

Design, Build and Test of an

Automated Space Debris Laser

Sweeper

A project presented to

The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

by

Christopher Le

May 2022

approved by

Professor Long Lu
Faculty Advisor

© 2022

Christopher Le

ALL RIGHTS RESERVED

ABSTRACT

Development of a Space Debris Laser Sweeper

Christopher Le

 As more nations and private entities expand their endeavors into space, this comes with the

added risk of more miscellaneous hardware being released into orbit. While large debris like

spent fuel tanks and decommissioned satellites can be tracked and avoided by other spacecraft,

there are several small pieces of debris that are difficult to be picked up by passive sensors.

While the impact from this debris may not be as severe, it can still damage critical components

that would prove detrimental to the lifespan of the spacecraft. This project is intended to actively

remove the debris from orbit by using a high-power laser to either completely evaporate the

debris or launch the debris into an exit orbit to burn upon re-entry. A one-dimensional degree of

freedom prototype has been constructed to analyze the dynamics and control of the system. Once

the system has been validated for stability and responsiveness, additional degrees of freedom will

be added. In the MATLAB Simulink diagram, the signal from the camera system will be used as

the reference signal of the system in which the PID of the system will input a voltage through a

transfer function to apply angular velocity to the reaction wheel. Through conservation of

angular momentum, this will apply an angular velocity to the satellite. The position of the

satellite will be validated by the camera system as well as Inertial Measurement Unit. Tracking

space debris will require fine motors control, which can be achieved with a controller such as a

Proportional Integral Derivative controller, or PID. Both the physical setup and the simulations

use the same PID values to compare and validate the tracking performance. While the physical

setup displayed steady-state tracking performance mirroring that of the simulations, it produced a

larger overshoot than that of the simulations which could hinder initial acquisitions of the

targeted space debris. This occurrence has been compared to the tracking performance of other

reaction wheel satellite and benchmarked test displayed similar large spikes, meaning that the

controller for the laser sweeper is comparable to that of other graduate project satellites. As the

physical setup can roughly match that of the simulations, the tracking performance could be

further improved by using an LQR controller as simulations show no overshoot when using the

LQR controller; however, implementation of the LQR controller has not been completed due to

the complexity involved. The performance gain over the PID controller is unknown, but the PID

provides adequate tracking performance within the limitations of the hardware setup.

iv

ACKNOWLEDGMENTS

I would like to thank Professor Lu for his guidance and for pushing me through tasks that

would have been unimaginable to me during my courses. I would also like to thank my

colleagues, Aaron Mandeville and Will Miller, for helping me with developing my transfer

functions and Simulink. I would like to thank Katie Burrows for helping me with my electrical

hardware. Finally, I would like to thank Angelina Resto, Amy Starnes, Mike Wong, William

Crocker, Matt Malott, Karl Chvojka and Martin Hall for all the emotional support that helped me

power through this project.

v

Table of Contents

ABSTRACT……………………………………………………………………….……..……...iii

ACKNOWLEDGEMENTS………………………………………….………..……...........…...iv

List of Figures………………………………………………………………………………..…..vi

Nomenclature………………………………………………………………..…….....………....vii

Chapter 1: Introduction……………………………………..………………..…………………1

1.1 Motivation………………………………………………………………….………………..1

1.2 Literature Review……………………………………………..…………...….………..……1

1.2.1 Mitigation Methods………………………………………………………...……………2

1.2.2 Disturbance and Noise Filtering………………………………………..…...…..………3

1.3 Outline..………………………………..………………………………………….…………5

Chapter 2: System Design………………………...……………..……………….……..…….…8

2.1 Single-Degree of Freedom System.....…………...…………….……………….…….…..…8

2.1.1 Platform……………………………………………………………………….............11

2.1.2 Reaction Wheel………………………………………………………………...……..12

2.1.3 Motor and Motor Driver………………………………………………...…………….12

2.1.4 Transfer Function………………………………………………………………...…...14

2.2 Two-Degree of Freedom System...……………………………………..……....….………16

Chapter 3: System Modeling and Controller Design……………………..……………..……19

3.1 Open-Loop Stability Analysis……..……..…………………………………..…….....……19

3.2 Closed-Loop Stability Analysis ...………...…………………………………...…...…...…22

Chapter 4: Development……....………………………………………...……..……..….…..…31

4.1 Microcontroller…………………………………………………………..……...…..……..31

4.2 Object Tracking Camera System………………………………………………..……...….31

4.3 Inertial Measurement Unit………………………………………………...……...………..35

Chapter 5: Hardware Test…....………………………………………...……..……..….…..…36

5.1 Arduino Code Process……………………………………………………………………...36

5.2 Testing and Analysis……………………...…………………………………….………….38

Chapter 6: Conclusions and Future Work.…………………………………..……………….45

6.1 Completed Work…………………………………………………………...………………45

6.2 Challenges Faced………………………………………………………………..…………45

vi

6.3 Future Work……………………………………………………………………….……….46

References ………………………………………………….…………………...………………49

Appendices …………………………………………………………..……..……...……………52

A. Derivation of Transfer Function…………………………………………………………...52

B. MATLAB Code……………………………………………………………………..……..54

C. Arduino Code…………………………………………………………………………..…..57

vii

LIST OF FIGURES

Figure 2.1 - Single degree of freedom system model ……………...……………….....…...……..8

Figure 2.2 - Moment of inertia of single degree of freedom system ……………….....…...……..9

Figure 2.3 - Model of motor shaft and reaction wheel ……………...………………..........……10

Figure 2.4 - Moment of inertia of motor shaft and reaction wheel ……………...…….....…...…10

Figure 2.5 - Single degree of freedom experimental setup …………….……………...…..….....11

Figure 2.6 - Alternate platform design ……………………………..……………………....……11

Figure 2.7 - Temperature reading of the L298N motor driver …….……………….……………13

Figure 2.8 - Two degree of freedom system model ………………………………….…….....…17

Figure 2.9 - Moment of inertia of two degree of freedom system …………………...…….....…17

Figure 2.10 - Counterweight for two degree of freedom system ………………..…….……..….18

Figure 3.1 - Open-loop Simulink diagram …………………………...……..………….....…..…21

Figure 3.2 - Open-loop system response ……………………………..…………………….……21

Figure 3.3 - Closed-Loop PID controller Simulink diagram …..……….…………………….…22

Figure 3.4 - PID autotune for maximum speed and aggression ……………...………..…...……23

Figure 3.5 - PID autotune for slow speed and stability ……...……………………………..……24

Figure 3.6 - Simulated PID response vs reference signal ……...…………..……………....……25

Figure 3.7 – Initial attempt LQR controller Simulink diagram …………...……...………..……26

Figure 3.8 – Initial attempt LQR response …………………………………...…..………..….…26

Figure 3.9 - LQR controller Simulink diagram …………………………...….…………..…..…27

Figure 3.10 - LQR response Q = identity matrix and R = 1...…………….………….…….……27

Figure 3.11 - LQR response Q = modified matrix and R = 1…………...….……….……...……28

Figure 3.12 - LQR response Q = modified matrix and R = 1 and N = 15.867…...…...…..…..…29

Figure 3.13 - LQR and PID Simulink Diagram ………………..……...…………...………....…29

Figure 3.14 - PID vs LQR controller response ……….……..………………………...…..….…30

Figure 4.1 - Pixy2 camera unit ……………….…...…32

Figure 4.2 - Live video feed ………………………..……………………..………….…...…..…33

Figure 4.3 - Selecting object to be detected ………………………….……………...………..…33

Figure 4.4 - Segmentation of object ……………………………………………….…......……...34

Figure 4.5 - Effective max range of object tracking without tuning …….…………………....…34

Figure 5.1 - PID controller flowchart …………………………………………………….......…36

Figure 5.2 - Testing pad ……………………………………………………….……..……..…...39

Figure 5.3 - ArduSpreadsheet recording…………………………….……………….…...……...39

Figure 5.4 - Experimental vs simulated PID tracking comparison ………...………...….…....…40

Figure 5.5 - Average experimental vs simulated PID tracking comparison ………….…………40

Figure 5.6 - Experimental oscillation peak 1 …………………………………...…….……....…41

Figure 5.7 - Experimental oscillation peak 2 ……………………………………...…....…….....42

Figure 5.8 - Test run 1 vs simulated PID tracking ……………….…………………….…......…42

Figure 5.9 - Benchmark tracking response ………………………..…………...……………..…43

Figure 5.10 - Test run 1 vs simulated PID tracking …………………………..…...……….....…44

Figure 6.1 - LQR controller flowchart …………………………………………………..........…47

viii

Nomenclature

Symbols Definition Units (SI)

(∗)̇ Time Derivative of a variable

𝜏𝑒 Torque Foot-pound force (Newton-

meters)

ℎ Angular Momentum (Kilogram-meters squared per

second)

𝐽 Moment of Inertia

𝜔 Angular Velocity Radians per second

𝑟 Distance from Center of Mass

of System to Arbitrary point

Inches (Meters)

𝑚 Mass Pounds (Grams)

𝑣 Linear Velocity Miles per hour (Meters per

second)

𝐺 Transformation Matrix

𝛺 Wheel Velocity Vector

𝑘𝑡 Torque Constant Foot-pound force per ampere

(Newton-meters per ampere)

𝐼𝑎 Current Ampere

𝑏 Viscous Friction

𝐸𝑏 Back-EMF Voltage Volt

𝑘𝑒 Back-EMF Constant

𝑉𝑎 Supplied Voltage Volt

𝑅 Motor Resistance ohm

𝐿𝑎 Motor Inductance Henry

𝑠 Laplace Transform Integrator

∗ (𝑠) Laplace Transform Domain

1

Chapter 1: Introduction

1.1 Motivation

In 1978, NASA scientist Donald Kessler theorized a scenario where the density of objects in

low Earth orbit is high enough such that any collision between these objects would create even

more debris and further increase the likelihood of subsequent collisions. This would culminate in

a situation where the entire planet is surrounded by debris, making it impossible for humanity to

conduct any more space missions. Even the smallest pieces of debris can cause significant

damage to spacecraft as with the case with the 1983 STS-7 mission, where the Challenger Space

Shuttle was hit by a 0.2mm paint flake or metal fragment that created a 0.4 mm diameter pit in

the borosilicate window [1]. This issue is further exacerbated by anti-satellite tests where

militaries would launch missiles towards satellites to test their intercept capabilities and shatter

them into hundreds of pieces that spread throughout Earth’s orbit. Depending on the angle and

altitude that these tests take place in, most of the fragments produced by these tests will have

relatively short orbit lifespans before reentering Earth’s atmosphere [2]. Even still, this adds to

the growing list of space debris and is detrimental to future space endeavors.

1.2 Literature Review

This section will cover literature regarding the background of orbital debris and various

proposed methods to eliminate them. While there have been measures drafted for the active

removal of space debris, designing space missions from producing debris is more effective for

the long-term mitigation of space debris. Although NASA requires that their missions minimize

debris [3], non-government agencies have only recently had preventive measures established by

the Federal Communication Commission to minimize debris production [4]. According to Space

Mission Analysis and Design by Wiley Larson and James Wertz, launch processes produce an

average of three large trackable debris [5]. These include protective shrouds, separation devices,

and expended rocket bodies. Even after insertion into the final orbit, spacecraft must deploy their

tools and instruments, which may release miscellaneous hardware into space. Once the

spacecraft reaches the end of its lifecycle, it should be considered debris and must be removed by

propulsive maneuvers to put the spacecraft into a disposal orbit or re-entry trajectory. Equipping

new satellites with an end-of-life de-orbit and orbital lifetime reduction capability is the most

effective method for minimizing the number of debris produced. While this process minimizes

space debris production, there are still elements in orbit that could pose a threat to spacecraft in

the future which would necessitate the use of active debris removal methods.

