— DOPRI&T £ \ E g
ODE113 ODEN3 opEt3 | | o - - = \
12000 | o F/—_{ g z
| A= \
[ ! L 2 \
/ 1Y
10000 | 4
P | z
_ & I & & 1 o 2 G ] o 2
é . — / tolerance e-n tolerance e-n
= :; / " X Convergence Results (log) VX Convergence Results (log)
[ 5
=
e / TREE
2 ~
/ 2 i,
4000 = - ~ £
/ T g| [—RFs | 5 3
/ g — ODEA5 > g
/ /—_ = | |[——DopRis -
2000 y RKFES .
——— DOPRI&T
:_// 4 ODE113
= - 0 -8 .
4 & B 10 12 4 8 8 10 12 4 8 8 10 12 4 & g 10 2 4 8 8 10 2
tolerance &-n tolerance e-n tolerance e-n tolerance e-n tolerance e-n
Fig. 40 Computation Results: Fig. 41 X & VX Convergence Results:
MEO, 600hour, J2+Lunar MEO, 600hour, J2+Lunar

F. Transfer Orbit
Unlike EO cases, the TO cases are plotted with log scale differences which have been calculated with respect to

ephemeris data as opposed to a lower tolerance solution. Because results are compared to ephemeris data, log scale
difference data shows flat lines as the integrators have reached the limit of achievable accuracy with the given force
model. The following results magnify the inability of both RKF methods to converge as well as the DP and ABM
methods. Fig. 29,30 show the lack of convergence for RKF through tolerances of § = 1e — 12. The flat line on the
other hand is a combination of the other four integrators overlapping. A final point to note is the short run times for
both TO cases. To explain this occurrence, a set of results for each satellite completing 500 orbits is propagated.

An observation of Run Time trends for MTO and VTO in Fig. 42 and Fig. 43 reveal a trend that contradicts the
results of the EO cases above. As tolerance is tightened in EO cases, run times steadily increase. This expected trend
is the result of tightened tolerances requiring smaller error margins for each step. When smaller error margins are
allowed, smaller steps in time are taken to satisfy the tightened tolerance limits and thus more steps are taken. As more
steps are taken there is a need for the numerical integrator to iterate through many more mathematical calculations in
order to produce a solution. This ultimately slows down the run time as seen in EO results.

To properly compare EO and TO, consider the computational results presented for a 600-hour LEO propagation
with two body dynamics in Fig. 11 to those presented for 600-hour MTO and VTO propagations with two body
dynamics in Fig. 42 and Fig. 43. With equivalent model fidelities (simplified 2-body dynamics) and equivalent
propagation times it may be expected to see comparable computational cost between EO and TO. Instead, we observe
opposite trends for EO and TO. While LEO run times in Fig. 26 surpass 180 seconds for the slowest integrator
(DOPRI54) and reach approximately 5 seconds for the fastest integrator (ODE113) with steadily increasing run times
across all integrators, TO experience steadily decreasing run times. Additionally, the run time for all integrators
(including DOPRI54) settle around one hundredth of a second (0.01s) for both MTO and VTO as seen in Fig. 42 and

Fig. 43.
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Fig. 42 Computation Results: MTO, 600hr, 2body Fig. 43 Computation Results: VTO, 600hr, 2body
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To identify the source of the discrepancy, dependencies and non-dependencies of integrators on orbital elements
must be established. Orbital elements include e, a, Q, i, w, 8, and T as previously discussed. From EO results it has
been established that the Keplerian elements which define orientation of an orbit (£, i, w) and position along an orbit
(0) are not significant in the performance of orbit determination. This narrows potential dependencies to e, a and .
These three orbital elements are responsible for defining the shape, size and speed of an orbit. When considering the
eccentricities of all propagated EO and TO cases, eccentricity can also be eliminated as a source of the computational
cost dependencies. This is because EO cases include eccentricities which range from 0.01 < e < 0.910 while TO
cases fall within the range 0.117 < e < 0.233. As all EO propagation times are drastically greater than TO, yet the
range of TO eccentricities falls within the range of EO eccentricities, we can ignore eccentricity for theseresults.

Potential orbital element dependencies now include semi-major axis (a) and orbital period (z). These orbital
elements are responsible for defining the shape and speed of an orbit. From the definition of orbital period in Eq. (17),
we know that orbital period and semi major axis share a dependence on one another. We also know thatboth

_.af

GM

T=2m @17

orbital period and semi major axis are dramatically different for EO and TO. For EO, semi-major axes of the satellites
considered fall below10,000km which results in orbital periods that are measured in hours. For TO cases, however,
semi-major axes of the satellites considered exceed 100,000,000km and have orbital periods in the hundreds of days.

The difference in orbital periods results in a difference in average angular velocities (8) from the definition of angular

velocity given by Eq. (18). This definition produces a maximum EO average angular velocity of 8y, =

0.00155ﬁf0r HEO and a minimum TO average angular velocity of 6 bpo = 0.0000153%2. The dependence of
q q

numerical integrator computational performance on semi-major axis and

0 2 (18)
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Fig. 44 X & VX Convergence Results: Fig. 45 X & VX Convergence Results:
MTO, 600hr, 2body VTO, 600hr, 2body

G. 500 Orbit Propagation

With orbital period identified as the greatest contributing factor to computation cost, propagations with total
number of orbits held constant are run to analyze the effect of varying additional orbital elements. By propagating
each orbit for the same number of revolutions, the computational times are normalized within a smaller range of values
as seen in Table 11. Satellite groups are listed in order of increasing eccentricity to identify the trend of increasing
computational cost with increasing eccentricity.

ODE45 reveals a dependency only on eccentricity with the greatest run time being for the HEO case. ODE87 and
ODE 113 have similar results when considering only the EO cases. Again, that is a dependence on eccentricity. When
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including the data for TO cases, run times for these moderate eccentricity orbits are much greater. This suggests an
additional dependency on semi-major axis unlike ODE45. When considering the EO cases for both RKF45 and RKF89
there is again, a dependence on eccentricity with the largest propagation times being for the HEO case. When
propagating for TO cases, the run times drop to nearly zero. This suggests an inverse dependence on the size of the
orbit being propagated. Based on the TO computational cost and convergence data provided in Fig. 29, 30 the low run
times are attributed to an inability of RKF integrators accurately to handle large orbits at the tolerances used.

500 Orbit Propagation Computation Times (s)
Orbit ODEA45 | ODES87 | ODE113 | RKF45 | RKF89
GEO 52.29 8.37 3.77 59.5 12.98
LEO 56.15 8.44 35 72.7 21.81
MEO 56.24 8.15 3.68 67.6 18.27
HEO 97.73 46.11 18.71 203.5 34.91
VTO 61.91 63.37 62.45 0.01 0.01
MTO 63.68 53.12 62.59 0.01 0.01
Dependency e only e a e a e e

Table 11 500 Orbit Propagation: Computation Times & Keplerian Dependencies

V1. Conclusions

The computational experiments conducted in this study justify general recommendations for numerical integration
settings specifically applicable to low to medium fidelity orbit propagation models. These recommendations stem
from three primary conclusions which deal with tolerance settings, numerical integrators, and orbital elements.

The first conclusion to be made is the importance of tolerance selection. Across all solution sets we saw that
convergence of orbit propagation states typically insufficient at RelTol settings above e = 1e — 10. We also saw
that various orbital elements, particularly orbital period (t) and semi-major axis (a), require significantly tighter
RelTol settings. This crucial consideration applies to all integrators and requires deliberate attention. Many integrators
have built in default tolerances which will produce incorrect solutions if used. MATLAB’s ODE45 has a default
relative tolerance of §c.j = 1e — 3 for example. The one exception to this rule is the case of RKF45 which may be
able to produce more accurate results at higher tolerances when determining LEO propagations with low to medium
fidelity models. Best results are observed in this case at §caj = 1e — 8.

The second conclusion drawn is that the fundamental mathematics of various integrators can produce widely
different results for orbit propagations at similar tolerance settings. The factors considered for the experiments in this
report include order of the integrator method and the method itself. Each set of results verify the trend that higher
order solvers (ODE113, DOPRI87, RKF89) reduce computational time with their ability to take larger time steps
compared to lower order solvers (RKF45, DOPRI54, ODEA45). This becomes significant when determining high
computational costs solutions such as long LEO propagations, especially as model fidelity increases. When dealing
with very short, computationally inexpensive propagations the other hand, lower order solvers paired with tight
tolerances are viable alternatives. This conclusion is in agreement with results by Uruxtan [13] which compares RKF67
with RKF78 and Ritschel [11] which compares RK, RKF, DP, and ESDIRK variants. Additionally, the TO results
conclude that the RKF methods do not converge well for large scale orbits without very tight tolerances of at least
dcaj = 1le — 16. The opposite extreme is that ODE113 (ABM) is the most stable integrator with the best convergence
results for all cases. A third factor worth mentioning, although not considered in this analysis, is the relationship
between step size and integrator order as they influence long term convergence stability [14].

