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 ABSTRACT 
On-Orbit Mass Property Identification for a Coupled Spacecraft System 

 by Gregory Kessing 

With ever increasing forays into space come an increasing number of encounters with objects, 

man-made or otherwise, that are unknown in their nature. Whether the unknown object is 

manipulated or maneuvered away from is ultimately up to the mission designer. If manipulating 

the unknown object is the desired objective, then a detailed analysis of the properties of the 

acquired object is required. This project provides the analysis to do so using an identification 

maneuver to vary the properties of the system, after rendezvous with the unknown object. The 

proposed algorithm is designed to use the maneuver to estimate the mass properties of the 

coupled system and isolate the properties of the acquired object from that data. Throughout the 

duration of the identification maneuver, a recursive least squares algorithm is used to identify the 

inertia matrix of the system. After implementation of the proposed sequence, the estimation of 

the system inertia matrix provides the desired output to well within an allowable error tolerance. 

The robustness of the system is then analyzed for its ability to handle noise generated by the 

sensors used to gather the required data. A recursive least squares filter is used to control for the 

undetermined levels of sensor and process noise. State estimation is proposed to handle 

unavailable or unmeasurable states of the system. Future work and research topics are proposed 

to further improve the system developed in this report.  
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NOMENCLATURE 
(∗)𝐴𝐴 Variable for known spacecraft 
(∗)𝐵𝐵 Variable for unknown spacecraft 
(∗)𝑇𝑇 Variable for total or combined spacecraft duo 

τ Torque 

𝐼𝐼 Inertia matrix (tensor) 

𝐹𝐹 Linear force 

𝑎𝑎 Linear acceleration 

𝑣𝑣 Linear velocity 

α Angular acceleration 

ω Rotational velocity 

∗̇ Time derivative of a variable, ∗ as the placeholder 

𝑟𝑟∗ Radius vector to specified object 

𝑚𝑚 Mass 

𝐽𝐽∗∗ Inertia value representing the inertia  

𝐻𝐻      Angular momentum 

𝐴𝐴 State matrix 

𝐵𝐵 Input matrix 

𝐶𝐶 Output or measurement matrix 

𝐷𝐷 

KP 
KI 
KD 

Feed-forward matrix 
Proportional Gain 
Integral Gain 
Derivative Gain 

𝒙𝒙 State matrix 

𝒙𝒙� Estimated state matrix 

𝒖𝒖 Input matrix 

𝒘𝒘 Process noise matrix 

𝒛𝒛 Measurement matrix 

𝒗𝒗 Measurement noise matrix 

𝑷𝑷 Covariance matrix 

𝑲𝑲 Filter gain matrix 

𝑹𝑹 Measurement covariance matrix 
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𝑸𝑸 Process noise covariance matrix 

𝒉𝒉∗ Proposed filter matrix 

𝛇𝛇 Error value 

𝑺𝑺 Sum of the cost function 

𝛟𝛟 Inverse of the covariance matrix 
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 INTRODUCTION 

1.1 Motivation 
As more advanced satellites are sent into orbit by rockets with ever increasing payload 

capacity the operations that humanity has decided to undertake in space have grown in scope 

drastically over the last couple of decades. There is now talk of a multitude of new activities in 

space which require novel solutions. This activity includes Earth orbit cleanup of debris, 

refueling of man-made satellites, and potential capture of asteroids with the intent of 

maneuvering them into Earth or Lunar orbit. The most pressing of these proposed activities is the 

cleanup of debris in Earth Orbit. 

For the last 60 years, mankind has sent satellites into orbit but during this time, we have not 

been kind stewards of the space around Earth. We have created an estimated 34,000 pieces of 

debris larger than 10cm in diameter [1]. This has created a hazard when launching spacecraft into 

Earth orbit and into the solar system at large due to the increased chances of an impact with 

debris. When two objects collide at an orbital velocity of 7.8 km/s for low Earth orbit, they create 

further debris clouds which increase the chances of another impact. Due to this threat of orbital 

debris, NASA and the ESA have undertaken first steps towards beginning the cleanup process of 

the space around Earth. As such, a spacecraft whose goal is to de-orbit this debris may require 

knowledge about the mass properties of a single satellite which it aims to de-orbit.  

The mass properties of a single satellite, usually the inertia tensor, has long been a topic of 

interest in the field of guidance, navigation, and control due to its requirement in calculating a 

future trajectory and the thrust cycle needed to achieve such a trajectory. For most satellites 

which are intended to remain in space, a baseline inertia tensor is calculated before a satellite 

leaves the Earth. During the lifespan an expected amount of fuel will be expended, changing the 
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inertia tensor along with the center of gravity and total mass. This change can be estimated by 

either calculating the change in mass properties through fuel expenditure and container location 

or using estimation algorithms utilizing known inputs and outputs of the spacecraft. For space-

based debris, these methods of determining an inertia tensor were either never taken or are 

impossible to complete due to their unknown status once in space.  

 

1.2 Literature Review 
This section will cover literature attempting to solve the problem of de-orbiting debris and/or 

spacecraft remains and relating to the topic of this paper with the goal of discussing the 

following critical points:  

• Mass property identification 

• Inertia tensor 

• Mass identification and center of mass  

• Separation of the individual mass properties from the mass properties of the coupled 

system 

• Sensor noise elimination schemes 

During a debris de-orbiting maneuver, one of the possible techniques is a rigid capture where 

the object is manually de-orbited by another spacecraft. In this situation, a rigid capture system 

will require knowledge of the mass properties of the debris if the control system is to properly 

determine the correct thruster/reaction wheel outputs required to guide the coupled system along 

the ideal trajectory [2]. This operation greatly reduces the propellant used during de-orbiting and 

allows for an increased number of objects to be taken out of orbit per kilogram of propellant used 
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[3]. The mass property determination can be introduced during a de-tumbling maneuver required 

to fully control and reorient the debris for a final de-orbit maneuver [4]. Another technique for 

orbit degradation, is the utilization of a tethered spacecraft to impart a force slowing the 

horizontal velocity of the debris. This will occur until the debris is on a trajectory to fall into the 

atmosphere. In this case, the mass properties can be used to calculate the required total impulse 

for maneuver to succeed [5].  

A common method for mass property determination is to use Newton’s Second Law for 

rotational systems.  

 𝜏𝜏 = 𝐼𝐼𝐼𝐼 (1.2.1) 

Using this law allows for accurate determination of mass properties through utilizing a known 

input force and measuring the angular acceleration after the force is applied. Expanding this 

equation into its constituent components displays the true unknowns that are required to solve for 

the inertia matrix. 

 𝐼𝐼 = 𝐼𝐼−1(𝑟𝑟−𝑟𝑟𝑐𝑐𝑐𝑐)×𝑇𝑇
𝑚𝑚−1𝑇𝑇

 (1.2.2) 

The unknowns in Eq. (1.2.2) are I the inertia matrix, rcm the position of the center of mass, and 

m-1 the mass inverse. The thrust (T), position of the thruster (r), and angular acceleration (𝐼𝐼) are 

all known or can be found through sensor data [6]. Using multiple test configurations during the 

analysis window the number of unknowns can be matched by the number of situations tested. 

This will allow for the unknowns to be solved linearly so long as the weight ratio between the 

objects is no more than 20:1. Another criteria for this method is that external forces and moments 

affecting the spacecraft are minimal otherwise more testing will be required. During testing the 
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configurations tested should be as different as possible to allow the control system the widest 

possible dataset [7]. 

Another potential for introducing angular acceleration is from forces derived from the 

magnetic field from the Earth by utilizing torque rods. Magnetic systems are mostly used to end 

the tumbling caused by detaching from a primary spacecraft but can be adapted to be used for 

satellite acquisition. During this acquisition the pair of satellites will need to be stabilized during 

which time the known force output from the magnetic system can be used to identify the mass 

properties of the coupled spacecraft [8]. 

Using thruster jets to produce a controlled torque will be both expensive in terms of fuel 

expenditure, and in terms of wear and tear on the spacecraft itself. Fuel is a limited commodity 

onboard a spacecraft and refueling such a craft as is discussed in this paper is both inordinately 

complex and cost in-effective. An alternative to thrusters is reaction wheels which produce 

torque about the center of mass with no fuel expenditure through the use of electric motors 

powered by solar panels and batteries onboard the craft. Algorithms developed for the use of 

reaction wheels have been able to reproduce the inertial properties of the ISS within a margin of 

error of 0.01%. The mass and center of mass location were also able to be estimated with similar 

success over a slightly longer timespan [9]. 

Data from a maneuver by the Saturn orbiter Cassini has been used many times to test mass 

property estimation algorithms. The data regarding spin rates of reaction wheels, and rotation 

rates of the spacecraft allow for accurate estimations to be made. The estimation is made easier 

due to an axis by axis rotation sequence that was performed by the craft during the time period 

that the data was collected. A least squares estimation was able to produce accurate results 

simply and effectively accounting for mass lost due to propulsion [10].  
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1.2.1 Optimization 
 Accuracy of mass property estimation can be further increased through the utilization of 

multiple methods. A proposed combination are conservation of rotational kinetic energy, Eq. 

(1.2.3), and angular momentum, Eq. (1.2.4), unilaterally resulted in greatly improved estimation 

and lower standard deviations [11].  

 1
2
𝜔𝜔𝑇𝑇𝐼𝐼𝜔𝜔|𝑡𝑡 = 𝑇𝑇|0 + ∫ 𝜔𝜔𝑇𝑇𝑡𝑡

0 ∑𝑀𝑀𝑑𝑑𝜏𝜏 (1.2.3) 

 𝑁𝑁𝑄𝑄𝑘𝑘�𝐼𝐼𝜔𝜔 + ∑ 𝐼𝐼𝑤𝑤,𝑖𝑖𝛺𝛺𝑖𝑖𝑎𝑎𝑖𝑖�|𝑘𝑘 = 𝑁𝑁𝑄𝑄𝑗𝑗�𝐼𝐼𝜔𝜔 + ∑ 𝐼𝐼𝑤𝑤,𝑖𝑖𝛺𝛺𝑖𝑖𝑎𝑎𝑖𝑖�|𝑗𝑗 (1.2.4) 

This technique in conjunction with backstepping can produce desirable control results without 

destabilizing a complicated system. This is achieved by utilizing ω as a low-level control while a 

control law using the input u to stabilize Eq. (1.2.5) by forcing ω → ωd(ρ) Eq. (1.2.6) is instituted 

[12]. 

 �̇�𝜔 = 𝐽𝐽−1𝑆𝑆(𝜔𝜔)𝐽𝐽𝜔𝜔 + 𝐽𝐽−1𝑢𝑢 (1.2.5) 

 �̇�𝜌 = 𝐻𝐻(𝜌𝜌)𝜔𝜔 (1.2.6) 

A control-Lyapunov function is derived using backstepping for the system of Eq. (1.2.5) and 

Eq. (1.2.6). This results in an optimal control system when the cost function is considered [12]. 

Several observer-based inertia identification control systems have been purposed which have 

proven to be accurate assuming no measurement errors [13,14]. An observer-based control 

system including measurement error estimation and external disturbance is put forth resulting in 

a higher accuracy algorithm for real world situations. In addition, estimation bounds are put into 

place based on known limits of sensing equipment [15]. 
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1.2.2 Disturbance and Noise Filtering 
Noise reduction methods in a reaction wheel-based estimation scheme are a necessity and can 

be the difference between mission success and failure. The Butterworth filter is a method that 

maintains a frequency response that is near flat which results in the transfer function in Eq. 

(1.2.7) where G0 represents the static gain, ωc the cut-off frequency, and sk the pole calculated by 

the cut-off frequency.  

 𝐻𝐻(𝑠𝑠) = 𝐺𝐺0
∏ 𝑠𝑠−𝑠𝑠𝑘𝑘

𝜔𝜔𝑐𝑐
𝑛𝑛
𝑘𝑘=1

 (1.2.7) 

The zero-phase shift filter (Y0) utilizes a forward low pass filter (YF) and a rearward low pass 

filter (YR) to filter the signal without impacting shifting the phase of the signal itself thereby 

maintaining integrity. Shown below in Eq. (1.2.8). 

 𝑌𝑌0 = 𝑌𝑌𝐹𝐹+𝑌𝑌𝑅𝑅
2

 (1.2.8) 

A continuous-discrete extended Kalman filter (EKF) is determined to be superior to the 

Butterworth filter and the zero-phase shift filter when accuracy over time is prioritized. After 

determining angular rates using EKF, the rates are applied to a batch least square inertia 

estimation technique. The EKF produced results closest to the true Inertia tensor and RMS value 

of noise [16]. Subspace parameter identification can be used in conjunction with a Kalman filter 

to increase accuracy further, but due to increased computation costs is rarely used onboard a 

spacecraft. The use of QR decomposition and singular value decomposition are the main reasons 

for this. Instead, if a Hankel matrix is constructed and an RQ decomposition is performed, much 

of the computation cost can be eliminated. Estimates of mass properties can then be found using 

a recursive estimation of the observation matrix [17]. 
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Dynamic spacecraft systems are difficult to estimate due to parameters changing with time or 

elements of the spacecraft being flexible. A method of estimating the parameters has been 

defined using recursive predictor-based subspace identification (RPBSID) [18]. The method is 

based around an estimation of Markov Parameters, or the impulse response of the system, being 

found using a Kalman filter and a white noise sequence being introduced as seen in Eq. (1.2.9) 

and Eq. (1.2.10). 

 𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘 + 𝐾𝐾𝑘𝑘𝑒𝑒𝑘𝑘 (1.2.9) 

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘 (1.2.10) 

Where Kk is the Kalman gain matrix, ek is the white noise sequence, and k is the given 

timestep. Estimation of the state vector (xk) is achieved using a least squares recursive form in 

order to reduce the computational cost of the algorithm. Then state space parameters can be 

identified through the recursive computation of the defining matrices [18]. 

For missions in low Earth orbit, external torque from the gravity-gradient and disturbance 

from the atmosphere must be considered when completing any estimation of properties of the 

spacecraft. An extended Kalman filter (EKF) scheme estimator can be used to eliminate external 

torque influences from the resultant mass properties. This use of an EKF is more accurate than 

using change in angular momentum alone [19].  