There will still be occasions where incoming collisions could happen, and mission designers

should take into consideration how the spacecraft will react accordingly. As space debris comes

in all shapes and sizes, these plans will vary from energy-intensive maneuvers to passive

shielding. NASA and the DOD’s Space Surveillance Network cooperate to characterize satellite

environments using special ground-based sensors and inspection of returning satellites. As of the

time of writing this report, there are approximately 27,000 officially cataloged objects in orbit

that are at least 10 centimeters or 4 inches in diameter [6]. For these objects to be considered an

imminent threat to manned spacecraft like the International Space Station, they would have to

have to be in the range of an imaginary box drawn around the spacecraft. This box would

measure 30 miles across by 30 miles long by 2.5 miles deep and should a tracked object pass

2

close enough for concern, Mission Control Centers in Houston and Moscow work together to

develop a course of action. When an encounter is known hours in advance, a slight evasive

maneuver can be performed, known as a “debris avoidance maneuver”. However, this can come

at the cost of propellant and/or power, which may decrease the lifespan of the mission or direct

the spacecraft into an unideal orbit. If the tracking data is not precise enough to warrant a

maneuver or if the close pass isn’t identified in time to make the maneuver, the best course of

action for manned spacecraft is to move the crew of the station into a spacecraft to protect them

in case of loss of pressure and life support systems.

1.2.1 Mitigation Methods

 These precautions primarily account for trackable space debris; untrackable pieces of debris

measuring less than 10 centimeters are much more difficult to be picked up by ground-based

sensors. NASA estimates that there are at least half a million pieces of debris measuring 1

centimeter and at least 100 million pieces of debris measuring 1 millimeter. While the impact

caused by these pieces may not be as significant as their larger counterparts, they can still cause

considerable damage, especially if vital components are struck. This is where passive protection

like Whipple shields offers the greatest benefit as spacecraft do not have to actively look for

space debris and perform preemptive maneuvers, potentially saving resources and offering

sufficient protection. Whipple shields are thin shields set a certain distance away from the main

spacecraft that are designed to break up incoming particles and disperse them over a larger area

[7]. Some Whipple shield designs have fillings to minimize penetration. Despite this advanced

shielding, it may be not compatible with all systems due to added weight and increased volume,

thus affecting the restraints of the mission. It also does nothing to actively remove debris from

the space environment as it only reduces the chances of a critical system failure.

 Several initiatives have been proposed to eliminate space debris. In particular, the Japanese

Aerospace Exploration Agency (JAXA) is exploring options to actively remove debris from the

space environment in their Commercial Removal of Debris Demonstration program. This

program is split into two phases; the first of which is Key Technology Demonstration which

involves using satellites to survey debris and obtain its characteristics e.g., rotational motion or

surface damage [8]. Phase II of this program is focused on Active Debris Removal but has yet to

be finalized. Due to the variety of space debris, there are several methods of capturing, which are

generally broken up into two categories: contact and contactless. As contactless capture methods,

such as Electrostatic Tractor or Gravity Tractor, are primarily considered for asteroid deflection,

they may not be viable options for debris removal systems [9]. The contact-based removal

methods often involve a system or arms or entanglement devices for securing the debris. While

these might be effective solutions for securing depleted thrusters or decommissioned satellites,

they’re ineffective and unfeasible for smaller pieces of debris as the likelihood of successfully

capturing them is much slimmer while offering a lower debris yield.

 High-energy lasers may be the most feasible way to actively remove small debris measuring

from 1 to 10 centimeters from space. There are two methods in which the laser would be used to

eliminate debris: Direct Ablation and Ablation Back-jet [10]. Direct Ablation primarily targets

debris up to 1 centimeter in length and completely incinerates it. The process of Ablation Back-

jet involves targeting debris of more than 1 centimeter in length with a high-energy laser beam.

The point of impact would superheat the material, causing an increase in pressure at the afflicted

area. This pressure would expand and exert a reaction force on the rest of the material that would

3

propel the debris into an elliptical orbit trajectory. At the closest point of the orbit to the earth,

also known as the perigee, if the debris were to be at an altitude less than 200 kilometers, it

would fall back into the earth’s atmosphere where it will burn up upon reentry.

 Laser systems also vary in operation; of which, there are four kinds: Solid-state lasers, Liquid

lasers, Gas lasers, and Semiconductor lasers. Semiconductor lasers are the most abundant in

everyday life and operate by an electrical current being reflected back and forth between two

mirrors, leaving only a minor gap. The movement of this current across a Positive-Negative

Junction generates light that escapes through the hole that can be further focused with lenses.

Solid-State lasers operate on the same principle except that Solid-State immediately introduces

ions into a host material such as glass or crystal in a flash tube, which shines light inside the

system. Two reflective surfaces are placed at the end with only a small opening at one end. The

light generated inside would reflect back and forth and filter out impurities until all that emitted

is a uniform beam. Gas and Liquid lasers function the same way as Solid-State, the only

difference being the medium used in the system. To eliminate small debris, the laser system

would have to be pulsed as a pulsed laser can deliver its peak energy in an incredibly short time

frame, evaporating specific parts of a debris piece without heating the entire body. The

characteristics of the debris are just as important, if not more, than the laser itself. The most

common materials that are found in orbital debris and micrometeoroids are Aluminum,

Aluminum Oxide, Steel, and paint chips. These materials, in their various alloys, are the most

common engineering materials used in space applications, hence their prevalence [6]. While not

all paint used for space application is the same, common coatings are often composed of a

borosilicate and aluminum mixture [11].

1.2.2 Disturbance and Noise Filtering

 For adjusting the orientation of the system, reaction wheels are preferable for small satellites

with long life cycles as the only resource required to operate them is energy from batteries which

can also be supplemented with solar panels. The mass of the system is also less prone to drastic

changes; thus, the dynamics of the system are relatively consistent throughout the lifecycle of the

spacecraft. Dynamic analyses of small satellites with reaction wheels have been performed in

various other graduate projects, such as “Design and Testing of a Nanosatellite Simulator

Reaction Wheel Attitude Control System” by Frederic William Long at Utah State University in

which a satellite has four reaction wheels arranged in a pyramidal configuration [12]. As the

system would be isolated in orbit with no significant external forces acting on it, the torque

provided by the motors would impart angular momenta into the system for orientation. This

process is described in the following equation.

𝜏𝑒 = ℎ̇𝑇 = ℎ̇𝑠 + ℎ̇𝑤 (1.1)

where ℎ𝑠 is the angular momentum of the system, ℎ𝑤 is the angular moment of the wheel, and 𝜏𝑒

is the total external torque. The angular moment is defined as

ℎ = 𝐽 × 𝜔 + 𝑟 × 𝑚 ∙ 𝑣 (1.2)

where 𝐽 is the moment of Inertia, 𝜔 is the angular velocity, r is the distance from the center of

mass of the system to an arbitrary point about the body, m is the mass of the system, and v is the

linear velocity of the system. The torque equation can be further expanded upon so that the

4

angular momentum of the wheels rotates about the body frame as opposed to the wheel frame.

This requires a transformation matrix denoted as 𝐺 to convert the inertia of all four of the wheel

frames to body frames. The following equation detail the expansion of the torque equation using

Euler’s rigid body equation.

𝜏𝑒 = ℎ̇𝑠 + 𝜔 × ℎ𝑠 + ℎ̇𝑤 + 𝜔 × ℎ𝑤 (1.3)

If each wheel has the same moment of inertia about its axis of rotation,

ℎ𝑤 = 𝐽𝑤 ∙ 𝜔 + 𝐺 ∙ 𝐽𝑤
𝑤 ∙ 𝛺 (1.4)

Although these equations may be useful in interpreting the full dynamics of the final 3-degree of

freedom satellite, outputting an array of the exact angular velocity required may not always be

possible. To simplify the dynamics of the system, the primary focus will be on the transfer

function of a single motor to platform relationship. Brushed DC motors use permanent magnets

and electrical current to spin a shaft, outputting a rated torque which was explained in the above

equations [13], but can be simplified to

𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (1.5)

Where the torque is the product of the given torque constant 𝑘𝑡 of the motor and the electrical current 𝐼𝑎

flowing through it. While the torque equation and conservation of angular momentum can be used

to calculate the angular velocity of the platform, doing so ignores other factors that impede the

performance of the DC motor such as mechanical and electrical limitations. The governing

equation below is based on Newton’s 2nd law and explains the relationship between torque,

moment of inertia �̇� and friction 𝑏 of a DC motor.

𝜏 = �̇� ∙ 𝜔̇ + 𝑏 ∙ 𝜔 (1.6)

All electrical circuits are subject to Kirchhoff’s voltage law, which states that the sum of all

voltages of all components in the same loop should sum to 0. While this includes the resistance

and inductance, it also includes a counter-electromotive force called the back-EMF. This opposes

the change in current which induced it and is represented by the following equation.

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (1.7)

As the back-EMF is proportional to the angular velocity 𝜔 of the shaft spinning in the motor, the

main constant that needs to be solved for is the Back EMF constant 𝑘𝑒. In the SI unit, the torque

and voltage constants are equal [14].

𝑘𝑡 = 𝑘𝑒 (1.8)

This allows the previously established torque/mechanical equation and the back-EMF equation

to be used in Kirchhoff’s voltage law.

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇𝑎 + 𝐸𝑏 (1.9)

5

These equations will be combined and further expanded upon in a separate section to give the

full transfer function for a one-dimensional degree of freedom system as the process of deriving

the dynamics of the system and adding additional degrees is simpler than deriving all functions

at once. The physical characteristics of the system must also be considered before the full

derivation of the transfer function. To house the system, a structure must not only be able to

contain, but also accommodate for supplementary material like the electrical system,

computational hardware, Guidance, Navigation, and Control, as well as the reactions wheels.

This assembly must be able to fit in the payload of a launch vehicle as well, which is why the

skeletal structure of this system will be of a large cube shape. The reaction wheel-based CubeSat

design is like that of the Cubli self-balancing cube. It operates three reaction wheels along its

central axis to balance itself on either its edges or corners [15]. While this design would provide

an excellent foundation for the equation of motions, it is different in that the space laser system

would rotate about its center of mass as opposed to the edges or corners under gravity. Deriving

the Equations of Motion for the structure of the Cube-shaped Space Laser System would require

more known values like the hardware characteristics. As a steppingstone, a one-dimensional

degree of freedom system would be used instead to derive the equations of motions of the

system. Further derivation of this system will be shown in a separate section using the textbook

“Dynamics of Mechanical, Aerospace, and Biomechanical Systems Angular Momentum, Inertia,

and Angular velocity”.

1.3 Outline

The goal of this project is to design and build a satellite capable of detecting certain objects

and tracking them before vaporizing them with a laser. As of the time of writing this report, the

Department of Defense’s global Space Surveillance Network (SSN) estimates that there are more

than 27,000 trackable pieces of orbital debris [6]. However, these are the trackable pieces of

debris, meaning they are large enough to be picked up by SSN’s sensors, which can track objects

greater than 10 cm at Low-Earth Orbit. The SSN estimates there may be millions of untrackable

orbital debris that could wreak havoc on any spacecraft without the proper protection. Compared

to other methods of space debris removal such as Electrodynamic Tethers and Nets, which are

more feasible for larger debris [9], lasers seem the most economical for the smaller debris, which

will cause the most damage to spacecraft. Post mission analysis of the Space Shuttle launches

has estimated that 37% of all impacts on the spacecraft came from paint chips [7], which will be

the main target of this satellite.

The reason why this project specifically targets paint is due to the thermodynamic and

reflective characteristics of metals over non-metals. This could cause unpredictable reflections

that would cause serious consequences, like accidentally hitting a satellite or ablating a material

enough to propel it towards another piece of space debris and causing more destruction. As paint

chips will come in all shapes and sizes and properties, a uniform object will be used as a stand-in

for the paint chip until a method of on-the-fly targeting/learning can be achieved. For this

project, a tennis ball will be used as the stand-in for the paint chip. Ultimately, the ideal goal for

this project is making target identification as accurate as possible before any destruction which

will be addressed in the latter section.