The final conclusion to be drawn is that an exclusive set of orbital elements impact computational cost and thus
the ability for computational solutions to converge with tightened tolerance. The three elements (z, e, a) and their
values for each of the six satellites considered for the above experiments are presented in Table 12.

Results show that the combined influence of the shape, size, and period of an orbit are responsible for the majority
of the computational cost of a solution. The most extreme example the 600-hour LEO propagation with a force model
that includes Lunar gravity and J- perturbations. Due to its short period and rapidly changing states, it is the most
difficult to determine a solution for. For these orbits a higher order solver that is stable enough to produce accurate
solutions such as DP87 or ODE113 should be used. To a lesser degree, eccentricity also plays a hand in increasing
computational cost due to the rapidly changing states near perigee. For more stable, and less computationally
expensive low eccentricity orbits, lower order solvers may be considered. This only applies for Earth Orbiting satellites
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since Transfer Orbit solutions are highly susceptible to the effects of local error compounding to produce large global
errors. Furthermore, the fact that there is little change in angular position of Transfer Orbit trajectories, integrators
tend to take very large steps which may lead to additional inaccuracies in solution determination.

Initial Orbit Elements
Orbit Satellite | T (min) | e (deg) | a (km)
GEO GOES-14 1436.1 0.00100297 42166
LEO ISS 92.7 0.00123243 6778
MEO NAVSTAR-68 718.0 0.00529487 26562
HEO MMS-4 4053.0 0.910034 84187
VTO VEX 410678 (~285days)  0.171225  1.27e08
MTO MSL 750601 (~521 days)  0.223352  1.90e08

Table 12 Summary of Relevant Initial Orbital Elements

The final recommendations for solver setups is to consider minimum relative tolerances of § = 1e — 10 for EO
cases while at least § = 1e — 12 is preferable. As orbital period and semi major axis increase this may be scaled down
as necessary. As tolerance is tightened these solvers may fail due to stiffness characteristics [15], at which point
different solvers would need to be considered [16]. Additionally, for solutions with long propagation times one should
consider higher order solvers which are capable of taking larger steps in time and thus fewer total steps. This tends to
reduce global error as discussed by Aristoff [10]. A summary of preliminary recommendations for numerical integrator
settings on low to medium fidelity models is listed in Table 13. These recommendations are minimum suggestions for
simple models and may not apply to complex missions or high-fidelity models.

Summary of Conclusions
Minimum ey (EO) le-10
Minimum e (TO) le-14
Small A6 Lower Order Integrators (ODE45 or RKF45)
Large A6 Higher Order Integrators (DP87 or ODE113)
ECI frame Lower or Higher Order Integrators
SCI frame Higher Order Integrators only
LEO (large 9) Higher Order Integrators
Large e ODE45
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4.178774B02B57226E+04
4.159301B40566221E+04
4.14659627755B8835E+04
4.13267246565960159E+04
4.1175181506596@19E+04
4.101155B81853382E+04
4.0835B5417056B03E+04
4.0648255595177521E+04
4.044B50BB75BEEBEBE+04
4.023601529623953E+04
4.001340B42070183E+04
3.977B800569141015E+04
3.553065543741363E+04

2.04R12BBB49659721E+04
1.9962612774B9026E+04
1.545B841071718300E+04
1.590@5166B1050630E+04
1.849555510420892E+04
1.795B43147562981E+04
1.739B4479B367016E+04
1.681634060450037E+04
1.6212BB8001752704E+04
1.55BB79015325698E+04
1.4544770526B4938E+04
1.4281458511457B4E+04
1.3550978538967161E+04
1.25@0@378552559205E+04
1.218419275778091E+04
1.145205057503920E+04
1.8704537218B9174E+04
5.543B05140234592E+03
5.16972707BRE9913E+03
B,3B37255176B5956E+03
7.5B6B5593613B7B96E+03
6.78081748345044B81E+03
5.064675119159324E+03
5.1413B071B8771181E+03
4,3111854B89118364E+03
3.47501540410424BE+03

1.2ZBB04408513577E+83
-2.72B3B23B5352BB0E+03
4.1483333596550018E+83
-5.35b6B83655310816E+03
6.205110694516026E+03
-6.6@1725793918355E+03
6.470441853511177E+83
-5.B@4586685739816E+03
4.658376671367556E+83
-3.185424487306566E+03
1.313097876B33400E+03
5.433543264200270E+02
-2.33077642B076773E+03
3.B34036753133360E+03
-4.996629040832176E+03
5.677B35641B7947BE+03
-5.91030B333162BB6E+03
5.677205201366152E+83
-5.186225711565B856E+03
4.263850214425825E+03
-3.2B224035106446BE+03
2.2122224210B4B00E+03
-1.1B6B47565915642E+083
1.5923285039070273E+02
6.737945453165955E+02
-1.4B4467210413474E+03

-3.943301564196011E+83
-2.31B5255951638129E+03
-1.59315574370B334E+03
-B.6770BET4162B230E+02
-1.422650525B52266E+02
5.B235764029559624E+02
1.30632452021133BE+03
2.B2BBB3126123141E+03
2.7514597323760B4E+83
3.472B56446078324E+03
4.19340B049235276E+03
4.5813219681607753E+03
5.631902647466284E+03
6.3459005031655473E+03
7.86437362061E010E+03
7.778025045715635E+03
B.4B93B2227022679E+03
5.158131005334826E+03
5.90403740B8212667E+03
1.86B6B53422559991E+04
1.130627852558333E+04
1.20@8233315853255E+04
1.26947167B283234E+04
1.33836B276902571E+04
1.4P6BB9676B59752E+04
1.4758359321713394E+04

1.623981855256B00E+04
1.655B736B0250374E+04
1.685675374825021E+04
1.713351023642267E+04
1.73BBB5672713B16E+04
1.7621B5040556015E+04
1.7833010010E83641E+04
1.B02178097730307E+04
1.B1BE@52054795973E+04
1.8331714593629367E+04
1.845256065485601E+04
1.B855047795745067E+04
1.B62532776051655E+04
1.B6765597559305967E+04
1.87853554B8556354E+04
1.87104B850576336E+04
1.869224537555412E+04
1.BE5B7B558357352E+04
1.B58551474772638E+04
1.B849812580217543E+04
1.B3B742152363B843E+04
1.825405980B8383B862E+04
1.80598415809354317E+04
1.792864855503305E+04
1.772109382942193E+04
1.749955530557227E+04

Appendix B: Ephemeris Data

-5.88756137B8230B870E+03
5.314021852617424E+83
—-4.96B452632335481E+03
4.0622263481390B9E+83
-2.7357492171515903E+03
1.879533707421177E+83
6.64638555927824BE+02
-2.36B1917428059247E+03
3.7B5336167471402E+03
-4.B10031930612537E+03
5.2B55921143B6B531E+83
-5.196614342630385E+03
4.518096630581359E+83
—-3.3505B84832530470E+03
1.78240B373049207E+03
-5.223141793389375E+01
-1.724615508B574395E+083
3.27832450045B696E+03
-4.457453421565165E+083
5.1452062E00B9033E+03
-5.31125145B84859531E+83
4.BBB326797011404E+03
-3.9718654235599650E+03
2.593515017469547E+@3
-5.765059073659234BE+02
—-7.920186633764153E+02

-3.B76789755410662E+00
.74B43615B196570E+00
-5.23096616542566BE+00
.3B7472454423563E+00
-5.250115534360798E+00
4.908445373001BBBE+00
—-4.4@6583010745754E+00
. 7H5B105809777E5E+00
-3.135265683411B856E+00
.3B7331934576316E+00
-1.56622660869663759E+00
.444342375472271E-81
.9B5561302033E0BE-01
-1.5311259667954725E+00
L733076221073407E+00
-3.95b6PB0Q92E0B094E+00
.BEB54B1E5905654E+00
-5.956925598853123E+00
.4BB411481352305E+00
-6.631458B27621091E+00
.2670B2PEB593EA5E+00
-5.41567658512746BE+00
.BEPES55976455812E+00
-2.341642472358671E+00
.B39B867489552943E-01
. T2B392271448745E+00
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LEO Ephemeris

