
COEUS: Concurrent Engineering
Utility for Systems

A project present to
The Faculty of the Department of Aerospace Engineering

San Jose State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

By

Ian C. Dupzyk

December 2012

approved by

Dr. Periklis Papadopoulos
Faculty Advisor

c 2012

Ian C. Dupzyk

ALL RIGHTS RESERVED

Abstract

To meet the demands of engineering complex systems it is becoming more and

more important to incorporate Concurrent Engineering into the design of complex

systems. This report outlines the work performed to develop a multidisciplinary

system design tool named COEUS. The purpose of COEUS is to help facilitate

Concurrent Engi-neering in the early design phases of complex systems. This goal is

accomplished by providing a single environment where each discipline and

subsystem can be owned by a di erent group, but executed in an integrated fashion.

This allows ownership of a given subsystem or module to go to the subject matter

experts while eliminating the delay in communication and design iterations. To

demonstrate the system developed herein, an analysis model was created to

analyze a rigid airship. This model incor-porates a range of delities in the analysis

modules. Some modules are low delity that use empirical relations to determine

subsystem masses or component costs. One module uses direct simulation to

determine structural mass through direct simulation with a nite element tool. The use

of this tool allows a user to perform analyses, sensitivity studies, and trade studies to

gain greater understanding of a system and how it is in uenced by di erent variables.

