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ABSTRACT 

 
Development of a Space Debris Laser Sweeper 

 
Christopher Le 

 

 As more nations and private entities expand their endeavors into space, this comes with the 

added risk of more miscellaneous hardware being released into orbit. While large debris like 

spent fuel tanks and decommissioned satellites can be tracked and avoided by other spacecraft, 

there are several small pieces of debris that are difficult to be picked up by passive sensors. 

While the impact from this debris may not be as severe, it can still damage critical components 

that would prove detrimental to the lifespan of the spacecraft. This project is intended to actively 

remove the debris from orbit by using a high-power laser to either completely evaporate the 

debris or launch the debris into an exit orbit to burn upon re-entry. A one-dimensional degree of 

freedom prototype has been constructed to analyze the dynamics and control of the system. Once 

the system has been validated for stability and responsiveness, additional degrees of freedom will 

be added. In the MATLAB Simulink diagram, the signal from the camera system will be used as 

the reference signal of the system in which the PID of the system will input a voltage through a 

transfer function to apply angular velocity to the reaction wheel. Through conservation of 

angular momentum, this will apply an angular velocity to the satellite. The position of the 

satellite will be validated by the camera system as well as Inertial Measurement Unit. Tracking 

space debris will require fine motors control, which can be achieved with a controller such as a 

Proportional Integral Derivative controller, or PID. Both the physical setup and the simulations 

use the same PID values to compare and validate the tracking performance. While the physical 

setup displayed steady-state tracking performance mirroring that of the simulations, it produced a 

larger overshoot than that of the simulations which could hinder initial acquisitions of the 

targeted space debris. This occurrence has been compared to the tracking performance of other 

reaction wheel satellite and benchmarked test displayed similar large spikes, meaning that the 

controller for the laser sweeper is comparable to that of other graduate project satellites. As the 

physical setup can roughly match that of the simulations, the tracking performance could be 

further improved by using an LQR controller as simulations show no overshoot when using the 

LQR controller; however, implementation of the LQR controller has not been completed due to 

the complexity involved. The performance gain over the PID controller is unknown, but the PID 

provides adequate tracking performance within the limitations of the hardware setup. 
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Nomenclature 

 

Symbols Definition Units (SI) 

(∗)̇  Time Derivative of a variable  

𝜏𝑒 Torque  Foot-pound force (Newton-

meters) 

ℎ Angular Momentum (Kilogram-meters squared per 

second) 

𝐽 Moment of Inertia  

𝜔 Angular Velocity Radians per second 

𝑟 Distance from Center of Mass 

of System to Arbitrary point 

Inches (Meters)  

𝑚 Mass Pounds (Grams)  

𝑣 Linear Velocity Miles per hour (Meters per 

second)  

𝐺 Transformation Matrix  

𝛺 Wheel Velocity Vector  

𝑘𝑡 Torque Constant Foot-pound force per ampere 

(Newton-meters per ampere) 

𝐼𝑎 Current Ampere 

𝑏 Viscous Friction  

𝐸𝑏 Back-EMF Voltage Volt 

𝑘𝑒 Back-EMF Constant  

𝑉𝑎 Supplied Voltage Volt 

𝑅 Motor Resistance ohm 

𝐿𝑎 Motor Inductance Henry 

𝑠 Laplace Transform Integrator  

∗ (𝑠) Laplace Transform Domain  
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Chapter 1: Introduction 
 

1.1  Motivation 
 

In 1978, NASA scientist Donald Kessler theorized a scenario where the density of objects in 

low Earth orbit is high enough such that any collision between these objects would create even 

more debris and further increase the likelihood of subsequent collisions. This would culminate in 

a situation where the entire planet is surrounded by debris, making it impossible for humanity to 

conduct any more space missions. Even the smallest pieces of debris can cause significant 

damage to spacecraft as with the case with the 1983 STS-7 mission, where the Challenger Space 

Shuttle was hit by a 0.2mm paint flake or metal fragment that created a 0.4 mm diameter pit in 

the borosilicate window [1]. This issue is further exacerbated by anti-satellite tests where 

militaries would launch missiles towards satellites to test their intercept capabilities and shatter 

them into hundreds of pieces that spread throughout Earth’s orbit. Depending on the angle and 

altitude that these tests take place in, most of the fragments produced by these tests will have 

relatively short orbit lifespans before reentering Earth’s atmosphere [2]. Even still, this adds to 

the growing list of space debris and is detrimental to future space endeavors. 

 

1.2  Literature Review 
 

This section will cover literature regarding the background of orbital debris and various 

proposed methods to eliminate them. While there have been measures drafted for the active 

removal of space debris, designing space missions from producing debris is more effective for 

the long-term mitigation of space debris. Although NASA requires that their missions minimize 

debris [3], non-government agencies have only recently had preventive measures established by 

the Federal Communication Commission to minimize debris production [4]. According to Space 

Mission Analysis and Design by Wiley Larson and James Wertz, launch processes produce an 

average of three large trackable debris [5]. These include protective shrouds, separation devices, 

and expended rocket bodies. Even after insertion into the final orbit, spacecraft must deploy their 

tools and instruments, which may release miscellaneous hardware into space. Once the 

spacecraft reaches the end of its lifecycle, it should be considered debris and must be removed by 

propulsive maneuvers to put the spacecraft into a disposal orbit or re-entry trajectory. Equipping 

new satellites with an end-of-life de-orbit and orbital lifetime reduction capability is the most 

effective method for minimizing the number of debris produced. While this process minimizes 

space debris production, there are still elements in orbit that could pose a threat to spacecraft in 

the future which would necessitate the use of active debris removal methods.  

There will still be occasions where incoming collisions could happen, and mission designers 

should take into consideration how the spacecraft will react accordingly. As space debris comes 

in all shapes and sizes, these plans will vary from energy-intensive maneuvers to passive 

shielding. NASA and the DOD’s Space Surveillance Network cooperate to characterize satellite 

environments using special ground-based sensors and inspection of returning satellites. As of the 

time of writing this report, there are approximately 27,000 officially cataloged objects in orbit 

that are at least 10 centimeters or 4 inches in diameter [6]. For these objects to be considered an 

imminent threat to manned spacecraft like the International Space Station, they would have to 

have to be in the range of an imaginary box drawn around the spacecraft. This box would 

measure 30 miles across by 30 miles long by 2.5 miles deep and should a tracked object pass 
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close enough for concern, Mission Control Centers in Houston and Moscow work together to 

develop a course of action. When an encounter is known hours in advance, a slight evasive 

maneuver can be performed, known as a “debris avoidance maneuver”. However, this can come 

at the cost of propellant and/or power, which may decrease the lifespan of the mission or direct 

the spacecraft into an unideal orbit. If the tracking data is not precise enough to warrant a 

maneuver or if the close pass isn’t identified in time to make the maneuver, the best course of 

action for manned spacecraft is to move the crew of the station into a spacecraft to protect them 

in case of loss of pressure and life support systems. 

 

1.2.1 Mitigation Methods 

 

 These precautions primarily account for trackable space debris; untrackable pieces of debris 

measuring less than 10 centimeters are much more difficult to be picked up by ground-based 

sensors. NASA estimates that there are at least half a million pieces of debris measuring 1 

centimeter and at least 100 million pieces of debris measuring 1 millimeter. While the impact 

caused by these pieces may not be as significant as their larger counterparts, they can still cause 

considerable damage, especially if vital components are struck. This is where passive protection 

like Whipple shields offers the greatest benefit as spacecraft do not have to actively look for 

space debris and perform preemptive maneuvers, potentially saving resources and offering 

sufficient protection. Whipple shields are thin shields set a certain distance away from the main 

spacecraft that are designed to break up incoming particles and disperse them over a larger area 

[7]. Some Whipple shield designs have fillings to minimize penetration. Despite this advanced 

shielding, it may be not compatible with all systems due to added weight and increased volume, 

thus affecting the restraints of the mission. It also does nothing to actively remove debris from 

the space environment as it only reduces the chances of a critical system failure. 

 Several initiatives have been proposed to eliminate space debris. In particular, the Japanese 

Aerospace Exploration Agency (JAXA) is exploring options to actively remove debris from the 

space environment in their Commercial Removal of Debris Demonstration program. This 

program is split into two phases; the first of which is Key Technology Demonstration which 

involves using satellites to survey debris and obtain its characteristics e.g., rotational motion or 

surface damage [8]. Phase II of this program is focused on Active Debris Removal but has yet to 

be finalized. Due to the variety of space debris, there are several methods of capturing, which are 

generally broken up into two categories: contact and contactless. As contactless capture methods, 

such as Electrostatic Tractor or Gravity Tractor, are primarily considered for asteroid deflection, 

they may not be viable options for debris removal systems [9]. The contact-based removal 

methods often involve a system or arms or entanglement devices for securing the debris. While 

these might be effective solutions for securing depleted thrusters or decommissioned satellites, 

they’re ineffective and unfeasible for smaller pieces of debris as the likelihood of successfully 

capturing them is much slimmer while offering a lower debris yield. 

 High-energy lasers may be the most feasible way to actively remove small debris measuring 

from 1 to 10 centimeters from space. There are two methods in which the laser would be used to 

eliminate debris: Direct Ablation and Ablation Back-jet [10]. Direct Ablation primarily targets 

debris up to 1 centimeter in length and completely incinerates it. The process of Ablation Back-

jet involves targeting debris of more than 1 centimeter in length with a high-energy laser beam. 

The point of impact would superheat the material, causing an increase in pressure at the afflicted 

area. This pressure would expand and exert a reaction force on the rest of the material that would 
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propel the debris into an elliptical orbit trajectory. At the closest point of the orbit to the earth, 

also known as the perigee, if the debris were to be at an altitude less than 200 kilometers, it 

would fall back into the earth’s atmosphere where it will burn up upon reentry. 

 Laser systems also vary in operation; of which, there are four kinds: Solid-state lasers, Liquid 

lasers, Gas lasers, and Semiconductor lasers. Semiconductor lasers are the most abundant in 

everyday life and operate by an electrical current being reflected back and forth between two 

mirrors, leaving only a minor gap. The movement of this current across a Positive-Negative 

Junction generates light that escapes through the hole that can be further focused with lenses. 

Solid-State lasers operate on the same principle except that Solid-State immediately introduces 

ions into a host material such as glass or crystal in a flash tube, which shines light inside the 

system. Two reflective surfaces are placed at the end with only a small opening at one end. The 

light generated inside would reflect back and forth and filter out impurities until all that emitted 

is a uniform beam. Gas and Liquid lasers function the same way as Solid-State, the only 

difference being the medium used in the system. To eliminate small debris, the laser system 

would have to be pulsed as a pulsed laser can deliver its peak energy in an incredibly short time 

frame, evaporating specific parts of a debris piece without heating the entire body. The 

characteristics of the debris are just as important, if not more, than the laser itself. The most 

common materials that are found in orbital debris and micrometeoroids are Aluminum, 

Aluminum Oxide, Steel, and paint chips. These materials, in their various alloys, are the most 

common engineering materials used in space applications, hence their prevalence [6]. While not 

all paint used for space application is the same, common coatings are often composed of a 

borosilicate and aluminum mixture [11]. 