1.595956454045018BE+00
-1.132393518B00B6BE+00
-4.0B481076971453TE+00
-6.2607502797002EBEE+00
-B.040B8747B7465459BE+00
-5.271645696146159E+00
-8.955446315465132E+09
-1.063681694200769E+01
-1.1359278472007631E+81
-1.2631759254671056E+81
-1.42BB80624851818BE+01
-1.6258459353504763E+01
-1.B62123787160116E+81
-2.131528451247946E+01
-2.535346359188541E+01
-2.B@155342B338541E+01
-3.03776470B542669E+01
-3.245564469364815E+01
-3.384923276503324E+01
-3.500745222016329E+01
-3.554p473BB052322E+01
-3.6@1393357758735E+01
-3.590343718581351E+01
-3.6@B05B966153730E+01
-3.457588825178517E+01
-3.49B2226166E0B26E+01

2.2455B5730258557E-01
1.7172528124B9627E-01
1.1BB458971654311E-01
6.5596232187528822E-02
1.307523226732935E-02
-3.9750854255B84283E-02
-5.252876755565861E-02
-1.452045309516520E-01
-1.978761606710072E-81
-2.5084675651094427E-81
-3.025988476591700E-01

}3.554596760379907E-01

-4.07B8443B681192039E-01
-4.601101631127577E-01
-5.1224730331459056E-81
-5.642567536134656E-01
-6.1605931485665174E-81
-6.677381282856335E-01
-7.191742565586451E-81
-7.783B70036BE6@9TE-01
-6.213447115810126E-81
-B.72061598533055B89E-01
-9.225108252385541E-01
-8.7270706431258B5E-01
-1.022632B825570009E+00
-1.872291353758565E+00

GEO Ephemeris

4.269754B78646445E+83
5.043162018318596E+83
5.8183759117747BRE+03
6.5783255364E80119E+83
7.3216E0446707B594E+03
B.B6327655044B8554E+83
B.7935B855B5520369E+03
5.512795811136562E+03
1.021BB3333622BB3E+04
1.8911333208711254E+04
1.15858525135@3857E+04
1.225274323684530E+04
1.250017245216836E+04
1.3531134520384592E+04
1.414488598653455E+04
1.474040159562001E+04
1.531711146786130E+04
1.5B874135610947B6E+04
1.64106B639117574E+04
1.659259B86521146B84E+04
1.741525160840637E+04
1.7BB0B7273180565E+04
1.833710631216293E+04
1.B76040554B7E011E+04
1.915927684881175E+04
1.95332872512283BE+04

-1.782376704004259E+00
-1.BBB435322035183E+00
-1.59921B89040367365E+00
-2.0934902030E6505E+00
-2.192176593142109E+00
-2.2BBR96634B45B812E+00
-2.3B1115785738745E+00
-2.47113073259815901E+08
-2.55BR26582817275E+00
-2.6417246B6535292E+00
-2.722122644040519E+00
-2.795137322187117E+00
-2.B72676B25098534E+00
-2.942652535617566E+00
-3.0BB956784210BTBE+00
-3.871587154646561E+00
-3.130206384395009E+00
-3.184975432473220E+00
-3.235734104793243E+00
-3.2B23059606598471BE+00
-3.324918377246460E+00
-3.363232395842103E+00
-3.357300273663465E+00
-3.427084115315542E+00
-3.452563120770427E+00
-3.473715071255469E+00

MEO Ephemeris

25

6.372B26698311722E+00
-6.81B782640021B95E+00
5.159524450034640E+00
-3.B33626732033B810E+00
2.12436233527075%9E+08
-1.34@05273931359556E-01
-1.92475755678B652E+00
3.B9938135745055BE+00
-5.5B02353B5966045E+00
6.BB1230617932745E+00
—-7.4B02344377168042E+00
7.5152177434408275E+00
-6.96404B502769697E+00
5.B72725211419854E+00
-4.364773454BE60B5E+00
2.62B059585213541E+00
—-7.92B613213648402E-01
-8.274497285239540E-01
2.3BBO555590187383E+00
-3.552157515417201E+0@
4.3762926B2596B02E+00
—-4.B2467502BB23272E+00
5.097547330585654E+00
-5.877331B884741346E+00
4.B66091632B857900E+00
—-4.516347950585427E+00

3.B65165B67973303E+00
3.06B549770705613E+00
3.871021672900843E+00
3.872577787571593E+00
3.873228150145543E+00
3.8728701004214B7E+00
3.071B01628B5979BE+D0
3.8697333397676BBE+00
3.066747778534666E+00
3.B62B7R920456B63E+00
3.B5EQEB2BO13BB65E+00
3.852400477154466E+00
3.845B059152200777E+00
3.938321432158777E+00
3.829933661104203E+00
3.82064571BEE63TBE+DO
3.810462442103101E+00
2.8594016510087 26E+00
2.987454559796675E+00
2.97462BB55953383E+00
2.96R52597635259371E+00
2.846365409335050E+00
2.8930942253665164E+00
2.514641097469401E+00
2.B9747671102047BE+00
2.B87944853463205BE+00

1.401521629151137E+00
1.3155B170@E46523E+00
1.22BB3162B634502E+00
1.140165423901217E+00
1.858135655843423E+00
5.5BB7351710826283E-01
B.6651B6B96366943E-01
7.732059756435346E-01
6.7987557260854413E-01
5.B842330067179045E-01
4.BBT90675534B7B1E-01
3.892B527BB0R4B343E-01
2.965347372252205E-01
1.55931180@8737836E-01
1.831623544336664E-01
6.341715557850933E-03
-5.040795647093615E-82
-1.B6570228470536BE-01
-2.B321073BB426315E-01
-3.790084185667340E-01
-4.742252128166786E-81
-5.6B7335096500429E-01
-6.624118716206B59E-81
—-7.551348452337444E-01
-B.467942094693227E-81
-8.372701672601E00E-01

-1.73B3225943468615E+00
-2.2B2717591541034E-01
2.166745450447705E+00
-3.BB54B0293857576E+00
5.16715@8511717062E+08
-5.B060595166686425E+00
5.97789544344765BE+00
-5.392615010836091E+00
4.2315B826787REST4E+RO
-2.5B7114785208220E+00
6.66@284B53246635E-01
1.3260B73037791B86E+00
-3.1501598546014057E+00
4.661418244417512E+00
-5.672436126657B55E+00
6.0241657575948373E+00
-5.694962657484495E+00
4.7479753591421507E+00
-3.2082117336559213E+00
1.509958645845772E+08
4.426032699595737E-01
—-2.358543777140542E+00
4.8065945532716B5BE+00
-5.2506514956B7354E+00
5.9162351334403B4E+00
-5.94B08579B65611BE+00

1.B05428524179765E-03
1.791671BB7550077E-03
1.734B61365621663E-03
1.64B770677946225E-03
1.5295B87253612576E-03
1.404446337153115E-83
1.306324022956684E-03
1.216024650407891E-03
1.1990082891148444E-03
1.154158711655243E-03
1.234B54737710917E-03
1.30900637B17BB35E-03
1.354177743158444E-03
1.471287436154170E-03
1.535612359145445E-03
1.6@5758631475930E-03
1.63E0609B8545B85B0E-03
1.6@9B2370B53B974E-03
1.526335984634917E-03
1.3B8704173150964E-03
1.2150B5434606264E-03
1.8BR373230662BT0E-03
1.855132414345378BE-03
1.@B9355265557577E-03
1.846657719635822E-03
1.1B54B50059535945E-03

.165933430252275E+00
.141214BB3281617E+00
.112406008774635E+00
.B79555455585021E+00
.B427350B333205BE+00
.B@19BB315951357E+00
.8573669B5874405E+00
.9RBS4B165018461E+00
.B56773320751B814E+00
.BOREST46TRS2EABE+D0
.741396861501225E+00
.67B325B749579B7E+00
L611773523710231E+00
.541814935441683E+00
.46B54B8553459367E+00
. 3028736415447 2BE+00
.312485210262735E+00
.228932558B23162E+00
.144510861795335E+00
.B36341716509132E+00
.965564142178956E+00
.B723039B5362466E+00
. 7766B3053858326E+00
.67BB2775721B4BBE+00
1.578B43456523770E+00
1.476B350873253016E+00