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Objectives . 12

1.3 Literature Search . 12

2 Concurrent Engineering 13

3 COEUS 16

3.1 Scope of Work . 16

3.2 Program Name . 17

3.3 Design Environment . 17

3.4 COEUS Analysis Architecture . 18

3.5 COEUS Control Files . 21

3.5.1 Main Input . 22

3.5.2 Process Control Input . 22

3.5.3 Variable De nition Input . 24

3.5.4 Module Con guration . 26

3.6 Module Execution . 27

3.7 Program Setup Features . 28

2

3.7.1 Generating main, var, and DSM Files 29

3.7.2 Generating Module Directories 29

3.7.3 Variable Name Declaration . 30

3.8 Program Execution . 30

3.9 Types of Analysis . 31

3.9.1 Simple Analysis . 31

3.9.2 Trade Study Analysis . 31

3.9.3 Optimization Analysis . 33

3.9.4 Sensitivity Study Analysis . 35

3.9.5 Monte Carlo Analysis . 36

3.10 COEUS Output Files . 37

3.10.1 Key File Format . 37

3.10.2 Plot File Output Format . 37

4 Example Application 40

4.1 Parametric Geometry . 40

4.2 Buoyancy . 44

4.2.1 Ambient Environment . 44

4.2.2 Surface Pressure . 45

4.2.3 Total System Lift . 45

4.2.4 Nodal Forces . 46

4.2.5 Center of Lift . 46

4.3 Structure . 47

4.4 Subsystem Mass . 49

4.5 Skin Gore Design . 51

4.6 Cost Estimation . 52

4.7 COEUS Analysis Examples . 53

4.7.1 Example Simple Analysis . 53

4.7.2 Example Sensitivity Study . 66

4.7.3 Example Trade Study . 73

5 Conclusion 77

6 Appendix A 80

6.1 GEOMETRY Inputs and Outputs . 80

6.2 BUOYANT FORCE Inputs and Outputs 83

6.3 STRUCTURE Inputs and Outputs 86

6.4 MASS EST Inputs and Outputs . 88

6.5 GORE DESIGN Inputs and Outputs 93

6.6 COST Inputs and Outputs . 94

List of Figures

3.1 Flow diagram of the analysis function in COEUS 19

3.2 Flow diagram of the main function in COEUS 20

3.3 Example of the main input le to COEUS 22

3.4 Example process control le using a simpli ed DSM 23

3.5 Example variable de nition le . 24

3.6 Example of variable output in human-readable format 26

3.7 Example a module con guration le 27

3.8 Comparison of a con guration le and its respective module input and

output les. Note that the order of the variables in the con guration

le corresponds to the order in the input and output les. 28

3.9 Example main input le illustrating the declaration of trade study

variables and values. . 32

3.10 Example main input le illustrating the declaration of optimization

variables and their upper and lower bounds. 33

3.11 Example main input le illustrating the declaration of sensitivity vari-

ables and the sampling values. 36

3.12 Example key le . 38

5

4.1 Design structure matrix and representative outputs for the example

model . 41

4.2 Module Con guration for the GEOMETRY module. 42

4.3 Geometry output from parametric geometry generation tool 43

4.4 Structural module plot illustrating displacement and beam stress . . . 49

4.5 Sensitivity of payload mass to nominal velocity (mi/h) 71

4.6 Sensitivity of payload mass to nominal altitude (m) 71

4.7 Sensitivity of payload mass to vehicle aspect ratio 72

4.8 Sensitivity of propulsion fuel mass to altitude 72

4.9 Comparison of Velocity sensitivity to Trade Study 74

4.10 Comparison of Altitude sensitivity to Trade Study 75

4.11 Comparison of Aspect Ratio sensitivity to Trade Study 75

4.12 Representation of trade variables global a ect on payload mass 76

List of Tables

3.1 Command line options for COEUS 29

3.2 Plot File General Format . 39

4.1 Sensitivity example constraints summary 67

4.2 Trade study example run matrix . 74

6.1 GEOMETRY Module Input Variables 80

6.2 GEOMETRY Module Output Variables 82

6.3 BUOYANT FORCE Module Input Variables 83

6.4 BUOYANT FORCE Module Output Variables 84

6.5 STRUCTURE Module Input Variables 86

6.6 STRUCTURE Module Output Variables 88

6.7 MASS EST Module Input Variables 88

6.8 MASS EST Module Output Variables 91

6.9 GORE DESIGN Module Input Variables 93

6.10 GORE DESIGN Module Output Variables 94

6.11 COST Module Input Variables . 94

6.12 COST Module Output Variables . 95

7

Nomenclature

comb Combustion E ciency

ins Insulation material density

out External environment density

skin Areal mass of the skin material

Cd Drag coe cient

E Endurance

Fdrag Vehicle drag force

f mf Fin mass fraction used to compute the n mass as a fraction of the structure

mass

Hc Buoyancy Fuel Heat of Combustion

hloss Heat ux loss through the vehicle skin

Kins Insulation Thermal Conductivity

mbF uel Mass of buoyancy fuel

mbT ank Mass of buoyancy fuel storage tank

8

mfin Mass of the n assembly

mins Insulation mass

Mmass Mass Margin

mpF uel Mass of propulsive fuel

mskin Vehicle skin mass

mstr Structure mass

Mtime Time margin

Nbeams Number of beams in the system

Nsup Number of beam supports in the system

Pprop Propulsive power

q1 Free stream dynamic pressure, de ned as 0:5 v12

Sdrag Drag reference area

Sskin Area

TbeamF ab Time to fabricate all the structural beams of the system

Tend Time to join a single end of a beam

tins Insulation Thickness

Tin Temperature Inside the Envelope

Tjoint Time to fasten a single end of a support

Tout Temperature Outside the Envelope

tmf

v1

Buoyancy fuel tank mass fraction

Free stream velocity

BSFC Brake Speci c Fuel Consumption

CAD Computer Aided Design

CE Concurrent Engineering

COEUS COncurrent Engineering Utility for Systems

DSM Design Structure Matrix

FE Finite Element

GUI Graphical User Interface

ICE Integrated Concurrent Engineering

MER Mass Estimating Relation

OML Outer Mould Line

STP Standard Temperature and Pressure

UI User Interface

UOM Unit of Measure

Chapter 1

Introduction

1.1 Motivation

Throughout history humans have created increasingly complex things from the great

pyramids to automobiles to modern computers. In many cases, new approaches and

procedures are needed to successfully complete such projects. For example, com-

pletion of projects like the great pyramids marked early emergence of sophisticated

management and organization [6]. Automobiles marked the development of mass

production enabling many people to own something that was once reserved only for the

wealthy [8]. Finally, modern computers and electronic devices have illustrated the need

for mass customization and the ability to create complex products in a uid, fast-paced

environment. These examples are to illustrate the general trend that products are getting

increasingly more complex and the need for expedited design modi cations and

improvement is increasing. To address this change in environment many companies are

changing their approach to design and manufacturing by adopt-ing concurrent

engineering and lean practices [1]. The project described herein is the development of a

tool who's purpose is to maximize the capability of concurrent

11

engineering in an analysis driven environment and demonstrate what bene ts can

be attained.