Regarding the construction of the satellite, a Technology Readiness Level of at 6, which is

the system/subsystem model or prototype demonstration in a relevant environment [16], is ideal

for the scope of this project as higher levels would be prohibitively expensive. Using as many

6

commercially available parts is best for demonstrating the concept while keeping costs and

complexity low. Although not strictly a requirement, this project will be in the form of a CubeSat

for ease of analytical calculations for the dynamics of the system. This will change depending on

the size of the laser. Commercially available laser rust removal tools are well beyond the size of

the average CubeSat and may be out of reach without special licensing. As the main objective of

this project is tracking, the actual power of the laser is irrelevant, which is why a low-power laser

will be used instead. To maximize the lifespan of the project, momentum wheels will be used to

orient the satellite in space as opposed to a propulsion system. This will limit the system in that

tracking fast-moving objects will be near impossible; however, provided a debris field is detected

in advance, an array of satellites can orient themselves ahead of time and activate the lasers as

the debris travels through the beams, acting as a net. Depending on the ablation rate of the paint

chips, the array of satellites can also sweep across a debris field to cover a much larger area.

Further research on the composition of the space-grade paint is needed as these paint chips may

not be materially uniform.

Solution methodology
1. Develop a computational framework for object detection: A method for identifying an

object from a live video feed is central to this project. There exist commercially available

options that still require the user to manually teach the hardware to identify the specific

object; however, camera quality may not be ideal. Stronger computation power and

machine learning may be required for developing custom tracking software with high-

quality cameras.

2. Develop code for object tracking: Orientation and control of the satellite will be

performed by momentum wheels. For a singular axis, code will be developed in Arduino

IDE with input from the camera to spin the motor about that axis. Depending on the

programming language used for the camera, software packages can be used to interact

with the Arduino. A PID system would be implemented first via the provided Simulink

Autotune feature then be backed by analytical calculations to make movements more

precise. An inertial measurement unit will operate as the sensor dynamic to feedback

angular velocity data into a closed-loop system. Additional axes will be integrated into

the code and Simulink once the singular axis is validated.

3. Create a skeletal structure for the system: The structure will be of a cube shape and will

house the electronics suite as well as the motors and the momentum wheels. Once the

hardware has been installed into the skeleton, hooks will be installed along the Z and Y

axis to test for the balance of the system. Weights will be placed at certain points of the

structure to balance the system.

4. Add a laser and design a heat management system: Adding a high-power laser may prove

extremely difficult considering the legality of commercially available lasers. As such, a

basic low-power laser will be used.

5. Implement additional axes and finalize tuning of PID: As all the necessary hardware has

been installed, control over the additional axes can be integrated into the system. The PID

and the weighting of variables can be optimized for responsiveness and stability.

The timeline of this project will span from August of 2021 to May of 2022. The object

detection aspect is central to this project and software development of this technology will

demand the most time. As mentioned before, commercially available options exist; however, the

7

range at which these camera software packages can detect objects is extremely poor. Open-

source options for real-time computer vision and will require the use of a micro-computer and

additional programming.

Next to the camera and computer selection, the motors are important to the development of

this project in that, not only do the motors allow for the project to rotate in space, they also

dictate the size of the satellite itself as the frame has to be built around these motors. The motors

must be of sufficient torque and speed such that they can spin acrylic momentum wheels fast

enough for the satellite to spin in response. Regardless of the choice of programming language

for the camera, the method of controlling the motors will be through Arduino IDE due to the

number of software packages available for micro-computers to interact with Arduino. The

analytical dynamics of a one-dimensional degree of freedom system will be used as the basis for

the MATLAB Simulink closed-loop tracking model, which will also include PID tuning and

Inertial Measurement Unit feedback. The deadline for developing an analytical code for basic

motor tracking functions was November 30. Additional degrees of freedom along the X and Y-

Axis may be added when the dynamics about the Z-axis are finalized.

As the hardware has been selected, the skeleton can be constructed around it. Due to the size

of high-power motors, the structure will initially be constructed by wood as the system will

likely exceed the size of most commercial 3D printers. Once the frame has been completed, the

hardware can be installed, and hooks can be installed along the X, Y, and Z-axis of the system.

This will allow the system to be freely suspended to test for the balance along an individual axis

of the final system. If the satellite is not perfectly level, weights can be added to balance the

system. An aluminum skeleton is also being considered, but this method may require special

welding not currently available. Further research is required for alternative aluminum structure

designs. The construction of the skeleton will coincide with the development of the motor

tracking functions along additional axes and will be completed by Spring of 2022. The rest of

Spring 2022 was planned to be spent fine-tuning the movement of the satellite with multiple

reaction wheels; however, the tracking performance of the controller was not satisfactory enough

to warrant expanding to multiple degrees of freedom. Regarding the laser, a basic low-power

laser will be used as a stand-in. Commercially available high-power lasers are extremely

dangerous and specialized training will be required before obtaining and operating any high-

power laser device.

8

Chapter 2: System Design

 Developing the dynamics of the reaction wheel control will require a framework for the

dynamic model to be based on. While the orienting the satellite will require multiple reaction

wheels, the initial phase of this project will be focused on achieving sufficient tracking response

from a singular degree of freedom, particularly the yaw control of the satellite. Once the physical

controller for the system has a comparable response to that of the optimized simulated controller,

the controller can be replicated for the pitch and roll actuators of the satellite. The dynamics of

the system will be based on a physical assembly constructed that will be used in the experimental

component of this project, which will only include a single reaction wheel and motor situated on

top of a wooden turntable to simulate freedom of movement along the yaw axis.

2.1 Single-Degree of Freedom System

 A single degree of freedom system is used to establish the accuracy and responsiveness of the

tracking system, particularly the controller. Additional degrees of freedom will be used with the

same type of controller for their respective axis. This single degree of freedom system will be

based on a physical assembly as recreated in the Solidworks figure below.

Figure 2.1: Single degree of freedom system model

9

Figure 2.2: Moment of inertia of single degree of freedom system

The wooden platform is situated on top of a fixed ball-bearing stand so that the wooden platform

can freely rotate along the axis normal to the face of the platform. The platform will also serve as

the base for the electronics suite that will interface with the 12V DC brushed motor located at the

center of the wooden platform. The system will orient itself by spinning an acrylic reaction

wheel affixed to the motor shaft, applying a torque in the opposite direction due to conservation

of angular momentum. The moment of inertia of the reaction wheel and the motor is given by the

following Solidworks figure.

10

Figure 2.3: Model of motor shaft and reaction wheel

Figure 2.4: Moment of inertia of motor shaft and reaction wheel

11

2.1.1 Platform

 The system is situated on a wooden turntable where a large platform is attached to a fixed

base via a rotary bearing, allowing the platform to freely rotate about the axis normal to its face.

This platform measures 15 inches in diameter and 0.75 inches in thickness and weighs 1650

grams.

Figure 2.5: Single degree of freedom experimental setup

An alternate design that was considered is a round wooden plate suspended via a swivel lock as

shown below.

Figure 2.6: Alternate platform design

12

Due to its suspended design, the system will be elevated above the ground which allows a motor

and reaction wheel to be placed on the underside of the platform. This design would also allow

for additional motors and reaction wheels to be placed along the pitch and roll axis, enabling

three degrees of freedom for the system. While this design was initially planned as a base model

for the project moving forward, it is more susceptible to perturbations that could affect the results

of testing. As the focus of this project is to optimize the tracking performance of a satellite, the

ball-bearing turntable will be used as a base model for designing the actuator controllers. Once

the controllers have comparable performance to that of the simulation, the system will transition

to this design for multiple degrees of freedom.

2.1.2 Reaction Wheel

 While there are numerous methods for adjusting the orientation of satellites, reactions wheels

were chosen for this system for its low operational costs and long lifespan due to relying solely

on electricity to generate enough angular momentum to rotate the body. The reaction wheel used

in this system is a 12-inch acrylic disc and weighs 240 grams. The disc was purchased from a

store that specializes in custom polymer pieces, in which they drilled an eight-millimeter hole in

the center of the disc, which allows it to be held onto the threaded motor shaft with nuts.

Alternate reaction wheels designs such as aluminum ring discs have been considered; however, a

larger reaction wheel made of metal would require custom machining that is not immediately

available. When the system is redesigned for spaceflight, metal ring discs would be preferable

due to their larger moment of inertia.

2.1.3 Motor and Motor Driver

 While the conservation of angular momentum can be used to explain the momentum

exchange between the reaction wheel and the platform, obtaining the correct output speed of the

reaction wheel requires the modeling of the actuator dynamics between the input voltage and the

output angular velocity of the motor shaft reaction wheel. The motor used in the single degree of

freedom system is the XD-3420 brushed DC motor with the following specifications [17]:

• Rated Voltage: 12V

• No-Load Speed: 3500 RPM

• Rated Current: 400 mA

• Rated Torque: 0.196 N-m

• Inductance: 0.001339 Henry

• Resistance: 2.3 ohm

• Viscous Friction Coefficient: 0.000002

While the motor can provide the system with the angular momentum required to turn the

platform, this system will require precise control over the motor speed and direction. Most

commercially available computers cannot directly interface with these motors due to their large

power requirements; this can be mitigated by using the L298N H-bridge motor driver. By using

an external power source such as high voltage batteries, the motor driver will interpret the

received signal and scale with the power supply to power the motor. The L298N module is a

generic motor driver that can operate a 12V load as well as power the Arduino unit. Below are

13

the specifications for this motor driver [18]:

• Motor Voltage: 3.2-40V

● Supply Driver Voltage: 5-35V

● Supply Driver Current:2A

● Peak Current: 2A

● Logic Voltage: 5V

● Logical Current:0-36mA

● Maximum Power (W): 25W

 Despite being able to operate the XD3420 motor, one issue that could pose a threat to the

lifecycle of the satellite was the dangerous amounts of heat being produced from the motor

driver. A temperature reading of close to 100 degrees Fahrenheit was taken off the L298N motor

driver during operation.

Figure 2.7: Temperature reading of the L298N motor driver

Alternate motor drivers are being considered, such as the TB6612FNG, which operate on

modern MOSFETs [19]. Below are the specifications of the TB6612FNG motor driver:

• Motor Voltage: 15V

● Supply Driver Voltage: 6V

● Peak Current: 2A

● Logic Voltage: 5.5V

● Logical Current: 0.4A

While comparing the specifications of the two motor drivers directly, the L29N seems superior;

however, the TB6612FNG motor driver has much less power dissipation which should produce

much less heat. However, as the focus of this project is on the control dynamics of the satellite,

the motor driver that will be used for the satellite will be the L298N, as implementing the

14

TB6612FNG will require more software development that offer little benefits to the tracking

performance of the system outside of longer test sample sizes.

2.1.4 Transfer Function

 With the physical characteristics of the platform, wheel, and motor defined, the transfer

function or actuator dynamics between the platform and the voltage sent from microcontroller

can be modelled. The actuator dynamics of the system describe the process of converting signal,

or a certain amount of voltage, into physical motion through a DC motor. As the set-up is a one

degree of freedom system, there is only one transfer function in which current applied to the

motor would output an angular velocity onto the platform. This transfer function can be obtained

by the following equations established in the literature review.

𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (2.1)

𝜏 = �̇� ∙ 𝜔 ̇ + 𝑏 ∙ 𝜔 (2.2)

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (2.3)

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇̇𝑎 + 𝐸𝑏 (2.4)

The first step in obtaining the transfer function is to take the Laplace Transform of these four

equations. This allows complex differential equations to be solvable in the frequency domain or

s-domain which removes the time dependency from these functions.

𝜏(𝑠) = 𝑘𝑡 ∙ 𝐼𝑎(𝑠) (2.5)

𝜏(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠) (2.6)

𝐸𝑏(𝑠) = 𝑘𝑒 ∙ 𝜔(𝑠) (2.7)

𝑉𝑎(𝑠) = 𝐼𝑎(𝑠) ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙ 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (2.8)

As the time-domain is no longer a factor, the torque equations (3.5 & 3.6) can be combined, and

the current can be isolated.

𝑘𝑡 ∙ 𝐼𝑎(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝐼𝑎 =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

(2.9)

The current equation (3.9) as well as the back-EMF equation (3.7) can be used in the Kirchhoff’s

Voltage Law (3.8) as shown below.