3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1



5.736366022845366E+04
2.6121506455B87634E+04
6.B96365654382645E+04
3.450420926614475E+04
3.70022122830161BE+04
7.227493635507903E+04
-1.5126836125B84620E+04
4.676932BB7409420E+04
7.314246764830519E+04
—-3.7599322532840724E+83
5.5422662727BE151E+04
7.070640B335730B86E+04
5.6@8112B982521155E+83
6.2743B0BB27200BBE+04
6.37B9252261395960E+04
2.22616B773417521E+04
6.B561B79B6733265E+04
4.BB2626236265487E+04
3.376690424578599E+04
7.26BBBHE3056567TE+04
-6.96BBETE63012642E+03
4.410340337104B07E+04
7.46505071611524BE+04
-5.134576003496717E+83
5.3321710002736B9E+04
7.372733556221463E+04

5.3B496642B5BB51BE+07
5.1236233538B2395E+07
4.B60791443416640E+07
4,396530366273962E+07
4.330930B15055571E+07
4.0648514459358177E+07
3.7959772659256546E+87
3.5267BB751B61320E+07
3.256567270202240E+07
2.8B53047241825938E+07
2.713353274977240E+07
2.440525145620481E+87
2.16695246375B8596E+07
1.B92837135940802E+07
1.618140738421891E+07
1.3429B84307865602E+07
1.067448730304221E+07
7.9161379653255995E+06
5.1555B5420353094E+06
2.303628225265332E+06
-3.6B9670072779814E+B5
-3.131426071594661E+06
-5.B93030539711476E+06
-8.65258759075367BE+R6
-1.1410552B357471BE+R7
-1.416495489053359E+87

5.63981048725561BE+87
5.406970726002696E+07
5.1723436B81936925E+087
4.835958126813414E+07
4.69BBR3BT5647T4BE+DT
4.45B8431818133900E+07
4.217353550567936E+07
3.974843405677543E+07
3.7309744B29630T4E+07
3.4B5B2267B317241E+07
3.23946471330233BE+07
2.8919785643747BBE+07
2.7434434092258961E+07
2.493940070E03127E+07
2.24355021536B8580E+07
1.592357212257454E+87
1.748445747327391E+87
1.4B7901933545225E+087
1.234813340520212E+07
5.B812650213036824E+06
7.273555412442015E+06
4.7317700463555BRE+06
2.1BB15@B15981151E+06
-3.5630562837BB765E+05
-2.9008642480117455E+06
-5.443862467484711E+06

-5.
-1.
-1.
-1.
-1.
-1.
-3.
-1.
-1.
7.
-1.
-9.
-1.
-1.
-6.
-1.
-1.
-3.
-1.
-1.

-1.
-1.
-6.
-1.
-1.

el el el el el e e e e el el el el e el e el e el el
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44BTB11B6552533E+04
313B5062004B0B7E+D5
3BB6@925953174BE+05
4BB574362420835E+04
413698702545801E+85
2B11B347637633BE+05
454838722577406E+04
4712685925857623E+85
131476868503570E+05
583973188510917E+04
4502726487 14871E+B5
365BB96EA092TAEE+D
B64156B6E31B0E2ZE+05
473832507B821230E+85
B749B7158579545E+04
247239941741B77E+05
419528137310570E+B5
547453028465596E+04
3609706254514185E+05
320357306036127E+05
.400011444742745E+83
445708627057 245E+85
2B@155733096704E+05
12B474466796B24E+04
4B1645532401726E+85
B25111424137B51E+05

.26B3B22B7235357E+08
.279095588520556E+08
.2B949141646B8753E+08
. 2994903735268400E+08
.309059230B8144025E+08
.31B259673B094564E+08
.327103063211564E+08
.33551P6E0ER54E3E+0E
.3435150852464523E+08
.351127744471363E+08
.35B336452999635E+08
.3651450200554659E+08
.371553443524007E+08
.377561BE3316090E+08
.3B3170664841524E+08
.3BB3BO2EBO520576E+DE
.3531913090RBB557E+RE
.35760481564527BE+0E
.4016215601205B0E+08
.405242765852505E+08
.40B469747754200E+08
.411383978510379E+08
.413747202008105E+08
.415881877255197E+08
-41746751645BE17E+0E
.41B74B5E0259B80E6E+0E

222099771239BB3E+08
. 228533543446511E+08
.234563114252545E+08
2401B4292836412E+08
. 2453825935002 19BE+08
.250184943784074E+08
.2545562704655955E+08
.25B502915647622E+08
262020930785600E+RE
26518641973646TE+BE
2677555407030 24E+08
269964508193513E+08
2717255553326B4E+08
27304713622B2BBE+0E
273591352B660450E+08
274325236B46B92E+08
274278794484 T6BE+BE
273770B@759410593E+08
272797959697 501E+08
27135701151635BE+08
269444810330625E+08
26T@5B2BB241755E+08
264194470B2053TE+RE
26@B50479595B29E+08
257@23537155261E+88
252710972157100E+08

3.5777812027043591E+03
-2.14B3064826280855E+04
-1.161844051895507E+04

5.950720714154456E+03
-2.855454624525135E+04
-B.359B0632BB98032E+03
-1.13RPE344RBB537E00E+R4
-1.905831363213538E+04
—-4.946363248657245E+83
-1.77@8159182850831E+04
-1.708833455593059E+04
-1.40E006B759206005E+R3
-1.9B9870B23037283E+04
-1.47132B174828224E+04

2.0224659602002571E+03
-2.831107794578054E+04
-1.203372565624663E+04

5.0836113419536B81E+03
-1.969545545115564E+04
-5.1058508353730567E+83
-B.276795B64165537E+02
-1.B44B00746187631E+04
-5.97806605617B676E+R3
-1.4525440759104580E+04
-1.675222690435900E+04
-2.736B53126673946E+83

.BBE3@5796155037E-01
.B507400RE6E65550E-01
.427584408547046E-01
.50RE1E094636E44E+00
.402837584182504E-01
.162659B815263655E-01
.B12653325648400E-01
.6B533B6170B36BTE-B1
.B4PEREO3I40BO64TE-B2
.1415583@85557347E-01
.B5460B437042826E-01
.B@130B223693115E-01
.817315411544476E-81
.91667854556B547E-01
.4468933162085724E-01
.4537127759193450E-01
.B91654593410B67E-01
L44224B29256B7B9E+00
.79B678163341715E-01
.7148B87376475051E-81
.B3927B55BBT4583E+00
.BB57166646967E0E-01
.526124B27737670E-02
.BB55958745625235E-01
. 2BR643522135257E-01
.715253524125725E-81

HEO Ephemeris

5.4536@87146699551E+87
5.45119457850145%E+07
5.52711252737@161E+87
3.3613357277769B9E+07
5.5935185B83766550E+27
5.624B002361E8Q461E+07
5.65305460039220BE+07
5.6B1508385547214E+87
5.787316103059050E+87
5.731441068322179E+87
5.753B75397B76532E+87
5.774620003335505E+07
5.7936765B25071B6E+A7
5.B811047613245559E+87
5.B2673633B666561E+A7
5.B8487467402842BTE+RT
5.B853083543B44B37E+07
5.B637521596021536E+87
5.B7275BB48094145E+87
5.BE@11033BB6590TE+AT
5.BB5B14176530434E+07
5.BEOBTB522360810E+07
5.B892313061544572E+87
5.B93126323287374E+07
5.B923282015B8700BE+AT
5.BB8525541245129E+87

-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.