 

1.2.2 Disturbance and Noise Filtering 

 

      For adjusting the orientation of the system, reaction wheels are preferable for small satellites 

with long life cycles as the only resource required to operate them is energy from batteries which 

can also be supplemented with solar panels. The mass of the system is also less prone to drastic 

changes; thus, the dynamics of the system are relatively consistent throughout the lifecycle of the 

spacecraft. Dynamic analyses of small satellites with reaction wheels have been performed in 

various other graduate projects, such as “Design and Testing of a Nanosatellite Simulator 

Reaction Wheel Attitude Control System” by Frederic William Long at Utah State University in 

which a satellite has four reaction wheels arranged in a pyramidal configuration [12]. As the 

system would be isolated in orbit with no significant external forces acting on it, the torque 

provided by the motors would impart angular momenta into the system for orientation. This 

process is described in the following equation. 

𝜏𝑒 = ℎ̇𝑇 = ℎ̇𝑠 + ℎ̇𝑤 (1.1) 

where ℎ𝑠 is the angular momentum of the system, ℎ𝑤 is the angular moment of the wheel, and 𝜏𝑒 

is the total external torque. The angular moment is defined as 

ℎ = 𝐽 × 𝜔 + 𝑟 × 𝑚 ∙ 𝑣 (1.2) 

where 𝐽 is the moment of Inertia, 𝜔 is the angular velocity, r is the distance from the center of 

mass of the system to an arbitrary point about the body, m is the mass of the system, and v is the 

linear velocity of the system. The torque equation can be further expanded upon so that the 
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angular momentum of the wheels rotates about the body frame as opposed to the wheel frame. 

This requires a transformation matrix denoted as 𝐺 to convert the inertia of all four of the wheel 

frames to body frames. The following equation detail the expansion of the torque equation using 

Euler’s rigid body equation. 

𝜏𝑒 = ℎ̇𝑠 + 𝜔 × ℎ𝑠 + ℎ̇𝑤 + 𝜔 × ℎ𝑤 (1.3) 

If each wheel has the same moment of inertia about its axis of rotation, 

ℎ𝑤 = 𝐽𝑤 ∙ 𝜔 + 𝐺 ∙ 𝐽𝑤
𝑤 ∙ 𝛺 (1.4) 

Although these equations may be useful in interpreting the full dynamics of the final 3-degree of 

freedom satellite, outputting an array of the exact angular velocity required may not always be 

possible. To simplify the dynamics of the system, the primary focus will be on the transfer 

function of a single motor to platform relationship. Brushed DC motors use permanent magnets 

and electrical current to spin a shaft, outputting a rated torque which was explained in the above 

equations [13], but can be simplified to 

𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (1.5) 

Where the torque is the product of the given torque constant 𝑘𝑡 of the motor and the electrical current 𝐼𝑎 

flowing through it. While the torque equation and conservation of angular momentum can be used 

to calculate the angular velocity of the platform, doing so ignores other factors that impede the 

performance of the DC motor such as mechanical and electrical limitations. The governing 

equation below is based on Newton’s 2nd law and explains the relationship between torque, 

moment of inertia �̇� and friction 𝑏 of a DC motor. 

𝜏 = �̇� ∙ 𝜔̇ + 𝑏 ∙ 𝜔 (1.6) 

All electrical circuits are subject to Kirchhoff’s voltage law, which states that the sum of all 

voltages of all components in the same loop should sum to 0. While this includes the resistance 

and inductance, it also includes a counter-electromotive force called the back-EMF. This opposes 

the change in current which induced it and is represented by the following equation. 

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (1.7) 

As the back-EMF is proportional to the angular velocity 𝜔 of the shaft spinning in the motor, the 

main constant that needs to be solved for is the Back EMF constant 𝑘𝑒. In the SI unit, the torque 

and voltage constants are equal [14]. 

𝑘𝑡 = 𝑘𝑒 (1.8) 

This allows the previously established torque/mechanical equation and the back-EMF equation 

to be used in Kirchhoff’s voltage law. 

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇𝑎 + 𝐸𝑏 (1.9) 
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These equations will be combined and further expanded upon in a separate section to give the 

full transfer function for a one-dimensional degree of freedom system as the process of deriving 

the dynamics of the system and adding additional degrees is simpler than deriving all functions 

at once. The physical characteristics of the system must also be considered before the full 

derivation of the transfer function. To house the system, a structure must not only be able to 

contain, but also accommodate for supplementary material like the electrical system, 

computational hardware, Guidance, Navigation, and Control, as well as the reactions wheels. 

This assembly must be able to fit in the payload of a launch vehicle as well, which is why the 

skeletal structure of this system will be of a large cube shape. The reaction wheel-based CubeSat 

design is like that of the Cubli self-balancing cube. It operates three reaction wheels along its 

central axis to balance itself on either its edges or corners [15]. While this design would provide 

an excellent foundation for the equation of motions, it is different in that the space laser system 

would rotate about its center of mass as opposed to the edges or corners under gravity. Deriving 

the Equations of Motion for the structure of the Cube-shaped Space Laser System would require 

more known values like the hardware characteristics. As a steppingstone, a one-dimensional 

degree of freedom system would be used instead to derive the equations of motions of the 

system. Further derivation of this system will be shown in a separate section using the textbook 

“Dynamics of Mechanical, Aerospace, and Biomechanical Systems Angular Momentum, Inertia, 

and Angular velocity”. 

1.3  Outline 
 

The goal of this project is to design and build a satellite capable of detecting certain objects 

and tracking them before vaporizing them with a laser. As of the time of writing this report, the 

Department of Defense’s global Space Surveillance Network (SSN) estimates that there are more 

than 27,000 trackable pieces of orbital debris [6]. However, these are the trackable pieces of 

debris, meaning they are large enough to be picked up by SSN’s sensors, which can track objects 

greater than 10 cm at Low-Earth Orbit. The SSN estimates there may be millions of untrackable 

orbital debris that could wreak havoc on any spacecraft without the proper protection. Compared 

to other methods of space debris removal such as Electrodynamic Tethers and Nets, which are 

more feasible for larger debris [9], lasers seem the most economical for the smaller debris, which 

will cause the most damage to spacecraft. Post mission analysis of the Space Shuttle launches 

has estimated that 37% of all impacts on the spacecraft came from paint chips [7], which will be 

the main target of this satellite.  

The reason why this project specifically targets paint is due to the thermodynamic and 

reflective characteristics of metals over non-metals. This could cause unpredictable reflections 

that would cause serious consequences, like accidentally hitting a satellite or ablating a material 

enough to propel it towards another piece of space debris and causing more destruction. As paint 

chips will come in all shapes and sizes and properties, a uniform object will be used as a stand-in 

for the paint chip until a method of on-the-fly targeting/learning can be achieved. For this 

project, a tennis ball will be used as the stand-in for the paint chip. Ultimately, the ideal goal for 

this project is making target identification as accurate as possible before any destruction which 

will be addressed in the latter section. 

Regarding the construction of the satellite, a Technology Readiness Level of at 6, which is 

the system/subsystem model or prototype demonstration in a relevant environment [16], is ideal 

for the scope of this project as higher levels would be prohibitively expensive. Using as many 
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commercially available parts is best for demonstrating the concept while keeping costs and 

complexity low. Although not strictly a requirement, this project will be in the form of a CubeSat 

for ease of analytical calculations for the dynamics of the system. This will change depending on 

the size of the laser. Commercially available laser rust removal tools are well beyond the size of 

the average CubeSat and may be out of reach without special licensing. As the main objective of 

this project is tracking, the actual power of the laser is irrelevant, which is why a low-power laser 

will be used instead. To maximize the lifespan of the project, momentum wheels will be used to 

orient the satellite in space as opposed to a propulsion system. This will limit the system in that 

tracking fast-moving objects will be near impossible; however, provided a debris field is detected 

in advance, an array of satellites can orient themselves ahead of time and activate the lasers as 

the debris travels through the beams, acting as a net. Depending on the ablation rate of the paint 

chips, the array of satellites can also sweep across a debris field to cover a much larger area. 

Further research on the composition of the space-grade paint is needed as these paint chips may 

not be materially uniform. 

 

Solution methodology 
1. Develop a computational framework for object detection: A method for identifying an 

object from a live video feed is central to this project. There exist commercially available 

options that still require the user to manually teach the hardware to identify the specific 

object; however, camera quality may not be ideal. Stronger computation power and 

machine learning may be required for developing custom tracking software with high-

quality cameras. 

2. Develop code for object tracking: Orientation and control of the satellite will be 

performed by momentum wheels. For a singular axis, code will be developed in Arduino 

IDE with input from the camera to spin the motor about that axis. Depending on the 

programming language used for the camera, software packages can be used to interact 

with the Arduino. A PID system would be implemented first via the provided Simulink 

Autotune feature then be backed by analytical calculations to make movements more 

precise. An inertial measurement unit will operate as the sensor dynamic to feedback 

angular velocity data into a closed-loop system. Additional axes will be integrated into 

the code and Simulink once the singular axis is validated. 

3. Create a skeletal structure for the system: The structure will be of a cube shape and will 

house the electronics suite as well as the motors and the momentum wheels. Once the 

hardware has been installed into the skeleton, hooks will be installed along the Z and Y 

axis to test for the balance of the system. Weights will be placed at certain points of the 

structure to balance the system.  

4. Add a laser and design a heat management system: Adding a high-power laser may prove 

extremely difficult considering the legality of commercially available lasers. As such, a 

basic low-power laser will be used. 

5. Implement additional axes and finalize tuning of PID: As all the necessary hardware has 

been installed, control over the additional axes can be integrated into the system. The PID 

and the weighting of variables can be optimized for responsiveness and stability. 

 

The timeline of this project will span from August of 2021 to May of 2022. The object 

detection aspect is central to this project and software development of this technology will 

demand the most time. As mentioned before, commercially available options exist; however, the 
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range at which these camera software packages can detect objects is extremely poor. Open-

source options for real-time computer vision and will require the use of a micro-computer and 

additional programming.  

Next to the camera and computer selection, the motors are important to the development of 

this project in that, not only do the motors allow for the project to rotate in space, they also 

dictate the size of the satellite itself as the frame has to be built around these motors. The motors 

must be of sufficient torque and speed such that they can spin acrylic momentum wheels fast 

enough for the satellite to spin in response. Regardless of the choice of programming language 

for the camera, the method of controlling the motors will be through Arduino IDE due to the 

number of software packages available for micro-computers to interact with Arduino. The 

analytical dynamics of a one-dimensional degree of freedom system will be used as the basis for 

the MATLAB Simulink closed-loop tracking model, which will also include PID tuning and 

Inertial Measurement Unit feedback. The deadline for developing an analytical code for basic 

motor tracking functions was November 30. Additional degrees of freedom along the X and Y-

Axis may be added when the dynamics about the Z-axis are finalized. 

As the hardware has been selected, the skeleton can be constructed around it. Due to the size 

of high-power motors, the structure will initially be constructed by wood as the system will 

likely exceed the size of most commercial 3D printers. Once the frame has been completed, the 

hardware can be installed, and hooks can be installed along the X, Y, and Z-axis of the system. 