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

+ 𝑘𝑒 ∙ 𝜔(𝑠)

15

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 + 𝑏

𝑘𝑡

∙ 𝜔(𝑠) ∙ (𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝜔(𝑠)

𝑉𝑎(𝑠) =
(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

𝑘𝑡
∙ 𝜔(𝑠) (2.10)

As stated in the literature review, 𝑘𝑒 = 𝑘𝑡. As such, the transfer function from the input voltage

into a motor to the angular velocity outputted by the reaction wheel is given by the following

transfer function.

𝜔(𝑠)

𝑉𝑎(𝑠)
=

𝑘𝑡

(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(2.11)

This transfer function is only concerning the relationship between the voltage input and the

angular velocity of the reaction wheel; it does not output the angular velocity of the platform.

The relationship between the angular velocity of the reaction wheel and the platform can be

explained by the conservation of angular momentum.

𝐽𝑤ℎ𝑒𝑒𝑙 × 𝜔𝑤ℎ𝑒𝑒𝑙 = 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 × 𝜔𝑠𝑦𝑠𝑡𝑒𝑚

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
× 𝜔𝑤ℎ𝑒𝑒𝑙 (2.12)

The angular velocity of the satellite is given by the following transfer function

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(2.13)

This transfer function will be used as the basis for modeling the simulation in MATLAB

Simulink. The system will track objects by minimizing the angular displacement between the

location of tracked object and the viewing axis of the camera system. The format of the transfer

function in equation (2.13) is only able to output the angular velocity but can be modified to

output angular displacement by replacing it with the derivative of the angular displacement.

Since the transfer function is already in the s-domain, the Laplace transform of the derivative of

the angular displacement can replace the angular velocity in the transfer function. The s variable

can then be transferred to the right-hand side, which increases the rank of the transfer function

from two to three, meaning that the transfer function will output the signal current, angular

velocity and angular displacement.

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑑

𝑑𝑡
𝜃 (2.14)

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) = 𝜃(𝑠) ∙ 𝑠

𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

16

𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝑠
(2.15)

2.2 Two-Degree of Freedom System

Gravity-gradient stabilization is defined as the alignment of one axis of a satellite along the

earth’s local vertical direction so that the end of the satellite aligned with that axis will always

face down relative to the surface of the earth. There are two notable benefits associated with this;

one of which is that this configuration allows for enhanced signal strength for communication

devices, minimizing the potential lag that may arise when tracking debris. The other is that this

configuration minimizes reaction wheel usage for stabilization, thereby minimizing energy usage

[20]. Gravity-gradient stabilization allows for the system to be controlled by only two reaction

wheels; however, the satellite must be constructed in a manner that allows for this. To achieve

gravity-gradient stabilization, the inertia of the roll, pitch, and yaw must be influenced to create

the following yaw and roll constants.

𝐾𝑌 =
𝐼𝑝𝑖𝑡𝑐ℎ − 𝐼𝑟𝑜𝑙𝑙

𝐼𝑦𝑎𝑤
(2.16)

𝐾𝑅 =
𝐼𝑝𝑖𝑡𝑐ℎ − 𝐼𝑦𝑎𝑤

𝐼𝑟𝑜𝑙𝑙

(2.17)

To achieve gravity-gradient stabilization, the system must satisfy the following conditions

𝐾𝑌 < 𝐾𝑅 (2.18)

3 ∙ 𝐾𝑅 + 𝐾𝑌 ∙ 𝐾𝑅 + 1 > 4 ∙ √𝐾𝑌 ∙ 𝐾𝑅 (2.19)

𝐾𝑌 ∙ 𝐾𝑅 > 0 (2.20)

Provided that these conditions were met, this would allow the satellite to be controlled by two

motors centered on the yaw and roll axis. Using the two degree of freedom system that was been

previously designed as a base model, the system has been constructed and recreated in

Solidworks. To ensure the system is balanced along the axis normal to the center of the face of

the platform, a counterweight it placed opposite to the pitch axis motor.

17

Figure 2.8: Two degree of freedom system model

Figure 2.9: Moment of inertia of two degree of freedom system

18

Figure 2.10: Counterweight for two degree of freedom system

 Given the moment of inertias of the yaw and roll of the system, this two degree of freedom

system design would not satisfy the first and second conditions for gravity gradient stabilization.

To satisfy the requirements for gravity gradient stabilization, the system would need to be

modified to increase the moment of inertia of the roll axis by adding mass to the center of the

face of the platform as well as elongating the material to increase the height of the system. Due

to the elevated design, testing of this system would require it to be suspended to increased

freedom of movement at the cost of stability that could interfere with initial testing. As

previously mentioned, the purpose of this project is to optimize the tracking performance of the

system and the single degree of freedom system will be used as the base model to optimize

tracking in the yaw direction before including additional degrees of freedom.

19

Chapter 3: System Modeling and Controller Design

 The tracking performance of the system has two parallel process that will be used to validate

each other. The experimental process will consist of testing and analyzing the physical setup

established in the framework layout, while the computational process will recreate the physical

setup and the test conditions. The results of these processes will be compared to each other to

validate the accuracy of the simulation, which can then be used to model multiple degrees of

freedom.

3.1 Open-Loop Stability Analysis

 The computational process involves recreating the single degree of freedom system in

MATLAB Simulink, which would require the transfer function previously established in

equation (2.13) to accurately model the motor in the hardware setup. To simulate the transfer

function, it must be developed into state space form, which allows complex transfer functions to

be reinterpreted as a system of first order differential equations. This can be achieved by

reorganizing the transfer function in the following equations but refer to appendix A for full

derivation.

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ (𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠2 ∙ 𝐽𝑤ℎ𝑒𝑒𝑙 + 𝑏 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙ 𝑏) + 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑘𝑒 ∙ 𝑘𝑡

(3.1)

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠2 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠 + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚

(3.2)

𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠2 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠 + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚

(3.3)

𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠3 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠2 + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑠
(3.4)

Obtaining the state space of the transfer function is done by using the function tf2ss which

requires the coefficients of each order of the s-domain in both the numerator and the

denominator to be inputted into the b and a value of the tf2ss function respectively. From the

function, the outputs are the A, B, C, and D matrices which forms the basis for the state space

system that can be replicated in MATLAB Simulink. These values are

𝐴 = 104 [
−0.1718 −5.4174 0
0.0001 0 0

0 0.0001 0
] (3.5)

𝐵 = [
1
0
0

] (3.6)

20

𝐶 = 104[0 0 1.9932] (3.7)

𝐷 = [0] (3.8)

The state space form can be defined a

𝑑

𝑑𝑡
[

𝑖
�̇�
𝜃

] = 104 [
−0.1718 −5.4174 0
0.0001 0 0

0 0.0001 0
] [

𝑖
�̇�
𝜃

] + [
1
0
0

] 𝑉 (3.9)

𝑦 = 104[0 0 1.9932] [
𝑖
�̇�
𝜃

] (3.10)

 To ensure that the actuator of the system can control all states of the system, it must be

evaluated for controllability. This is achieved by checking if the controllability matrix is a full

rank matrix. The controllability matrix is obtained by

Co = [𝐵 𝐴𝐵 𝐴2𝐵] (3.11)

Co = [
1 −1717 2896320
0 1 −1717
0 0 1

]

𝑑𝑒𝑡(𝐶𝑜) = 104 |
1 −1717 2896320
0 1 −1717
0 0 1

| = 1 (3.12)

The controllability matrix can be determined to be full rank by taking the derivative of the

controllability matrix. If the determinant of the controllability of the matrix is a non-zero value,

then the system is full rank, and thus fully controllable. Taking the determinant of the

controllability matrix, the determinant is equal to 1, thus the system is fully controllable.

 Despite being controllable, the simulated system may not be able to accurately output the

known status of the certain variables. As such, the observability of the system must be

determined. This is achieved in the same manner as the controllability matrix in that the

observability matrix must be full rank or linearly independent. The observability matrix is

obtained by

Ob = [
𝐶

𝐶𝐴
𝐶𝐴2

] (3.13)

Ob = 104 [
0 0 1.9932
0 1.9932 0

1.9932 0 0
]

21

𝑑𝑒𝑡(𝑂𝑏) = 104 |
0 0 1.9932
0 1.9932 0

1.9932 0 0
| = −7.9182 ∙ 1012 (3.14)

The determinant of the observability matrix is a non-zero value; thus, the system is fully

observable.

 While the system is fully observable, the system’s angular displacement from its initial

position is unknown by the system as there is no feedback loop to validate its current position

with respect to the reference frame, thus making this an open-loop system. Provided the system

is programmed to rotate itself to an object 10 degrees away, without a feedback loop to validate

its current angular displacement, the system will continuously rotate as the 10-degree reference

sign will be continuously moving. Below is model and plot of the open-loop system.

Figure 3.1: Open-loop Simulink diagram

Figure 3.2: Open-loop system response

22

3.2 Closed-Loop Stability Analysis

 A feedback loop of the output to the reference signal allows the system to register its angular

displacement for improved tracking performance and allow it to be reclassified as a closed-loop

system. While the feedback loop will allow the system to track its angular displacement relative

to the object, it does so at an incredibly slow rate. Using the reference signal and a time of 10

seconds, the system was not able to reach the reference signal within the given timeframe. A

proportional gain can be used to increase the speed at which the system approaches the tracked

object; however, it will still use the same speed for short distances as well, which would cause

the system to overshoot. To accurately control the system in a timely manner, a PID controller

will be placed in the system. To reach the reference angle as efficiently as possible a PID

controller into the system.

 Proportional-Integral-Derivative (PID) controllers are control loop mechanisms used to

regulate the output of a system to match the desired reference value. The basic form of the PID

system is given by the following equation

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟(𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡) ∙ 𝑑𝑡 + 𝐾𝑑 ∙
𝑑

𝑑𝑡
𝑒𝑟𝑟𝑜𝑟(𝑡) (3.15)

The values of the 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are to be chosen by the user based of their performance preferences.

The 𝐾𝑝 will provide a fixed rate at which the system with rotate. The 𝐾𝑑 increase the speed of

the system based on how much further the reference signal from its current position, thus

increasing the responsiveness of the system. In the case of the single degree of freedom system, a

high 𝐾𝑑 causes the system to overshoot. The 𝐾𝑖 value measures the change in error of the system

and slows down the input, steadying the system. Below is system model with PID controller.

Figure 3.3: Closed-Loop PID controller Simulink diagram

 MATLAB Simulink includes a PID block which an autotune feature that allows users to

adjust the PID values based on the user’s preference for response time and transient behavior.

Tuning the system for maximum possible response time and aggressive behavior provides the

fastest possible response time, but introduces large oscillations in the system as shown in the

diagram below

23

Figure 3.4: PID autotune for maximum speed and aggression

 The PID values chosen for this project emphasizes slow reaction speed and robust behavior.

While not as fast as the previous option, these PID values provide sufficient speed for tracking

objects at roughly half a second as shown below.

24

Figure 3.5: PID autotune for slow speed and stability

The PID values from this configuration are listed below and provides the following tracking

performance

𝐾𝑝 = 15.142

𝐾𝑖 = 14.922

𝐾𝑑 = 0.954

25

Figure 3.6: Simulated PID response vs reference signal

The response of the system, while sufficiently fast, overshoots the reference point, which can

cause issues with the code as the code operates of “if greater than or less than” statements that

could cause the system to jerk violently. This can be mitigated through use of buffers or

deadzones, but this issue could still occur. Adjusting the PID values is still an option but

designing a more accurate controller may be preferable.

 The Linear Quadratic Regulator (LQR) is a modern control theory method based optimizing

performance and cost based on the user’s preferences, often by adjusting the Q and R matrices

which acts as the weighting of the system. Modeling the LQR controller requires the state space

form of the transfer function previously derived in equation (3.9) and (3.10). During the initial

phases of designing the PID and LQR controllers, the transfer function of the system was

incorrectly modeled based on the transfer function derived in equation (2.13). While the equation

is correct, it does not give the correct output as the output of the function is the angular velocity

of the system. This mean that at a reference value of 10, the output of the system would be 10

degrees per second. This in turn would also output incorrect PID and state space controller

values. While this issue can be resolved for the PID controller by placing an integrator

immediately after the transfer function, this method does not work for the LQR controller. Below

is the model of the system using the incorrect transfer function equation (2.13) with an integrator

as well as the system response.