B15596B14047442TE+01
B33537173113337E+01
B504B6556299058E+01
BE64675903250459E+01
BE16E@511B7551BE+01
B55550055134766E+01
185315401B77623E+01
121743239320453E+01
133225614669565E+81
14375B126277413E+01
153335000300 2658E+01
16196B504285253E+01
16964B5255294B0E+01
17638215587 26BTE+01
182174214117406E+81
1B7025579528572E+81
19@955B65277577E+01
193555131512525E+81
196@47B15368544E+01
197230671031736E+01
197517117149319E+81
196917185941666BE+01
195492B657B87046E+81
1931525276440BBE+01
188555151816154E+81
185524554558264E+81

MTO Ephemeris

5.275721656BB6709E+07
5.3082549783441531E+87
5.32763371736407BE+R7
5.35@555650505426E+07
5.3724979B3B4BTEBTE+RT
5.392243326108490E+07
5.418174501363350E+87
5.42627455153241BE+87
5.448526744798545E+87
5.452514578530622E+87
5.463421790730903E+07
5.472032367543B6TE+R7
5.47B738552589276E+87
5.4B3500B57549673E+87
5.4B632B073B9950BE+A7
5.4B7197284106313E+087
5.4B6093B7569B676E+A7
5.4B300355413252BE+87
5.47791235B266B23E+07
5.470BRE6T54ETEE1E+RT
5.461673258424544E+07
5.4504952426274B1E+07
5.437272164484794E+07
5.4215759981147813E+a7
5.48461105908736B55E+87
5.3B5154353570618BE+07

-2.6B42592085764671E+81
-2.7@5379431079633E+01
-2.725669537416563E+01
-2.745157750045522E+081
-2.763831714991220E+01
-2.7B8167BB716189B5E+01
-2.79B6B624362595995E+01
-2.B14840457725240E+01
-2.B30127B438295991E+01
-2.844534421049567E+01
-2.B5B0458335774BBE+01
-2.B70647361931725E+01
-2.BB2323517018515E+01
-2.B93060235141405E+01
-2.9@2B8405533662BBE+01
-2.911648921065736E+01
-2.91546B593605173BE+01
-2.92p2B3B15592002E+01
-2.9320766B5538605E+01
-2.93pB30185176513E+01
-2.540526520328B30E+01
-2.943147834552405E+01
-2.944675B53322527E+01
—-2.9450520085747767E+01
—-2.944377324957837E+01
-2.5425127230059175E+01

VTO Ephemeris
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2.112445B06850424E+00
-B.835616502105@856E-01
5.500304255455503E-01
3.155787572257679E+00
-5.8525B87084543021E-01
7.9@83343750832549E-01
-3.B524BE06B105104E+00
-2.42B3BB240417577E-01
1.0640017626B6582E+00
-2.8593177B2458725BE+00
-2.1081459558220347E-83
1.3B0822127850B32E+00
-1.3571398@87151427E+00
.235747367B96B22E-01
.B175053616109059E+00
-5.613653358663337E-01
.453739534575745E-01
.514795585135231E+00
-6.32445045803638B5E-01
.761523762013204E-01
-5.96B6508733263E84BE+00
-3.556111381801356E-01
.2873212208117595E-81
-2.655850265091405E+00
-1.877210295535201E-01
. 2215B7285590352E+00

[ = - ]

o

-

1.272290165507758E+81
1.226199526558702E+01
1.188251645346221E+81
1.13431B066629304E+01
1.0BB342208197128E+01
1.942300554453610E+81
5.961B84407211361E+00
5.50B0EET45339017E+00
5.@3772447900906BE+00
B.574528553296305E+00
B.111B65038440598E+00
7.64B706326B00337E+00
7.1B563E03B650064E+00
6.722B50167064713E+00
6.2685353536B6230E+00
5.79BBET455624240E+00
5.33B095615743105E+00
4.B878B363697210354E+00
4.419B69250065306E+00
3.062B02564582470E+00
3.507348153524227E+00
3.0536B43456BR747E+00
2.6@21354B5797176E+00
2.152575728570004E+00
1.7@853195472518590E+00
1.268529743054753E+00

7.67B877B274065761E+00
7.213395406277923E+00
6.743135516395827E+00
6.26B052067444511E+00
5.7BB199520131315E+00
5.303632312354554E+08
4.814487B93321462E+00
4.3205B32BB33534TE+00
3.B2221882558755TE+00
3.319376105307115E+00
2.B1211B0178559313E+00
2.30851324022820ZE+00
1.784629319835740E+00
1.26453B824622565E+00
7.403173846510001E-01
2.12R042650B006119E-01
-3.202027185744B79E-01
-B.563321572415010E-081
-1.3962555818459617E+00
-1.935879654473630E+00
-2.487104535577983E+00
-3.837825552400737E+00
-3.591593617615154BE+00
-4.145320084018495E+00
-4.7@85985B4614010E1E+00
-5.273425035067571E+00

B Ll s R D R 0O R R R D S O R R

154521545293481E-01
477348150284217E-02
B37B58747584B10E-01
614833663456661E-02
BE370R64E575695E-02
5847283BE864520BE-01
153266456B18677E-01
B6575271635640BE-02
125@8378B@613255E-01
31P658263B81195E-01
256160424613417E-01
2@39646B0254BB3E-01
6251356@0477767BE-02
A4BBT422720877591E-01
1455609267980 EEE-01
52235B87B@4533BBE-03
661344705033552E-01
5536746B5035055E-01
B64554622674343E-02
BB96541246595995E-01
9B2BB1116313541E+08
7525676265992B5E-02
535761265125B65E-01
4208593027356714E-01
BE53410B353263BE-01
B252B9354661174E-01

4.446791073318775E+00
4.253891013308101E+00
4.068347126136356E+00
3.B66230840018227E+00
3.671624273110140E+00
3.47661535813543TE+00
3.281255114176741E+00
3.0B575606510EBTTE+RD
2.B90091269770355E+00
2.6594393650043525E+00
2.49B755753003871E+00
2.303265030513576E+00
2.1PB02355317E006E+R0
1.513111828281741E+00
1.718615365803154E+00
1.524624346B693B8TE+00
1.331222316554012E+00
1.1384917E6669054E+00
5.4651333368176670E-01
7.5536551815597795E-01
5.651248122588244E-01
3.758655305457420E-01
1.B7765@651268254E-01
6.B2B22585550664BE-04
-1.B52PB3624813690E-01
-3.69B8432154589614E-01

3.208535137842B5B4E+00
3.004516856570143E+00
2.B016R66705965544E+00
2.596649178651590BE+00
2.3B96663526456B83E+00
2.1BR6B315255047RE+0R
1.969724567011332E+00
1.756B15852819379E+00
1.5415848591375573E+00
1.32525573B0558200E+00
1.1066602230594544E+08
B.BB62252679831671E-01
6.639817200161285E-01
4.3996228352173593E-01
2.1415B8E04646012BE-01
-1.32742096@565357E-02
-2.424203287235B873E-01
—-4.732015B33335B830E-01
—-7.855784525320066E-01
-5.395185550456475E-01
-1.174954764794405E+00
-1.411863553513820E+00
-1.6501592261194593E+00
-1.BEOBBOR579E1603E+00
-2.1309022017859425E+00
-2.373177738BB51362E+00



Appendix C: MATLAB Main Code

%This program solves n-body dynamics with optional J2 perturbation
%dynamics depend on rates equation applied in integrator declaration

clear all; close all; clc;
%...Constants

global muE muL muS R

muE =3.986004415e5; %Earth
muL  =4902.799; %Moon
muS =1.32712428ell; %Sun

R =6378; %Earth Radius

%R =695700; %Sun Radius

G =6.67259¢e-20;  %Gravitational Constant

hours = 3600; %conversion variable between seconds & hours
days =hours*24; %conversion variable between seconds & days

%...Retrieve Ephemeris Data

eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt");
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt);
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_ MEO.txt");
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_ HEO.txt");
eph_MTO = importdata('/Users/angelrocha/Desktop/ephemeris_ MTO.txt");
eph_VTO = importdata('/Users/angelrocha/Desktop/ephemeris_ VTO.txt);

%
%...Input Data: propagation time & initial states beginning 01/01/2018
%***User input changes occur here

n =7, %number of tolerances to test

span = 5; %days to propagate

t0 = 0; tf = span*days; %initial and final times

fO =eph_HEO(1,)’; %retrieve initial ephemeris as initial states

ff = eph_HEO(span+1,:); %retrieve final ephemeris as final states
%

%...Initialize variables to capture propagation data

atol = zeros(n,1);  %list of absolute tolerances

rtol = zeros(n,1);  %list of relative tolerances

y =zeros(n,6,6); %array of final states for each propagation

x =zeros(n,1);  %Yextra variable used to define relative tolerance
time = zeros(n,6);  %list of computational times for each propagation
ns =zeros(n,6);  %list of numbers of steps (correct calculations)

nf =zeros(n,6);  %list of numbers of failed steps

%...Loop through Orbit Propagations

fori=1in
x(i) = (7+i)
z = x(i)+1;

rtol(i) = 1*10™-(x(i));

rtol9(i) = 1*107-(x(i)+2);

atol(i) = 1*10"-(2);

dum = 1e-10;

opts = odeset('Reltol’, rtol(i), '‘AbsTol', atol(i));

tic
[t1,f1, stats1] = rkf45(@nrates, [tO tf], fO, rtol(i));
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time(i,1) = toc; tic

q=1;