This will allow the system to be freely suspended to test for the balance along an individual axis 

of the final system. If the satellite is not perfectly level, weights can be added to balance the 

system. An aluminum skeleton is also being considered, but this method may require special 

welding not currently available. Further research is required for alternative aluminum structure 

designs. The construction of the skeleton will coincide with the development of the motor 

tracking functions along additional axes and will be completed by Spring of 2022. The rest of 

Spring 2022 was planned to be spent fine-tuning the movement of the satellite with multiple 

reaction wheels; however, the tracking performance of the controller was not satisfactory enough 

to warrant expanding to multiple degrees of freedom. Regarding the laser, a basic low-power 

laser will be used as a stand-in. Commercially available high-power lasers are extremely 

dangerous and specialized training will be required before obtaining and operating any high-

power laser device. 
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Chapter 2: System Design 
 

 Developing the dynamics of the reaction wheel control will require a framework for the 

dynamic model to be based on. While the orienting the satellite will require multiple reaction 

wheels, the initial phase of this project will be focused on achieving sufficient tracking response 

from a singular degree of freedom, particularly the yaw control of the satellite. Once the physical 

controller for the system has a comparable response to that of the optimized simulated controller, 

the controller can be replicated for the pitch and roll actuators of the satellite. The dynamics of 

the system will be based on a physical assembly constructed that will be used in the experimental 

component of this project, which will only include a single reaction wheel and motor situated on 

top of a wooden turntable to simulate freedom of movement along the yaw axis. 

 

2.1  Single-Degree of Freedom System 
 

  A single degree of freedom system is used to establish the accuracy and responsiveness of the 

tracking system, particularly the controller. Additional degrees of freedom will be used with the 

same type of controller for their respective axis. This single degree of freedom system will be 

based on a physical assembly as recreated in the Solidworks figure below. 

 

 
Figure 2.1: Single degree of freedom system model 
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Figure 2.2: Moment of inertia of single degree of freedom system 

 

The wooden platform is situated on top of a fixed ball-bearing stand so that the wooden platform 

can freely rotate along the axis normal to the face of the platform. The platform will also serve as 

the base for the electronics suite that will interface with the 12V DC brushed motor located at the 

center of the wooden platform. The system will orient itself by spinning an acrylic reaction 

wheel affixed to the motor shaft, applying a torque in the opposite direction due to conservation 

of angular momentum. The moment of inertia of the reaction wheel and the motor is given by the 

following Solidworks figure. 
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Figure 2.3: Model of motor shaft and reaction wheel 

 

 
Figure 2.4: Moment of inertia of motor shaft and reaction wheel 
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2.1.1 Platform 

 

 The system is situated on a wooden turntable where a large platform is attached to a fixed 

base via a rotary bearing, allowing the platform to freely rotate about the axis normal to its face.  

This platform measures 15 inches in diameter and 0.75 inches in thickness and weighs 1650 

grams.  

 

 
Figure 2.5: Single degree of freedom experimental setup 

 

An alternate design that was considered is a round wooden plate suspended via a swivel lock as 

shown below.  

 

 
Figure 2.6: Alternate platform design 
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Due to its suspended design, the system will be elevated above the ground which allows a motor 

and reaction wheel to be placed on the underside of the platform. This design would also allow 

for additional motors and reaction wheels to be placed along the pitch and roll axis, enabling 

three degrees of freedom for the system. While this design was initially planned as a base model 

for the project moving forward, it is more susceptible to perturbations that could affect the results 

of testing. As the focus of this project is to optimize the tracking performance of a satellite, the 

ball-bearing turntable will be used as a base model for designing the actuator controllers. Once 

the controllers have comparable performance to that of the simulation, the system will transition 

to this design for multiple degrees of freedom. 

 

2.1.2 Reaction Wheel 

 

  While there are numerous methods for adjusting the orientation of satellites, reactions wheels 

were chosen for this system for its low operational costs and long lifespan due to relying solely 

on electricity to generate enough angular momentum to rotate the body. The reaction wheel used 

in this system is a 12-inch acrylic disc and weighs 240 grams. The disc was purchased from a 

store that specializes in custom polymer pieces, in which they drilled an eight-millimeter hole in 

the center of the disc, which allows it to be held onto the threaded motor shaft with nuts. 

Alternate reaction wheels designs such as aluminum ring discs have been considered; however, a 

larger reaction wheel made of metal would require custom machining that is not immediately 

available. When the system is redesigned for spaceflight, metal ring discs would be preferable 

due to their larger moment of inertia.  

 

2.1.3 Motor and Motor Driver  

 

  While the conservation of angular momentum can be used to explain the momentum 

exchange between the reaction wheel and the platform, obtaining the correct output speed of the 

reaction wheel requires the modeling of the actuator dynamics between the input voltage and the 

output angular velocity of the motor shaft reaction wheel. The motor used in the single degree of 

freedom system is the XD-3420 brushed DC motor with the following specifications [17]: 

 

• Rated Voltage: 12V 

• No-Load Speed: 3500 RPM 

• Rated Current: 400 mA 

• Rated Torque: 0.196 N-m 

• Inductance: 0.001339 Henry 

• Resistance: 2.3 ohm 

• Viscous Friction Coefficient: 0.000002  

 

While the motor can provide the system with the angular momentum required to turn the 

platform, this system will require precise control over the motor speed and direction. Most 

commercially available computers cannot directly interface with these motors due to their large 

power requirements; this can be mitigated by using the L298N H-bridge motor driver. By using 

an external power source such as high voltage batteries, the motor driver will interpret the 

received signal and scale with the power supply to power the motor. The L298N module is a 

generic motor driver that can operate a 12V load as well as power the Arduino unit. Below are 
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the specifications for this motor driver [18]: 

 

• Motor Voltage: 3.2-40V 

● Supply Driver Voltage: 5-35V 

● Supply Driver Current:2A 

● Peak Current: 2A 

● Logic Voltage: 5V 

● Logical Current:0-36mA 

● Maximum Power (W): 25W 

 

  Despite being able to operate the XD3420 motor, one issue that could pose a threat to the 

lifecycle of the satellite was the dangerous amounts of heat being produced from the motor 

driver. A temperature reading of close to 100 degrees Fahrenheit was taken off the L298N motor 

driver during operation. 

 
Figure 2.7: Temperature reading of the L298N motor driver 

 

Alternate motor drivers are being considered, such as the TB6612FNG, which operate on 

modern MOSFETs [19]. Below are the specifications of the TB6612FNG motor driver: 
 

• Motor Voltage: 15V 

● Supply Driver Voltage: 6V 

● Peak Current: 2A 

● Logic Voltage: 5.5V 

● Logical Current: 0.4A 

 

While comparing the specifications of the two motor drivers directly, the L29N seems superior; 

however, the TB6612FNG motor driver has much less power dissipation which should produce 

much less heat. However, as the focus of this project is on the control dynamics of the satellite, 

the motor driver that will be used for the satellite will be the L298N, as implementing the 
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TB6612FNG will require more software development that offer little benefits to the tracking 

performance of the system outside of longer test sample sizes. 

 

2.1.4 Transfer Function 

 

 With the physical characteristics of the platform, wheel, and motor defined, the transfer 

function or actuator dynamics between the platform and the voltage sent from microcontroller 

can be modelled. The actuator dynamics of the system describe the process of converting signal, 

or a certain amount of voltage, into physical motion through a DC motor. As the set-up is a one 

degree of freedom system, there is only one transfer function in which current applied to the 

motor would output an angular velocity onto the platform. This transfer function can be obtained 

by the following equations established in the literature review. 

 

 

 
𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (2.1) 

𝜏 = �̇� ∙ 𝜔 ̇ + 𝑏 ∙ 𝜔 (2.2) 

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (2.3) 

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇̇𝑎 + 𝐸𝑏 (2.4) 

The first step in obtaining the transfer function is to take the Laplace Transform of these four 

equations. This allows complex differential equations to be solvable in the frequency domain or 

s-domain which removes the time dependency from these functions.  

𝜏(𝑠) = 𝑘𝑡 ∙ 𝐼𝑎(𝑠) (2.5) 

 

𝜏(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠) (2.6) 

𝐸𝑏(𝑠) = 𝑘𝑒 ∙ 𝜔(𝑠) (2.7) 

𝑉𝑎(𝑠) = 𝐼𝑎(𝑠) ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙ 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (2.8) 

As the time-domain is no longer a factor, the torque equations (3.5 & 3.6) can be combined, and 

the current can be isolated. 

𝑘𝑡 ∙ 𝐼𝑎(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠) 

 

𝐼𝑎 =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

(2.9) 

 

The current equation (3.9) as well as the back-EMF equation (3.7) can be used in the Kirchhoff’s 

Voltage Law (3.8) as shown below. 
 

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

+ 𝑘𝑒 ∙ 𝜔(𝑠) 
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𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 + 𝑏

𝑘𝑡

∙ 𝜔(𝑠) ∙ (𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝜔(𝑠) 

𝑉𝑎(𝑠) =
(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

𝑘𝑡
∙ 𝜔(𝑠) (2.10) 

As stated in the literature review, 𝑘𝑒 = 𝑘𝑡. As such, the transfer function from the input voltage 

into a motor to the angular velocity outputted by the reaction wheel is given by the following 

transfer function. 

𝜔(𝑠)

𝑉𝑎(𝑠)
=

𝑘𝑡

(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(2.11) 

This transfer function is only concerning the relationship between the voltage input and the 

angular velocity of the reaction wheel; it does not output the angular velocity of the platform. 

The relationship between the angular velocity of the reaction wheel and the platform can be 

explained by the conservation of angular momentum.  

𝐽𝑤ℎ𝑒𝑒𝑙 × 𝜔𝑤ℎ𝑒𝑒𝑙 = 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 × 𝜔𝑠𝑦𝑠𝑡𝑒𝑚 

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
× 𝜔𝑤ℎ𝑒𝑒𝑙 (2.12) 

The angular velocity of the satellite is given by the following transfer function 

 
𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(2.13) 

 

This transfer function will be used as the basis for modeling the simulation in MATLAB 

Simulink. The system will track objects by minimizing the angular displacement between the 

location of tracked object and the viewing axis of the camera system. The format of the transfer 

function in equation (2.13) is only able to output the angular velocity but can be modified to 

output angular displacement by replacing it with the derivative of the angular displacement. 

Since the transfer function is already in the s-domain, the Laplace transform of the derivative of 

the angular displacement can replace the angular velocity in the transfer function. The s variable 

can then be transferred to the right-hand side, which increases the rank of the transfer function 

from two to three, meaning that the transfer function will output the signal current, angular 

velocity and angular displacement. 

 

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑑

𝑑𝑡
𝜃 (2.14) 

 
𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) = 𝜃(𝑠) ∙ 𝑠  

 
𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡
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𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

×
𝑘𝑡

((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝑠
(2.15) 

 

2.2  Two-Degree of Freedom System 
 

Gravity-gradient stabilization is defined as the alignment of one axis of a satellite along the 

earth’s local vertical direction so that the end of the satellite aligned with that axis will always 

face down relative to the surface of the earth. There are two notable benefits associated with this; 

one of which is that this configuration allows for enhanced signal strength for communication 

devices, minimizing the potential lag that may arise when tracking debris. The other is that this 

configuration minimizes reaction wheel usage for stabilization, thereby minimizing energy usage 

[20]. Gravity-gradient stabilization allows for the system to be controlled by only two reaction 

wheels; however, the satellite must be constructed in a manner that allows for this. To achieve 

gravity-gradient stabilization, the inertia of the roll, pitch, and yaw must be influenced to create 

the following yaw and roll constants. 