Another method of increasing accuracy of the least squares estimation technique is introduced 

as tracking differentiation (TD) with the use of an extended Kalman filter. Tracking 

differentiation is defined in Eq. (1.2.11) where v is the input signal, xa is the filter value of v, xb is 

the derivative of xa, r is the tracking velocity of tracking differentiation, and h is the step size of 

the simulation. The TD algorithm is given by Eq. (1.2.11) below. 
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 �
𝑓𝑓ℎ = fhan(𝑥𝑥𝑎𝑎(𝑘𝑘) − 𝑣𝑣(𝑘𝑘), 𝑥𝑥𝑏𝑏(𝑘𝑘), 𝑟𝑟,ℎ0)

𝑥𝑥𝑎𝑎(𝑘𝑘 + 1) = 𝑥𝑥𝑎𝑎(𝑘𝑘) + ℎ𝑥𝑥𝑏𝑏(𝑘𝑘)
𝑥𝑥𝑏𝑏(𝑘𝑘 + 1) = 𝑥𝑥𝑏𝑏(𝑘𝑘) + ℎ𝑓𝑓ℎ

� (1.2.11) 

In the algorithm 𝑣𝑣 is the input signal, xa and xb are the filter value and derivative of the filter 

value respectively. 𝑟𝑟 represents the tracking of the algorithm and h is the step size. 𝑓𝑓ℎ𝑎𝑎𝑎𝑎 

represents a switching algorithm designed to zero in on the true or ideal value. 

Tracking differentiation is able to filter out noise better than traditional differentiation but 

cannot fully eliminate the sensor noise so it is applied again in a TD-TD setup then a recursive 

least squares estimation algorithm is applied as shown in Figure 1 [20]. 

  

Figure 1.1: TD-TD-RLS 

1.3 Report Outline 
A proof of concept algorithm has been proposed and implemented to determine the mass 

properties of an unknown object in a combined known/unknown (a/b) duo spacecraft system. 

This is accomplished through the use of a recursive least squares algorithm to firstly identify the 

total system inertia matrix from the known state of the system. A retraction maneuver is then 

completed to change the total inertia matrix and produce a different, yet mathematically related, 

movement profile. Using the original and the new profile the estimates of the remaining 

unknown parameters are solved for. 
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The Least Squares (LS) algorithm that is used for the inertia matrix estimation. Eq. (1.3.1) 

describes the equation of rotational motion for a rigid body in freefall. The ‘T’ subscript in the 

following equations denotes the total of the property that it is attached to (ie. IT is the total inertia 

matrix for the combined spacecraft system). 

 �̇�𝝎𝑇𝑇 = −𝐼𝐼𝑇𝑇−1𝝎𝝎𝑇𝑇 × 𝑰𝑰𝑻𝑻𝝎𝝎𝑇𝑇 + 𝑰𝑰𝑻𝑻−1𝒖𝒖 (1.3.1) 

 𝒚𝒚 = 𝝎𝝎𝑇𝑇 

The cost function in Eq. (1.3.2) is minimized resulting in an estimate of the state matrix 

shown in Eq. (1.3.3).  

 𝑰𝑰 = 1
2
(𝑧𝑧 − 𝑯𝑯𝒙𝒙�)𝑇𝑇(𝑧𝑧 − 𝑯𝑯𝒙𝒙�) (1.3.2) 

 𝒙𝒙� = (𝑯𝑯𝑇𝑇𝑯𝑯)−1𝑯𝑯𝑇𝑇𝒛𝒛 (1.3.3) 

 

Once the estimation is determined to be sufficient, noise is imparted to simulate a realistic 

sensor that has a specific noise floor, beneath which any signal will be indistinguishable. To 

combat this a recursive least squares filter is used to isolate the true data from the noise. 

Validation in the form of a Monte Carlo simulation is utilized to determine the efficacy of the 

method. The validation step shows that recursive least squares does not filter the noise to a 

sufficient level and a more advanced filter is proposed in the form of a Kalman Filter. 

The (Extended) Kalman Filter is implemented as shown in Figure 1.2, where the input ‘u’ is 

created by a set of thrusters or reaction wheels designed to impart a torque on the spacecraft 

system. The system model represents the inertia matrix and input matrix of the combined system 

which will determine the angular velocity, ω, as a result of the input torque. In the testing 

scenario, the full system model will be known but noise will be imparted and only some of the 
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states measured to give a realistic simulation scenario to the filter. The resultant, ‘𝒙𝒙�’, is the state 

matrix reconstructed which defines the filtered properties of the system, whether or not they 

were directly measured. The data flow is shown below: 

  

Figure 1.2: Extended Kalman Filter 
The EKF model equations are given in Eq. (1.3.4), where the functions f and h predict the 

state and the measurement of the state respectively. Simulated system noise and sensor noise are 

added to the system through w(t) and v(t) for each predictor through a gaussian white noise 

process. 

 �̇�𝒙 = 𝑓𝑓�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡) + 𝒘𝒘(𝑡𝑡)� (1.3.4a) 

 𝒛𝒛(𝑡𝑡) = ℎ�𝒙𝒙(𝑡𝑡) + 𝒗𝒗(𝑡𝑡)� (1.3.4b) 

Due to the nature of a continuous-time EKF, the predictions and updates are coupled and will 

be handled simultaneously by the set of Eqs. (1.3.5). 

 𝒙𝒙�̇ = 𝑓𝑓(𝒙𝒙�,𝒖𝒖) + 𝑲𝑲 ∗ {𝒛𝒛 − ℎ(𝒙𝒙�)}  

 �̇�𝑷 = 𝑭𝑭𝑷𝑷 + 𝑷𝑷𝑭𝑭𝑇𝑇 − 𝑲𝑲𝑯𝑯𝑷𝑷 + 𝑸𝑸  

 𝑲𝑲 = 𝑷𝑷𝑯𝑯𝑇𝑇𝑹𝑹−𝟏𝟏 (1.3.5) 

 𝑭𝑭 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝒙𝒙�,𝒖𝒖  

 𝒉𝒉 = 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

|𝒙𝒙� 

The combined flowchart of the EKF and RLS estimation algorithm is shown in Figure 1.3. 
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Figure 1.3: Extended Kalman Filter and Recursive Least Squares Algorithm 
The resulting inertia matrix is used in conjunction with the spacecraft a inertia matrix to solve 

for the inertia matrix for spacecraft b using Eq. (1.3.6).  

𝑰𝑰�𝑇𝑇 = �𝑰𝑰𝑖𝑖 + 𝑚𝑚𝑖𝑖𝒓𝒓𝑐𝑐𝑚𝑚𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

 

  𝑰𝑰�𝑇𝑇 = 𝑰𝑰𝑎𝑎 + 𝑚𝑚𝑎𝑎𝒓𝒓𝑐𝑐𝑚𝑚𝑎𝑎
2 + 𝑰𝑰𝑏𝑏 + 𝑚𝑚𝑏𝑏𝒓𝒓𝑐𝑐𝑚𝑚𝑏𝑏

2 

 𝑰𝑰�𝑇𝑇 − 𝑰𝑰𝑎𝑎 − 𝑚𝑚𝑎𝑎𝒓𝒓𝑐𝑐𝑚𝑚𝑎𝑎
2 − 𝑚𝑚𝑏𝑏𝒓𝒓𝑐𝑐𝑚𝑚𝑏𝑏

2 = 𝑰𝑰𝑏𝑏 (1.3.6) 

The algorithm will be simulated using MATLAB to verify the robustness and performance 

where a series of differing virtual payloads will be estimated, and the algorithm verified by 

comparing the output to the given mass properties. In proving robustness, noise from both the 

system and sensors will be simulated via a Gaussian distribution. The noise will be based off the 

hobbyist available BNO055 sensor with an accelerometer sensitivity rating of 0.077 m/s2 and a 

gyroscope accuracy of 0.0086 rad/s [21]. The choice of this sensor comes down to availability, 

ease of use, and the high noise floor when compared to industry sensors. The increase in noise 

will allow for a high confidence factor for the algorithm when complete. 
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 SPACECRAFT DYNAMICS 

2.1 Frame of Reference 
When handling moving objects there are two common frames of reference. These are referred 

to in general as the fixed frame and the inertial frame. When talking about spacecraft or aircraft 

inside of the gravity well of Earth these corelate to the Earth Centered Inertial frame, or ECI, and 

the body frame. The ECI frame is, as the name suggests, centered on the Earth with the 𝑧𝑧 axis 

going through the north pole, the �⃗�𝑥 axis going through the intersection of the lines of zero degrees 

latitude and zero degrees longitude, and the �⃗�𝑦 axis at a right angle to both of the other axes. This 

can be seen in Figure 2.1 below. 

  

Figure 2.1: Earth Centered Inertia Frame [22] 
The body frame is connected to the body of the object that is being tracked during the motion 

being described. This can be a satellite orbiting the Earth, or a plane flying through the atmosphere. 



13 
 

The body frame moves with the object and the object is seen as static at 𝑡𝑡 = 0 from the point of 

view of the body frame. Figure 2.2 displays the body frame with respect to the ECI frame. 

  

Figure 2.2: ECI Frame and Body Frame [23] 

2.2 Euler Angles 
The change in angle between the two primary frame of references can be described through a 

series of rotations. Three body-axis rotations are an easy way to convert from one reference frame 

to another. The first rotation is about any single axis, with the second rotation being about one of 

the two axes not used in the first rotation, and the third rotation can be about any of the two axes 

not used in the second rotation. This means that there are twelve total ways to complete the 

rotations required to move between the two reference frames. The three angles that can complete 

this conversion are called Euler angles and are shown in Figure 2.3 as α,β,𝑎𝑎𝑎𝑎𝑑𝑑 γ. 

  

Figure 2.3: Euler Rotations [24] 
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The Euler angle rotations move through the axes with a common naming scheme for the axes 

shown below: 

 A → 𝐴𝐴′ → 𝐴𝐴′′ → B 

Each of the rotations is based off a relation between one axis and another which is often called 

a Direct Cosine Matrix, or DCM. Each element of the DCM is based off the function below: 

 Cij = bi ∙ 𝑎𝑎𝑗𝑗 (2.2.1) 

This is a general term and is not specific to rotating from the beginning A axis to the end B 

axis. Writing out the matrix results in the following: 

 𝐶𝐶𝑏𝑏/𝑎𝑎 = �
b1 ∙ 𝑎𝑎1 b1 ∙ 𝑎𝑎2 b1 ∙ 𝑎𝑎3
b2 ∙ 𝑎𝑎1 b2 ∙ 𝑎𝑎2 b2 ∙ 𝑎𝑎3
b3 ∙ 𝑎𝑎1 b3 ∙ 𝑎𝑎2 b3 ∙ 𝑎𝑎3

� (2.2.2) 

The notation of “b/a” is specific as it denotes which way the matrix is converting, and in this 

specific case, 𝑏𝑏 ← 𝑎𝑎. The transformation equation can be written as the following: 

 𝑏𝑏 = 𝐶𝐶𝑏𝑏/𝑎𝑎𝑎𝑎 (2.2.3) 

When using the DCM to convert from 𝐵𝐵 ← 𝐴𝐴 the DCM of each individual rotation can be 

multiplied together to achieve the DCM 𝑪𝑪𝐵𝐵/𝐴𝐴 as shown in the following equation. 

 𝑪𝑪𝐵𝐵/𝐴𝐴 = 𝐶𝐶1(θ1)𝐶𝐶2(θ2)𝐶𝐶3(θ3) (2.2.4) 

Using this method of rotation about Euler angles means that any of the states (for example, 

velocity or position) can be easily converted from one frame to another allowing for kinematics 

to be observed in one frame and controlled in another. 
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2.3 Equations of Motion 
The Equations of Motion, EoM, for a system describe its characteristics as a function of time. 

Whether the system is perceived to be affected by a gravity well or not, the EoM can be derived 

from Newton’s 2nd law of EoM. Once defined, the equations allow for mathematical relations to 

be derived between variables describing different states within a system. 

Newton’s 2nd law states that the acceleration of an object is directly proportional to the mass 

of said object, or in equation form:  

 𝐹𝐹 = 𝑚𝑚 ∗ δ𝑣𝑣
δ𝑡𝑡

= δ𝑚𝑚𝑣𝑣
δ𝑡𝑡

 (2.3.1) 

Simplifying again results in force being equal to the change in momentum with time. 

 𝐹𝐹 = δ𝐻𝐻
δ𝑡𝑡

 (2.3.2) 

When talking about spacecraft, it can be assumed that little or minimal force is applied to the 

system from rigid connections to the earth or another object by which the body axes are defined. 

In this circumstance rotational motion becomes the primary influencer on the routine motion of 

the spacecraft. Newton’s 2nd law of motions becomes Newton’s 2nd law of rotational motion. 

 τ = 𝐽𝐽 ∗ α (2.3.3) 

In Eq. (2.3.4), τ represents torque, the angular equivalent to force. 𝐽𝐽 represents the rotational 

inertia of the system.  Expanding the torque equation results in the following: 

 �
α𝜕𝜕
α𝑦𝑦
α𝑧𝑧
� = �

𝐽𝐽𝜕𝜕𝜕𝜕 𝐽𝐽𝜕𝜕𝑦𝑦 𝐽𝐽𝜕𝜕𝑧𝑧
𝐽𝐽𝑦𝑦𝜕𝜕 𝐽𝐽𝑦𝑦𝑦𝑦 𝐽𝐽𝑦𝑦𝑧𝑧
𝐽𝐽𝑧𝑧𝜕𝜕 𝐽𝐽𝑧𝑧𝑦𝑦 𝐽𝐽𝑧𝑧𝑧𝑧

� �
τ𝜕𝜕
τ𝑦𝑦
τ𝑧𝑧
� (2.3.4) 

Multiplying the matrices through reveals a set of governing equations when dealing with 

angular acceleration in a system. 
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 α𝜕𝜕 = 𝐽𝐽𝜕𝜕𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝜕𝜕𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝜕𝜕𝑧𝑧τ𝑧𝑧 (2.3.5a) 

 α𝑦𝑦 = 𝐽𝐽𝑦𝑦𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝑦𝑦𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝑦𝑦𝑧𝑧τ𝑧𝑧 (2.3.5b) 

 α𝑧𝑧 = 𝐽𝐽𝑧𝑧𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝑧𝑧𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝑧𝑧𝑧𝑧τ𝑧𝑧 (2.3.5c) 

Applying steps similar to those in Eq. (2.3.1) to Eq. (2.3.3) results in deriving an equation for 

angular momentum from Eq. (2.3.4). 