[t2,f2, stats2] = ode45(@nrates, [t0 tf], f0, opts);
time(i,2) = toc; tic

q=2;

[t3,13, stats3] = DOPRI54(@nrates, [tO tf], O, atol(i), rtol(i));
time(i,3) = toc; tic

q=3;

[t4,f4, stats4] = rkf89(@nrates, [tO tf], fO, rtol9(i));
time(i,4) = toc; tic

g=4,

[t5,f5, stats5] = ode87(@nrates, [t0 tf], f0, opts);
time(i,5) = toc; tic

g=5;

[t6,f6, stats6] = odell3(@nrates, [tO tf], O, opts);
time(i,6) = toc;

4=6;

y(i,;,1) = fl(end,)); ns(i,1) = stats1(1); nf(i,1) = stats1(2);

y(i,;,2) = f2(end,)); ns(i,2) = stats2(1); nf(i,2) = stats2(2);

y(i,;,3) = f3(end,?); ns(i,3) = stats3(1); nf(i,3) = stats3(2);

y(i,:,4) = f4(end,)); ns(i,4) = stats4(1); nf(i,4) = stats4(2);

y(i,:,5) = f5(end,:); ns(i,5) = stats5(1); nf(i,5) = stats5(2);

y(i,:,6) = f6(end,:); ns(i,6) = stats6(1); nf(i,6) = stats6(2);
end

%...Calculate log scale difference between propagated states and

%...ephemeris states

diff = zeros(n,6,6);

StateError = ff-y;

diff = log10(abs(StateError)); %use when comparing to ephemeris solution
%diff = log10(abs(y-y(end,:,:)));%use when comparing to highest order solution

%...Calculate magnitude of vectorized error between propagated solution and
%...ephemeris states
Rerror = zeros(6,n);
VError = zeros(6,n);
forc=1:n
for r = 1:6 %dont forget to update
Rerror(r,c) = norm(StateError(c,1:3,r));
VError(r,c) = norm(StateError(c,4:6,r));
end
end
%rnewnew
figure
plot(x,Rerror(1,:),"-r"); hold on;
plot(x,Rerror(2,:),"-9";
plot(x,Rerror(3,:),-b";
plot(x,Rerror(4,:),-c");
plot(x,Rerror(5,:),-m");
plot(x,Rerror(6,:),-k’); hold off;
title('Absolute Position Error)
xlabel('tolerance e-n")
ylabel('dr’)
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113,...
‘Location’,'northwest’)
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xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

figure

plot(x,VError(1,:),-r"); hold on;

plot(x,VError(2,:),"-9");

plot(x,VError(3,:),"-b";

plot(x,VError(4,:),-c;

plot(x,VError(5,:),-m");

plot(x,VError(6,:),-k"); hold off;

title('‘Absolute Velocity Error’)

xlabel('tolerance e-n")

ylabel('dv")

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...
'Location’,'northwest')

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%9%9%0%%%% %% %% %% %% % %% %% %% %% %% %% %%

%...Calculate initial & final orbital elements from state vectors
%...simplification: only earth gravitational parameter considered
coe0 = zeros(1,7);

[coe0] = coe_from_sv(f0(1:3),f0(4:6),muS);

period = 2*pi*coe0(7).~1.5/sqrt(muS)/60;

%
%% Print Results

%...Orbital Element Results

fprintf(Initial Orbital Elements\n’)

fprintf( Angular momentum (km”2/s) = %g\n’, coe0(1))

fprintf('Eccentricity = %0\n', coe0(2))
fprintf('Right ascension (deg) = %g\n', coe0(3))
fprintf('Inclination (deg) = %g\n', coe0(4))
fprintf(Argument of perigee (deg) = %g\n’, coe0(5))
fprintf("True anomaly (deg) = %g\n', coe0(6))
fprintf('Semimajor axis (km): = %g\n', coe0(7))
fprintf('Orbital Period (min): = %g\n', period)

%

%% Plot Results

%...2D X & VX Resuts

figure

subplot(2,2,1)

plot(x,y(;,1,1),-r"); hold on;

plOt(X,y(:,l,Z),'-g');

plot(x,y(:,1,3),-b";

plot(x,y(:,1,4),-c");

plot(x,y(:,1,5),-m");

plot(x,y(:,1,6),-k"); hold off;

title("X Convergence Results’)

xlabel('tolerance e-n")

ylabel("X (km)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

29



subplot(2,2,2)

plot(x,y(:,4,1),-r"); hold on;

pIOt(le(:1412)!"gl);

plot(x,y(:,4,3),-b");

plot(x,y(:,4,4),-c");

plot(x,y(:,4,5),-m");

plot(x,y(:,4,6),-k"); hold off;

title("VX Convergence Results')

xlabel('tolerance e-n")

ylabel("VX (km/s)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)

plot(x,diff(:,1,1),-r"); hold on;

plot(x,diff(:,1,2),-9");

plot(x,diff(:,1,3),-b");

plot(x,diff(:,1,4),-c");

plot(x,diff(:,1,5),"-m");

plot(x,diff(:,1,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113,...
'Location','southwest")

title("X Convergence Results (log)’)

xlabel(‘tolerance e-n’)

ylabel('log(diff))

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)

plot(x,diff(;,4,1),-r"); hold on;

plot(x,diff(:,4,2),-g";

plot(x,diff(:,4,3),-b";

plot(x,diff(:,4,4),'-c";

plot(x,diff(:,4,5),"m";

plot(x,diff(:,4,6),-k"); hold off;

title("VX Convergence Results (log)")

xlabel('tolerance e-n")

ylabel('log(diff)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...2D Y & VY Results

figure

subplot(2,2,1)

plot(x,y(:,2,1),-r"); hold on;

plot(x,y(:,2,2),-9);

plot(x,y(:,2,3),-b";

plot(x,y(:,2,4),-c";

plot(x,y(;,2,5),-m";

plot(x,y(:,2,6),-k"); hold off;

title("Y Convergence Results')

xlabel('tolerance e-n")

ylabel("Y (km)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution
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subplot(2,2,2)

plot(x,y(:,5,1),-r"); hold on;

pIOt(X,y(:,S,Z),'-g');

plot(x,y(:,5,3),-b");

plot(x,y(:,5,4),-c");

plot(x,y(:,5,5),-m");

plot(x,y(:,5,6),-k"); hold off;

title("'V'Y Convergence Results')

xlabel('tolerance e-n")

ylabel("VY (km/s)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)

plot(x,diff(:,2,1),-r"); hold on;

plot(x,diff(:,2,2),-0");

plot(x,diff(:,2,3),-b");

plot(x,diff(;,2,4),-c");

plot(x,diff(:,2,5),-m");

plot(x,diff(:,2,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113,...
'Location','southwest")

title("Y Convergence Results (log)’)

xlabel(‘tolerance e-n’)

ylabel('log(diff))

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)

plot(x,diff(;,5,1),-r"); hold on;

plot(x,diff(:,5,2),-g";

plot(x,diff(:,5,3),-b";

plot(x,diff(:,5,4),'-c";

plot(x,diff(:,5,5),m";

plot(x,diff(:,5,6),-k"); hold off;

title("'VY Convergence Results (log)")

xlabel('tolerance e-n")

ylabel('log(diff)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...2D Z & VZ Results

figure

subplot(2,2,1)

plot(x,y(:,3,1),-r"); hold on;

plot(x,y(:,3,2),-9);

plot(x,y(:,3,3),-b");

plot(x,y(:,3,4),-c";

plot(x,y(;,3,5),-m";

plot(x,y(:,3,6),-k"); hold off;

title('Z Convergence Results')

xlabel('tolerance e-n")

ylabel('Z (km)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution
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subplot(2,2,2)

plot(x,y(:,6,1),-r"); hold on;

pIOt(le(:1612)!"gl);

plot(x,y(:,6,3),-b");

plot(x,y(:,6,4),-c";

plot(x,y(:,6,5),-m");

plot(x,y(:,6,6),-k"); hold off;

title("VZ Convergence Results")

xlabel('tolerance e-n")

ylabel('VZ (km/s)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)

plot(x,diff(:,3,1),-r"); hold on;

plot(x,diff(:,3,2),-0");

plot(x,diff(:,3,3),-b");

plot(x,diff(:,3,4),-c");

plot(x,diff(:,3,5),"-m");

plot(x,diff(:,3,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113,...
'Location','southwest")

title('Z Convergence Results (log)")

xlabel(‘tolerance e-n’)

ylabel('log(diff))