 

𝐾𝑌 =
𝐼𝑝𝑖𝑡𝑐ℎ − 𝐼𝑟𝑜𝑙𝑙

𝐼𝑦𝑎𝑤
(2.16) 

 

𝐾𝑅 =
𝐼𝑝𝑖𝑡𝑐ℎ − 𝐼𝑦𝑎𝑤

𝐼𝑟𝑜𝑙𝑙

(2.17) 

 
To achieve gravity-gradient stabilization, the system must satisfy the following conditions 

 

𝐾𝑌 < 𝐾𝑅 (2.18) 

 

3 ∙ 𝐾𝑅 + 𝐾𝑌 ∙ 𝐾𝑅 + 1 > 4 ∙ √𝐾𝑌 ∙ 𝐾𝑅 (2.19) 

 

𝐾𝑌 ∙ 𝐾𝑅 > 0 (2.20) 

 

Provided that these conditions were met, this would allow the satellite to be controlled by two 

motors centered on the yaw and roll axis. Using the two degree of freedom system that was been 

previously designed as a base model, the system has been constructed and recreated in 

Solidworks. To ensure the system is balanced along the axis normal to the center of the face of 

the platform, a counterweight it placed opposite to the pitch axis motor.  
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Figure 2.8: Two degree of freedom system model  

 

 
Figure 2.9: Moment of inertia of two degree of freedom system 
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Figure 2.10: Counterweight for two degree of freedom system 

 

 Given the moment of inertias of the yaw and roll of the system, this two degree of freedom 

system design would not satisfy the first and second conditions for gravity gradient stabilization. 

To satisfy the requirements for gravity gradient stabilization, the system would need to be 

modified to increase the moment of inertia of the roll axis by adding mass to the center of the 

face of the platform as well as elongating the material to increase the height of the system. Due 

to the elevated design, testing of this system would require it to be suspended to increased 

freedom of movement at the cost of stability that could interfere with initial testing. As 

previously mentioned, the purpose of this project is to optimize the tracking performance of the 

system and the single degree of freedom system will be used as the base model to optimize 

tracking in the yaw direction before including additional degrees of freedom.  
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Chapter 3: System Modeling and Controller Design 
 

  The tracking performance of the system has two parallel process that will be used to validate 

each other. The experimental process will consist of testing and analyzing the physical setup 

established in the framework layout, while the computational process will recreate the physical 

setup and the test conditions. The results of these processes will be compared to each other to 

validate the accuracy of the simulation, which can then be used to model multiple degrees of 

freedom. 

 

3.1  Open-Loop Stability Analysis 
 

  The computational process involves recreating the single degree of freedom system in 

MATLAB Simulink, which would require the transfer function previously established in 

equation (2.13) to accurately model the motor in the hardware setup. To simulate the transfer 

function, it must be developed into state space form, which allows complex transfer functions to 

be reinterpreted as a system of first order differential equations. This can be achieved by 

reorganizing the transfer function in the following equations but refer to appendix A for full 

derivation. 

 
𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ (𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠2 ∙ 𝐽𝑤ℎ𝑒𝑒𝑙  + 𝑏 ∙ 𝑅 +  𝐿𝑎 ∙ 𝑠 ∙ 𝑏) + 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑘𝑒 ∙ 𝑘𝑡

(3.1) 

 
𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠2 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠 + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚

(3.2) 

 
𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠2 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠 + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚

(3.3) 

 
𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑘𝑡

(𝐽
𝑠𝑦𝑠𝑡𝑒𝑚

∙ 𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝐿𝑎) ∙ 𝑠3 + ((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑅 + 𝐿𝑎 ∙ 𝑏) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚) ∙ 𝑠2  + (𝑏 ∙ 𝑅 + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑠
(3.4) 

 

Obtaining the state space of the transfer function is done by using the function tf2ss which 

requires the coefficients of each order of the s-domain in both the numerator and the 

denominator to be inputted into the b and a value of the tf2ss function respectively. From the 

function, the outputs are the A, B, C, and D matrices which forms the basis for the state space 

system that can be replicated in MATLAB Simulink. These values are 

 

𝐴 = 104 [
−0.1718 −5.4174 0
0.0001 0 0

0 0.0001 0
] (3.5) 

 

𝐵 = [
1
0
0

] (3.6) 
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𝐶 = 104[0 0 1.9932] (3.7) 

 

𝐷 = [0] (3.8) 

 

The state space form can be defined a 

 

𝑑

𝑑𝑡
[

𝑖
�̇�
𝜃

] = 104 [
−0.1718 −5.4174 0
0.0001 0 0

0 0.0001 0
] [

𝑖
�̇�
𝜃

] + [
1
0
0

] 𝑉 (3.9) 

 

𝑦 = 104[0 0 1.9932] [
𝑖
�̇�
𝜃

] (3.10) 

 

    To ensure that the actuator of the system can control all states of the system, it must be 

evaluated for controllability. This is achieved by checking if the controllability matrix is a full 

rank matrix. The controllability matrix is obtained by  

 

Co =  [𝐵 𝐴𝐵 𝐴2𝐵] (3.11) 

 

Co =  [
1 −1717 2896320
0 1 −1717
0 0 1

] 

 

𝑑𝑒𝑡(𝐶𝑜) = 104 |
1 −1717 2896320
0 1 −1717
0 0 1

| = 1 (3.12) 

 

The controllability matrix can be determined to be full rank by taking the derivative of the 

controllability matrix. If the determinant of the controllability of the matrix is a non-zero value, 

then the system is full rank, and thus fully controllable. Taking the determinant of the 

controllability matrix, the determinant is equal to 1, thus the system is fully controllable.  

  Despite being controllable, the simulated system may not be able to accurately output the 

known status of the certain variables. As such, the observability of the system must be 

determined. This is achieved in the same manner as the controllability matrix in that the 

observability matrix must be full rank or linearly independent. The observability matrix is 

obtained by 

 

Ob =  [
𝐶

𝐶𝐴
𝐶𝐴2

] (3.13) 

 

Ob =  104 [
0 0 1.9932
0 1.9932 0

1.9932 0 0
] 
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𝑑𝑒𝑡(𝑂𝑏) = 104 |
0 0 1.9932
0 1.9932 0

1.9932 0 0
| = −7.9182 ∙ 1012 (3.14) 

 

 

The determinant of the observability matrix is a non-zero value; thus, the system is fully 

observable. 

  While the system is fully observable, the system’s angular displacement from its initial 

position is unknown by the system as there is no feedback loop to validate its current position 

with respect to the reference frame, thus making this an open-loop system. Provided the system 

is programmed to rotate itself to an object 10 degrees away, without a feedback loop to validate 

its current angular displacement, the system will continuously rotate as the 10-degree reference 

sign will be continuously moving. Below is model and plot of the open-loop system. 

 

 
Figure 3.1: Open-loop Simulink diagram 

 

 
Figure 3.2: Open-loop system response 
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3.2  Closed-Loop Stability Analysis 
 

  A feedback loop of the output to the reference signal allows the system to register its angular 

displacement for improved tracking performance and allow it to be reclassified as a closed-loop 

system. While the feedback loop will allow the system to track its angular displacement relative 

to the object, it does so at an incredibly slow rate. Using the reference signal and a time of 10 

seconds, the system was not able to reach the reference signal within the given timeframe. A 

proportional gain can be used to increase the speed at which the system approaches the tracked 

object; however, it will still use the same speed for short distances as well, which would cause 

the system to overshoot. To accurately control the system in a timely manner, a PID controller 

will be placed in the system. To reach the reference angle as efficiently as possible a PID 

controller into the system.  

   Proportional-Integral-Derivative (PID) controllers are control loop mechanisms used to 

regulate the output of a system to match the desired reference value. The basic form of the PID 

system is given by the following equation 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟(𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡) ∙ 𝑑𝑡 + 𝐾𝑑 ∙
𝑑

𝑑𝑡
𝑒𝑟𝑟𝑜𝑟(𝑡) (3.15) 

The values of the 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are to be chosen by the user based of their performance preferences. 

The 𝐾𝑝 will provide a fixed rate at which the system with rotate. The 𝐾𝑑 increase the speed of 

the system based on how much further the reference signal from its current position, thus 

increasing the responsiveness of the system. In the case of the single degree of freedom system, a 

high 𝐾𝑑 causes the system to overshoot. The 𝐾𝑖 value measures the change in error of the system 

and slows down the input, steadying the system. Below is system model with PID controller. 

 

 
Figure 3.3: Closed-Loop PID controller Simulink diagram 

 

 MATLAB Simulink includes a PID block which an autotune feature that allows users to 

adjust the PID values based on the user’s preference for response time and transient behavior. 

Tuning the system for maximum possible response time and aggressive behavior provides the 

fastest possible response time, but introduces large oscillations in the system as shown in the 

diagram below 
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Figure 3.4: PID autotune for maximum speed and aggression 

 

 The PID values chosen for this project emphasizes slow reaction speed and robust behavior. 

While not as fast as the previous option, these PID values provide sufficient speed for tracking 

objects at roughly half a second as shown below. 
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Figure 3.5: PID autotune for slow speed and stability 

 

The PID values from this configuration are listed below and provides the following tracking 

performance 

 
𝐾𝑝 = 15.142 

 

𝐾𝑖 = 14.922 

 
𝐾𝑑 = 0.954 
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Figure 3.6: Simulated PID response vs reference signal 

 

The response of the system, while sufficiently fast, overshoots the reference point, which can 

cause issues with the code as the code operates of “if greater than or less than” statements that 

could cause the system to jerk violently. This can be mitigated through use of buffers or 

deadzones, but this issue could still occur. Adjusting the PID values is still an option but 

designing a more accurate controller may be preferable. 

  The Linear Quadratic Regulator (LQR) is a modern control theory method based optimizing 

performance and cost based on the user’s preferences, often by adjusting the Q and R matrices 

which acts as the weighting of the system. Modeling the LQR controller requires the state space 

form of the transfer function previously derived in equation (3.9) and (3.10). During the initial 

phases of designing the PID and LQR controllers, the transfer function of the system was 

incorrectly modeled based on the transfer function derived in equation (2.13). While the equation 

is correct, it does not give the correct output as the output of the function is the angular velocity 

of the system. This mean that at a reference value of 10, the output of the system would be 10 

degrees per second. This in turn would also output incorrect PID and state space controller 

values. While this issue can be resolved for the PID controller by placing an integrator 

immediately after the transfer function, this method does not work for the LQR controller. Below 

is the model of the system using the incorrect transfer function equation (2.13) with an integrator 

as well as the system response.  

 



26 

 

 
Figure 3.7: Initial attempt at LQR controller Simulink diagram 

 

 
Figure 3.8: Initial attempt LQR response  

 

Any adjustment of the Q and R matrices have no impact on the tracking performance of the 

system and further development could not be made with this model of the system. This led to the 

reevaluation of the transfer function of the system into what was developed in equation (3.4). 