26

Figure 3.7: Initial attempt at LQR controller Simulink diagram

Figure 3.8: Initial attempt LQR response

Any adjustment of the Q and R matrices have no impact on the tracking performance of the

system and further development could not be made with this model of the system. This led to the

reevaluation of the transfer function of the system into what was developed in equation (3.4).

 To retrofit the Simulink model for the transfer function in equation (3.4), the second

integrator before the K loop can be deleted and the input into the tf2ss function can be changed

to match the numerators and denominators of equation (3.4). The Q and R matrices should also

be defined, starting as identity matrix to be configured by the user to meet the design

requirements. An N gain value is placed before the LQR controller to compensate for the weak

reference signal. Below is system model with LQR controller recreated in MATLAB Simulink as

well as the LQR controller’s response at Q being equal to the identity matrix and R being equal

to 1.

27

Figure 3.9: LQR controller Simulink diagram

Figure 3.10: LQR response Q = identity matrix and R = 1

The Q and R matrices will be set to identity matrices as starting points and from initial testing,

changing the values of R and the first and second eigenvalues of Q have little to no effect on the

system. Changing the third eigenvalue of Q to 1011 decreases the time it takes for the system to

stabilize as shown in Figure 3.11 below.

28

Figure 3.11: LQR response Q = modified matrix and R = 1

While the controller was able to stabilize relatively quickly, it could not achieve the desired

reference value. This situation is called the steady-state error and may be caused by the reference

signal being appropriate scaled compared to the state values. This can be remedied by

implementing a pre-compensator after the reference signal. After implementing the pre-

compensator appropriate gain value N of 15.867 to the reference signal, the LQR can

successfully track the reference signal at various values.

29

Figure 3.12: LQR response Q = modified matrix and R = 1 and N = 15.867

 Comparing the two controllers show that the LQR controller does not overshoot compared to

the PID controller; however, the LQR will require more accurate analysis of the model to

provide the correct gain values.

Figure 3.13: LQR and PID Simulink Diagram

30

Figure 3.14: PID vs LQR controller response

31

Chapter 4: Development

 While the core components of the satellite have been established, the satellite will require

miscellaneous hardware to obtain and process the data. These pieces of hardware will only

include the electronic components, which will all be powered by a 11.1V lithium-polymer

battery. The L298N motor driver used for the motor has a supply voltage that allows current

from to battery to power the support hardware.

4.1 Microcontroller

 The voltage in the motor transfer function denotes the input signal sent from the main

computer of this system, which is an Arduino microcontroller. A microcontroller is used for

directly interfacing hardware and executing simple code interpreted in its firmware. The specific

Arduino model chosen for this project is the KEYESTUDIO Mega Plus 2560 R3 Board, which is

a clone of the Arduino Mega 2560 R3. This clone has 2 ampere output, allowing it to operate

more sensors than the original. As satellites requires data compression and communication with

ground base, an alternative computational framework may be required as the Arduino Integrated

Development Environment platform is not equipped to handle multiple programs. The Raspberry

Pi is a microcomputer with its own processor that can run multiple complex programs. While the

Raspberry Pi has more processing power than the Arduino, its lacks the analog input/output

capabilities needed to control the motor speed. A combination of both may be required for

hardware management and software control. This would require additional programming and

system integration that is beyond the given timeframe of this project, which requires only

accurate modeling of the tracking performance of the system. However, commercially available

microcontrollers and microcomputers may not be functional in space due to the high amounts of

ionizing radiation, which imparts high amounts of energy into the electronics that could affect

the signals or even permanently damage the transistors [21]. This can be mitigated by effective

shielding using a radiation-resistance casing or a process called radiation hardening. This is

achieved by changing the material of the electronic components to something that can resist

radiation, as well as changing the transistor design to be less sensitive to noise. For Technology

Readiness Level 6, which is a system prototype demonstration in a ground environment, the

various subsystems will not take into consideration radiation resistance. When the system is

retrofitted for spaceflight, the hardware will be re-evaluated for radiation resistance and the

dynamics of the system will be adjusted.

4.2 Object Tracking Camera System

The tracking of this system operates by taking input from the camera system and feeding it

through a closed-loop system to minimize the error between the center of view of the camera and

the location of the tracked object. This camera system consists of a camera connected to a

computer running a specialized algorithm that recognizes image patterns programmed by the

user. In the field of computer vision, there are currently three design options available for this

project:

32

● Commercially available computer vision devices

● Open-source computer vision programs

● Developing computer vision software

Of the three options, developing computer vision software from scratch would be the most

unrealistic. While this method would theoretically allow for most customizability and there are

guides on achieving accurate tracking, this is well beyond the scope of the field of aerospace

engineering. The purpose of this project is to just identify and track debris by using the dynamics

of the reaction wheel to keep the object at the camera’s center of focus. As such, developing a

computer vision code from the ground up would be extremely time-inefficient for this project.

While open-source computer vision programs and supplementary tutorials are readily available

that would provide a relatively high degree of customizability regarding object segmentation

programming and camera specifications, they also fall outside the realm of aerospace

engineering. However, this option will be reevaluated for integration with space-grade cameras.

Currently, this project will be utilizing a commercially available computer vision device known

as the Pixy2, primarily for its ease of setup and efficient tracking. This unit can be connected to a

Raspberry Pi microcomputer or an Arduino microcontroller. Currently, the effective range of the

object detection is 4 feet which can be extended with fine-tuning of the object identification. The

Pixy2 Camera unit would be fixed to one end of the main body, which will be considered the X-

axis of the body frame and will be aligned with the beam of the laser system. This would allow

the beam from the laser and the center of view of the camera to remain relatively close to each

other and minimize the hardware adjustments needed for the beam and the center of view to

converge. The camera unit can be preprogrammed to detect certain objects before operation,

which would require the camera to be connected to a computer as demonstrated below.

Figure 4.1: Pixy2 camera unit

33

Figure 4.2: Live video feed

Figure 4.3: Selecting object to be detected

34

Figure 4.4: Segmentation of object

Figure 4.5: Effective max range of object tracking without tuning

 In its default setting after initial setup of cataloging the tracked object, the Pixy2 camera may

register numerous false positives. This can be remedied by configuring the camera settings and

maximizing the block filtering, which allows for accurate readings of the tracked objects at the

cost of increasing the response time of the camera. However, from testing, the increased

response time is negligible.

35

4.3 Inertial Measurement Unit

 To test the validity of the simulations, comparisons will be made between the simulations

and the tests performed on the physical system. This will require a device that can measure the

system’s change in the yaw direction relative to its initial position. The GY-521 Inertial

Measurement Unit will be used to measure the system’s angular velocity and relative angular

displacement but directly connecting the GY-521 to the Arduino will only yield raw unreadable

data. Specialized libraries called the “I2Cdev” and the “MPU6050” by Jeff Rowberg would need

to be installed in the user’s Arduino IDE program to allow the GY-521 to access the Arduino’s

serial clock and data lines [22]. The MPU6050_DMP6 example would provide the function

necessary to convert the raw data into roll, pitch, and yaw in degrees. One issue that arose and

was acknowledged by the developer was the lack of validation of the yaw angle as the yaw

provided from the code will drift over time with no means to correct with. The software will set

the location of its initial activation as reference point but will not have means to validate the

angular displacement. This can be corrected by using a 9-degree of freedom IMU as this IMU

will have access to a magnetometer. This device will use earth’s magnetic field as a reference

frame to validate its yaw position; however, the code would need to be modified to incorporate

this device. For short-term testing, the GY-521 IMU will provide sufficient feedback of the

angular displacement of the system. As the system activates, the IMU sensor will take its initial

orientation as its zero point and further movement of the system will be indicated in the code. To

validate the tracking performance, the IMU sensor will be aligned directly behind the camera to

provide feedback of the system’s yaw movement.

36

Chapter 5: Hardware Test

5.1 Arduino Code Process

 As the system utilizes an Arduino microcontroller, the code for the system will be based on

Arduino IDE. This section will explain the functionality and logic behind the code. Parts of the

code have been based on guides made publicly available by users on GitHub. This project is

done for educational purposes and no profits have been made from this endeavor. The process

behind this code is based on “if/else” logic statements regarding the position of the ball relative

to the camera’s center of view. The relative ball location will be fed to the microcontroller where

if it exceeds a buffer area called the deadzone, the motors will activate to decrease the distance

between the center of the ball and the center of view of the camera until the distance is below

that of the specified deadzone. Below is a flowchart diagram of the process behind the code.

Figure 5.1: PID controller flowchart

37

 The camera system used for this satellite is the Pixy2 Camera, in which the developers have

posted documentation and code for on their website [23]. For organizational purposes, the

section of the code that operates the logic of the camera system will be placed in a function at the

end of the code. After installing the necessary libraries into Arduino IDE and configuring the

camera to track a specific object, the code can activate the Pixy2 by calling pixy.ccc.getBlocks(),

which grabs any objects listed in the camera’s database and places a box around them. Due to the

camera ratio, this will return a value from 0 to 320 along the horizontal axis, which accounts for

a field of view of approximately 60 degrees. This can be normalized from -160 to 160 by using

the map function, which allow the center of view of the camera to be considered the 0 point to be

utilized later by the deadzone feature. Once mapped, anytime the camera detects the desired

object, it will output a value from -160 to 160 from this function to the main block of code.

 The value obtained from the camera system will be placed in the void loop block, which will

perform its assigned function continuously. To avoid unnecessary spinning of the satellite, the

command pixy.ccc.getBlocks() will be used to activate the camera to detect any objects that were

listed in its database. If there are no objects detected, no signal should be sent to the motor. This

can be achieved by using the conditional requirement command “if (!pixy.ccc.numBlocks)”,

followed by digitalWrite(out_B_IN4,LOW), digitalWrite(out_B_IN3,LOW),

analogWrite(out_B_PWM,0). The digitalWrite commands sets both motor polarity to LOW

meaning that the corresponding voltage is set to 0. The analogWrite command is used to write

the signal to the motor driver that ranges from 0 to 255. If the object is detected but in in the

center of view, the system will change one of the motor polarities to HIGH, so that current is

able to flow through the voltage differential. The value of the analogWrite command will be

determined by the PID function. While there are many PID libraries on Arduino, the PID library

used in this system is by Brett Beauregard who based the PID on this equation established in the

Closed-Loop Dynamic Model Stability Analysis [24].

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟(𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡) ∙ 𝑑𝑡 + 𝐾𝑑 ∙
𝑑

𝑑𝑡
𝑒𝑟𝑟𝑜𝑟(𝑡) (5.1)

This function requires the users to set values for the Input, Output, and Setpoint as well as input

the 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values, in which the values obtained from the MATLAB Simulink autotune

can be used. The Setpoint is the value that the PID is attempting to achieve, which will be 0 or

the center of the camera. Using the value of the distance between the centerline and the object as

the Input, the difference between them will be the error that the PID will solve. The error is

calculated as the Setpoint minus the Input. Due to the 8-bit binary value of the Arduino, the

values of Output only range from 0 to 255. If the Input is a positive value, the error would be

calculated as a negative value, which the Output would consider as 0. This results in the motor

not spinning a certain direction. This can be remedied by placing setting Input = -Input, which

turns the error into the positive value, allowing the PID’s Output variable to be a value from 0 to

255 depending on the object’s distance from the center of view of the camera.

 As the center of view of the camera approaches the object, the signal received from the PID

will continue to decrease. However, due to the fluctuations in the object detection as well as the

movement of the satellite, the PID might send signal to the system that would cause the satellite

to overshoot for the object and become unstable. To prevent this, offset boundaries, called

deadzones, will be set to the sides of the center of view of the camera system. These deadzones

serve as a switch for the PID, by which, should the view of the camera be focused on an object at

38

an acceptable point that the user considers, the switch will cease all motor function until the

tracked object moves again. From the Pixy2 camera’s documentation, its horizontal view range

is 320 units in the system, which is approximately 60 degrees. The deadzone will account for 10

percent of the total field of view, which is roughly 6 degrees or 32 units. The loop logic of the

code operates under if else statements. If the camera detects an object, it will send its position

relative to the camera’s center of view as the Input to the microcontroller. If the Input is greater

than the deadzone, that means that it is too far to the right and the system must spin to the right.