 𝐻𝐻 = 𝐽𝐽ω (2.3.6) 

Expanding the matrices results in: 

 �
𝐻𝐻𝜕𝜕
H𝑦𝑦
H𝑧𝑧

� = �
𝐽𝐽𝜕𝜕𝜕𝜕 𝐽𝐽𝜕𝜕𝑦𝑦 𝐽𝐽𝜕𝜕𝑧𝑧
𝐽𝐽𝑦𝑦𝜕𝜕 𝐽𝐽𝑦𝑦𝑦𝑦 𝐽𝐽𝑦𝑦𝑧𝑧
𝐽𝐽𝑧𝑧𝜕𝜕 𝐽𝐽𝑧𝑧𝑦𝑦 𝐽𝐽𝑧𝑧𝑧𝑧

� �
ω𝜕𝜕
ω𝑦𝑦
ω𝑧𝑧

� (2.3.7) 

Multiplying out the matrices results in the following set of equations: 

 𝐻𝐻𝜕𝜕 = 𝐽𝐽𝜕𝜕𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝜕𝜕𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝜕𝜕𝑧𝑧ω𝑧𝑧 

 𝐻𝐻𝑦𝑦 = 𝐽𝐽𝑦𝑦𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝑦𝑦𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝑦𝑦𝑧𝑧ω𝑧𝑧 (2.3.8) 

 𝐻𝐻𝑧𝑧 = 𝐽𝐽𝑧𝑧𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝑧𝑧𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝑧𝑧𝑧𝑧ω𝑧𝑧  

After manipulating the equations in Eq. (2.3.6), Euler’s Equations of Rotational Motion show 

themselves as: 

 ω̇1 = (𝐽𝐽2−𝐽𝐽3)
𝐽𝐽1

ω2ω3 + 𝑀𝑀1
𝐽𝐽1

  

 ω̇2 = (𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω1ω3 + 𝑀𝑀2
𝐽𝐽2

 (2.3.9) 

 ω̇3 = (𝐽𝐽1−𝐽𝐽2)
𝐽𝐽3

ω1ω2 + 𝑀𝑀3
𝐽𝐽3
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2.4 State Space Model 
The State Space model is a linear, time-invariant model of a known system. The model holds 

within it the state vector, �⃗�𝑥, the time derivative of the state vector, �̇⃗�𝑥, the output vector, �⃗�𝑦, and the 

input vector, 𝑢𝑢�⃗ . The model dynamics matrices are made up of the state matrix, 𝐴𝐴, the control 

matrix, 𝐵𝐵, the output or measurement matrix, 𝐶𝐶, and the feed-forward matrix, 𝐷𝐷. 

 �̇⃗�𝑥 = 𝐴𝐴�⃗�𝑥 + 𝐵𝐵𝑢𝑢�⃗  (2.4.1a) 

 �⃗�𝑦 = 𝐶𝐶�⃗�𝑥 + 𝐷𝐷𝑢𝑢�⃗  (2.4.1b) 

This model is shown in Figure 2.4 as a block diagram below. 

  

Figure 2.4: State Space Block Diagram 
A state variable is defined as the base property of a system being modeled. The state variables 

are held in the �⃗�𝑥 vector and typically consist of location or translation data about the system. 

Converting the governing rotational dynamics of a spacecraft into a state space representation 

requires developing the equations of motion into the form seen in Eq. (2.3.10). In this form the 

base properties are represented by the angular velocity terms, ω. To create the 𝐴𝐴 matrix the 

partial derivative of the functions needs to be taken with respect to the variables in the state 

matrix, �⃗�𝑥. 

u yxẋ

D

∫

A

B C ++++
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 A =

⎣
⎢
⎢
⎢
⎡
δ𝜕𝜕1
δω1

δ𝜕𝜕1
δω2

δ𝜕𝜕1
δω3

δ𝜕𝜕2
δω1

δ𝜕𝜕2
δω2

δ𝜕𝜕2
δω3

δ𝜕𝜕3
δω1

δ𝜕𝜕3
δω2

δ𝜕𝜕3
δω3⎦

⎥
⎥
⎥
⎤

 (2.4.2) 

The application of this rule on Eq. (2.3.10) results in the following 𝐴𝐴 matrix. 

 𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡ 0 (𝐽𝐽2−𝐽𝐽3)

𝐽𝐽1
ω3

(𝐽𝐽2−𝐽𝐽3)
𝐽𝐽1

ω2

(𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω3 0 (𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω1

(𝐽𝐽1−𝐽𝐽2)
𝐽𝐽3

ω2
(𝐽𝐽1−𝐽𝐽2)

𝐽𝐽3
ω1 0 ⎦

⎥
⎥
⎥
⎤

 (2.4.3) 

To create the B matrix the partial derivative of the functions needs to be taken with respect to 

the variables in the input matrix, 𝑢𝑢�⃗ . 

 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡
δ𝜕𝜕1
δM1

δ𝜕𝜕1
δM2

δ𝜕𝜕1
δM3

δ𝜕𝜕2
δ𝑀𝑀1

δ𝜕𝜕2
δM2

δ𝜕𝜕2
δM3

δ𝜕𝜕3
δM1

δ𝜕𝜕3
δM2

δ𝜕𝜕3
δM3⎦

⎥
⎥
⎥
⎤

 (2.4.4) 

Implementing this results in the following 𝐵𝐵 matrix: 

 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡
1
𝐽𝐽1

0 0

0 1
𝐽𝐽2

0

0 0 1
𝐽𝐽3⎦
⎥
⎥
⎥
⎤

 (2.4.5)

 The 𝐶𝐶 matrix will depend on what sensors are onboard the spacecraft and the controllability 

of the system. An example C matrix where motion about the x-axis is measured would result in: 

 C  =  [1 0 0] (2.4.6)  
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 PARAMETER ISOLATION 

 Overview 
Using an internal measurement unit, or IMU, located at known location in spacecraft A, will 

allow for all required measurements to be taken. From the IMU, the angular acceleration will be 

isolated and compared the torque created by a set of reaction wheels inside the primary spacecraft. 

In Figure 3.1, the known spacecraft is denoted in blue and by the tag ‘A’. The unknown debris or 

spacecraft is denoted in red and by the tag ‘B’. The reaction wheels inside of Spacecraft A have 

their potential influence on the spacecraft show in green about the primary axes of the craft. 

  

Figure 3.1: Diagram of Coupled Spacecraft  
For testing and verification purposes the Cassini Inertia Tensor and mass properties [9] will 

be utilized to verify algorithms before using those algorithms to produce the final estimation of 

the system.  

 𝑱𝑱𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  =   �
8810.8 −136.8 115.3
−136.8 8157.3 156.4
115.3 156.4 4721.8

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (3.1.1) 
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 Assumptions 
For the following calculations in Sections 3.3 and 3.4 to be solved a few assumptions will be 

made about the known spacecraft. The primary assumption is that there are two main sets of 

sensors onboard, the accuracy requirement for both will be analyzed in Chapter 5 in depth. The 

first sensor that will be included is a rotation based sensor which can determine the rotation rate, 

ω, in radians per second as well as the acceleration of the rotation, α, in radians per second per 

second. The second sensor will be a linear acceleration sensor that will detect the linear 

acceleration in meters per second per second created due to the rotation of the space craft about 

the total center of mass with respect to the sensor itself, or the centripetal acceleration of the sensor. 

The second assumption is that there is an arm that the spacecraft manipulates to attach itself to 

the unknown object. This will aide by allowing for the dynamics of the system to be changed in a 

known way and an analysis of the changes will provide further data for the calculation of the 

parameters to be estimated. 

 Inertia Equation  

In this system, the designer knows the inertia matrix of Spacecraft A, 𝑱𝑱𝐴𝐴, as well as the mass 

𝑚𝑚𝐴𝐴. Using RLS the total rotational inertia matrix can be found about the primary axes of 

Spacecraft A. The inertial equation can be solved for using the sum of inertias and the parallel 

axis theorem. This derivation is shown below. 

 𝑱𝑱𝑇𝑇 = 𝑱𝑱𝐴𝐴𝑇𝑇 + 𝑱𝑱BT (3.3.1) 

In Eq. (3.3.1), 𝑱𝑱𝑇𝑇 represents the rotational inertia of the total system about the center of mass 

of the combined system.  𝑱𝑱𝐴𝐴𝑇𝑇 and 𝑱𝑱𝐵𝐵𝑇𝑇 represent the rotational inertia contribution of Spacecraft A 

and Spacecraft B respectively about the center of mass of the system.  
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Expanding Eq. (3.2.1) using the parallel axis theorem leads to the following: 

 𝐉𝐉𝑇𝑇 = 𝐉𝐉A + mA�𝑟𝑟AT�
2 + 𝐉𝐉B + mB�𝑟𝑟BT�

2
 (3.3.2) 

When using vector notation the scalar r2 is invalid and it becomes the following: 

 𝐉𝐉𝑇𝑇 = 𝐉𝐉A + mA�𝑟𝑟AT ∙ 𝑟𝑟AT
𝑇𝑇� + 𝐉𝐉B + mB�𝑟𝑟BT ∙ 𝑟𝑟BT

𝑇𝑇� (3.3.3) 

 Solving for Unknowns 
Using a linear acceleration sensor the perceived centripetal acceleration can be accessed from 

the sensor located in Spacecraft A. Using an IMU, the angular velocity can be obtained and 

together the radius from the center of mass of the total system to the center of mass of Spacecraft 

A, 𝑟𝑟𝑇𝑇𝐴𝐴, can be solved for using Eq. (3.3.1). 

 �⃗�𝑎𝑐𝑐 = 𝛚𝛚2 × 𝑟𝑟𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 (3.4.1) 

To convert between 𝑟𝑟𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑟𝑟𝑇𝑇𝐴𝐴 subtraction of the 𝑟𝑟𝐼𝐼𝑀𝑀𝐼𝐼 vector is required. The 

implementation of these are shown in Simulink in Figure 3.2 below. 

 

Figure 3.2 𝒓𝒓�⃗ 𝑻𝑻𝑨𝑨 Solution in Simulink 

To calculate the vector of the center of mass of the total system to the center of mass of the 

unknown object, 𝑟𝑟𝑏𝑏, it is possible to represent the vectors as a ratio of their masses. 
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 𝑚𝑚𝑏𝑏
𝑚𝑚𝑎𝑎

= 𝑟𝑟𝑏𝑏
𝑟𝑟𝑎𝑎

 (3.4.2) 

Physically drawing the system together through the use of the retractable arm would allow for 

the dynamics of the system to change. This results in a 𝑟𝑟𝑏𝑏2 and 𝑟𝑟𝑎𝑎2 substitution using the change 

in the vectors 𝑑𝑑𝑟𝑟𝑏𝑏 and 𝑑𝑑𝑟𝑟𝑎𝑎 and the initial states. The ratio 𝑚𝑚𝑏𝑏:𝑚𝑚𝑎𝑎 can be ignored to result in the 

following equation. 

 𝑟𝑟𝑏𝑏1
𝑟𝑟𝑎𝑎1

=
𝑟𝑟𝑏𝑏1+𝑑𝑑𝑟𝑟𝑏𝑏

𝑟𝑟𝑎𝑎2
 (3.4.3) 

Following the assumption laid out in Section 3.2 that the spacecraft knows the amount that it 

retracted in the operation 𝑑𝑑𝑟𝑟𝑏𝑏 can be solved for as seen in Eq. (3.4.4). 𝑑𝑑𝑟𝑟𝑎𝑎 is solved for by solving 

Eq. (3.4.1) post retraction. 

 𝑑𝑑𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝑑𝑑𝑟𝑟𝑎𝑎 + 𝑑𝑑𝑟𝑟𝑏𝑏 (3.4.4) 

The implementation for this in Simulink is shown below and the MATLAB function can be 

found in Apendix B.10. 

 

Figure 3.3 Simulink Implementation of the Solution for 𝒓𝒓𝒃𝒃 
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The mass of the unknown object, 𝑚𝑚𝑏𝑏, can then be solved through rearranging Eq. (3.4.2) to 

form Eq. (3.4.5). See Figure 3.4 for the Simulink implementation and Apendix B.11 for the 

MATLAB function. 

 𝑚𝑚𝑏𝑏 = 𝑟𝑟𝑏𝑏∗𝑚𝑚𝑎𝑎
𝑟𝑟𝑎𝑎

 (3.4.5) 

 

Figure 3.4 Simulink Mass of Unknown Object Calculation 
To solve for the total inertia matrix the relation between torque applied and rotational 

acceleration can be used along with a Recursive Least Squares estimator to estimate the value of 

the total inertia matrix. This is discussed in Chapter 4 and implemented in Simulink as shown 

below in Figure 3.5. 

 

Figure 3.5 Recursive Least Square Implementation 
This is then used in conjunction with the correction required to account for the products of 

inertia which is later discussed in Section 4.5, Eq. (4.5.1), and Figure 4.5. This results in the 
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following Simulink Implementation. The RLS estimation shown above in Figure 3.5 is contained 

within the three estimation blocks with the label “Fig. 3.5”. 

 

Figure 3.6: Total Inertia Matrix Estimation 
The final calculation in the determination of the unknowns is to isolate the inertia matrix of 

the unknown spacecraft from Eq. (3.3.3). This is shown in the equation below. 