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)

plot(x,diff(;,6,1),-r"); hold on;

plot(x,diff(:,6,2),-g";

plot(x,diff(:,6,3),-b";

plot(x,diff(:,6,4),'-c";

plot(x,diff(:,6,5),-m";

plot(x,diff(:,6,6),-k"); hold off;

title("VZ Convergence Results (log)")

xlabel('tolerance e-n")

ylabel('log(diff)")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...Plot Run Times, Total Steps, Number of Errors

figure

subplot(1,3,1)

plot(x,time(:,1),-r"); hold on;

plot(x,time(:,2),-g");

plot(x,time(:,3),-b");

plot(x,time(:,4),-c");

plot(x,time(:,5),-m";

plot(x,time(:,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89',' DOPRI87','ODE113',...
'Location’,'northwest")

title('Run Times")

xlabel('tolerance e-n")

ylabel('time (s)")

xlim([x(2), x(end)]); %use when comparing to ephemeris solution
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%xIim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,2)

plot(x,ns(:,1),"-r"); hold on;

plot(x,ns(:,2),-g");

plot(x,ns(:,3),-b";

plot(x,ns(:,4),-c";

plot(x,ns(:,5),-m");

plot(x,ns(:,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...
'Location’,'northwest')

title(‘# Steps')

xlabel('tolerance e-n")

ylabel('# Steps')

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,3)

plot(x,nf(:,1),-r"); hold on;

plot(x,nf(:,2),-9";

plot(x,nf(:,3),-b");

plot(x,nf(:,4),'-c");

plot(x,nf(:,5),"-m");

plot(x,nf(:,6),-k"); hold off;

legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113,...
'Location’,' northwest")

title('# Failed")

xlabel('tolerance e-n")

ylabel('# Failed Steps")

xlim([x(1), x(end)]); %use when comparing to ephemeris solution

%xlim([x(1),x(end-1)]); %use when comparing to highest order solution

%% Functions

function dfdt = Erates(t,f)

global mukE

%f -

%t -

% mu -

% J2 - oblateness coefficient

% R - mean radius of Earth (km)

rx =f(1); % X component of r (ECI frame) (km)

ry =f(2); % Y component of r (ECI frame) (km)

rz =f(3); % Z component of r (ECI frame) (km)

vx =f(4); % X component of v (ECI frame) (km/s)

vy =f(5); % Y component of v (ECI frame) (km/s)

vz =f(6); % Z component of v (ECI frame) (km/s)

r = norm([rx ry rz]); % magnitude of position vector (km)

%...Linearized Acceleration

ax = -muE*rx/r*3; % x component of a (ECI frame) (km/s"2)
ay = -muE*ry/r"3; % y component of a (ECI frame) (km/s"2)
az = -muE*rz/r"3; % z component of a (ECI frame) (km/s"2)

%...Output Vector
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dfdt = [vx vy vz ax ay az]';

end %rates

function dfdt = Srates(t,f)

global muS

O/Of -

O/ot -

% mu -

% J2 - oblateness coefficient

% R - mean radius of Earth (km)

rx =f(1); % X component of r (ECI frame) (km)

ry =f(2); % Y component of r (ECI frame) (km)

rz =f(3); % Z component of r (ECI frame) (km)

vx =f(4); % X component of v (ECI frame) (km/s)

vy =f(5); % Y component of v (ECI frame) (km/s)

vz =f(6); % Z component of v (ECI frame) (km/s)

r = norm([rx ry rz]); % magnitude of position vector (km)

%...Linearized Acceleration

ax = -muS*rx/r*3; % x component of a (ECI frame) (km/s"2)
ay = -muS*ry/r*3; % y component of a (ECI frame) (km/s"2)
az = -muS*rz/r*3; % z component of a (ECI frame) (km/s"2)

%...0utput Vector

dfdt = [vx vy vz ax ay az]';

end %rates

function dfdt = nrates(t,f)

global muE muL muS R

% This function evaluates acceleration of each member of 3 body system at
% time t from their positions and velocities at that time.

%t - time (s)

% f - column vector of position and velocity componenets

% R12 - cube of distance between m1 and m2 (km”3)

% R13 - cube of distance between m1 and m3 (km”3)

% R23 - cube of distance between m2 and m3 (km”3)

% AX1,AY1,AY3 - acceleration components of mass 1 (km/s"2)

% dydt - column vector of velocity and acceleration componenets at
% time t

%...Initial Conditions (Particle radius & velocity components)
prx = f(1);
pry = f(2);
prz = f(3);
pvx = f(4);
pvy = f(5);
pvz = f(6);

%...Caclulate Vector & Scalar Radii (km)

JD_0 =2458119.500000000; % (2018-Jan-01 00:00:00.00)
JD =JD_0 + t/86400; % Julian Date

r_moon = lunar_position(JD); % ECI frame lunar position

Irx = r_moon(1);

Iry =r_moon(2);

Irz =r_moon(3);

% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position
% srx =r_sun(1);
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% sry = r_sun(2);

% srz =r_sun(3);

RE = norm([prx pry prz]); % Scalar distance Earth/Particle

RL = norm([Irx-prx Iry-pry Irz-prz]); % Scalar distance Lunar/Particle
%RS = norm([srx-prx sry-pry srz-prz]); % Scalar distance Solar/Particle

%...J2 Purturbation (from Curtix 12.30)
J2 =0.00108263;

fac = (3/2) * (J2*muE*R"2) / (RE"5);
J2x = fac*(prx)*(5*prz~2/RE"2-1);
J2y = fac*(pry)*(5*prz"2/RE"2-1);

J2z = fac*(prz)*(5*prz~2/RE"2-3);

%...Lunar Purturbation

lax = muL*(Irx-prx)/RL"3;
lay = muL*(Iry-pry)/RL"3;
laz = muL*(Irz-prz)/RL"3;

%...Final Particle Acceleration States
pax = -muE*prx/RE"3 + J2x;% - lax;
pay = -muE*pry/RE"3 + J2y;% - lay;
paz = -muE*prz/RE"3 + J27;% - laz;

%...Particle Output Vector

dfdt = [pvx pvy pvz pax pay paz];

end %nrates

function r_moon = lunar_position(jd)

%... Calculate geocentric equatorial position vector of moon given JD
RE = 6376; %Earth radius (km);

%...Time in centuries since J2000
T = (jd-2451545)/36525;

%...Ecliptic longitude (deg):

e _long =218.32 + 481267.881*T ...
+ 6.29*sind(135.0 + 477198.87*T) - 1.27*sind(259.3 - 413335.36*T)...
+0.66*sind(235.7 + 890534.22*T) + 0.21*sind(269.9 + 954397.74*T)...
- 0.19*sind(357.5 + 35999.05*T) - 0.11*sind(186.5 + 966404.03*T);

e_long = mod(e_long,360);

%...Ecliptic latitude (deg):

e_lat = 5.13*sind( 93.3 + 483202.02*T) + 0.28*sind(228.2 + 960400.89*T)...
- 0.28*sind(318.3 + 6003.15*T) - 0.17*sind(217.6 - 407332.21*T);

e_lat = mod(e_lat,360);

%...Horizontal parallax (deg):
h_par = 0.9508 ...
+0.0518*cosd(135.0 + 477198.87*T) + 0.0095*c0sd(259.3 - 413335.36*T)...
+0.0078*cosd(235.7 + 890534.22*T) + 0.0028*c0sd(269.9 + 954397.74*T);
h_par = mod(h_par,360);

%...Angle between earth's orbit and its equator (deg):
obliquity = 23.439291 - 0.0130042*T;
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%...Direction cosines of the moon's geocentric equatorial position vector:

| = cosd(e_lat) * cosd(e_long);

m = cosd(obliquity)*cosd(e_lat)*sind(e_long) - sind(obliquity)*sind(e_lat);
n = sind(obliquity)*cosd(e_lat)*sind(e_long) + cosd(obliquity)*sind(e_lat);

%...Earth-moon distance (km):

dist = RE/sind(h_par);

%...Moon's geocentric equatorial position vector (km):

r_moon = dist*[I mn];

end %Ilunar_position()

function [lamda eps r_S] = solar_position(jd)

% This function calculates the geocentric equatorial position vector
% of the sun, given the Julian date.