If the Input is less than the negative deadzone, that means that it is too far to the left and the

system must spin to the left. If the Input is directly in front of the camera, then the motor ceases

operation until the Input shifts out of the deadzone range.

 In the previously mentioned GY-521 library by Jeff Rowberg in the Inertial Measurement

Unit, an example code is included that allows the user to customize the packets to output certain

variables [23]. Of those variables are the yaw, pitch and roll which are included in the packet

“OUTPUT_READABLE_YAWPITCHROLL”. Activating the example code in Arduino’s serial

monitor prompts the user to type any character in the command window to begin the reading of

the IMU sensor. The software that will be used to record the IMU sensor is not capable of

sending an input to the Arduino, thus the section of code requiring user input can be deleted. In

the void loop() section, the commands to obtain the roll pitch and yaw can be copied and pasted

into the void setup() section to establish an initial point of reference for the system. A ten second

delay will be placed after this to allow the user to correct the orientation of the system and ready

the testing site.

 Data is normally outputted from the system through Arduino’s serial monitor; however, the

serial monitor does not allow for saving the data in a readable file format. Testing the system will

requires a 3rd party addon named ArduSpreadsheet [25]. This addon acts as a second serial

monitor that allows the user to save data as a CSV file which can also be read as an XLSX file

which is readable on Microsoft Excel.

5.2 Testing and Analysis

 The tracking performance of the physical system will be tested against those of the

MATLAB Simulink model to validate the tracking performance of the controllers. Of the two

controllers, PID controller libraries are more readily available and simpler to implement

compared to the LQR controller. Multiple tests will be conducted in a manner such that human

error is kept to a minimum and the average of these trials will be compared to that of the

controllers designed in the simulations. For the PID controller implemented in Arduino, the

values used for the 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values are 15.142, 14.922, and 0.954 respectively, which are

obtained from the using the autotune feature of the PID block in MATLAB Simulink. The test

will involve the system being placed on top of a large, marked sheet of paper. This sheet will act

as a placemat for the system and will have a centerline through the length of the sheet as well as

another line on one end of the sheet that is tangent to the centerline. The intersection between

these two lines is where the center of the center will be placed. As with the case in the

simulations, the tracked object will be placed 10 degrees from the camera’s center of view,

which is aligned with the placemat’s centerline. Once the system is powered, set on the placemat,

and connected to a computer, The system will wait until a command from the user is sent from

ArduSpreadsheet. Once the user initializes the system from ArduSpreadsheet, the user will have

10 seconds to ensure that the system is aligned with the placemat’s centerline. After the delay,

39

the motors will activate to align the camera with the tracked object. 11 test runs were completed

and compiled where the results were compared to the PID of the simulations.

Figure 5.2: Testing pad

Figure 5.3: ArduSpreadsheet recording

40

Figure 5.4: Experimental vs simulated PID tracking comparison

Figure 5.5: Average experimental vs simulated PID tracking comparison

41

 From the tests, the average of the tests will plateau at roughly 9.48 degrees; the largest

deviation of which comes from test run #7, which stops oscillating at 6.7 degrees but steadily

rises to 7.11 degrees. This steady rise is noticeable in all the tests performed and may be

attributed to the hardware limitations of the GY-521 IMU, which cannot validate the yaw axis

without the use of a magnetometer. The initial oscillations can be attributed to the deadzones

established in the code where upon activation, the system will spin the reaction wheel to face the

tracked object. Once the system’s center of view reaches the deadzone, the Arduino will cease

sending signal to the motor; however, the reaction wheel will continue to spin due to the leftover

angular momentum, causing the system to continue turning past the deadzone. This deadzone

measures 10 percent of the camera’s field of view away from the center of the tracked object,

which is a margin of error of 6 degrees for the deadzone. Video recordings were taken of the

system during the tracking process. Below are still images of the system during the peak of the

oscillation.

Figure 5.6: Experimental oscillation peak 1

42

Figure 5.7: Experimental oscillation peak 2

Once the camera has detected that the system has rotated 6 degrees past the tracked object, the

motor would be activated again to maintain contact with the tracked object. While this may

return the system’s center of view to the object, due to the leftover angular momentum, the

system may continue to spin outside of the deadzone, causing frequent oscillations. Below is plot

of the system response of one of the tests that was nearly able to track the center of the object.

Figure 5.8: Test run 1 vs simulated PID tracking

43

 In the graduate project report, “Design and Testing of a Nanosatellite Simulator Reaction

Wheel Attitude Control System” by Frederic William Long at Utah State University, Long

designed a satellite that has four reaction wheels arranged in a pyramidal configuration [11]. The

purpose of this project is to design an attitude controller for pointing communication antennas

and other instruments using reaction wheels. This system is further developed than that of the

space debris laser sweeper in that it can be controlled along the roll, pitch, and yaw axis using a

PID controller. It differs from the space debris laser sweeper in that it uses Euler angles as

outputs for the roll, pitch, and yaw. The values chosen for the PID are also dependent on the

scalar natural frequency instead of fixed values determined from the MATLAB Simulink

autotune block. In one of the tests performed in the nanosatellite simulator, the yaw axis was

tested by itself to reach a reference point of 90 degrees every 10 seconds. This exact test cannot

be performed by the space debris laser sweeper as it relies on the camera system which as a max

field of view of 60 degrees; however, the tracking response of the reference value can be

compared. In the test plot show below, the measured tracking response does initially oscillate

much like the space debris laser sweeper; however, the overshoot is far smaller at roughly 42%.

The initial overshoot at the roughly 1 second mark to get to 0 is much closer in shape to the

space debris laser sweeper, which the authors measure at 48%. In the benchmarked report, the

methodology for calculating the overshoot was not specified. To compare the results between the

experiment and the benchmark, the overshoot percentage will be based on the percent difference

between the actual displacement to the peak of the oscillation and the intended displacement.

Starting at 120 and reaching the peak of the oscillation at -80, the overshoot percentage is 67%.

Using the same methodology for the experimental data, the overshoot is 80%, meaning that the

initial overshoot of the space debris laser sweeper is comparable that the initial overshoot of the

benchmark as show below.

Figure 5.9: Benchmark tracking response

44

Figure 5.10: Test run 1 vs simulated PID tracking

 Even the test that was able to track the object the closest during steady state included

oscillations during the initial tracking process. This is due to the leftover angular momentum and

the fact that there is no way to directly control the angular displacement of the motor shaft.

Alternate motor choices have been considered but would requires drastically different hardware

and programming. Stepper motors allows for direct control of the motor shaft at the cost of speed

and efficiency, while DC motors with encoders may require additional hardware and software to

regulate the angular velocity of the motor shaft. Alternatively, the PID values can be adjusted to

minimize overshoot, but may come at the cost of response time. A method for modeling the

angular momentum of the reaction wheel may be required to replicate and optimize the tracking

performance of the system.

45

Chapter 6: Conclusions and Future Work

6.1 Completed Work

 The purpose of this project is to design and build a working proof of concept for a space

debris laser sweeper, of which the most important aspect is the ability to detect and track objects

in a low gravity environment to simulate orbit. While modifications will be required for the

hardware to achieve spaceflight, the software is able to perform object tracking in the yaw

direction at speeds comparable to that of the optimized simulations. Assuming the system was

redesigned for gravity gradient stabilization, a second motor controlling the roll or pitch axis can

be added using the same code, albeit with difference values to account for gravity. The camera

system, which was initially thought to be the most difficult aspect during the conception of this

project, was simple to implement due to the developers behind the camera system providing

detailed guides on how to program and interpret data from the camera. Controlling this system

with reaction wheels would require motors more powerful than anything the base Arduino Mega

2560 board can output. The method of mounting the reaction wheel to the motor shaft was also

taken into consideration as most commercially available motors have a shaft that is a straight

cylinder, which could not secure the reaction wheel to the shaft. As such, a 12V brushed DC

motor with a threaded motor shaft was chosen for this system. With the frame, motor, and

reaction wheel chosen, these parts formed the base for the system to be modeled.

 Concurrently with the developing the code for this experiment, the system was also modeled

in MATLAB Simulink to provide simulations of the optimal controller design within the given

constraints. This required accurate modeling of the motor, reaction wheel, and platform until the

final transfer function of the system was established in equation (2.15). Using this transfer

function, the PID and LQR controllers were able to be designed. The values provided from the

PID were implemented into the Arduino code. Using an IMU sensor to measure the angular

displacement of the system, the tracking performance using the PID controller was recorded and

compared to the simulations. While there were oscillations during the initial step of the tracking,

this quickly dampened out and the system was about to track the object with a margin of error of

6 degrees. This margin of error will be an issue for tracking at longer ranges; however, the

camera system may not be able to track objects at those ranges. During the transition to high

technology readiness levels, the hardware will be reevaluated and may be swapped for parts

rated for spaceflight.

6.2 Challenged Faced

 There were several iterations of the transfer function of the system, the most rudimentary of

which is only the conservation of angular momentum equation between the reaction wheel and

the platform. This led to research on the process of converting electrical voltage to angular

velocity. Of the equations that make up the transfer function of a motor, it was difficult to find

information regarding the physical characteristics of the motor, particularly the viscous friction.

Some research reports label the viscous friction as 0 while other reports provide a very small

value for the viscous friction coefficient. This research of the characteristics of motors led to

equation (2.13) being viewed as the transfer function of the system. Unfortunately, it was

discovered that the output of that transfer function was labelled incorrectly as its output is the

angular velocity instead of angular displacement. While this issue could be resolved in the

46

Simulink block diagram by adding an integrator at the end of the transfer function block, this

solution would not work for the LQR block diagram as demonstrated in figure 3.25. To correct

this transfer function, the angular velocity is converted to angular displacement via Laplace

transform, which increases the rank of the system from two to three states as shown in equation

(3.4).
 As mentioned in the analysis of the test section, when the system tracks the object, once the

object falls within range of the camera’s center of view, the Arduino ceases sending signal to the

motor; however, the reaction wheel is still spinning due to leftover angular momentum. This, in

turn, affects the platform and will cause the system to oscillate. There have been measures to

mitigate this by implementing a braking system in the code, which is achieved by briefly

switching the polarities as the object nears the system’s center of view. Unfortunately, this

method proved extremely unreliable as the sudden turn in the opposite direction forces the

platform to turn much farther than anticipated. Results were too inconsistent to make this method

viable. The other optioned being explored now is the used of stepper motors or encoded motors

as these motors have specialized hardware that allow for feedback of the correct angular velocity

of the reaction wheel. In theory, this can be combined with a PID controller to output the

necessary signal to minimize overshoot and prevent oscillations.

6.3 Future Work

 Of the controllers designed for this system, only the PID controller was able to be

implemented and tested due to the vast third-party support for the Arduino. The same cannot be

said for the LQR controller support as LQR controllers are inherently more complex than PID

controllers due to the matrix multiplication involved. As such, there are no LQR controller

libraries available for Arduino, which means one would have to be developed from scratch.

However, if the simulations comparing the two controllers are accurate to the physical tests

conducted, the LQR would have greater tracking potential than that of the PID controller. The

simulations show near instant tracking and no overshoot when it was used which are the biggest

issues when choosing the PID values as demonstrated in the Simulink autotune feature.

Implementing the LQR control system in the microcontroller would involve calculating each

state through an iterative process, similar to how PID calculation are performed, albeit with

multiple values for each iteration as opposed to one. This may require advance computing power

beyond Arduino’s ARM processor. Below is a recreation of what the LQR code operation could

be like.

47

Figure 6.1: LQR controller flowchart

The equations to be used in the microcontroller would be the state equations which were derived

in equation (3.9) and (3.10). Using a discrete time step of 10 milliseconds, the LQR controller

could output the angular displacement, angular velocity, and the current draw from the state

equations for each iteration. Further testing will need to be done to validate this process;

however, if fully realized, this type of controller would be ideal for the space debris laser

sweeper in that it would allow for multiple reaction wheels to be controlled with single

controller, whereas multiple PID controllers would be required for each reactions wheel. This

saves on energy usage which is the main cost function that would be divided amongst the

guidance navigation and control, the laser system, and the computer. While the current PID

48

system is more than capable of tracking objects, the overshoot of the tracking could potentially

lead to the system losing track of objects moving at high speeds. The LQR controller would be

able to take into consideration its current angular velocity and adjust its speed if necessary to

maintain line of the sight of the tracked object.