 𝑱𝑱B = 𝑱𝑱TA − 𝑱𝑱A − 𝑚𝑚𝑎𝑎�𝑟𝑟𝑇𝑇𝑎𝑎 ∙ 𝑟𝑟𝑇𝑇𝑎𝑎
𝑇𝑇� − 𝑚𝑚𝑏𝑏�𝑟𝑟𝑇𝑇𝑏𝑏 ∙ 𝑟𝑟𝑇𝑇𝑏𝑏

𝑇𝑇� (3.4.6) 

It is important to note that if there is a future case where the radius vectors become matrices, 

[3x2] or similar, the outer product will need to be used instead of multiplying the transpose by 

the original vector. This is implemented using a MATLAB function block in the Simulink as can 

be seen in the image below and Appendix B.12 
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Figure 3.7: Unknown Inertia Matrix Simulink Implementation 
The MATLAB file used to generate the data required for the calculations is available in 

Appendix B.13. The final Simulink file that was used to combine the algorithm described 

previously to obtain the desired unknown values can be found in Appendix B.16. 

 Results 
In this simulation the Cassini spacecraft is assumed to be trying to identify the mass properties 

of an unknown object. The properties of which detailed below. 

 𝑱𝑱𝑼𝑼𝑪𝑪𝑼𝑼𝑪𝑪𝑼𝑼𝒘𝒘𝑪𝑪  =   �
2000 0 0

0 2000 0
0 0 2000

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (3.5.1) 

 𝑚𝑚𝑢𝑢𝑛𝑛𝑘𝑘𝑛𝑛𝑢𝑢𝑤𝑤𝑛𝑛 = 500 [𝑘𝑘𝑘𝑘] (3.5.2) 

 r⃗CoM  =   �
8
4
√20

� (3.5.3) 

The simulation is run resulting in an average error for 𝑱𝑱𝑼𝑼𝑪𝑪𝑼𝑼𝑪𝑪𝑼𝑼𝒘𝒘𝑪𝑪 of 10−8 as shown in the error 

plot in Figure 3.9. This value is calculated by using the average value of the estimated matrix and 

dividing that by 2000, the value given to the unknown object as its principal moments of inertia. 

The reasoning is that any adverse movements caused by the products of inertia during 

maneuvering will be competing with the effects of the principal moments of inertia. 
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Figure 3.8: Unknown Object Inertia Estimation Error 
When comparing Figure 3.9 to that of the errors resulting from the RLS estimation blocks, 

Figure 3.10, a very similar trend can be seen where at 80 seconds into the simulation there is a 

large dropoff and the estimation stabilizes afterwards. This time corresponds with the cutoff time 

for the reaction wheels simulated torque. This correlation was examined by reducing the cutoff 

time of the torque to 60 seconds to see if the estimation would be able to solve in less time due to 

having no external moment applied to the system. This resulted in the plots seen in Figure 3.11 

and Figure 3.12. In both of these figures the cutoff can be visibly seen in the estimation error but 

neither shows an immediate settling of the residual error. This infers that the time that the 

simulation requires to solve is independent of the time that the torque is applied. Further time 

based questions will be proposed in Chapter 5. 
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Figure 3.9: RLS Estimation Plots 

 

Figure 3.10: Unknown Inertia Estimate with Reaction Wheel Cutoff at 60s 
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Figure 3.11: RLS Estimation Plots for 60s Cutoff 
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 ADAPTIVE ESTIMATION 

 Overview 
An adaptive filter is an algorithm that takes a set of inputs and adjusts a guess for the coupling 

value between those inputs. This is best used when a system has a measurable input and output. 

The coupling value of the two measurements can generally be said to be solved for through 

parameter estimation schemes. For this project, parameter estimation will be used to estimate the 

inertia matrix from the moment input and angular acceleration output. 

 Least-Squares Estimation 
Least-Squares Estimation (LSE) is a method of estimation based on the average deviation 

from the mean by a group of measured or given data. This estimation method can simply be 

compared to the estimation of a single point where multiple samples of noisy data are collected. 

To make an estimation of the true location of the data point the simplest method would be to take 

the average of all data points. This method is the optimal method as the result is the 

minimalization of the error values of each point squared giving the name least-squares estimate. 

Practically, this method works by solving for a value that minimizes the estimation error between 

each guess and the average of all the guesses, as seen in Eq. (4.2.1). 

 𝑆𝑆 =  ∑ (𝑒𝑒𝑖𝑖)2𝑁𝑁
𝑖𝑖  (4.2.1a) 

 𝑆𝑆 = ‖𝑒𝑒‖22 (4.2.1b) 

The derivation of the Least-Squares Estimation algorithm can be found in Appendix A.3 page 

73. The algorithm is summed up in Eq. (A.3.9), shown below, where 𝑨𝑨𝑪𝑪×𝒎𝒎 represents the input 

matrix, 𝒅𝒅𝑪𝑪×𝒎𝒎 represents the output matrix, and 𝒉𝒉𝑚𝑚×1
∗  represents the filter matrix. n represents the 

number of data points represented and m the number of variables being solved for. 

 𝒉𝒉∗ = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝒅𝒅 
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 Recursive Least Squares 
Recursive Least Squares, or RLS, is the natural discrete continuation on the theory behind 

Least-Squares Estimation. RLS is applied when the estimation algorithm is being used in a real 

time application instead of a batch process. The algorithm minimizes the weighted least squares 

cost function, assuming the errors are gaussian in nature, expanded from Eq. (4.2.1) results in the 

function below. 

 𝑆𝑆(β) = ∑𝑟𝑟𝑖𝑖(β)2 (4.3.1) 

  

Summarizing the Recursive Least Squares estimation algorithm from Appendix A.4 page 74 

leaves the following steps: 

Solve for the gain vector in Eq. (A.4.12a) 

 𝑲𝑲𝑛𝑛 = 𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛
𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛

 

Find the current error from the previous estimate in Eq. (A.4.19) 

 𝛇𝛇 = 𝒅𝒅[𝑎𝑎] − 𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗  

Update the filter using Eq. (A.4.20) 

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝛇𝛇 

Update the inverse matrix using Eq. (A.4.11) 

 𝑷𝑷𝑛𝑛 = 𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1 
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 MATLAB Implementation 
4.4.1 Test Data Creation 

Implementation of the step by step process above first required the creation of data to test the 

code with. The code for creating the test data is shown in Appendix B.1 on page 78 under the 

MATLAB section “EOM Calculations”. The Cassini Probe was used as this baseline for the 

proof of concept and its inertia matrix, as shown in Eq. (3.1.1), is used in the code. During the 

creation of test data, there will be two distinct timeframes representing different input conditions. 

Condition 1 from time 𝑡𝑡 = 1 to 𝑡𝑡 = 150 will use the input torque of 10 [Nm] about the x-axis. 

 τ�⃗   = �
10
0
0
� [𝑁𝑁𝑚𝑚] (4.4.1) 

During the second condition, from 𝑡𝑡 = 150 to 𝑡𝑡 = 200, the input torque will be zero about all 

axes. This step input is being simulated to ensure that the functions developed can handle a 

change in input which adds another degree of difficulty to the problem. 

 τ�⃗   = �
0
0
0
� [𝑁𝑁𝑚𝑚] (4.4.2) 

The function in used to simulate the motion of the spacecraft is rotationalEOM.m, detailed in 

Appendix B.2 on page 80. This is based on the coupled rotational dynamics for a system where 

the products of inertia are non-zero. The relationship is detailed below. 

 τ�⃗ = 𝐼𝐼ω��⃗̇ + ω��⃗ × (𝐼𝐼ω��⃗ ) (4.4.3) 

This produced the data set seen below in Figure 4.1.  
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Figure 4.1: Motion of Cassini 
4.4.2 Recursive Least Squares Estimation 

The estimation algorithm described at the end of Chapter 5 Section 4.3 was used to create the 

MATLAB function RLSStep.m as seen in Appendix B.3 on page 81. The function was then 

applied to the code to create an estimate of the relationship between the total moment and 

angular acceleration data. From Eq. (2.3.4) and Eq. (4.4.3) we know this relationship is defined 

by the inertia matrix. The output of the RLSStep.m function is a [3x1] vector matrix which can 

describe the relationships between the angular acceleration and the moment about one axis. Thus 

the function needs to be run three times in order to obtain column Ix_, column Iy_, and column 

Iz_. 

The error estimated for each estimate versus time is also output which is displayed in the 

graph below. 



33 
 

  

Figure 4.2: Error Plots for RLS 
As seen in Figure 4.2, the error for each of the estimates quickly goes below an acceptable 

threshold of 10−06 within the first 20 seconds. This allows for a high degree of confidence in the 

simulation which output 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 detailed below. 

 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 = �
8810.8 −136.8 115.3
−136.8 8157.3 156.4
115.3 156.4 4721.8

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (4.4.4) 

When compared to the Cassini inertia matrix, Eq. (3.1.1), the matrices are identical. 
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 Simulink Implementation 
Verification of the MATLAB implementation is needed to use the code for potential 

determination of the mass properties of an unknown system. For this a Simulink block diagram 

was set up to utilize the built in RLS block provided in the Aerospace Blockset of MATLAB. 

The RLS block was implemented along with the 6 degree-of-freedom block to analyze the 

movement and determination of the inertia tensor of the Cassini Probe. The inertia tensor will be 

solved for by first imparting a moment about the x-axis, then the y-axis, and finally the z-axis. 

This is done as a result of the output of the RLS block which must be a vector. The output of the 

RLS block, when using moment about x, represents 𝐽𝐽𝜕𝜕𝜕𝜕, 𝐽𝐽𝜕𝜕𝑦𝑦, and 𝐽𝐽𝜕𝜕𝑧𝑧. These values will be 

directly compared to the same values from the Cassini inertia matrix. 

The first iteration of the moment about the x-axis block diagram, without a Recursive Least 

Squares block, can be seen in Figure 4.3. 

  

Figure 4.3: 6DOF Block Diagram 
The 6DOF block outputs variables that describe the motion of the object being simulated in 

both the Body Frame and the Earth Centered Inertia Frame. The output is shown in Figure 4.4 
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where the outputs of the angular acceleration, angular velocity, angular position (Euler Angle), 

and the input moment are shown. Also shown is the centripetal acceleration which is calculated 

using Eq. (3.4.1). 

 

Figure 4.4: 6DOF Output 
The output from this system clearly shows an acceleration due to the input torque but it does 

not tell the whole story. To see what is going on the estimate of the inertia tensor is solved for as 

shown in Figure 4.5. The x-direction estimated inertia values are displayed above the block 

diagram. When the values are compared with the values in Eq. (3.1.1), they are incorrect. 
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Figure 4.5: Simulink with RLS Block 
Investigating the incorrect values lead to comparing the graphs in Figure 4.4 and a disparity is 

seen in the graphs of moment and angular acceleration. This disparity is due to the expected 

linear relationship between the two based on Eq. (2.2.4). The error output from the RLS block 

was also graphed to determine how confident the algorithm is in its estimate. As seen in Figure 

4.6, the error value never drops below an acceptable threshold of 10−6. 

  

Figure 4.6: RLS Output with Error 
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To determine why the incorrect values were the result of this simulation it is necessary to look 

at the inertia equation given in Eq. (2.3.4) and expand it further. When dealing with an inertia 

matrix that contains non-zero products of inertia, the effects of this asymmetry must be included. 

Derived from Eq. (4.4.3), the term is shown below. 

 τ = 𝑰𝑰α��⃗ + ω��⃗ × (𝑰𝑰ω��⃗ ) (4.5.1) 

This is implemented into the Simulink through the subsystem shown in Figure 4.7 and input 

into the system as shown in Figure 4.8. The RLS section of the diagram has been included in the 

subsystem shown in Figure 4.9 for future diagrams. 

  

Figure 4.7: Correction Subsystem for Asymmetry 

  

Figure 4.8: RLS with Asymmetry Correction 
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Figure 4.9: RLS Subsystem 
Outputting the same graph as before results in the angular acceleration graph and the moment 

graph looking like each other in a linear way such that Eq. (2.3.4) would predict. The error from 

the output also goes well past conventional stopping points, 10−6, and drops below 10−14.  

  

Figure 4.10: Output Corrected for Asymmetrical System 
Once the Ix_ solver was complete, Figure 4.11, the same was constructed for Y, Figure 4.12, 

and Z, Figure 4.13, with the outputs of all being used to construct the total inertia matrix as seen 

in Figure 4.14. 
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Figure 4.11: Torque about X 

  

Figure 4.12: Torque about Y 
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Figure 4.13: Torque about Z 

  

Figure 4.14: Total Inertia Matrix Construction 

 Results 
Both the Simulink and RLSStep.m algorithm are able to reliably return the true inertia mattrix 

given multiple variations of input torque. When comparing the error values of the code written 

for RLSStep.m with that of the Simulink block diagram it can be seen that both surpass 10−6, a 
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common cutoff threshold. This shows that the code that was written for this paper performs as 

well as that given by Mathworks. RLSStep.m does maintain several advantages when the time 

step size, input torque, and inertia matrix are all controlled for. These advantages are that the 

error values drop past 10−6within 7 seconds, hit a lower floor than the simulink algorithm 

(10−15 vs 10−14), and they reach the floor within 13 seconds while the Simulink errors require at 

least 75 seconds.  
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 DESIGN VALIDATION 

 Overview 
The Monte Carlo method is a category of algorithms which use brute force to random 

sampling to determine the quality or optimal setup of a simulation as is desired by the designer. 

For control systems this method is generally used for two distinct circumstances being 

optimization and validation. A Monte Carlo simulation would be considered optimization if a 

system were being designed and an optimal controller were needed. The method would 

randomize control parameters many times and the optimal combination would be selected by the 

constraints put in place by the designer. For a PID controller this would be realized by setting the 

proportional, integral, and derivative gains (KP, KI, and KD) to be randomly generated within a 

predetermined range.  

Monte Carlo Validation assumes that the designer has a set of gain values that are to be 

validated and parameters outside of the domain of the controller are varied to create a wide array 

of conditions under which the desired gain values are tested. Using the PID controller in a mass, 

spring, and damper scenario, the designer can incorporate noise in the measurements to simulate 

how well the chosen KP, KI, and KD.  