  To retrofit the Simulink model for the transfer function in equation (3.4), the second 

integrator before the K loop can be deleted and the input into the tf2ss function can be changed 

to match the numerators and denominators of equation (3.4). The Q and R matrices should also 

be defined, starting as identity matrix to be configured by the user to meet the design 

requirements. An N gain value is placed before the LQR controller to compensate for the weak 

reference signal. Below is system model with LQR controller recreated in MATLAB Simulink as 

well as the LQR controller’s response at Q being equal to the identity matrix and R being equal 

to 1. 
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Figure 3.9: LQR controller Simulink diagram 

 

 
Figure 3.10: LQR response Q = identity matrix and R = 1 

 

The Q and R matrices will be set to identity matrices as starting points and from initial testing, 

changing the values of R and the first and second eigenvalues of Q have little to no effect on the 

system. Changing the third eigenvalue of Q to 1011 decreases the time it takes for the system to 

stabilize as shown in Figure 3.11 below. 
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Figure 3.11: LQR response Q = modified matrix and R = 1 

 

While the controller was able to stabilize relatively quickly, it could not achieve the desired 

reference value. This situation is called the steady-state error and may be caused by the reference 

signal being appropriate scaled compared to the state values. This can be remedied by 

implementing a pre-compensator after the reference signal. After implementing the pre-

compensator appropriate gain value N of 15.867 to the reference signal, the LQR can 

successfully track the reference signal at various values. 
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Figure 3.12: LQR response Q = modified matrix and R = 1 and N = 15.867 

 

 Comparing the two controllers show that the LQR controller does not overshoot compared to 

the PID controller; however, the LQR will require more accurate analysis of the model to 

provide the correct gain values.  

 

 
Figure 3.13: LQR and PID Simulink Diagram 
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Figure 3.14: PID vs LQR controller response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

Chapter 4: Development  
 

 While the core components of the satellite have been established, the satellite will require 

miscellaneous hardware to obtain and process the data. These pieces of hardware will only 

include the electronic components, which will all be powered by a 11.1V lithium-polymer 

battery. The L298N motor driver used for the motor has a supply voltage that allows current 

from to battery to power the support hardware.  

 

4.1  Microcontroller 
 

 The voltage in the motor transfer function denotes the input signal sent from the main 

computer of this system, which is an Arduino microcontroller. A microcontroller is used for 

directly interfacing hardware and executing simple code interpreted in its firmware. The specific 

Arduino model chosen for this project is the KEYESTUDIO Mega Plus 2560 R3 Board, which is 

a clone of the Arduino Mega 2560 R3. This clone has 2 ampere output, allowing it to operate 

more sensors than the original. As satellites requires data compression and communication with 

ground base, an alternative computational framework may be required as the Arduino Integrated 

Development Environment platform is not equipped to handle multiple programs. The Raspberry 

Pi is a microcomputer with its own processor that can run multiple complex programs. While the 

Raspberry Pi has more processing power than the Arduino, its lacks the analog input/output 

capabilities needed to control the motor speed. A combination of both may be required for 

hardware management and software control. This would require additional programming and 

system integration that is beyond the given timeframe of this project, which requires only 

accurate modeling of the tracking performance of the system. However, commercially available 

microcontrollers and microcomputers may not be functional in space due to the high amounts of 

ionizing radiation, which imparts high amounts of energy into the electronics that could affect 

the signals or even permanently damage the transistors [21]. This can be mitigated by effective 

shielding using a radiation-resistance casing or a process called radiation hardening. This is 

achieved by changing the material of the electronic components to something that can resist 

radiation, as well as changing the transistor design to be less sensitive to noise. For Technology 

Readiness Level 6, which is a system prototype demonstration in a ground environment, the 

various subsystems will not take into consideration radiation resistance. When the system is 

retrofitted for spaceflight, the hardware will be re-evaluated for radiation resistance and the 

dynamics of the system will be adjusted. 

 

4.2  Object Tracking Camera System 
 

The tracking of this system operates by taking input from the camera system and feeding it 

through a closed-loop system to minimize the error between the center of view of the camera and 

the location of the tracked object. This camera system consists of a camera connected to a 

computer running a specialized algorithm that recognizes image patterns programmed by the 

user. In the field of computer vision, there are currently three design options available for this 

project:  
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● Commercially available computer vision devices 

● Open-source computer vision programs 

● Developing computer vision software 

 

Of the three options, developing computer vision software from scratch would be the most 

unrealistic. While this method would theoretically allow for most customizability and there are 

guides on achieving accurate tracking, this is well beyond the scope of the field of aerospace 

engineering. The purpose of this project is to just identify and track debris by using the dynamics 

of the reaction wheel to keep the object at the camera’s center of focus. As such, developing a 

computer vision code from the ground up would be extremely time-inefficient for this project. 

While open-source computer vision programs and supplementary tutorials are readily available 

that would provide a relatively high degree of customizability regarding object segmentation 

programming and camera specifications, they also fall outside the realm of aerospace 

engineering. However, this option will be reevaluated for integration with space-grade cameras. 

Currently, this project will be utilizing a commercially available computer vision device known 

as the Pixy2, primarily for its ease of setup and efficient tracking. This unit can be connected to a 

Raspberry Pi microcomputer or an Arduino microcontroller. Currently, the effective range of the 

object detection is 4 feet which can be extended with fine-tuning of the object identification. The 

Pixy2 Camera unit would be fixed to one end of the main body, which will be considered the X-

axis of the body frame and will be aligned with the beam of the laser system. This would allow 

the beam from the laser and the center of view of the camera to remain relatively close to each 

other and minimize the hardware adjustments needed for the beam and the center of view to 

converge. The camera unit can be preprogrammed to detect certain objects before operation, 

which would require the camera to be connected to a computer as demonstrated below. 

 

 
Figure 4.1: Pixy2 camera unit 



33 

 

 
Figure 4.2: Live video feed 

 

 
Figure 4.3: Selecting object to be detected 
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Figure 4.4: Segmentation of object 

 
Figure 4.5: Effective max range of object tracking without tuning 

 

  In its default setting after initial setup of cataloging the tracked object, the Pixy2 camera may 

register numerous false positives. This can be remedied by configuring the camera settings and 

maximizing the block filtering, which allows for accurate readings of the tracked objects at the 

cost of increasing the response time of the camera. However, from testing, the increased 

response time is negligible. 
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4.3  Inertial Measurement Unit 
 

 To test the validity of the simulations, comparisons will be made between the simulations 

and the tests performed on the physical system. This will require a device that can measure the 

system’s change in the yaw direction relative to its initial position. The GY-521 Inertial 

Measurement Unit will be used to measure the system’s angular velocity and relative angular 

displacement but directly connecting the GY-521 to the Arduino will only yield raw unreadable 

data. Specialized libraries called the “I2Cdev” and the “MPU6050” by Jeff Rowberg would need 

to be installed in the user’s Arduino IDE program to allow the GY-521 to access the Arduino’s 

serial clock and data lines [22]. The MPU6050_DMP6 example would provide the function 

necessary to convert the raw data into roll, pitch, and yaw in degrees. One issue that arose and 

was acknowledged by the developer was the lack of validation of the yaw angle as the yaw 

provided from the code will drift over time with no means to correct with. The software will set 

the location of its initial activation as reference point but will not have means to validate the 

angular displacement. This can be corrected by using a 9-degree of freedom IMU as this IMU 

will have access to a magnetometer. This device will use earth’s magnetic field as a reference 

frame to validate its yaw position; however, the code would need to be modified to incorporate 

this device. For short-term testing, the GY-521 IMU will provide sufficient feedback of the 

angular displacement of the system. As the system activates, the IMU sensor will take its initial 

orientation as its zero point and further movement of the system will be indicated in the code. To 

validate the tracking performance, the IMU sensor will be aligned directly behind the camera to 

provide feedback of the system’s yaw movement.  
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Chapter 5: Hardware Test 

 

5.1  Arduino Code Process 
 

 As the system utilizes an Arduino microcontroller, the code for the system will be based on 

Arduino IDE. This section will explain the functionality and logic behind the code. Parts of the 

code have been based on guides made publicly available by users on GitHub. This project is 

done for educational purposes and no profits have been made from this endeavor. The process 

behind this code is based on “if/else” logic statements regarding the position of the ball relative 

to the camera’s center of view. The relative ball location will be fed to the microcontroller where 

if it exceeds a buffer area called the deadzone, the motors will activate to decrease the distance 

between the center of the ball and the center of view of the camera until the distance is below 

that of the specified deadzone. Below is a flowchart diagram of the process behind the code. 

 

 
Figure 5.1: PID controller flowchart 
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 The camera system used for this satellite is the Pixy2 Camera, in which the developers have 

posted documentation and code for on their website [23]. For organizational purposes, the 

section of the code that operates the logic of the camera system will be placed in a function at the 

end of the code. After installing the necessary libraries into Arduino IDE and configuring the 

camera to track a specific object, the code can activate the Pixy2 by calling pixy.ccc.getBlocks(), 

which grabs any objects listed in the camera’s database and places a box around them. Due to the 

camera ratio, this will return a value from 0 to 320 along the horizontal axis, which accounts for 

a field of view of approximately 60 degrees. This can be normalized from -160 to 160 by using 

the map function, which allow the center of view of the camera to be considered the 0 point to be 

utilized later by the deadzone feature. Once mapped, anytime the camera detects the desired 

object, it will output a value from -160 to 160 from this function to the main block of code. 

 The value obtained from the camera system will be placed in the void loop block, which will 

perform its assigned function continuously. To avoid unnecessary spinning of the satellite, the 

command pixy.ccc.getBlocks() will be used to activate the camera to detect any objects that were 

listed in its database. If there are no objects detected, no signal should be sent to the motor. This 

can be achieved by using the conditional requirement command “if  (!pixy.ccc.numBlocks)”, 

followed by digitalWrite(out_B_IN4,LOW), digitalWrite(out_B_IN3,LOW), 

analogWrite(out_B_PWM,0). The digitalWrite commands sets both motor polarity to LOW 

meaning that the corresponding voltage is set to 0. The analogWrite command is used to write 

the signal to the motor driver that ranges from 0 to 255. If the object is detected but in in the 

center of view, the system will change one of the motor polarities to HIGH, so that current is 

able to flow through the voltage differential. The value of the analogWrite command will be 

determined by the PID function. While there are many PID libraries on Arduino, the PID library 

used in this system is by Brett Beauregard who based the PID on this equation established in the 

Closed-Loop Dynamic Model Stability Analysis [24]. 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟(𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡) ∙ 𝑑𝑡 + 𝐾𝑑 ∙
𝑑

𝑑𝑡
𝑒𝑟𝑟𝑜𝑟(𝑡) (5.1) 

This function requires the users to set values for the Input, Output, and Setpoint as well as input 

the 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values, in which the values obtained from the MATLAB Simulink autotune 

can be used. The Setpoint is the value that the PID is attempting to achieve, which will be 0 or 

the center of the camera. Using the value of the distance between the centerline and the object as 

the Input, the difference between them will be the error that the PID will solve. The error is 

calculated as the Setpoint minus the Input. Due to the 8-bit binary value of the Arduino, the 

values of Output only range from 0 to 255. If the Input is a positive value, the error would be 

calculated as a negative value, which the Output would consider as 0. This results in the motor 

not spinning a certain direction. This can be remedied by placing setting Input = -Input, which 

turns the error into the positive value, allowing the PID’s Output variable to be a value from 0 to 

255 depending on the object’s distance from the center of view of the camera.  