1.2 Objectives

The objectives of this project are two fold; to develop an integrated analysis

archi-tecture that is conducive to any level of analysis delity and to apply this tool

to an example of moderate delity sizing and analysis tool for a rigid airship.

1.3 Literature Search

There are a number of multidisciplinary systems analysis tool frameworks in

existence, both commercial and open source. An example of each is Phoenix

Model Center and Sandia's Dakota. Dakota (Design Analysis Kit for Optimization

and Terascale Applications) [5] is a tool set that is designed to provide an

extensible and exible interface for analysis programs and iteration methods.

ModelCenter by Phoenix Integration [4] is a similar tool set with less capability

but provides a graphical user interface.

Chapter 2

Concurrent Engineering

Concurrent Engineering (CE) is the process of performing tasks simultaneously

or with a large degree of schedule overlap that would normally be performed

sequentially. In the manufacturing world, CE is de ned as simultaneously

designing the product as well as the process and tools required to manufacture

the product [1]. In a more broad sense concurrent engineering simply means to

address all aspects of the products life cycle from the project's onset.

In the implementation of concurrent engineering all aspects of the project are in a

state of ux. This is especially valuable when many components are dependent on one

another creating a highly interdependent system. The primary bene ts of adopting CE in

a complex project is savings in time (schedule) and cost. By accounting for all aspects of

a project from the beginning one greatly reduces the potential for rework. Also, by not

waiting for one phase to complete before starting the next can greatly impact and reduce

schedule. This also allows design iterations to occur on component or subsystem level

and not at the project phase level. With a traditional waterfall approach, the development

may reach the end before an iteration need is realized. This iteration need may be

because the design doesn't perform as intended or the

13

needs for the system have changed. Therefore, multiple iterations may be

required to converge the system to a satisfactory level. This would likely result in

a slip in schedule or a poor quality product if a schedule slip is not viable. Since

all aspects of a project are addressed simultaneously in a concurrent engineering

environment, when a problem or con ict arises the iteration performed is at a

component level of the system, not the entire system. This allows for both

iterations of shorter duration and requiring fewer resources to complete.

CE is also referred to as Integrated Concurrent Engineering (ICE) and can be

de ned as the process of engineering a product or system with a high degree of

parallel tasks. In contrast, the traditional approach is to perform interdependent

tasks in series, commonly referred to as the Waterfall method for development.

Waterfall is generally used for development projects where the requirements and

the technologies involved are understood well. For other projects that are not so

straight forward this method can be problematic as repeating a previous step

becomes di cult and costly [7].

It is a common practice to execute non-dependent tasks in parallel to save time;

however, as the degree of parallelism increases for dependent tasks, there are sev-

eral problems that may arise. The primary objective of CE is to facilitate faster

iterations in the development of a particular product. In terms of time to market (or

project completion) and cost, the Waterfall development strategy would be the least

expensive. However, the waterfall approach is unrealistic in that highly complex

projects never ow in a single direction void of iteration cycles. When iterations are

considered, the waterfall method can take substantially longer than other methods

and no longer be the least in cost. In this real scenario, a project with a high degree

of concurrent tasks would likely be shorter in schedule time to completion and also

lower in total cost. Since 1980, Concurrent Engineering has demonstrated this fact

of allowing products to be developed and reach market faster and at lower cost that

traditional approaches.