Due to the complexity of some systems, a simulation will be run multiple times to see what 

effect the variation of the noise level of the variable, or combinations of potential noise, have on 

a system. This will give the designer a better idea of where money or time should be spent to 

better optimize the system they are simulating. Another benefit of running smaller, focused, 

simulations is that the simulation will solve faster and the simulation can be refined for further 

study at a more rapid pace. After the refinement has been completed larger simulations can be 

run for final verification of assumptions made to simplify the initial batch of simulations. 
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 Implementation Example 
 In order to implement the Monte Carlo Validation in the algorithm described in Chapter 3, an 

example using a pendulum and cart will first be demonstrated where the varying noise level will 

be filtered out and the results scrutinized. The importance of the Kalman Filter and its function 

will be discussed in Chapter 6. For this simulation noise in the distance sensor is used as the 

changing varible and working from an unknown, instead of known, noise level will challenge the 

ability of the filter to accurately provide clean data. In this circumstance, the designer of the 

controller wants to estimate the maximum allowable noise before the assumed covariance, R, is 

no longer valid. A Monte Carlo Validation algorithm will be implemented to vary the noise 

level, 𝑣𝑣𝑛𝑛, and determine the allowable operating range. The code demonstrating this can be 

found in Appendix B.9. The Simulink is shown below in Figure 5.1. 

 

Figure 5.1 Monte Carlo Example 
The simulation was setup with two separate state space simulations. The first, labeled “True” 

contains the pure 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 matrices and zero noise input. The second, labeled “Estimate w/ 

Noise” uses the same matrices but has noise aded to the system both on the input and output in 
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order to test the Kalman Filter estimator. The effect on the estimation due to noise can be seen 

below in Figure 5.2. The graph shows the disparity between the true state (red) and the estimates 

(blue) grow as the magnitude of the noise grows larger. 

 

Figure 5.2: Sensor Noise Effects on Position 
In the above figure, the minimum noise level, and most accurate estimation pass, was 0.0037 

[m]. The designer will determine the threshold by which they can certify the designed system 

verified or inadequate. For a Kalman Estimation situation the estimate will not be based on what 

was directly measured (x-position in this example), but by what was estimated (velocity, angle of 

the pendulum, and the angular velocity of the pendulum. For this example the angle of the 

pendulum will be considered the most important factor that is to be estimated. Figure 5.3 shows 

the estimated positions (blue) vs the true position (red) for a assigned covariance of 0.5 and max 

noise of 1. 
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Figure 5.3: Estimated Angle(s) vs True Angle 
When comparing the range of the estimations to the true angle it can be seen that there is 

aproximately a 0.0001 radian diffence in the worst case. This comes out to 0.0057 degrees, 

which is two orders of magnitude less than the value being estimated at this timestep.  

Expanding the noise threshold to 𝑣𝑣𝑛𝑛 = 5 the maximum error that would be observed at the 

same timestep is approximately 0.0003 radians, which is still in the range of 2 orders of 

magnitude less than the value being estimated. This is shown in Figure 5.4. 
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Figure 5.4: Estimated Angle(s) for 𝒗𝒗𝑪𝑪 = 𝟓𝟓, 𝑹𝑹 = 𝟏𝟏 
 

 Parameter Identification with Sensor Noise 
Random noise was implemented into the Parameter Identification scheme detailed in Chapter 

3. This introduction of noise required the use of the built in MATLAB randn() function that creates 

Gaussian white noise based off of the inputs that the designer uses. Gaussian white noise is 

generated in a fashion that creates a distrobution similar to the noise that is seen in sensors and 

other electronic devices. The level of noise trends towards the average, zero in this particular use 

case, and can be seen in the figure below. 
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Figure 5.5: Noise Generated by randn() function 
In the implementation in Simulink the noise will be generated using the Eq. (5.3.1) 

 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙𝑁𝑁𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙𝑂𝑂𝑟𝑟𝑖𝑖𝑂𝑂𝑖𝑖𝑛𝑛𝑎𝑎𝑂𝑂 + 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛(3,1)
3

∗ 𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑒𝑒𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒 (5.3.1) 

The randn() signal is divided by 3 to create a unit distribution then multiplied by the desired 

magnitude and added to the original signal. This is implemented for each of the readings that an 

IMU would make as shown in the figure below enclosed by the blue box. The MATLAB code for 

the function can be found in Appendix B.14. 

0 20 40 60 80 100 120 140 160 180 200
Time [s]

-4

-3

-2

-1

0

1

2

3

4

N
oi

se
 M

ag
ni

tu
de

randn() Noise



48 
 

 

Figure 5.6: Simulink Implementation of Sensor Noise 
The code encompasing the loop and noise magnitude can be found in Appendix B.15. This 

code does not contain the graphing or initial conditions due to them being near identical to the 

code in Appendix B.13. 

 

 Noise Level Analysis 
A focused study was completed that looked at a max of two variables at a time in order to 

understand the effects that each variable has on the estimation of the desired parameters. To get a 

wide view of what the potential error values look like due to variations in omega noise and linear 

acceleration noise a simulation of 100 iterations was run with the noise magnitude for both types 

being between 10-1 and 10-8. The results are shown below in Figure 5.7. 



49 
 

 

Figure 5.7: Monte Carlo Results of Omega and Linear Acceleration Noise 
In the figure about the Total Inertia Matrix Error it can be seen that the error is only affected by 

the change in omega noise. This matches with what should be expected by the formulas given in 

Section 2.1 and as can be seen in the Simulink diagram given by Figure 3.6 where the linear 

acceleration is not seen in the inputs to the estimation scheme. The other plots, when moved in the 

3-D space, show a trend in the form of a trough where the optimal sensor selection can be made in 

relation to its noise floor. 

After running the simulation for 500 iterations the trough can be seen more clearly by looking 

at Figure 5.8. This trough in the data represents the ideal ratio between the noise level seen by the 

sensor in rotational velocity and linear acceleration. When chosing a sensor and the noise ratio 

skews towards one sensor or the other that will degrade the performance regardless of how 
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sensitive the other sensor is. This can be seen by looking at the graph from the XZ or YZ frame as 

with the example below, in Figure 5.9, showing the Unknown Inertia Matrix vs rotational velocity. 

 

Figure 5.8: 500 Iteration varying rotational velocity and linear acceleration looking down the 
trough 

 

Figure 5.9: Side view looking at rotational velocity 
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In the area where a clear line is seen, the data points are linear and soley dependent on rotational 

velocity until the accuracy ratio approaches that of the trough showing that the noise in angular 

velocity is too great and overwhelms the noise in linear acceleration. When the accuracy ratio 

surpasses the trough the opposite is true.  

For this circumstance where the unknown inertia matrix is given by Eq. (3.5.1) a reasonable 

error magnitude would be less than 20 [kg m2] and a good error magnitude would be less than 2 

[kg m2]. For the reasonable estimate the omega noise magnitude would need to be less than 

5𝑥𝑥10−7 �𝑟𝑟𝑎𝑎𝑑𝑑
𝑒𝑒
� and the linear acceleration noise magnitude would need to be less than 4𝑥𝑥10−7 �𝑚𝑚

𝑒𝑒2
�. 

This would produce the following figures showing the original signal versus the max allowable 

noisy signal. 

 

Figure 5.10: Centripetal Acceleration vs Noise 
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Figure 5.11: Rotational Velocity vs Noise 

In both Figure 5.10 and Figure 5.11 the original signals are blue, green, and purple while the 

noise is represented by the orange line. The magnitude of the noise is so much less than the 

magnitude of the original signals that the plot of the noise appears to be constantly zero. This 

noise to signal ratio is unacceptable and the noise must be filtered out at higher magnitudes 

through a noise filter. 

 Recursive Least Squares Filter 
5.5.1 Setup 

Similar to the RLS Estimation in Chapter 4, a Recursive Least Squares Filter will seek to 

minimize the difference between the mean estimate and the current time step measurement, or 

error, squared. This is implemented in Simulink in order to clear the noise generated due to 

imperfect sensors as shown in Figure 5.12. 
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Figure 5.12: RLS Filter 

When the RLS filter is run with an omega noise magnitude of 10−2.5[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] a portion of the 

noise can be filtered out, as shown in Figure 5.13. The lower graph contains just the noisy signal 

while the upper contains the true the filtered signal. The magnitude of the noise is less in the filtered 

signal and this allows for more accurate results when isolating the desired parameters. The same 

filtering can be seen for the linear acceleration sensor with a noise magnitude of 10−4[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] in 

Figure 5.14. 

 

Figure 5.13: RLS Filtering of Omega Noise 
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Figure 5.14: RLS Filtering of Linear Acceleration Noise 
Using the RLS Filtering blocks between the noise generation and the first set of calculations 

completed represents the flight computer apllying the filtering method to the data before 

attempting to calculate the required unknowns. This setup can be seen below in Figure 5.15. 
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Figure 5.15: RLS Filtering in Simulink 
5.5.2 Results 

The implementation of the RLS Filter was partially successful due to the damping effect the 

filter had on the noise magnitude. It was also not successful due to the poor estimation qualities 

that it displayed. This is likely due to the filter not incoporating the dynamics of the system into 

the estimation effort and soley relying on the data that it was provided then attempting to reduce 

the squared error. The use of a Kalman Filter or similar filter type that adapts to the state space 

matrices would improve the estimation. 

Using the graphs in Figure 5.16, it can be seen that in order to reach a 1% error the rotational 

velocity noise must have a noise magnitude of less than 10−4 [𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] for the Unknown Inertia 

Matrix, Center of Mass vector, and the Unknown Mass Estimate. When comparing this to Figure 

5.13 using the magnitude of peak rotation rate of 0.04 [𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] this equates to a noise to signal 

ratio of 0.25%. The formula can be seen in Eq. (5.5.1). 
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Figure 5.16: Parameter Estimation with Noise Reduction by RLS Filter 
 

 𝑁𝑁𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒
𝑆𝑆𝑖𝑖𝑂𝑂𝑛𝑛𝑎𝑎𝑂𝑂𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒

= 𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑒𝑒: 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙 (5.5.1) 

Again using Eq. (5.5.1), the linear acceleration noise magnitude required to reach a 1% error, 

10−7 [𝑚𝑚/𝑠𝑠/𝑠𝑠], yields an allowable noise to signal ratio of 0.1%. Both the allowable error for the 

rotational velocity and linear acceleration are well below what would be considered an 

acceptable threshold.  
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 CONCLUSIONS AND FUTURE WORK 

 Completed Work 
The equations of rotational motion and spacecraft dynamics from Chapter 2, were used to 

separate the inertia matrix, mass, and center of mass of Spacecraft B from a theoretically coupled 

spacecraft duo, as seen in Chapter 3. The output of which was seen to be extremely accurate 

assuming no noise in the system. To combat a noise level representing a real world system a 

recursive least squares filter was proposed in Chapter 4. A design validation scheme was 

implemented in the form of a Monte Carlo method in Chapter 5 to test a variety of noise levels 

against the designed filter. The recursive least squares filter was determined to be inaccurate 

enough that it, in the current form, does not represent a usable noise filtering method. In Chapter 

6, a state estimation algorithm in the form of the Kalman Filter was described and implemented, 

in a well studied example, to show its ability to filter noise and estimate all observable states.  

 Challenges Faced 
Through the first several iterations of the recursive least squares algorithm the inertia matrix 

output was routinely incorrect by greater than 20% when compared to the inertia matrix used to 

calculate the movement of the spacecraft. The first major correction was taking into account the 

product of inertia influence described in Eq. (4.4.3). This correction brought the error to within 

5% of the correct inertia value for the principal axes but the error was still large for the products 

of inertia. The inclusion of a forgetting factor λ brought the error value output by the algorithm 

to well below an acceptable threshold of 10−6 as well as matching the input matrix exactly. 

When developing the design validation algorithm an incorrect Monte Carlo method was 

initially implemented that utilized a static, yet random, grid for the tested noise levels creating a 

semi-uniform plot. This was due to the use of preset random noise values that were then used in 
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a nested double for-loop. A single for-loop with the random values generated inside the loop was 

used instead which resolved the issue. Following the implementation of the recursive least 

squares filter a significant error rate was observed which was eventually resolved when the 

angular acceleration estimate was seen to be multiple orders of magnitude less than the true 

value for all three axes. This was solved by introducing a more accurate initial noise estimate for 

the filter. 

During the application of the Extended Kalman Filter the states would not settle and the filter 

never reached an acceptable error determined to be an average of < 5% across all states 

measured given the ideal circumstances used. This issue is not resolved at this time but will be 

documented as future work. 

 Future Work 
6.3.1 Physical Attributes vs Noise Level Investigation 

The investigation between how changing specific physical attributes of the spacecraft system 

affect the allowable noise level is an important part of the design process and will impact the 

choice of sensors for such a spacecraft. The recommended relationships are: 

1. Mass ratio of the unknown and known spacecraft 

2. Ratio of total inertia to the known ability of the spacecraft to impart a torque on the 

system 

3. What parameter is the most important for accurate estimation 

6.3.2 State Estimation 
6.3.2.1 Overview 

All systems have some level of uncertainty, which is created due to measurement error, 

inaccuracies of production, or the inability to measure specific states. Because of this an 
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inaccurate model of the system is utilized by the flight computer which results in imprecise 

calculations which cannot be corrected using a controller. State estimation attempts to 

circumvent this issue through the manipulation of the known equations of motion and the sensor 

data being measured. This method determines the best guess of the true states for the system. 

Once true sensor data is attained, unknown states can be estimated and utilized by the controller. 

The result is an invaluable resource for systems without a human in the loop (for example, self-

driving vehicles, aircraft autopilot, spacecraft) that depend on having accurate data with the 

effects of noise negated. 

 To estimate the states of a system, that system must be fully observable. If a system is fully 

observable, then all the state variables can be determined through measurement of the system 

output. The observability of a system can be determined by finding the rank of the observability 

matrix shown below. 

  𝑶𝑶𝒃𝒃  =   �

𝑪𝑪
𝑪𝑪𝑨𝑨
…

𝑪𝑪𝑨𝑨𝑛𝑛−1
� (6.3.1) 

The matrix uses the A and C matrices from the state space matrix of the system where n is the 

number of states being observed. If the rank of the matrix is equal to n then the system is fully 

observable. If the rank, r, is less than n then the system only has r states that can be observed. 