 As the center of view of the camera approaches the object, the signal received from the PID 

will continue to decrease. However, due to the fluctuations in the object detection as well as the 

movement of the satellite, the PID might send signal to the system that would cause the satellite 

to overshoot for the object and become unstable. To prevent this, offset boundaries, called 

deadzones, will be set to the sides of the center of view of the camera system. These deadzones 

serve as a switch for the PID, by which, should the view of the camera be focused on an object at 
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an acceptable point that the user considers, the switch will cease all motor function until the 

tracked object moves again. From the Pixy2 camera’s documentation, its horizontal view range 

is 320 units in the system, which is approximately 60 degrees. The deadzone will account for 10 

percent of the total field of view, which is roughly 6 degrees or 32 units. The loop logic of the 

code operates under if else statements. If the camera detects an object, it will send its position 

relative to the camera’s center of view as the Input to the microcontroller. If the Input is greater 

than the deadzone, that means that it is too far to the right and the system must spin to the right. 

If the Input is less than the negative deadzone, that means that it is too far to the left and the 

system must spin to the left. If the Input is directly in front of the camera, then the motor ceases 

operation until the Input shifts out of the deadzone range. 

 In the previously mentioned GY-521 library by Jeff Rowberg in the Inertial Measurement 

Unit, an example code is included that allows the user to customize the packets to output certain 

variables [23]. Of those variables are the yaw, pitch and roll which are included in the packet 

“OUTPUT_READABLE_YAWPITCHROLL”. Activating the example code in Arduino’s serial 

monitor prompts the user to type any character in the command window to begin the reading of 

the IMU sensor. The software that will be used to record the IMU sensor is not capable of 

sending an input to the Arduino, thus the section of code requiring user input can be deleted. In 

the void loop() section, the commands to obtain the roll pitch and yaw can be copied and pasted 

into the void setup() section to establish an initial point of reference for the system. A ten second 

delay will be placed after this to allow the user to correct the orientation of the system and ready 

the testing site. 

 Data is normally outputted from the system through Arduino’s serial monitor; however, the 

serial monitor does not allow for saving the data in a readable file format. Testing the system will 

requires a 3rd party addon named ArduSpreadsheet [25]. This addon acts as a second serial 

monitor that allows the user to save data as a CSV file which can also be read as an XLSX file 

which is readable on Microsoft Excel.  

  

5.2  Testing and Analysis 
 

  The tracking performance of the physical system will be tested against those of the 

MATLAB Simulink model to validate the tracking performance of the controllers. Of the two 

controllers, PID controller libraries are more readily available and simpler to implement 

compared to the LQR controller. Multiple tests will be conducted in a manner such that human 

error is kept to a minimum and the average of these trials will be compared to that of the 

controllers designed in the simulations. For the PID controller implemented in Arduino, the 

values used for the 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values are 15.142, 14.922, and 0.954 respectively, which are 

obtained from the using the autotune feature of the PID block in MATLAB Simulink. The test 

will involve the system being placed on top of a large, marked sheet of paper. This sheet will act 

as a placemat for the system and will have a centerline through the length of the sheet as well as 

another line on one end of the sheet that is tangent to the centerline. The intersection between 

these two lines is where the center of the center will be placed. As with the case in the 

simulations, the tracked object will be placed 10 degrees from the camera’s center of view, 

which is aligned with the placemat’s centerline. Once the system is powered, set on the placemat, 

and connected to a computer, The system will wait until a command from the user is sent from 

ArduSpreadsheet. Once the user initializes the system from ArduSpreadsheet, the user will have 

10 seconds to ensure that the system is aligned with the placemat’s centerline. After the delay, 



39 

 

the motors will activate to align the camera with the tracked object. 11 test runs were completed 

and compiled where the results were compared to the PID of the simulations. 

 

 
Figure 5.2: Testing pad 

 

 
Figure 5.3: ArduSpreadsheet recording 
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Figure 5.4: Experimental vs simulated PID tracking comparison 

 

 
Figure 5.5: Average experimental vs simulated PID tracking comparison 
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 From the tests, the average of the tests will plateau at roughly 9.48 degrees; the largest 

deviation of which comes from test run #7, which stops oscillating at 6.7 degrees but steadily 

rises to 7.11 degrees. This steady rise is noticeable in all the tests performed and may be 

attributed to the hardware limitations of the GY-521 IMU, which cannot validate the yaw axis 

without the use of a magnetometer. The initial oscillations can be attributed to the deadzones 

established in the code where upon activation, the system will spin the reaction wheel to face the 

tracked object. Once the system’s center of view reaches the deadzone, the Arduino will cease 

sending signal to the motor; however, the reaction wheel will continue to spin due to the leftover 

angular momentum, causing the system to continue turning past the deadzone. This deadzone 

measures 10 percent of the camera’s field of view away from the center of the tracked object, 

which is a margin of error of 6 degrees for the deadzone. Video recordings were taken of the 

system during the tracking process. Below are still images of the system during the peak of the 

oscillation.  

 

 
Figure 5.6: Experimental oscillation peak 1 
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Figure 5.7: Experimental oscillation peak 2 

 

Once the camera has detected that the system has rotated 6 degrees past the tracked object, the 

motor would be activated again to maintain contact with the tracked object. While this may 

return the system’s center of view to the object, due to the leftover angular momentum, the 

system may continue to spin outside of the deadzone, causing frequent oscillations. Below is plot 

of the system response of one of the tests that was nearly able to track the center of the object. 

 

 
Figure 5.8: Test run 1 vs simulated PID tracking 
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 In the graduate project report, “Design and Testing of a Nanosatellite Simulator Reaction 

Wheel Attitude Control System” by Frederic William Long at Utah State University, Long 

designed a satellite that has four reaction wheels arranged in a pyramidal configuration [11]. The 

purpose of this project is to design an attitude controller for pointing communication antennas 

and other instruments using reaction wheels. This system is further developed than that of the 

space debris laser sweeper in that it can be controlled along the roll, pitch, and yaw axis using a 

PID controller. It differs from the space debris laser sweeper in that it uses Euler angles as 

outputs for the roll, pitch, and yaw. The values chosen for the PID are also dependent on the 

scalar natural frequency instead of fixed values determined from the MATLAB Simulink 

autotune block. In one of the tests performed in the nanosatellite simulator, the yaw axis was 

tested by itself to reach a reference point of 90 degrees every 10 seconds. This exact test cannot 

be performed by the space debris laser sweeper as it relies on the camera system which as a max 

field of view of 60 degrees; however, the tracking response of the reference value can be 

compared. In the test plot show below, the measured tracking response does initially oscillate 

much like the space debris laser sweeper; however, the overshoot is far smaller at roughly 42%. 

The initial overshoot at the roughly 1 second mark to get to 0 is much closer in shape to the 

space debris laser sweeper, which the authors measure at 48%. In the benchmarked report, the 

methodology for calculating the overshoot was not specified. To compare the results between the 

experiment and the benchmark, the overshoot percentage will be based on the percent difference 

between the actual displacement to the peak of the oscillation and the intended displacement. 

Starting at 120 and reaching the peak of the oscillation at -80, the overshoot percentage is 67%. 

Using the same methodology for the experimental data, the overshoot is 80%, meaning that the 

initial overshoot of the space debris laser sweeper is comparable that the initial overshoot of the 

benchmark as show below. 
 

 
Figure 5.9: Benchmark tracking response 
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Figure 5.10: Test run 1 vs simulated PID tracking 

 

 Even the test that was able to track the object the closest during steady state included 

oscillations during the initial tracking process. This is due to the leftover angular momentum and 

the fact that there is no way to directly control the angular displacement of the motor shaft. 

Alternate motor choices have been considered but would requires drastically different hardware 

and programming. Stepper motors allows for direct control of the motor shaft at the cost of speed 

and efficiency, while DC motors with encoders may require additional hardware and software to 

regulate the angular velocity of the motor shaft. Alternatively, the PID values can be adjusted to 

minimize overshoot, but may come at the cost of response time. A method for modeling the 

angular momentum of the reaction wheel may be required to replicate and optimize the tracking 

performance of the system. 
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Chapter 6: Conclusions and Future Work 
 

6.1  Completed Work 

 

 The purpose of this project is to design and build a working proof of concept for a space 

debris laser sweeper, of which the most important aspect is the ability to detect and track objects 

in a low gravity environment to simulate orbit. While modifications will be required for the 

hardware to achieve spaceflight, the software is able to perform object tracking in the yaw 

direction at speeds comparable to that of the optimized simulations. Assuming the system was 

redesigned for gravity gradient stabilization, a second motor controlling the roll or pitch axis can 

be added using the same code, albeit with difference values to account for gravity. The camera 

system, which was initially thought to be the most difficult aspect during the conception of this 

project, was simple to implement due to the developers behind the camera system providing 

detailed guides on how to program and interpret data from the camera. Controlling this system 

with reaction wheels would require motors more powerful than anything the base Arduino Mega 

2560 board can output. The method of mounting the reaction wheel to the motor shaft was also 

taken into consideration as most commercially available motors have a shaft that is a straight 

cylinder, which could not secure the reaction wheel to the shaft. As such, a 12V brushed DC 

motor with a threaded motor shaft was chosen for this system. With the frame, motor, and 

reaction wheel chosen, these parts formed the base for the system to be modeled. 

  Concurrently with the developing the code for this experiment, the system was also modeled 

in MATLAB Simulink to provide simulations of the optimal controller design within the given 

constraints. This required accurate modeling of the motor, reaction wheel, and platform until the 

final transfer function of the system was established in equation (2.15). Using this transfer 

function, the PID and LQR controllers were able to be designed. The values provided from the 

PID were implemented into the Arduino code. Using an IMU sensor to measure the angular 

displacement of the system, the tracking performance using the PID controller was recorded and 

compared to the simulations. While there were oscillations during the initial step of the tracking, 

this quickly dampened out and the system was about to track the object with a margin of error of 

6 degrees. This margin of error will be an issue for tracking at longer ranges; however, the 

camera system may not be able to track objects at those ranges. During the transition to high 

technology readiness levels, the hardware will be reevaluated and may be swapped for parts 

rated for spaceflight.  

 

6.2  Challenged Faced 

 

 There were several iterations of the transfer function of the system, the most rudimentary of 

which is only the conservation of angular momentum equation between the reaction wheel and 

the platform. This led to research on the process of converting electrical voltage to angular 

velocity. Of the equations that make up the transfer function of a motor, it was difficult to find 

information regarding the physical characteristics of the motor, particularly the viscous friction. 