 Despite the purpose of the laser sweeper being to eliminate space debris using a high-

powered laser, the actual laser will be the last subsystem to be developed in the overall system.

The camera and control subsystems take greater precedence in the development of this satellite.

While computer vision is a rapidly growing field, this analysis was mainly focused on the

control/actuation of the satellite to ensure a high level of accuracy when tracking debris. The

future of this satellite can be expanded upon by figuring out way to implement accurate

controllers such as the LQR controller, as well as improving the camera system that can track

smaller pieces of space debris.

49

References

[1] Hall, L., “The History of Space Debris,” Space Traffic Management Conference, Nov 2014,

pp. 3, retrieved July 2021.

https://commons.erau.edu/cgi/viewcontent.cgi?article=1000&context=stm

[2] Kan, S., “China’s Anti-Satellite Weapon Test,” Congressional Research Service, April 2007,

retrieved October 2021.

https://apps.dtic.mil/sti/pdfs/ADA468025.pdf

[3] Gregory, F., “NASA Safety Standard: Guidelines and Assessment Procedures for Limiting

Orbital Debris,” Office of Safety and Mission Assurance, August 1995, retrieved July 2021.

https://ntrs.nasa.gov/citations/19960020946

[4] Federal Communication Commission, “Mitigation of Orbital Debris in the New Space Age,”

Federal Communication Commission, April 2020, retrieved August 2021.

https://docs.fcc.gov/public/attachments/DOC-363486A1.pdf

[5] Wie, B., “Space Mission Analysis and Design by Wiley Larson and James Wertz,” American

Institute of Aeronautics and Astrodynamics, 2008.

[6] Dunbar, B., “Space Debris and Human Spacecraft,” National Aeronautics and Space

Administrations, May 2021, retrieved July 2021.

https://www.nasa.gov/mission_pages/station/news/orbital_debris.html

[7] Kalinski, M. E., “Hypervelocity impact analysis of International Space Station Whipple and

Enhanced Stuffed Whipple Shields,” Institution Archive of the Naval Postgraduate School, Dec

2004, pp. 7-11, retrieved October 2021.

https://calhoun.nps.edu/bitstream/handle/10945/1233/04Dec_Kalinski.pdf?sequence=1&isAllow

ed=y

[8] Japanese Aerospace Exploration Agency, “Commercial Removal of Debris Demonstration

(CRD2),” Japanese Aerospace Exploration Agency, retrieved October 2021.

https://www.kenkai.jaxa.jp/eng/research/crd2/crd2.html

[9] Shan, M., Guo, J., Gill, E., “Review and Comparison of Active Space Debris Capturing and

Removal Methods,” Progress in Aerospace Sciences, Vol. 80, pp.18-32, January 2016, retrieved

October 2021. https://www.sciencedirect.com/science/article/pii/S0376042115300221

[10] Shuangyan S., Xing J., Chang H. “Cleaning space debris with a space-based laser system”.

Chinese Journal of Aeronautics, Vol. 27, No. 4, pp.805-811, 2014, retrieved October 2021.

https://www.sciencedirect.com/science/article/pii/S1000936114001010#b0005

https://commons.erau.edu/cgi/viewcontent.cgi?article=1000&context=stm
https://apps.dtic.mil/sti/pdfs/ADA468025.pdf
https://ntrs.nasa.gov/citations/19960020946
https://docs.fcc.gov/public/attachments/DOC-363486A1.pdf
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://calhoun.nps.edu/bitstream/handle/10945/1233/04Dec_Kalinski.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream/handle/10945/1233/04Dec_Kalinski.pdf?sequence=1&isAllowed=y
https://www.kenkai.jaxa.jp/eng/research/crd2/crd2.html
https://www.sciencedirect.com/science/article/pii/S0376042115300221
https://www.sciencedirect.com/science/article/pii/S1000936114001010#b0005

50

[11] Chapline, G., Rodriguez, A., Snapp, C., Dorsey, G., Fowler, M., Greene, B., Schneider, W.,

Scott, C., Pessin, M., Butler, J., Sparks, J.S., Bauer, P., Steinetz, B., Stevenson, C., “Thermal

Protection System,” National Aeronautics and Space Administration, retrieved October 2021.

https://www.nasa.gov/centers/johnson/pdf/584728main_Wings-ch4b-pgs182-199.pdf

[12] Long, F., “Design and Testing of a Nanosatellite Simulator Reaction Wheel Attitude

Control System,” Utah State University, Logan, UT, 2014, retrieved August 2021.

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1456&context=gradreports

[13] “DC Motor Speed: System Modeling,” Control Tutorials for MATLAB & Simulink,

retrieved February 2022.

https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModelin

g

[14] Gaeid, K., “Optimal Gain Kalman Filter Design with Dc Motor Speed Controlled

Parameters,” Journal of Asian Scientific Research, 2013, 3(12):1157-1172, retrieved August

2021.

https://archive.aessweb.com/index.php/5003/article/download/3582/5679

[15] Gajamohan, M., Muehlebach, M., Widmer, T., D’Andrea, R., “The Cubli: A Reaction

Wheel Based 3D Inverted Pendulum,” Universidade de Sao Paulo, Universidade Publica Brasil,

San Paulo, Brazil, retrieved October 2021.

http://www.usp.br/ldsv/wp-content/uploads/2017/11/Cubli_ECC2013.pdf

[16] Tzinis, I., “Technology Readiness Level,” National Aeronautics and Space Administration,

Oct 2012, retrieved August 2021.

https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level

[17] “3420 Dual Ball Bearing Long Life DC Motor,” Handson Technology, retrieved September

2021.

https://handsontec.com/dataspecs/motor_fan/XD3420-Motor.pdf

[18] “L298 DUAL FULL-BRIDGE DRIVER,” STMicroelectronics (2000), retrieved September

2021.

https://www.st.com/resource/en/datasheet/cd00000240.pdf

[19] “Toshiba Bi-CD Integrated Circuit Silicon Monolithic T B 6 6 1 2 F N G Driver IC for Dual

DC motor,” Toshiba (2007), retrieved September 2021.

https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf

[20] Fischell, R., “Gravity Gradient Stabilization,” APL Technical Digest, May 1964, retrieved

February 2022.

https://www.jhuapl.edu/Content/techdigest/pdf/APL-V03-N05/APL-03-05-Fischell.pdf

https://www.nasa.gov/centers/johnson/pdf/584728main_Wings-ch4b-pgs182-199.pdf
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1456&context=gradreports
https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
https://archive.aessweb.com/index.php/5003/article/download/3582/5679
http://www.usp.br/ldsv/wp-content/uploads/2017/11/Cubli_ECC2013.pdf
https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
https://handsontec.com/dataspecs/motor_fan/XD3420-Motor.pdf
https://www.st.com/resource/en/datasheet/cd00000240.pdf
https://www.st.com/resource/en/datasheet/cd00000240.pdf
https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf
https://www.jhuapl.edu/Content/techdigest/pdf/APL-V03-N05/APL-03-05-Fischell.pdf

51

[21] Maurer, R., Fraeman, M., Martin, M., Roth, D., “Harsh Environments: Space Radiation

Environment, Effects, and Mitigation,” Johns Hopkins APL Technical Digest, Vol. 28, No. 1,

2008, pp.17-28, retrieved October 2021.

https://www.jhuapl.edu/Content/techdigest/pdf/V28-N01/28-01-Maurer.pdf

[22] Rowberg, J., “i2cdevlib,” Github, retrieved March 2022.

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino

[23] “Arduino Library and API,” PIXY Documentation, Retrieved July 2021.

https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:arduino_api#arduino-library-and-api

[24] Beauregard, B., “Improving the Beginner’s PID – Introduction,” Brett Beauregard Project

Blog, retrieved February 2022.

http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

[25] Luuk, I., “Logging Arduino Serial Output to CVS/Excel (Windows/Mac/Linux),” Circuit

Journal, retrieved March 2022.

https://circuitjournal.com/arduino-serial-to-spreadsheet

https://www.jhuapl.edu/Content/techdigest/pdf/V28-N01/28-01-Maurer.pdf
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino
https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:arduino_api#arduino-library-and-api
http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/
https://circuitjournal.com/arduino-serial-to-spreadsheet

52

Appendices

Appendix A - Derivation of Transfer Functions

The transfer function of a brushed DC motor combines the Kirchhoff’s Voltage Law

equation with the physical impedance of the motor and the torque/current relationship. Below are

the equations involved.

𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (𝐴. 1)

𝜏 = �̇� ∙ 𝜔 ̇ + 𝑏 ∙ 𝜔 (𝐴. 2)

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (𝐴. 3)

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇𝑎 + 𝐸𝑏 (𝐴. 4)

Taking the Laplace Transform of these equations allow for them to be solvable in the s-domain.

𝜏(𝑠) = 𝑘𝑡 ∙ 𝐼𝑎(𝑠) (𝐴. 5)

𝜏(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠) (𝐴. 6)

𝐸𝑏(𝑠) = 𝑘𝑒 ∙ 𝜔(𝑠) (𝐴. 7)

𝑉𝑎(𝑠) = 𝐼𝑎(𝑠) ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙ 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (𝐴. 8)

The torque equations can then be combined, and the current can be isolated.

𝑘𝑡 ∙ 𝐼𝑎(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝐼𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

(𝐴. 9)

The current equation above as well as the back-EMF equation 𝐸𝑏(𝑠) can be used in the

Kirchhoff’s Voltage Law as shown below.

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙
�̇� ∙ 𝑠 ∙ 𝜔(𝑠) + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

+ 𝑘𝑒 ∙ 𝜔(𝑠)

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 + 𝑏

𝑘𝑡

∙ 𝜔(𝑠) ∙ (𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝜔(𝑠)

𝑉𝑎(𝑠) =
(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

𝑘𝑡
∙ 𝜔(𝑠) (𝐴. 10)

As stated in the literature review, 𝑘𝑒 = 𝑘𝑡. As such, the transfer function from the input voltage

into a motor to the angular velocity outputted by the reaction wheel is given by the following

transfer function.

53

𝜔(𝑠)

𝑉𝑎(𝑠)
=

𝑘𝑡

𝑘𝑡(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(𝐴. 11)

The relationship between the angular velocity of the reaction wheel and the platform can be

explained by the conservation of angular momentum.

𝐽𝑤ℎ𝑒𝑒𝑙 × 𝜔𝑤ℎ𝑒𝑒𝑙 = 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 × 𝜔𝑠𝑦𝑠𝑡𝑒𝑚

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
× 𝜔𝑤ℎ𝑒𝑒𝑙 (𝐴. 12)

The angular velocity of the satellite is given by the following transfer function

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(𝐴. 13)

The format of the transfer function in the equation above is only able to output the angular

velocity but can be modified to output angular displacement by replacing it with the derivative of

the angular displacement. Since the transfer function is already in the s-domain, the Laplace

transform of the derivative of the angular displacement can replace the angular velocity in the

transfer function. The s variable can then be transferred to the right-hand side, which increases

the rank of the transfer function from two to three, meaning that the transfer function will output

the signal current, angular velocity and angular displacement.