As the quality of the estimation increases, the controllability of the system also increases due 

to the true state matrix being approximated. During the discussion of state estimation, the test case 

of a pendulum, Figure 6.1, and an inverted pendulum, Figure 6.2, balanced on a moving cart will 

be used. 
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Figure 6.1: Pendulum [25] 

  

Figure 6.2: Inverted Pendulum on Cart [26] 
 

 

6.3.2.2 Kalman Filter 
The Kalman Filter represents the optimal full state estimator utilizing the inputs, usually in the 

form of a force or moment, and the output state of the system. In a physical control system, the 

output state most commonly represents location, velocity, or acceleration, all of which can be 

linear or rotational. The Kalman Filter makes several assumptions about the system being modeled. 
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The first of these is that the system is linear in nature and the general kinematics do not change 

over time. Practically, this means that the matrices in the State Space system must be consistent in 

any state. An object that is moving on a consistent surface would be an ideal use case for a Kalman 

Filter. The second assumption is that there is a level of noise that must be accounted for being 

created by the sensor and the system being modeled. This noise, for a Kalman Filter is assumed to 

be Gaussian in nature. Gaussian noise has the characteristics of a normal distribution with a mean 

of the true signal, or zero mean. An example of Gaussian zero mean sensor noise is shown in 

Figure 6.3. 

  

Figure 6.3: Zero Mean Signal Noise Representation 
 
Summarizing the Kalman Filter from Appendix A.1 on page 69 gives the following set of 

equations: 

Calculate the Kalman Gain using Eq. (A.1.15): 

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1 
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Update the State Estimate using Eq. (A.1.5): 

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1) 

Update the error Covariance in response to the Kalman Gain from Eq. (A.1.16): 

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘′  

Project to next step using Eq. (A.1.17) and Eq. (A.1.21): 

 𝒙𝒙�𝑘𝑘+1′ = 𝑨𝑨𝒙𝒙�𝑘𝑘 

 𝑷𝑷𝑘𝑘+1 = 𝑨𝑨𝑷𝑷𝑘𝑘𝑨𝑨𝑇𝑇 + 𝑸𝑸 

6.3.2.3 Extended Kalman Filter 
An Extended Kalman Filter, EKF, is applied to a particular system when the system being 

analyzed is non-linear in nature. The most common example used in academics is the inverted 

pendulum supported by a cart, as shown in Figure 6.2. The dynamics of an inverted pendulum 

are well documented and exceptionally well linked to the movement of the cart allowing for 

discussion about many topics.  

With any non-linear system, the equations of motion are initially linearized about time 𝑡𝑡 = 0. 

Due to the characteristics of a non-linear system, the equations of motion will have to be 

linearized at some time interval. This interval can be set at a predetermined number of iterations, 

after the error value exceeds a limit, or after each successive estimation. This decision is 

ultimately left up to the designer.  

The Extended Kalman Filter works around the state space equations varying with time which 

changes the Kalman Filter algorithm to the following form: 

Calculate the Kalman Gain: 
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 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇�𝑪𝑪𝑼𝑼𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇 + 𝑹𝑹𝑼𝑼�
−1

 

Update the State Estimate: 

 𝒙𝒙�𝑘𝑘|𝑘𝑘 = 𝒙𝒙�𝑘𝑘|𝑘𝑘−1 + 𝑲𝑲𝑘𝑘�𝒚𝒚𝑘𝑘 − 𝑪𝑪𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘−1� 

Update the error Covariance in response to the Kalman Gain: 

 𝑷𝑷𝑘𝑘|𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑼𝑼)𝑷𝑷𝑘𝑘|𝑘𝑘−1
′  

Project to next step using: 

 𝒙𝒙�𝑘𝑘+1|𝑘𝑘
′ = 𝑨𝑨𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘 

 𝑷𝑷𝑘𝑘+1|𝑘𝑘 = 𝑨𝑨𝑘𝑘𝑷𝑷𝑘𝑘|𝑘𝑘𝑨𝑨𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑘𝑘 

6.3.2.4 MATLAB Example Implementation 
The results of such a filter is demonstrated by Brunton & Kutz [27] through the use of the 

MATLAB function 𝑙𝑙𝑙𝑙𝑒𝑒( ). The algorithm from the book can be found in Appendix B.8. 𝑙𝑙𝑙𝑙𝑒𝑒( ) 

outputs a gain value that will correct for the sensor noise in the data. This result can be seen in 

Figure 6.4: X-Position for Pendulum on Cart where the noisy data from a distance sensor on a 

pendulum carrying cart is run through a Kalman Filter to estimate the true value. 

  

Figure 6.4: X-Position for Pendulum on Cart 
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Full state estimation can also be implemented with the 𝑙𝑙𝑙𝑙𝑒𝑒( ) function. Doing this when only 

measuring the state x-position provides the graphs shown in Figure 6.5 and Figure 6.6. For both 

graphs the solid line indicates the true state while the dashed line indicates the estimated states 

being calculated from the x values only. Figure 6.6 is a close up view of Figure 6.5 as the 

estimates are accurate enough that they are very difficult to discern when looking at the full 

graph. 

  

Figure 6.5: Estimated vs True States for Pendulum on a Cart 

  

Figure 6.6: Close up view of State vs Estimated States 
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APPENDICES 

A. Derivations 
A.1  Kalman Filter 

The mathematical representation of the noise in the system is represented in Eq. (A.1.1a) & 

(A.1.1b). 

 �̇⃗�𝑥 = 𝑨𝑨x�⃗ + 𝐁𝐁u�⃗ + 𝑤𝑤𝑑𝑑 (A.1.1a) 

 𝑦𝑦 = 𝑪𝑪x�⃗ + 𝐃𝐃u�⃗ + 𝑤𝑤𝑛𝑛 (A.1.1b) 

The process noise, or disturbance, is captured in the matrix wd while the sensor noise is 

captured by the matrix wn. Within a standard Kalman Filter, any noise added to the system is 

assumed to be both Gaussian in nature and zero-mean. If noise is to be considered zero-mean, 

then the noise pattern must maintain a rolling average of the true signal. Types of Kalman Filters 

are available depending on if the noise skews in a particular direction or is unbalanced. 

The covariance of the gaussian noise can be given by Eq (A.1.2). 

 𝑸𝑸 = 𝐸𝐸[𝒘𝒘𝑑𝑑𝒘𝒘𝑑𝑑
𝑇𝑇] (A.1.2a) 

 𝐑𝐑 = E[𝒘𝒘𝑛𝑛𝒘𝒘𝑛𝑛
𝑇𝑇] (A.1.2b) 

Solving for the mean squared value results in the following set of equations with 𝒙𝒙�𝑘𝑘 denoting 

the estimation of states: 

 𝑷𝑷𝑘𝑘 = 𝐸𝐸[𝒆𝒆𝑘𝑘𝒆𝒆𝑘𝑘𝑇𝑇] = 𝐸𝐸[(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘)(𝒙𝒙𝑼𝑼 − 𝒙𝒙�𝑼𝑼)𝑇𝑇] (A.1.3) 

When estimating the current state the new guess can be made through the use of a Kalman 

gain, Kf, and the application of matrix algebra where the guessing function looks like Eq. 

(A.1.4). 

 𝒙𝒙�𝑘𝑘+1 = 𝒙𝒙�𝑘𝑘 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘+1 − 𝒚𝒚�𝑘𝑘) (A.1.4) 
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Expand using Eq. (A.1.1b): 

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1) (A.1.5) 

The term inside the parenthesis can be called the measurement residual and redefined as: 

 𝒎𝒎𝑘𝑘 = 𝒛𝒛𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1 (A.1.6) 

Combine Eq. (A.1.1) with Eq. (A.1.5): 

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝒙𝒙𝑘𝑘 + 𝒘𝒘𝑑𝑑 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1) (A,1.7) 

Using Eq. (A.1.7) in Eq. (A.1.3): 

 𝑷𝑷k = E ��(𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1) −𝑲𝑲𝑘𝑘𝑤𝑤𝑛𝑛� [(𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1) −𝑲𝑲𝑘𝑘𝒘𝒘𝑛𝑛]𝑇𝑇� 

   (A.1.8) 

Simplifying Eq. (A.1.8) by isolating the error term: 

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)E[(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1)𝑇𝑇](𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪) + 𝑲𝑲𝑘𝑘E[𝒘𝒘𝑛𝑛𝒘𝒘𝑛𝑛
𝑇𝑇]𝑲𝑲𝑘𝑘𝑇𝑇 (A.1.9) 

Simplify the Error functions according to Eq. (A.1.3) and Eq. (A.1.2b): 

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘−1(𝑰𝑰 − 𝑲𝑲𝑼𝑼𝑪𝑪) + 𝑲𝑲𝑘𝑘𝑹𝑹𝑲𝑲𝑘𝑘
𝑇𝑇 (A.1.10) 

Expanding the previous equation: 

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 − 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇𝑲𝑲𝑘𝑘
𝑇𝑇 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)𝑲𝑲𝑘𝑘

𝑇𝑇 (A.1.11) 

Using linear the linear algebra convention for transpose it can be said that the following 

relationship is true and that Eq. (A.1.11) simplifies into Eq. (A.1.12).  

 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇𝑲𝑲𝑘𝑘
𝑇𝑇 

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 2𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)𝑲𝑲𝑘𝑘
𝑇𝑇 (A.1.12) 
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In order to minimize Pk with respect to Kk taking the derivative of Eq. (A.1.12) is necessary. 

The resulting equation becomes: 

 𝑷𝑷𝑘𝑘
𝑲𝑲𝑘𝑘

= −2(𝑪𝑪𝑷𝑷𝑘𝑘−1)𝑇𝑇 + 2𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑯𝑯𝑇𝑇 + 𝑹𝑹) (A.1.13) 

Setting Eq. (A.1.13) equal to zero results in: 

 (𝑯𝑯𝑷𝑷𝑘𝑘−1)𝑇𝑇 = 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹) (A.1.14) 

Solving for the Kalman gain results in: 

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1 (A.1.15) 

Using the Kalman gain to simplify the equation for Pk leads to: 

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1𝑪𝑪𝑷𝑷𝑘𝑘−1 

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘−1 (A.1.16) 

The future state can be predicted using the current estimate and the transition matrix A: 

 𝒙𝒙�𝑘𝑘+1 = 𝑨𝑨𝒙𝒙�𝑘𝑘 (A.1.17) 

Solving for the error using the state estimate and the next set of measurements: 

 𝒆𝒆𝑘𝑘+1 = 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙�𝑘𝑘+1 

 = (𝑨𝑨𝒙𝒙𝑘𝑘 + 𝒘𝒘𝑑𝑑) − 𝑨𝑨𝒙𝒙�𝑘𝑘 

 𝒆𝒆𝑘𝑘+1 = 𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑘𝑘 (A.1.18) 

Using Eq. (A.1.3) at time k+1 gives:  

 𝑷𝑷𝑘𝑘+1 = 𝐸𝐸[(𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑑𝑑)(𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑑𝑑)𝑇𝑇] (A.1.19) 
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Expanding results in: 

 𝑷𝑷𝑘𝑘+1 = E[(𝑨𝑨𝒆𝒆𝑘𝑘)(𝑨𝑨𝒆𝒆𝑘𝑘)𝑇𝑇] + E[𝐰𝐰k𝐰𝐰k
𝑇𝑇] (A.1.20) 

Simplifying leaves: 

 𝑷𝑷𝑘𝑘+1 = 𝑨𝑨𝑷𝑷𝑘𝑘𝑨𝑨𝑇𝑇 + 𝑸𝑸 (A.1.21) 

A.2  Extended Kalman Filter 
The Kalman Filter is easy to implement when considering the algorithm shown in Section 6.4. 

The adaptation comes when considering that the 𝐶𝐶 & 𝐴𝐴 matrices need to be altered to conform 

with the new state of the system with each successive itteration. The application of this can be 

solved by linearizing the partial differentiation of the Equations of Motion at each time step. The 

algorithms partDiff.m and linPart.m, on pages 83 & 84 respectively, solve this issue for and can 

be implemented in the overall EKF algorithm. The algorithm will look as follows: 

1. Solve for the partial differential of the equations of motion: 

 [Apd,Bpd] = partDiff(fcn,store,point) 

2. Linearize about the current states: 

 [ALin,BLin] = linPoint(a,b,X,point) 

3. Calculate the Kalman Gain: 

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇�𝑪𝑪𝑼𝑼𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇 + 𝑹𝑹𝑼𝑼�
−1

 (A.2.1) 

4. Update the State Estimate: 

 𝒙𝒙�𝑘𝑘|𝑘𝑘 = 𝒙𝒙�𝑘𝑘|𝑘𝑘−1 + 𝑲𝑲𝑘𝑘�𝒚𝒚𝑘𝑘 − 𝑪𝑪𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘−1� (A.2.2) 

5. Update the error Covariance in response to the Kalman Gain: 
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 𝑷𝑷𝑘𝑘|𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑼𝑼)𝑷𝑷𝑘𝑘|𝑘𝑘−1
′  (A.2.3) 

6. Project to next step using: 

 𝒙𝒙�𝑘𝑘+1|𝑘𝑘
′ = 𝑨𝑨𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘 (A.2.4) 

 𝑷𝑷𝑘𝑘+1|𝑘𝑘 = 𝑨𝑨𝑘𝑘𝑷𝑷𝑘𝑘|𝑘𝑘𝑨𝑨𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑘𝑘 (A.2.5) 

7. Return to step 2 

A.3  Least-Squares Estimation 
The minimalization of the cost function in Eq. (5.3.1) is accomplished using a desired output 

sequence, d[n], and an input sequence, x[n], to create a filter or gain value h[n] that corrects for 

the error in the system. The relationship is shown in Eq. (A.3.1). 

 𝒅𝒅[𝑎𝑎] = ∑ (𝒉𝒉𝑖𝑖𝒙𝒙𝑖𝑖−1)𝑛𝑛
𝑖𝑖=0 + 𝒆𝒆𝑖𝑖 (A.3.1) 

Solving for the error: 

 𝒅𝒅[𝑎𝑎] − ∑ (𝒉𝒉𝑖𝑖𝒙𝒙𝑖𝑖−1)𝑛𝑛
𝑖𝑖=0 = 𝒆𝒆𝑖𝑖 (A.3.2) 

Rewriting this in pure vector notation leaves the following and simplifying the inputs into 

matrix A. 