Some research reports label the viscous friction as 0 while other reports provide a very small 

value for the viscous friction coefficient. This research of the characteristics of motors led to 

equation (2.13) being viewed as the transfer function of the system. Unfortunately, it was 

discovered that the output of that transfer function was labelled incorrectly as its output is the 

angular velocity instead of angular displacement. While this issue could be resolved in the 
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Simulink block diagram by adding an integrator at the end of the transfer function block, this 

solution would not work for the LQR block diagram as demonstrated in figure 3.25. To correct 

this transfer function, the angular velocity is converted to angular displacement via Laplace 

transform, which increases the rank of the system from two to three states as shown in equation 

(3.4). 
  As mentioned in the analysis of the test section, when the system tracks the object, once the 

object falls within range of the camera’s center of view, the Arduino ceases sending signal to the 

motor; however, the reaction wheel is still spinning due to leftover angular momentum. This, in 

turn, affects the platform and will cause the system to oscillate. There have been measures to 

mitigate this by implementing a braking system in the code, which is achieved by briefly 

switching the polarities as the object nears the system’s center of view. Unfortunately, this 

method proved extremely unreliable as the sudden turn in the opposite direction forces the 

platform to turn much farther than anticipated. Results were too inconsistent to make this method 

viable. The other optioned being explored now is the used of stepper motors or encoded motors 

as these motors have specialized hardware that allow for feedback of the correct angular velocity 

of the reaction wheel. In theory, this can be combined with a PID controller to output the 

necessary signal to minimize overshoot and prevent oscillations. 

 

6.3 Future Work 
 

 Of the controllers designed for this system, only the PID controller was able to be 

implemented and tested due to the vast third-party support for the Arduino. The same cannot be 

said for the LQR controller support as LQR controllers are inherently more complex than PID 

controllers due to the matrix multiplication involved. As such, there are no LQR controller 

libraries available for Arduino, which means one would have to be developed from scratch. 

However, if the simulations comparing the two controllers are accurate to the physical tests 

conducted, the LQR would have greater tracking potential than that of the PID controller. The 

simulations show near instant tracking and no overshoot when it was used which are the biggest 

issues when choosing the PID values as demonstrated in the Simulink autotune feature. 

Implementing the LQR control system in the microcontroller would involve calculating each 

state through an iterative process, similar to how PID calculation are performed, albeit with 

multiple values for each iteration as opposed to one. This may require advance computing power 

beyond Arduino’s ARM processor. Below is a recreation of what the LQR code operation could 

be like. 
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Figure 6.1: LQR controller flowchart 

 

The equations to be used in the microcontroller would be the state equations which were derived 

in equation (3.9) and (3.10). Using a discrete time step of 10 milliseconds, the LQR controller 

could output the angular displacement, angular velocity, and the current draw from the state 

equations for each iteration. Further testing will need to be done to validate this process; 

however, if fully realized, this type of controller would be ideal for the space debris laser 

sweeper in that it would allow for multiple reaction wheels to be controlled with single 

controller, whereas multiple PID controllers would be required for each reactions wheel. This 

saves on energy usage which is the main cost function that would be divided amongst the 

guidance navigation and control, the laser system, and the computer. While the current PID 
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system is more than capable of tracking objects, the overshoot of the tracking could potentially 

lead to the system losing track of objects moving at high speeds. The LQR controller would be 

able to take into consideration its current angular velocity and adjust its speed if necessary to 

maintain line of the sight of the tracked object.   

 Despite the purpose of the laser sweeper being to eliminate space debris using a high-

powered laser, the actual laser will be the last subsystem to be developed in the overall system. 

The camera and control subsystems take greater precedence in the development of this satellite. 

While computer vision is a rapidly growing field, this analysis was mainly focused on the 

control/actuation of the satellite to ensure a high level of accuracy when tracking debris. The 

future of this satellite can be expanded upon by figuring out way to implement accurate 

controllers such as the LQR controller, as well as improving the camera system that can track 

smaller pieces of space debris.  
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Appendices 

 

Appendix A - Derivation of Transfer Functions 

 

The transfer function of a brushed DC motor combines the Kirchhoff’s Voltage Law 

equation with the physical impedance of the motor and the torque/current relationship. Below are 

the equations involved. 

 
𝜏 = 𝑘𝑡 ∙ 𝐼𝑎 (𝐴. 1) 

𝜏 = �̇� ∙ 𝜔 ̇ + 𝑏 ∙ 𝜔 (𝐴. 2) 

𝐸𝑏 = 𝑘𝑒 ∙ 𝜔 (𝐴. 3) 

𝑉𝑎 = 𝐼𝑎 ∙ 𝑅 + 𝐿𝑎 ∙ 𝐼̇𝑎 + 𝐸𝑏 (𝐴. 4) 

Taking the Laplace Transform of these equations allow for them to be solvable in the s-domain. 

𝜏(𝑠) = 𝑘𝑡 ∙ 𝐼𝑎(𝑠) (𝐴. 5) 

 

𝜏(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠) (𝐴. 6) 

𝐸𝑏(𝑠) = 𝑘𝑒 ∙ 𝜔(𝑠) (𝐴. 7) 

𝑉𝑎(𝑠) = 𝐼𝑎(𝑠) ∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙ 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (𝐴. 8) 

The torque equations can then be combined, and the current can be isolated. 

𝑘𝑡 ∙ 𝐼𝑎(𝑠) = �̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠) 

 

𝐼𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

(𝐴. 9) 

 

The current equation above as well as the back-EMF equation 𝐸𝑏(𝑠) can be used in the 

Kirchhoff’s Voltage Law as shown below. 
 

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

∙ 𝑅 + 𝐿𝑎 ∙ 𝑠 ∙
�̇� ∙ 𝑠 ∙ 𝜔(𝑠)  + 𝑏 ∙ 𝜔(𝑠)

𝑘𝑡

+ 𝑘𝑒 ∙ 𝜔(𝑠) 

𝑉𝑎(𝑠) =
�̇� ∙ 𝑠 + 𝑏

𝑘𝑡

∙ 𝜔(𝑠) ∙ (𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝜔(𝑠) 

𝑉𝑎(𝑠) =
(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

𝑘𝑡
∙ 𝜔(𝑠) (𝐴. 10) 

As stated in the literature review, 𝑘𝑒 = 𝑘𝑡. As such, the transfer function from the input voltage 

into a motor to the angular velocity outputted by the reaction wheel is given by the following 

transfer function. 
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𝜔(𝑠)

𝑉𝑎(𝑠)
=

𝑘𝑡

𝑘𝑡(�̇� ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(𝐴. 11) 

The relationship between the angular velocity of the reaction wheel and the platform can be 

explained by the conservation of angular momentum.  

𝐽𝑤ℎ𝑒𝑒𝑙 × 𝜔𝑤ℎ𝑒𝑒𝑙 = 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 × 𝜔𝑠𝑦𝑠𝑡𝑒𝑚 

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
× 𝜔𝑤ℎ𝑒𝑒𝑙 (𝐴. 12) 

The angular velocity of the satellite is given by the following transfer function 

 
𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡

(𝐴. 13) 

 

The format of the transfer function in the equation above is only able to output the angular 

velocity but can be modified to output angular displacement by replacing it with the derivative of 

the angular displacement. Since the transfer function is already in the s-domain, the Laplace 

transform of the derivative of the angular displacement can replace the angular velocity in the 

transfer function. The s variable can then be transferred to the right-hand side, which increases 

the rank of the transfer function from two to three, meaning that the transfer function will output 

the signal current, angular velocity and angular displacement. 

 

𝜔𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑑

𝑑𝑡
𝜃 (𝐴. 14) 

 

𝜔𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) = 𝜃(𝑠) ∙ 𝑠  

 
𝜃(𝑠) ∙ 𝑠

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

(𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡
 

 
𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐽𝑤ℎ𝑒𝑒𝑙

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
×

𝑘𝑡

((𝐽𝑤ℎ𝑒𝑒𝑙 ∙ 𝑠 + 𝑏)(𝑅 + 𝐿𝑎 ∙ 𝑠) + 𝑘𝑒 ∙ 𝑘𝑡) ∙ 𝑠
(𝐴. 15) 
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Appendix B - MATLAB Code 

 
%Transfer Function of one DOF reaction wheel system 
%w_system/V_a = J_wheel/J_system * k_t/((J_wheel*s+b)*(R+L_a*s)+k_t*k_e) 
 
clear all 
close all 
clc 
 
J_wheel = 0.00331; %kg*m^2 Moment of Inertia of Wheel plus Wheel 
J_system = 0.01836; %kg*m^2 Moment of Inertia of System 
J_shaft = 0.000084; %kg*m^2 Moment of Inertia of Shaft 
 
k_t = 0.49; %N*m/A Motor Torque Constant 
k_e = k_t; %Back EMF Constant 
 
b_v = 0.0000021; %Viscous Friction 0.0000021 
r = 2.3; %Ohm Motor Resistance 
L_a = 0.001339; %Henry Motor Inductance 
V_a = 12; %Volts Applied Voltage 
 
b = [0 0 0 J_wheel*k_t];%*V_a 
a = [J_wheel*J_system*L_a J_system*(J_wheel*r+L_a*b_v) J_system*(k_e*k_t+b_v*r) 
0]; 
%{ 
%incorrect Transfer function 
b = [0 0 J_wheel*k_t];%*V_a 
a = [J_wheel*J_system*L_a J_system*(J_wheel*r+L_a*b_v) J_system*(k_e*k_t+b_v*r)]; 
%} 
 
[A,B,C,D] = tf2ss(b,a) 
 
Co = [B A*B (A^2)*B] %Controllability Matrix 
Ob = [C; 
      C*A; 
      C*(A^2)] %Observability Matrix 
 
det(Co) 
det(Ob) 
 
E = eig(A) 
 
G = tf(b,a) 
GPole = pole(G) 
 
sys = ss(A,B,C,D); 
step(sys) 
 
%State-feedback controller design 
%tf = 0.1; 
tf = 16.3; 
dt = 1E-2; 
 
%Using LQR Control Theory  
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%define Q and R Matrices 
%start with identity matrix and get respeonse as fast as possible 
Q = [1 0 0; 
    0 1 0; 
    0 0 100000000000]; 
% Q = (C'*C); 
R = 1; 
 
%N = 1; %Error Compensation 
N = 15.867; %Error Compensation 
 
K_lqr = lqr(A,B,Q,R) 
 
open_system("PIDvsLQR.slx"); 
sim("PIDvsLQR.slx"); 
 
for i = 1:numel(ans.tout) 
    desiredpoint(i) = 1; 
end 
 
%{ 
figure(1) 
plot(ans.tout,ans.simout(:,1)); 
hold on 
plot(ans.tout,ans.simout(:,2)); 
xlabel('Time (sec)'); 
ylabel('Displacement (degrees)'); 
title('Incorrect Transfer Function LQR Response'); 
legend('Reference Point','LQR Response') 
%} 
 
figure(2) 
plot(ans.tout,ans.simout1(:,1)); 
hold on 
plot(ans.tout,ans.simout1(:,2)); 
hold on 
plot(ans.tout,ans.simout1(:,3)); 
xlabel('Time (sec)'); 
ylabel('Magnitude'); 
title('PID vs LQR Controller'); 
legend('Reference Point','PID Controller','LQR Controller') 
% legend('Reference Point','LQR Controller') 
%} 
 