%

% User M-functions required: None

%
%...Astronomical unit (km):

AU = 149597870.691;

%...Julian days since J2000:

n =jd - 2451545;

%...Julian centuries since J2000:

cy = n/36525;

%...Mean anomaly (deg{:

M = 357.528 + 0.9856003*n;

M = mod(M,360);

%...Mean longitude (deg):

L =280.460 + 0.98564736*n;

L = mod(L,360);

%...Apparent ecliptic longitude (deg):

lamda = L + 1.915*sind(M) + 0.020*sind(2*M);

lamda = mod(lamda,360);

%...0Obliquity of the ecliptic (deg):

eps = 23.439 - 0.0000004*n;

%...Unit vector from earth to sun:

u = [cosd(lamda); sind(lamda)*cosd(eps); sind(lamda)*sind(eps)];
%...Distance from earth to sun (km):

rS =(1.00014 - 0.01671*cosd(M) - 0.000140*cosd(2*M))*AU;
%...Geocentric position vector (km):

r_S=rS*u;

end %solar_position
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Appendix D: MATLAB Variation of Parameters Code

% This program solves 2body + J2 perturbation dynamics while varying
% orbital elements and tolerances

% Each of the following numbers represents an orbital element state. Select
% vary = 4 to vary inclination. Only elements 3,4,5 should be varied.

% (1) h - angular momentum
% (2) e - eccentricity

% (3) RA - Right Ascension
% (4) incl - inclination

% (5) w -

% (6) TA - True Anomaly
% (7)a - semi-major axis

clear all; close all; clc;
%...Constants

global muE muL muS R

muE =3.986004415e5; %Earth
muL  =4902.799; %Moon
muS =1.32712428ell; %Sun

R =6378; %Earth Radius

G =6.67259-20; %Gravitational Constant

hours = 3600; %conversion variable between seconds & hours
days =hours*24; %conversion variable between seconds & days

%...Retrieve Ephemeris Data

eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt");
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt);
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_MEO.txt");
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_ HEO.ixt");

%
%...Input Data: propagation time & initial states beginning 01/01/2018
%***User input changes occur here

vary =4, %select orbital element to vary

n =6; %number of times to vary orbital element
ntol = 9; %number of tolerances to test

span = 25; %(days to propagate

t0 = 0; tf = span*days; %initial and final times
f0 =eph MEO(1,)"; Y%retrieve initial ephemeris as initial states
ff = eph_MEO(span+1,:); %retrieve final ephemeris as final states

r0 =f0(1:3); %initial position vector from ephemeris
v0 =1f0(4:6); %initial velocity vector fromephemeris
%

%...Initialize variables to capture propagation data

atol = zeros(n,1);  %list of absolute tolerances

rtol = zeros(n,1);  %list of relative tolerances

y =zeros(n,6,6); %array of final states for each propagation

x =zeros(n,1);  %extra variable used to define relative tolerance

time = zeros(ntol,n);  %list of computational times for each propagation
ns =zeros(ntol,n);  %list of numbers of steps (correct calculations)

nf =zeros(ntol,n);  %list of numbers of failed steps
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%...Retrieve State Vectors from Varied Orbital Element
state = sv_vary_coe(r0,v0,muE,vary,n);
variations = linspace(0,90,n+1);
variations = variations(1:end-1);
%...Loop through propagation for varied states and tolerances
for i = 1:ntol %loop through tolerances
for j = 1:n %loop through varied states
x(i) = (3+i);
z =x(i)+1;
rtol(i) = 1*10™-(x(i)); %oset relative tolerance
atol(i) = 1*107-(z); Yset absolute tolerance (le-1 tighter)
opts = odeset('Reltol’, 1e-4, 'AbsTol', 1e-5, 'stats’, 'on’);
tic
[t, f, stats] = ode87(@nrates,[t0 tf], state(j,:)");
%...Store data
time(i,j) =toc;  y(j,:.i) =f(end,);
ns(i,j) = stats(1); nf(i,j) = stats(2);
end
end

%% Text Results
switch vary
case 1
fprintf('Cannot vary angular momentum, select vary = 3,4, or 5.\n")
case 2
fprintf('Cannot vary eccentricity, select vary = 3,4, or 5.\n")
case 3
fprintf('%g variations of Right Ascension\n',n)
fprintf('Values of Right Ascension (deg) tested: %g\n’, variations)
case 4
fprintf('%g variations of Inclination\n',n)
fprintf('VValues of Inclination (deg) tested: %g\n’, variations)
case 5
fprintf('%g variations of Argument of Periapsis\n',n)
fprintf("VValues of Argument of Periapsis (deg) tested: %g\n', variations)
case 6
fprintf('Cannot vary True Anomaly, select vary = 3,4, or 5.\n")
case 7
fprintf('Cannot vary semi-major axis, select vary = 3,4, or 5.\n")
end

%...Plot Run Times, Total Steps, Number of Errors
figure

subplot(1,3,1)

plot(x,time(:,1),-r"); hold on;

plot(x,time(:,2),"-g");

plot(x,time(:,3),-b");

plot(x,time(:,4),-c?;

plot(x,time(:,5),-m");

plot(x,time(:,6),-k"); hold off;

title('Run Times")

xlabel('tolerance e-n")

ylabel('time (s)")

%xlim([x(1), x(end)]); %use when comparing to ephemeris solution
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xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,2)

plot(x,ns(:,1),-r"); hold on;

plot(x,ns(:,2),-9");

plot(x,ns(:,3),-b";

plot(x,ns(:,4),'-c");

plot(x,ns(:,5),-m";

plot(x,ns(:,6),-k"); hold off;

title('# Steps")

xlabel('tolerance e-n")

ylabel('# Steps")

%xlim([x(1), x(end)]); %use when comparing to ephemeris solution
xlim([x(2),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,3)

plot(x,nf(:,1),-r"); hold on;

plot(x,nf(:,2),"-g");

plot(x,nf(:,3),-b");

plot(x,nf(:,4),'-c");

plot(x,nf(:,5),'-m");

plot(x,nf(:,6),-k"); hold off;

title(‘# Failed")

xlabel(‘tolerance e-n")

ylabel('# Failed Steps")

%xlim([x(1), x(end)]); %use when comparing to ephemeris solution
xlim([x(1),x(end-1)]); %use when comparing to highest order solution

function dfdt = nrates(t,f)

global muE muL muS R

% This function evaluates acceleration of each member of 3 body system at
% time t from their positions and velocities at that time.

%t - time (s)

% f - column vector of position and velocity componenets

% R12 - cube of distance between m1 and m2 (km”3)

% R13 - cube of distance between m1 and m3 (km”3)

% R23 - cube of distance between m2 and m3 (km”3)

% AX1,AY1,AY3 - acceleration components of mass 1 (km/s"2)

% dydt - column vector of velocity and acceleration componenets at
% time t

%...Initial Conditions (Particle radius & velocity components)
prx = f(1);
pry = f(2);
prz = f(3);
pvx = f(4);
pvy =f(5);
pvz = f(6);

%...Caclulate Vector & Scalar Radii (km)

JD_0 = 2458119.500000000; % (2018-Jan-01 00:00:00.00)
JD =JD_0 + t/86400; % Julian Date

r_moon = lunar_position(JD); % ECI frame lunar position
Irx =r_moon(1);

Iry = r_moon(2);

Irz = r_moon(3);
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% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position

% srx =r_sun(l);

% sry =r_sun(2);

% srz =r_sun(3);

RE = norm([prx pry prz]); % Scalar distance Earth/Particle

RL = norm([Irx-prx Iry-pry lrz-prz]); ~ % Scalar distance Lunar/Particle
%RS = norm([srx-prx sry-pry srz-prz]); ~ % Scalar distance Solar/Particle

%...J2 Purturbation (from Curtix 12.30)
J2 =0.00108263;

fac = (3/2) * (J2*muE*R"2) / (RE"5);
J2x = fac*(prx)*(5*prz~2/RE"2-1);
J2y = fac*(pry)*(5*prz"2/RE"2-1);

J2z = fac*(prz)*(5*prz~2/RE"2-3);

%...Lunar Purturbation

lax = muL*(Irx-prx)/RL"3;
lay = muL*(Iry-pry)/RL"3;
laz = muL*(Irz-prz)/RL"3;

%...Final Particle Acceleration States
pax = -muE*prx/RE"3 + J2x;% + lax;
pay = -muE*pry/RE"3 + J2y;% + lay;
paz = -muE*prz/RE"3 + J2z;% + laz;

%...Particle Output Vector

dfdt = [pvx pvy pvz pax pay paz]'
end %nrates
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