 𝒆𝒆 = 𝒅𝒅 − 𝑨𝑨𝒉𝒉 (A.3.3) 

Rewriting the cost function in Eq. (5.3.1b): 

 𝑺𝑺 = ‖𝒅𝒅 − 𝑨𝑨𝒉𝒉‖22 (A.3.4) 

 𝑺𝑺 = (𝒅𝒅 − 𝑨𝑨𝒉𝒉)𝑇𝑇(𝒅𝒅 − 𝑨𝑨𝒉𝒉) (A.3.5) 

Expanding Eq. (A.3.5) results in the following: 

 𝑺𝑺 = 𝒅𝒅𝑇𝑇𝒅𝒅 − 𝒉𝒉𝑇𝑇𝑨𝑨𝑇𝑇𝒅𝒅 − 𝒅𝒅𝑇𝑇𝑨𝑨𝒉𝒉 + 𝒉𝒉𝑇𝑇𝑨𝑨𝑇𝑇𝑨𝑨𝑇𝑇𝒉𝒉 (A.3.6) 
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Using matrix properties of (𝐴𝐴𝐵𝐵)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇 the equation can be reduced to: 

 𝑺𝑺 = 𝒅𝒅𝑇𝑇𝒅𝒅 − 2𝒅𝒅𝑇𝑇𝑨𝑨𝒉𝒉 + 𝑨𝑨𝑇𝑇𝑨𝑨𝒉𝒉2 (A.3.7) 

The minimum of a function can be solved for by setting the derivative of said function to 

zero: 

 δ𝑺𝑺
δ𝒉𝒉

= 0 = −2𝑨𝑨𝑇𝑇𝒅𝒅 + 2𝑨𝑨𝑇𝑇𝑨𝑨𝒉𝒉 (A.3.8) 

Solving Eq. (A.3.8) for h or the optimal filter gain results in the following: 

 𝒉𝒉∗ = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝒅𝒅 (A.3.9) 

Solving for the filter in Eq. (A.3.9) can also be solved using the variance of the input data 

with respect to the covariance of the input and output data. This is accomplished in Eq. (A.3.10). 

 β� = 𝐶𝐶𝑢𝑢𝑣𝑣𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒(𝜕𝜕𝑖𝑖,d𝑖𝑖)
𝑉𝑉𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒(𝜕𝜕𝑖𝑖)

 (A.3.10) 

Expanding Eq. (A.3.10) shows the math behind the covariance and variance functions. 

  β� = ∑ (𝜕𝜕𝑖𝑖−�̅�𝜕)(𝑑𝑑𝑖𝑖−𝑑𝑑�)𝑁𝑁
𝑖𝑖=1
∑ (𝜕𝜕𝑖𝑖−�̅�𝜕)2𝑁𝑁
𝑖𝑖=1

  (A.3.11) 

A.4  Recursive Least Squares Estimation 
The recursive algorithm obtains the optimal filter h* by beginning with measurements of the 

output, 𝒛𝒛𝑘𝑘, where k represents the current iteration and the given inputs, 𝑯𝑯𝑼𝑼. In the algorithm, the 

current error statistics are held by the error covariance matrix, 𝑹𝑹𝑼𝑼, state residuals are held by a 

covariance matrix, 𝑷𝑷𝑼𝑼, and the estimate filter represented by 𝐱𝐱�k. The model equation is 

represented in Eq. (A.4.1), where n is the error value for the specified iteration.   

The optimal future filter 𝒉𝒉𝑛𝑛+1∗  is given by Eq. (A.4.1). 

 𝒉𝒉𝑛𝑛+1∗ = (𝑨𝑨𝑛𝑛+1𝑇𝑇 𝑨𝑨𝑛𝑛+1)−1𝑨𝑨𝑛𝑛+1𝑇𝑇 𝒅𝒅𝑛𝑛+1 (A.4.1) 
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Combining all the inputs into one row vector: 

 𝒖𝒖𝑖𝑖 = �𝑥𝑥𝑖𝑖   𝑥𝑥𝑖𝑖−1 … 𝑥𝑥𝑖𝑖−(𝑚𝑚−1)� (A.4.2) 

Eq. (A.4.1) can be rewritten using Eq. (A.4.2) and the following terms: 

 𝛟𝛟𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛
𝑖𝑖=0 𝑖𝑖 𝒖𝒖𝑖𝑖

𝑇𝑇 (A.4.3) 

 𝐳𝐳𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛
𝑖𝑖=0 𝑖𝑖 𝒅𝒅[𝑆𝑆] (A.4.4) 

 𝒉𝒉∗ = 𝛟𝛟𝑛𝑛
−1𝒛𝒛𝑛𝑛 (A.4.5) 

𝛟𝛟𝑛𝑛 can be expanded to form the following expression: 

 𝛟𝛟𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛−1
𝑖𝑖=0 𝑖𝑖 𝒖𝒖𝑖𝑖

𝑇𝑇 + 𝒖𝒖𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇  (A.4.6) 

Rewriting by substituting in 𝛟𝛟𝑛𝑛−1 and adding an Identity matrix of size m: 

 𝛟𝛟𝑛𝑛 = 𝛟𝛟𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝑰𝑰𝒖𝒖𝑛𝑛𝑇𝑇 (A.4.7) 

The Matrix Inversion Lemma says that Eq. (A.4.9) is the inverse of Eq. (A.4.8). 

 𝑨𝑨 = 𝑩𝑩−1 + 𝑪𝑪𝑫𝑫−1𝑪𝑪𝑇𝑇 (A.4.8) 

 𝑨𝑨−1 = 𝑩𝑩 − 𝑩𝑩𝑪𝑪(𝑫𝑫 + 𝑪𝑪𝑇𝑇𝑩𝑩𝑪𝑪)−1𝑪𝑪𝑇𝑇𝑩𝑩 (A.4.9) 

Expand Eq. (A.4.7) using the Matrix Inversion Lemma: 

 𝛟𝛟𝑛𝑛
−1 = 𝛟𝛟𝑛𝑛−1

−1 − 𝛟𝛟𝑛𝑛−1−1 𝒖𝒖𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝛟𝛟𝑛𝑛−1−1

𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝛟𝛟𝑛𝑛−1−1 𝒖𝒖𝑛𝑛
 (A.4.10) 

Saying 𝑷𝑷𝑛𝑛 = 𝛟𝛟𝑛𝑛
−1 and 𝑷𝑷𝑛𝑛−1 = 𝛟𝛟𝑛𝑛−1

−1  and simplifying Eq. (A.4.10) with a gain vector: 

 𝑷𝑷𝑛𝑛 = 𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1 (A.4.11) 

Writing out Kn results in: 
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 𝑲𝑲𝑛𝑛 = 𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛
𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛

 (A.4.12a) 

 𝑲𝑲𝑛𝑛 = (𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1)𝒖𝒖𝑛𝑛 = 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛 (A.4.12b) 

Similarly, the operation performed for Eq. (A.4.6) and Eq. (A.4.7), zn-1 can be separated out 

from zn resulting in a new equation: 

 𝒛𝒛𝑛𝑛 = 𝒛𝒛𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.13) 

Plugging Eq. (A.4.13) into Eq. (A.4.5): 

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛𝒛𝒛𝑛𝑛 

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛(𝒛𝒛𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎]) (A.4.14) 

Expand the first term in Eq. (A.4.14) using Eq. (A.4.11) in order to add the previous estimate 

to the current estimate error as seen in Eq. (A.4.17). 

 𝒉𝒉𝑛𝑛∗ = (𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1)𝒛𝒛𝑛𝑛−1 + 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.15) 

Distribute the zn-1 and expand: 

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛−1𝒛𝒛𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒛𝒛𝑛𝑛−1 + 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.16) 

Use Eq. (A.4.5) and Eq. (A.4.12b) to simplify the equation: 

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.17) 

Factor out Kn from the right-hand section of the equation: 

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ − 𝑲𝑲𝑛𝑛(𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗ − 𝒅𝒅[𝑎𝑎]) (A.4.18) 

The section inside the parenthesis is the error of the algorithm. Use a new term, ζ, to describe 

the error and simplify Eq. (A.4.18). 
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 𝛇𝛇 = 𝒅𝒅[𝑎𝑎] − 𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗  (A.4.19) 

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝛇𝛇 (A.4.20)  
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B. MATLAB Code Files 
B.1  Recursive Least Squares for Cassini 

%% EOM Calculations %% 
% ================== % 
clc, close all, clear all 
  
% Set initial angular velocity vector 
w0 = [0 
    0 
    0]; 
  
% Declare Cassini Inertia Matrix 
J = [8810.8 -136.8 115.3; 
    -136.8 8157.3 156.4; 
    115.3 156.4 4721.8]; 
  
dt = 0.01;                  % Set timestep for simulation 
t1 = [1:dt:150];            % Time range for torque input 
t2 = [150+dt:dt:200];       % Time range for zero torque 
  
tau1 = [10                  % 10Nm torque about x 
        2 
        4]; 
tau2 = [0                   % Zero torque input 
        0 
        0]; 
     
  
% set max timestep to the same as Simulink 
options = odeset('MaxStep',1/50);    
  
% ODE45 is used to simulate the differential equation  
% represented by rotationalEOM.m 
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[T1,om1] = ode45(@rotationalEOM,t1,w0,options,tau1,J) 
[T2,om2] = ode45(@rotationalEOM,t2,om1(size(om1,1),:),options,tau2,J) 
  
% Combine the data from the datasets with different torques to create one 
% continuous dataset 
omega = [om1 
    om2]; 
t = [T1 
    T2]; 
  
% Calculate rotational inertia and the realized input moment from the omega 
% output from ODE45. 
Jinv = inv(J); 
for i = 1:size(omega,1) 
    alpha(i,:) = Jinv*(tau1-cross(omega(i,:),omega(i,:)*J)'); 
    moment(i,:) = alpha(i,:)*J; 
end 
 
%% Calculate J using RLS based on Jguess %% 
% ======================================= % 
 
lamda = 0.95; 
Linv = 1/lamda; 
  
Jguess = [6000     0   0; 
            0   4000    0; 
            0   0   2000]; 
  
Px = eye(3); 
hx = Jguess(:,1); 
for i = 1:size(omega,1) 
     
    [hx,errx,Px] = RLSStep(alpha(i,:)',moment(i,1),Px,hx,Linv); 
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    erx(:,i) = abs(errx); 
end 
  
  
Py = eye(3); 
hy = Jguess(:,2); 
for i = 1:size(omega,1) 
     
    [hy,erry,Py] = RLSStep(alpha(i,:)',moment(i,2),Py,hy,Linv); 
    ery(:,i) = abs(erry); 
end 
  
  
Pz = eye(3); 
hz = Jguess(:,3); 
for i = 1:size(omega,1) 
     
    [hz,errz,Pz] = RLSStep(alpha(i,:)',moment(i,3),Pz,hz,Linv); 
    er(:,i) = abs(err); 
end 
  
J_RLS = [hx hy hz] 
 

B.2  Rotational Equations of Motion 
function dydt = rotationalEOM(t,omega,torque,inertia) 
  
% Function to solve for the rotational motion of an object 
  
% t         - time array                            [s] 
% omega     - angular velocity                      [rad/s] 
% torque    - input torque to the system            [Nm] 
% inertia   - [3x3] inertia matrix of the system    [kg*m^2] 
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dydt = inv(inertia)*(torque-cross(omega,inertia*omega)); 
 

B.3  Recursive Least Squares Step 
function [h,err,P] = RLSStep(u,d,P,h,Linv) 
  
% Function for 1 step of an RLS algorithm 
% 
% ==== input ==== 
% u - the input matrix nx1 
% b - the output matrix nx1 
% P - the inverse matrix 
% h - the filter matrix 
% L - lamda or forgetting factor 0<lamda<1 
% 
% ==== output ==== 
% K - gain vector 
% err - error value 
  
K = (P*u.*Linv)/(eye(size(d,2))+Linv.*u'*P*u); 
err = d-u'*h; 
h = h+K*err; 
P = Linv.*(P-K*u'*P); 
end 
 

B.4  Kalman Filter 
function [xn,P,K] = KalmanFilter(Alin,Blin,x,Yk,C,P,Qk,Rk) 
  
% Continuous Time Kalman Filter Function 
%  
% Alin  - Linearized A Matrix 
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% Blin  - Linearized B Matrix 
% x     - incomming states 
% C     - measurement matrix 
% P     - previous process matrix 
% Qk & Rk - noise covariances 
  
Pkp = Alin*P*Alin'+Qk;              % calculate the prediction matrix 
Pkn = Pkp*C'; 
  
K = Pkp*C' ./ (C*Pkp*C' + Rk);      % calculate Kalman Gain 
Yk = C*x;                           % current observation 
xn = x + K*(Yk - C*x);              % estimate state matrix 
P = (eye(size(Alin,1)) - K*C)*Pkp;  % update process covariance matrix 
 

B.5  Extended Kalman Filter 
function [X,P,K] = ExtendedKalmanFilter(Apd,Bpd,X_var,x,Yk,C,P,Qk,Rk) 
  
% Continuous Time Kalman Filter Function 
%  
[Alin,Blin] = linPoint(Apd,Bpd,X_var,x'); 
  
  
  
Yn = Alin*C + sqrt(Rk); 
  
P = Alin*P*Alin'+Qk; 
Pn = P*C';              % calculate the prediction matrix 
Y = xn*C;               % estimated output 
K = Pn*inv(H*Pn+Rk);    % Kalman Gain 
  
x = xn+K*(Yk-Y);        % state update 
P = P-K*Pn';            % covariance update 
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B.6  Partial Differentiation 
function [Apd,Bpd] = partDiff(fcn,store,point) 
  
% Create the A and B matrices for a system of governing equations 
  
% fcn is all of the equations of motion in a [n x 1] matrix 
% store is all of the symbolic variables in the EoM in a [m x 1] matrix 
  
a = size(fcn,1);        % pull the number of functions 
b = size(store,2);      % pull the number of variables 
  