 
%test run 6  
%11 tests done 
%roughly 17 seconds 
 
%Physical experiment using IMU sensor to measure the rotational position of the 
satellite that's tracking a ball at 10 degrees from 
%initial starting point 
ExperimentalData = xlsread('testgodknows.xlsx'); 
t=(0:(16.3/503):16.3)'; 
TestAvg = mean(ExperimentalData(:,1:5),2); 
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figure(3) 
plot(t,ExperimentalData(:,1)); 
hold on 
plot(t,ExperimentalData(:,2)); 
hold on 
plot(t,ExperimentalData(:,3)); 
hold on 
plot(t,ExperimentalData(:,4)); 
hold on 
plot(t,ExperimentalData(:,5)); 
hold on 
plot(t,ExperimentalData(:,6)); 
hold on 
plot(t,ExperimentalData(:,7)); 
hold on 
plot(t,ExperimentalData(:,8)); 
hold on 
plot(t,ExperimentalData(:,9)); 
hold on 
plot(t,ExperimentalData(:,10)); 
hold on 
plot(t,ExperimentalData(:,11)); 
hold on 
plot(ans.tout,ans.simout1(:,2)); 
xlabel('Time (sec)'); 
ylabel('Magnitude (deg)'); 
title('Experimental vs Simulated PID Tracking'); 
legend('Test Run 1','Test Run 2','Test Run 3','Test Run 4','Test Run 5','Test Run 
6','Test Run 7','Test Run 8','Test Run 9','Test Run 10','Test Run 11','Simulated 
PID') 
 
figure(4) 
plot(t,TestAvg); 
hold on 
plot(ans.tout,ans.simout1(:,2)); 
xlabel('Time (sec)'); 
ylabel('Magnitude (deg)'); 
title('Average Experimental vs Simulated PID'); 
legend('Experimental Average','Simulated PID') 
 
figure(5) 
plot(t,ExperimentalData(:,1)); 
hold on 
plot(ans.tout,ans.simout1(:,2)); 
xlabel('Time (sec)'); 
ylabel('Magnitude (deg)'); 
title('Experimental vs Simulated PID Tracking'); 
legend('Test Run 1','Simulated PID') 
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Appendix C - Arduino Code 

 

#include <Pixy2.h> 

#include <PID_v1.h> 

 

//refer to the MPU6050_DMP6 example for how it works 

#include "I2Cdev.h" 

#include "MPU6050_6Axis_MotionApps20.h" 

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

    #include "Wire.h" 

#endif 

MPU6050 mpu; 

 

#define OUTPUT_READABLE_YAWPITCHROLL 

 

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards 

#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) 

bool blinkState = false; 

 

// MPU control/status vars 

bool dmpReady = false;  // set true if DMP init was successful 

uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU 

uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error) 

uint16_t packetSize;    // expected DMP packet size (default is 42 bytes) 

uint16_t fifoCount;     // count of all bytes currently in FIFO 

uint8_t fifoBuffer[64]; // FIFO storage buffer 

 

// orientation/motion vars 

Quaternion q;           // [w, x, y, z]         quaternion container 

VectorInt16 aa;         // [x, y, z]            accel sensor measurements 

VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements 

VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements 

VectorFloat gravity;    // [x, y, z]            gravity vector 

float euler[3];         // [psi, theta, phi]    Euler angle container 

float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector 

 

// ================================================================ 

// ===               INTERRUPT DETECTION ROUTINE                === 

// ================================================================ 

 

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high 

void dmpDataReady() { 

    mpuInterrupt = true; 

} 
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// This is the main Pixy object  

Pixy2 pixy; 

 

//variables that we declare 

int signature, x, cx, width, cx0; 

 

//motor pin polarity 

int out_B_PWM = 13; 

int out_B_IN4 = 12; 

int out_B_IN3 = 11; 

int out_A_IN2 = 10; 

int out_A_IN1 = 9; 

int out_A_PWM = 8; 

//area where object will not move 

int deadZone = 32; //10% of 320 

 

double Setpoint; //desired point 

double Input; //current position 

double Output; //motor speed 

 

 

//PID VALUES THAT NEED TO BE ADJUSTED 

double Kp = 15.14, Ki = 14.92, Kd = 0.95; 

//double Kp = 0.53, Ki = 0.01, Kd = 2; 

 

//creates PID instance 

PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT); 

 

void setup() 

{ 

  #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

    Wire.begin(); 

    Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation 

difficulties 

  #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE 

    Fastwire::setup(400, true); 

  #endif 

   

  Serial.begin(115200); 

  while (!Serial); 

  Serial.println(F("Initializing I2C devices...")); 

  mpu.initialize(); 

  pinMode(INTERRUPT_PIN, INPUT); 

 

  Serial.println(F("Testing device connections...")); 
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  Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 

connection failed")); 

 

delay(10000); 

 

  // load and configure the DMP 

  Serial.println(F("Initializing DMP...")); 

  devStatus = mpu.dmpInitialize(); 

 

  // supply your own gyro offsets here, scaled for min sensitivity 

  mpu.setXGyroOffset(43); 

  mpu.setYGyroOffset(19); 

  mpu.setZGyroOffset(5); 

  mpu.setZAccelOffset(989); // 1688 factory default for my test chip 

 

  // make sure it worked (returns 0 if so) 

  if (devStatus == 0) { 

      // Calibration Time: generate offsets and calibrate our MPU6050 

      mpu.CalibrateAccel(6); 

      mpu.CalibrateGyro(6); 

      mpu.PrintActiveOffsets(); 

      // turn on the DMP, now that it's ready 

      Serial.println(F("Enabling DMP...")); 

      mpu.setDMPEnabled(true); 

 

      // enable Arduino interrupt detection 

      Serial.print(F("Enabling interrupt detection (Arduino external interrupt ")); 

      Serial.print(digitalPinToInterrupt(INTERRUPT_PIN)); 

      Serial.println(F(")...")); 

      attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING); 

      mpuIntStatus = mpu.getIntStatus(); 

 

      // set our DMP Ready flag so the main loop() function knows it's okay to use it 

      Serial.println(F("DMP ready! Waiting for first interrupt...")); 

      dmpReady = true; 

 

      // get expected DMP packet size for later comparison 

      packetSize = mpu.dmpGetFIFOPacketSize(); 

  } else { 

      // ERROR! 

      // 1 = initial memory load failed 

      // 2 = DMP configuration updates failed 

      // (if it's going to break, usually the code will be 1) 

      Serial.print(F("DMP Initialization failed (code ")); 

      Serial.print(devStatus); 

      Serial.println(F(")")); 
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  } 

 

  // configure LED for output 

  pinMode(LED_PIN, OUTPUT); 

 

    //if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer))  

    //{ // Get the Latest packet  

            // display Euler angles in degrees 

            mpu.dmpGetQuaternion(&q, fifoBuffer); 

            mpu.dmpGetGravity(&gravity, &q); 

            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); 

            Serial.print(ypr[0] * 180/M_PI); 

            Serial.print("\t"); 

            Serial.print(ypr[1] * 180/M_PI); 

            Serial.print("\t"); 

            Serial.println(ypr[2] * 180/M_PI); 

            Serial.print("\n"); 

    //} 

    delay(3000); 

 

  Setpoint = 0; //camera will try to center on the ball 

   

  pixy.init(); //activates the pixy cam 

  myPID.SetMode(AUTOMATIC); //activates PID 

 

  myPID.SetTunings(Kp,Ki,Kd); 

 

  //sending commands to the motor driver 

  pinMode(out_B_PWM,OUTPUT); 

  pinMode(out_B_IN4,OUTPUT); 

  pinMode(out_B_IN3,OUTPUT); 

  pinMode(out_A_IN2,OUTPUT); 

  pinMode(out_A_IN1,OUTPUT); 

  pinMode(out_A_PWM,OUTPUT); 

} 

 

void loop() 

{  

    // if programming failed, don't try to do anything 

    if (!dmpReady) return; 

    // read a packet from FIFO 

    if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer))  

    { // Get the Latest packet  

        #ifdef OUTPUT_READABLE_YAWPITCHROLL 

            // display Euler angles in degrees 

            mpu.dmpGetQuaternion(&q, fifoBuffer); 
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            mpu.dmpGetGravity(&gravity, &q); 

            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); 

            //Serial.print("yaw\t"); 

            //Serial.print("pitch\t"); 

            //Serial.print("roll\n"); 

            Serial.print(ypr[0] * 180/M_PI); 

            Serial.print("\t"); 

            Serial.print(ypr[1] * 180/M_PI); 

            Serial.print("\t"); 

            Serial.println(ypr[2] * 180/M_PI); 

            Serial.print("\n"); 

        #endif 

 

 

 

        pixy.ccc.getBlocks(); 

        if (!pixy.ccc.numBlocks) 

        { 

          digitalWrite(out_B_IN4,LOW); 

          digitalWrite(out_B_IN3,LOW); 

          analogWrite(out_B_PWM,0); 

        } 

        if (pixy.ccc.numBlocks) 

        { 

          Input = pixyCheck(); 

          //Serial.print(Input); 

          if (Input >= -deadZone && Input <= deadZone) 

          { 

            digitalWrite(out_B_IN4,LOW); 

            digitalWrite(out_B_IN3,LOW); 

            analogWrite(out_B_PWM,0); 

 

            //Serial.print(" Center "); 

            //Serial.print('\n');  

          } 

          else if (Input > 0) 

          { 

            //determines polarity of motor 

            digitalWrite(out_B_IN4,LOW); 

            digitalWrite(out_B_IN3,HIGH); 

 

            Input = -Input; //the PID isnt able to output a negative analog value because the analog 

range is from 0 to 255 

            //this flips the value so the PID is able to output a positive analog value 

            //see PID Bret's equation on his website 

http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/       
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            //PID caluclate the nessecary speed 

            myPID.Compute(); 

 

            analogWrite(out_B_PWM,Output); 

 

            //Serial.print(" Spin Right "); 

            //Serial.print(Output); 

            //Serial.print('\n');        

          } 

          else if (Input < 0) 

          { 

            digitalWrite(out_B_IN4,HIGH); 

            digitalWrite(out_B_IN3,LOW); 

 

            myPID.Compute(); 

       

            analogWrite(out_B_PWM,Output); 

 

            //Serial.print(" Spin Left "); 

            //Serial.print(Output); 

            //Serial.print('\n');  

          } 

        } 

  } 

delay(10); 

} 

 

double pixyCheck() 

{ 

  int i; 

  // grab blocks! 

  pixy.ccc.getBlocks(); 

   

  // If there are detected blocks, get info 

  if (pixy.ccc.numBlocks) 

  { 

    for (i=0; i<pixy.ccc.numBlocks; i++) 

    { 

      //position of bottom left corner of the box 

      x = pixy.ccc.blocks[i].m_x; 

 

      //width of the box 

      width = pixy.ccc.blocks[i].m_width; 

       

      //center of the box 
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      //cx = (x + (width / 2)); 

 

      //this shrinks the range from -1 to 1 and works with the deadzone 

      //cx0 = map(cx, 0, 320, -160, 160); 

      cx0 = map(x, 0, 320, -160, 160); 

    } 

    return cx0;     

  } 

} 

 