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑑

𝑑𝑡
𝜃 (𝐴. 14)

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) = 𝜃(𝑠) ∙ 𝑠

𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝑠
(𝐴. 15)

54

Appendix B - MATLAB Code

%Transfer Function of one DOF reaction wheel system
%w_system/V_a = J_wheel/J_system * k_t/((J_wheel*s+b)*(R+L_a*s)+k_t*k_e)

clear all
close all
clc

J_wheel = 0.00331; %kg*m^2 Moment of Inertia of Wheel plus Wheel
J_system = 0.01836; %kg*m^2 Moment of Inertia of System
J_shaft = 0.000084; %kg*m^2 Moment of Inertia of Shaft

k_t = 0.49; %N*m/A Motor Torque Constant
k_e = k_t; %Back EMF Constant

b_v = 0.0000021; %Viscous Friction 0.0000021
r = 2.3; %Ohm Motor Resistance
L_a = 0.001339; %Henry Motor Inductance
V_a = 12; %Volts Applied Voltage

b = [0 0 0 J_wheel*k_t];%*V_a
a = [J_wheel*J_system*L_a J_system*(J_wheel*r+L_a*b_v) J_system*(k_e*k_t+b_v*r)
0];
%{
%incorrect Transfer function
b = [0 0 J_wheel*k_t];%*V_a
a = [J_wheel*J_system*L_a J_system*(J_wheel*r+L_a*b_v) J_system*(k_e*k_t+b_v*r)];
%}

[A,B,C,D] = tf2ss(b,a)

Co = [B A*B (A^2)*B] %Controllability Matrix
Ob = [C;
 C*A;
 C*(A^2)] %Observability Matrix

det(Co)
det(Ob)

E = eig(A)

G = tf(b,a)
GPole = pole(G)

sys = ss(A,B,C,D);
step(sys)

%State-feedback controller design
%tf = 0.1;
tf = 16.3;
dt = 1E-2;

%Using LQR Control Theory

55

%define Q and R Matrices
%start with identity matrix and get respeonse as fast as possible
Q = [1 0 0;
 0 1 0;
 0 0 100000000000];
% Q = (C'*C);
R = 1;

%N = 1; %Error Compensation
N = 15.867; %Error Compensation

K_lqr = lqr(A,B,Q,R)

open_system("PIDvsLQR.slx");
sim("PIDvsLQR.slx");

for i = 1:numel(ans.tout)
 desiredpoint(i) = 1;
end

%{
figure(1)
plot(ans.tout,ans.simout(:,1));
hold on
plot(ans.tout,ans.simout(:,2));
xlabel('Time (sec)');
ylabel('Displacement (degrees)');
title('Incorrect Transfer Function LQR Response');
legend('Reference Point','LQR Response')
%}

figure(2)
plot(ans.tout,ans.simout1(:,1));
hold on
plot(ans.tout,ans.simout1(:,2));
hold on
plot(ans.tout,ans.simout1(:,3));
xlabel('Time (sec)');
ylabel('Magnitude');
title('PID vs LQR Controller');
legend('Reference Point','PID Controller','LQR Controller')
% legend('Reference Point','LQR Controller')
%}

%test run 6
%11 tests done
%roughly 17 seconds

%Physical experiment using IMU sensor to measure the rotational position of the
satellite that's tracking a ball at 10 degrees from
%initial starting point
ExperimentalData = xlsread('testgodknows.xlsx');
t=(0:(16.3/503):16.3)';
TestAvg = mean(ExperimentalData(:,1:5),2);

56

figure(3)
plot(t,ExperimentalData(:,1));
hold on
plot(t,ExperimentalData(:,2));
hold on
plot(t,ExperimentalData(:,3));
hold on
plot(t,ExperimentalData(:,4));
hold on
plot(t,ExperimentalData(:,5));
hold on
plot(t,ExperimentalData(:,6));
hold on
plot(t,ExperimentalData(:,7));
hold on
plot(t,ExperimentalData(:,8));
hold on
plot(t,ExperimentalData(:,9));
hold on
plot(t,ExperimentalData(:,10));
hold on
plot(t,ExperimentalData(:,11));
hold on
plot(ans.tout,ans.simout1(:,2));
xlabel('Time (sec)');
ylabel('Magnitude (deg)');
title('Experimental vs Simulated PID Tracking');
legend('Test Run 1','Test Run 2','Test Run 3','Test Run 4','Test Run 5','Test Run
6','Test Run 7','Test Run 8','Test Run 9','Test Run 10','Test Run 11','Simulated
PID')

figure(4)
plot(t,TestAvg);
hold on
plot(ans.tout,ans.simout1(:,2));
xlabel('Time (sec)');
ylabel('Magnitude (deg)');
title('Average Experimental vs Simulated PID');
legend('Experimental Average','Simulated PID')

figure(5)
plot(t,ExperimentalData(:,1));
hold on
plot(ans.tout,ans.simout1(:,2));
xlabel('Time (sec)');
ylabel('Magnitude (deg)');
title('Experimental vs Simulated PID Tracking');
legend('Test Run 1','Simulated PID')

57

Appendix C - Arduino Code

#include <Pixy2.h>

#include <PID_v1.h>

//refer to the MPU6050_DMP6 example for how it works

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 #include "Wire.h"

#endif

MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

#define INTERRUPT_PIN 2 // use pin 2 on Arduino Uno & most boards

#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)

bool blinkState = false;

// MPU control/status vars

bool dmpReady = false; // set true if DMP init was successful

uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU

uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)

uint16_t packetSize; // expected DMP packet size (default is 42 bytes)

uint16_t fifoCount; // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

Quaternion q; // [w, x, y, z] quaternion container

VectorInt16 aa; // [x, y, z] accel sensor measurements

VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements

VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements

VectorFloat gravity; // [x, y, z] gravity vector

float euler[3]; // [psi, theta, phi] Euler angle container

float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

// ==

// === INTERRUPT DETECTION ROUTINE ===

// ==

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high

void dmpDataReady() {

 mpuInterrupt = true;

}

58

// This is the main Pixy object

Pixy2 pixy;

//variables that we declare

int signature, x, cx, width, cx0;

//motor pin polarity

int out_B_PWM = 13;

int out_B_IN4 = 12;

int out_B_IN3 = 11;

int out_A_IN2 = 10;

int out_A_IN1 = 9;

int out_A_PWM = 8;

//area where object will not move

int deadZone = 32; //10% of 320

double Setpoint; //desired point

double Input; //current position

double Output; //motor speed

//PID VALUES THAT NEED TO BE ADJUSTED

double Kp = 15.14, Ki = 14.92, Kd = 0.95;

//double Kp = 0.53, Ki = 0.01, Kd = 2;

//creates PID instance

PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

void setup()

{

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 Wire.begin();

 Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation

difficulties

 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

 Fastwire::setup(400, true);

 #endif

 Serial.begin(115200);

 while (!Serial);

 Serial.println(F("Initializing I2C devices..."));

 mpu.initialize();

 pinMode(INTERRUPT_PIN, INPUT);

 Serial.println(F("Testing device connections..."));

59

 Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050

connection failed"));

delay(10000);

 // load and configure the DMP

 Serial.println(F("Initializing DMP..."));

 devStatus = mpu.dmpInitialize();

 // supply your own gyro offsets here, scaled for min sensitivity

 mpu.setXGyroOffset(43);

 mpu.setYGyroOffset(19);

 mpu.setZGyroOffset(5);

 mpu.setZAccelOffset(989); // 1688 factory default for my test chip

 // make sure it worked (returns 0 if so)

 if (devStatus == 0) {

 // Calibration Time: generate offsets and calibrate our MPU6050

 mpu.CalibrateAccel(6);

 mpu.CalibrateGyro(6);

 mpu.PrintActiveOffsets();

 // turn on the DMP, now that it's ready

 Serial.println(F("Enabling DMP..."));

 mpu.setDMPEnabled(true);

 // enable Arduino interrupt detection

 Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));

 Serial.print(digitalPinToInterrupt(INTERRUPT_PIN));

 Serial.println(F(")..."));

 attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);

 mpuIntStatus = mpu.getIntStatus();

 // set our DMP Ready flag so the main loop() function knows it's okay to use it

 Serial.println(F("DMP ready! Waiting for first interrupt..."));

 dmpReady = true;

 // get expected DMP packet size for later comparison

 packetSize = mpu.dmpGetFIFOPacketSize();

 } else {

 // ERROR!

 // 1 = initial memory load failed

 // 2 = DMP configuration updates failed

 // (if it's going to break, usually the code will be 1)

 Serial.print(F("DMP Initialization failed (code "));

 Serial.print(devStatus);

 Serial.println(F(")"));

60

 }

 // configure LED for output

 pinMode(LED_PIN, OUTPUT);

 //if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer))

 //{ // Get the Latest packet

 // display Euler angles in degrees

 mpu.dmpGetQuaternion(&q, fifoBuffer);

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

 Serial.print(ypr[0] * 180/M_PI);

 Serial.print("\t");

 Serial.print(ypr[1] * 180/M_PI);

 Serial.print("\t");

 Serial.println(ypr[2] * 180/M_PI);

 Serial.print("\n");

 //}

 delay(3000);

 Setpoint = 0; //camera will try to center on the ball

 pixy.init(); //activates the pixy cam

 myPID.SetMode(AUTOMATIC); //activates PID

 myPID.SetTunings(Kp,Ki,Kd);

 //sending commands to the motor driver

 pinMode(out_B_PWM,OUTPUT);

 pinMode(out_B_IN4,OUTPUT);

 pinMode(out_B_IN3,OUTPUT);

 pinMode(out_A_IN2,OUTPUT);

 pinMode(out_A_IN1,OUTPUT);

 pinMode(out_A_PWM,OUTPUT);

}

void loop()

{

 // if programming failed, don't try to do anything

 if (!dmpReady) return;

 // read a packet from FIFO

 if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer))

 { // Get the Latest packet

 #ifdef OUTPUT_READABLE_YAWPITCHROLL

 // display Euler angles in degrees

 mpu.dmpGetQuaternion(&q, fifoBuffer);

61

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

 //Serial.print("yaw\t");

 //Serial.print("pitch\t");

 //Serial.print("roll\n");

 Serial.print(ypr[0] * 180/M_PI);

 Serial.print("\t");

 Serial.print(ypr[1] * 180/M_PI);

 Serial.print("\t");

 Serial.println(ypr[2] * 180/M_PI);

 Serial.print("\n");

 #endif

 pixy.ccc.getBlocks();

 if (!pixy.ccc.numBlocks)

 {

 digitalWrite(out_B_IN4,LOW);

 digitalWrite(out_B_IN3,LOW);

 analogWrite(out_B_PWM,0);

 }

 if (pixy.ccc.numBlocks)

 {

 Input = pixyCheck();

 //Serial.print(Input);

 if (Input >= -deadZone && Input <= deadZone)

 {

 digitalWrite(out_B_IN4,LOW);

 digitalWrite(out_B_IN3,LOW);

 analogWrite(out_B_PWM,0);

 //Serial.print(" Center ");

 //Serial.print('\n');

 }

 else if (Input > 0)

 {

 //determines polarity of motor

 digitalWrite(out_B_IN4,LOW);

 digitalWrite(out_B_IN3,HIGH);

 Input = -Input; //the PID isnt able to output a negative analog value because the analog

range is from 0 to 255

 //this flips the value so the PID is able to output a positive analog value

 //see PID Bret's equation on his website

http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

62

 //PID caluclate the nessecary speed

 myPID.Compute();

 analogWrite(out_B_PWM,Output);

 //Serial.print(" Spin Right ");

 //Serial.print(Output);

 //Serial.print('\n');

 }

 else if (Input < 0)

 {

 digitalWrite(out_B_IN4,HIGH);

 digitalWrite(out_B_IN3,LOW);

 myPID.Compute();

 analogWrite(out_B_PWM,Output);

 //Serial.print(" Spin Left ");

 //Serial.print(Output);

 //Serial.print('\n');

 }

 }

 }

delay(10);

}

double pixyCheck()

{

 int i;

 // grab blocks!

 pixy.ccc.getBlocks();

 // If there are detected blocks, get info

 if (pixy.ccc.numBlocks)

 {

 for (i=0; i<pixy.ccc.numBlocks; i++)

 {

 //position of bottom left corner of the box

 x = pixy.ccc.blocks[i].m_x;

 //width of the box

 width = pixy.ccc.blocks[i].m_width;

 //center of the box

63

 //cx = (x + (width / 2));

 //this shrinks the range from -1 to 1 and works with the deadzone

 //cx0 = map(cx, 0, 320, -160, 160);

 cx0 = map(x, 0, 320, -160, 160);

 }

 return cx0;

 }

}