% b should usually be larger than a by the numver of inputs 
  
i=1;j=1; 
for i = 1:b 
     
    der(:,i) = diff(fcn(:,1),store(i));         % partial diff of all fcn with respect to the store of 

symbols 
     
    if i <= a                       % once we move past 'a' number of partial diffs we are in the inputs 
        Apd(:,i) = der(:,i);          % storing current differentiation for A 
         
    else 
        Bpd(:,j) = der(:,i);          % store the rest of the determination as B 
        j=j+1; 
    end 
     
    i=i+1; 
end 
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B.7  Linearization of Differential 
function [ALin,BLin] = linPoint(a,b,X,point) 
  
% Linearize a system of equations already in their A & B matrices about a 
% specific point. 
% 
% 'a' - symbolic A matrix created using partial differentials 
% 
% 'b' - symbolic B matrix created using partial differentials 
% 
% 'X' - storage location of the symbolic variables of the state matrix. 
% Ex: X = [x v theta omega] 
% 
% 'point' - The values of the state variables that are to be linearized 
% about. These variables must be in the same order as the state variables 
% they are associated with. 
% 
  
ALin = double(subs(a,X,point));       % substitute points to be linearized about 
BLin = double(subs(b,X,point));       % substitute points to be linearized about 
 

B.8  Kalman Filter Code from Brunton & Kutz [4] 
%% Matlab Function lqe Kalman Gain Determination 
% 
% This filter will be based around the linear pendulum down  
% position. 
% 
  
clc, close all, clear all 
  
  
  
% ========== Setup ========== 
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M = 5; 
m = 1; 
L = 2; 
g = -9.81; 
d = 1; 
  
P = -1;         % Pendulum up = 1 
  
A = [0 1 0 0; 
    0 -d/M -m*g/M 0; 
    0 0 0 1; 
    0 -P*d/(M*L) -P*(m+M)*g/(M*L) 0]; 
  
B = [0 1/M 0 P/(M*L)]'; 
  
C = [1 0 0 0]; 
  
D = zeros(1,1); 
  
  
% ========== Defining Kalman Filter Parameters ========== 
  
% In the typical inverted pendulum model we can expect that % the system will not experience 

any major disturbances,  
% such as physically being bumped 
% into, so the 'vd' variable will be kept low when compared % to the 'vn' variable. 
  
vd = 0.1*eye(4);        % System "trustworthyness" 
vn = 1;            % Sensor "trustworthyness" 
  
BK = [B vd 0*B];    % adding distrubance to the inputs 
  
sysXMeasured = ss(A,BK,C,[0 0 0 0 0 vn]);       % State Space 
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sysAllMeasured = ss(A,BK,eye(4),zeros(size(BK,1),size(BK,2)));        % State Space for TRUE 

system 
  
[K,P,E] = lqe(A,vd,C,vd,vn);    % Kalman Filter Gain determination 
  
sysKalmanFilter = ss(A-K*C,[B K],eye(4),0*[B K]);         % Kalman filter State Space 
  
  
% ========== Estimate System in Down Position ========== 
  
dt = 0.01; 
t = 0:dt:60; 
  
disturbance = randn(4,size(t,2)); 
noise = randn(size(t));                 % this could be simplified to randn(size(t)) but I would prefer 

to have easy access to the strength of the noise in the first position 
  
input = 0*t; 
input(100:120) = 100; 
input(1500:1520) = -100; 
  
input_total = [input; vd*vd*disturbance; noise]; 
  
[y,t] = lsim(sysXMeasured,input_total,t); 
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B.9  Monte Carlo Example 
%% Monte Carlo Simulation 
  
clc, close all, clear all 
  
M = 5; 
m = 1; 
L = 2; 
g = -9.81; 
d = 1; 
  
P = -1;         % Pendulum up = 1 
  
A = [0 1 0 0; 
    0 -d/M -m*g/M 0; 
    0 0 0 1; 
    0 -P*d/(M*L) -P*(m+M)*g/(M*L) 0]; 
  
B = [0 1/M 0 P/(M*L)]'; 
  
C = [1 0 0 0]; 
  
D = zeros(1,1); 
  
vd = 0*eye(4);        % System "trustworthyness" 
vd2 = vd*vd; 
vn = 1;            % Sensor "trustworthyness" 
  
BK = [B vd 0*B];    % adding distrubance to the inputs 
  
IC = [0;0;0;0]; 
  
dt = 0.01; 
time = 0:dt:60; 
  
imp1 = 10; 
imp2 = 8; 
  
R = 1; 
%% 
figure 
hold on 
tic 
for i = 1:100 
    vn(i) = rand*5; 
    sim('SIM_MC_003',time); 
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    errorx(:,i) = (ans.TrueXhat(:,1)-ans.NoisyXhat(:,1)); 
    errorv(:,i) = (ans.TrueXhat(:,2)-ans.NoisyXhat(:,2)); 
    errortheta(:,i) = (ans.TrueXhat(:,3)-ans.NoisyXhat(:,3)); 
    erroromega(:,i) = (ans.TrueXhat(:,4)-ans.NoisyXhat(:,4)); 
     
    NoisyStates(:,:,i) = ans.NoisyXhat; 
     
    i 
end 
toc 
TrueStates = ans.TrueXhat; 
  
%% Error Values 
  
for i = 1:100 
    Merrorx(i) = mean(errorx(:,i)); 
    Merrorv(i) = mean(errorv(:,i)); 
    Merrortheta(i) = mean(errortheta(:,i)); 
    Merroromega(i) = mean(erroromega(:,i)); 
     
    stdx(i) = std(errorx(:,i))/sqrt(length(errorx(:,i))); 
    stdv(i) = std(errorv(:,i))/sqrt(length(errorv(:,i))); 
    stdtheta(i) = std(errortheta(:,i))/sqrt(length(errortheta(:,i))); 
    stdomega(i) = std(erroromega(:,i))/sqrt(length(erroromega(:,i))); 
end 
  
Data = [vn' Merrorx' stdx' Merrorv' stdv' Merrortheta' stdtheta' Merroromega' stdomega']; 
varnames = {'Noise','Mean X','std X','Mean V','std V','Mean \theta','std \theta','Mean \omega','std 
\omega'}; 
Error = 
table(Data(:,1),Data(:,2),Data(:,3),Data(:,4),Data(:,5),Data(:,6),Data(:,7),Data(:,8),Data(:,9),'Vari
ableNames',varnames) 
  
%% Plots 
figure 
hold on 
for i=1:100 
    plot(time,NoisyStates(:,1,i),'b') 
end 
plot(time,TrueStates(:,1),'r','linewidth',2) 
hold off 
title('Sensor Noise Effects on Position') 
ylabel('Position of Cart [m]') 
xlabel('Time [s]') 
%% 
figure 
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hold on 
for i=1:100 
    plot(time,NoisyStates(:,3,i),'b') 
end 
plot(time,TrueStates(:,3),'r','linewidth',2) 
hold off 
title('Estimated Angle(s) vs True Angle') 
ylabel('Angle of Pendulum [rad]') 
xlabel('Time [s]') 
 

B.10 Radius to CoM_b1 
function rb1 = fcn(ra1,ra2,rcm_change) 
dra = norm(ra1-ra2); 
drb = -rcm_change+dra; 
rb1 = ra1*drb/dra; 

 
B.11 Unknown Mass Calculation 

function mb_calc = fcn(ma,ra,rb) 
  
mb_calc = ma*norm(ra)/norm(rb); 

 

B.12 Unknown Inertia Calculation 
function Jb_calc  = fcn(Ja,Jtotal,ma,ra_calc,mb_calc,rb_Calc) 
  
Ra = ra_calc*ra_calc'; 
Rb = rb_Calc*rb_Calc'; 
  
Jb_calc = Jtotal-Ja-ma*Ra-mb_calc*Rb; 
 
 

B.13 Parameter Isolation MATLAB 
%% 
clc, close all, clear all 
  
%% Constants and Calculations of Values to be used 
J_cassini = [8810.8 -136.8 115.3; 
    -136.8 8157.3 156.4; 
    115.3 156.4 4721.8];        % Cassini Inertia Matrix 
  
Ja = J_cassini; 
  
J_rwa_spin = 0.161;      % cassini reaction wheel inertia 10.2514/6.2005-6271 
ma = 2100; 
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mrwa = 5.152;               % assuming the radius of the rwa's are 0.25m 
rrwa = 0.25;                % arbitrarily assigned 
lrwa = 0.1;                 % arbitrarily assigned 
  
J_rwa_offspin = 0.25*mrwa*rrwa^2+1/12*mrwa*lrwa^2;  % calculate spin about y and z axis 
  
J_rwa = diag([J_rwa_spin;J_rwa_offspin;J_rwa_offspin]); 
  
  
Jb = [2000  0   0; 
    0   2000    0; 
    0   0   2000];              % object inertia matrix 
  
Jxguess = [6000     0   0]; 
Jyguess = [0    4000    0]; 
Jzguess = [0    0   2000]; 
  
mb = 500; 
  
torque_input = 10;      % Torque applied 
timeUp = 0; 
timeDown = 60; 
  
% ==== distance from CoM_A to CoM_B ==== 
rcm1 = [8; 
         4; 
         sqrt(20)]; 
rcm_change = 4; 
rcm2 = (norm(rcm1)-rcm_change)*rcm1/norm(rcm1); 
  
ra1 = -mb.*rcm1./(ma+mb); 
rb1 = ra1+rcm1; 
  
ra2 = -mb.*rcm2./(ma+mb); 
rb2 = ra2+rcm2; 
  
r_BNO = [0.5 
    0.3 
    0.25]; 
  
r_tBNO = ra1+r_BNO; 
r_tBNO2 = ra2+r_BNO; 
  
% ==== Total Inertia Matrix ==== 
J_calc = Ja+ma.*ra1*ra1'+Jb+mb.*rb1*rb1'; 
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J_calc2 = Ja+ma.*ra2*ra2'+Jb+mb.*rb2*rb2'; 
  
%% Simulation and Initialization 
dt = 0.1; 
t = [0:dt:200]; 
tstep = 10; 
  
% ================= 
%    Covariance 
% ================= 
P = eye(3); 
paw = 1e4; 
Px = paw*eye(3); 
Py = paw*eye(3); 
Pz = paw*eye(3); 
  
% ================= 
%   Noise for Sim 
% ================= 
  
aN = 0;       % alpha order of mag 
tN = 0;       % torque order of mag 
omN = 0;      % omega order of mag 
% open_system('SIM_MST_003')   Run if opening Simulink is desired 
sim('SIM_MST_003_Images',t) 
  
%% Outputs 
  
  
t = ans.tout; 
ac = ans.a_cent; 
ac2 = ans.a_cent2; 
alpha = ans.alpha; 
alpha_Noise = ans.alpha_Noise; 
omega = ans.omega; 
omega_Noise = ans.omega_Noise; 
eulang = ans.eulang; 
r_aCalc = ans.r_aCalc; 
r_aCalc2 = ans.r_aCalc2; 
r_tBNO_calc = ans.r_tBNO_calc; 
r_tBNO_calc2 = ans.r_tBNO_calc2; 
  
r_bCalc1 = ans.r_bCalc1; 
mb_calc = ans.mb_calc; 
  
moments = ans.Moments; 
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momentsNC = ans.MomentsNoCorrection; 
Torque_Noise = ans.Torque_Noise; 
  
  
% =============== 
%   X Variables 
% =============== 
  
Hx = ans.Hx; 
Errorx = ans.Errorx; 
Covx = ans.Covx; 
  
% =============== 
%   Y Variables 
% =============== 
  
Hy = ans.Hy; 
Errory = ans.Errory; 
Covy = ans.Covy; 
  
% =============== 
%   Z Variables 
% =============== 
  
Hz = ans.Hz; 
Errorz = ans.Errorz; 
Covz = ans.Covz; 

 
 

B.14 Noise Generation 
function [omega_Noise,Torque_Noise,alpha_Noise,acent_Noise] = 
fcn(omega,Torque,alpha,acent,omN,tN,aN,acN) 
  
omega_Noise = omega+randn(3,1)/3.*omN; 
Torque_Noise = Torque+randn(3,1)/3.*tN; 
alpha_Noise = alpha+randn(3,1)/3.*aN; 
acent_Noise = acent+randn(3,1)/3.*acN; 

 

 

B.15 Loop Code for Noise Iterations 
%% Initialize 
dt = 0.1; 
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t = [0:dt:180]; 
tstep = 10; 
  
% ================= 
%    Covariance 
% ================= 
P = eye(3); 
paw = 1e4; 
Px = paw*eye(3); 
Py = paw*eye(3); 
Pz = paw*eye(3); 
  
  
iterations = 10; 
  
  
  
%% Sim 
% ================= 
%   Noise for Sim 
% ================= 
tic 
for i = 1:iterations 
         
        aN = 0;             % alpha order of magnitude 
        tN = 0;             % torque order of magnitude 
        omN = 10^(-(3.8+rand*2));   % omega noise order of magnitude 
        acN = 10^(-(3.0+rand*1.5)); % centripetal acceleration noise OoM 
  
        sim('SIM_MST_103',t); 
        Jest=ans.estimated_I; 
        Jtotal_calc(i,:,:) = Jest(size(Jest,1)-2:size(Jest,1),:); 
        mb_calc(i,:) = ans.mb_calc; 
        r_bCalc1(i,:,:) = ans.r_bCalc1; 
        JTerr_avg(i) = abs(ans.Jerr_avg(size(t,2))); 
        Jb_calc(i,:,:) = ans.Jb_calc(:,:,size(t,2)); 
        Jberr_avg(i,:) = [acN,omN,ans.JBerr_avg(size(t,2))]; 
         
         
        mb_error(i,:) = [acN,omN,ans.mb_error(size(t,2))]; 
        raErr_avg(i,:) = [acN,omN,ans.raErr_avg(size(t,2))]; 
        JTotal_Avg(i,:)=[acN,omN,ans.Jerr_avg(size(t,2))]; 
  
    i 
end 
toc 
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B.16 Parameter Identification Simulink File 
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