Chapter 3

COEUS

3.1 Scope of Work

The scope of work undertaken in this Master's project was to create a tool that would

better facilitate Concurrent Engineering in product and system design. This tool

would provide capability of analyzing entire systems in an integrated approach to

allow for greater understanding of system characteristics and the sensitivities of the

system to di erent variables. Speci cally, the types of analysis that will be de-signed

into COEUS will be simple analyses, sensitivity studies, trade studies, and

optimization. Currently, there are other tools that are designed for integration of

multidisciplinary system analysis such as ModelCenter and Dakota. These tools are

broad in their applications whereas the tool developed in this project was intended to

be more speci c to the multidisciplinary design of engineering systems. This archi-

tecture would di er from these existing architecture in that these would be designed

with the needs of systems engineering projects in mind. Meaning that the target

project would be one in which the majority of people setting up and using the tool are

more physical engineers as opposed to computer engineers. Furthermore, there

16

are speci c types of analysis that would be commonly performed, such as trade,

sensi-tivity, optimization, and Monte Carlo studies. The current uses of these

architectures are used more in the conceptual design of complex systems. This

project intends to not only match this capability but demonstrate the capability to

evolve in com-plexity, facilitating use of this integrated environment beyond the

conceptual stage of development.

3.2 Program Name

The program developed herein was intended to facilitate concurrent engineering

from early conceptual stages of development through detailed designs. Its

primary purpose is to facilitate rapid loop communication by all subsystems. This

is achieved through analysis being integrated allowing analysis and incorporation

of results at one time. The program was named after Coeus, the Greek titan of

intelligence. COEUS, stands for COncurrent Engineering Utility for Systems.

COEUS facilitates concurrent engi-neering in the engineering of systems by

managing communication between di erent analysis modules and executing the

di erent modules in an order de ned by user input.

3.3 Design Environment

At this stage in the development, COEUS is designed to be executed as a command line

tool. This was chosen for a number of reasons. First, at this early stage it is easier to

develop a program for command line execution. Second, some of the analysis that one

may wish to perform with this tool may require multi-processor applications. As such,

COEUS should be capable of running on a cluster or supercomputer. Many

of which are primarily accessible via command line. Finally, a program executed

by command line allows a user interface (UI) to be written in any language for

any system. The UI can be written in Java, QT4, or even by a web interface

depending on what the needs of the code is later in its development.

3.4 COEUS Analysis Architecture

Regardless of the type of analysis a user is performing; whether it be a simple

analysis, sensitivity study, trade study, or other. The way the model is analyzed is

the same, i.e. all the modules in the analysis need to be analyzed from start to

nish and coupled modules will need to be iterated upon. The di erence is in what

variables are traded and what their di erent values are.

One of the key advantages of COEUS is the way it performs di erent types of

analysis. The actual analysis is performed by a function within the program called

analyze. A ow chart depicting the logic and process of the analyze function is shown

in Figure 3.1. This approach allows the same analysis to be performed multiple times

within a single COEUS execution with repeatable results. Furthermore, this allows

the type of analysis to be controlled from the architecture and not the model. A ow

diagram for the main function representative of the analysis, sensitivity, and trade

study analysis types in COEUS is shown in Figure 3.2. In essence, this means that

when a user sets up an analysis model, there are no modi cations that need to be

made to that model in order to run a sensitivity study rather than a simple analysis.

With the aforementioned tools currently available, this is not the case. This approach

maintains the integrity of the analysis by eliminating the chances of unintended

changes due to modifying an analysis model for a di erent type of analysis or

creating separate models for the di erent analyses.

Figure 3.1: Flow diagram of the analysis function in COEUS

Figure 3.2: Flow diagram of the main function in COEUS

3.5 COEUS Control Files

COEUS is controlled by a number of simple text les. As with anything, there are

advantages and disadvantages to having multiple les to control the program

execution as opposed to a single monolithic le. The reason a single le was not

chosen was for exibility and simplicity. Having multiple les may seem complicated;

however, the bene t is that the format and ease of editing each le is improved by not

having to deal with complicated le formatting and sectioning. The les used here are

plain ASCII text les. As this early stage version of the program is designed to be

setup and run via command line, reducing or eliminating errors due to formatting

problems in the input le seemed to surpass the need for a limited number of les.

Furthermore, having a separate control le for each module is valuable for being able

to quickly include established modules into an analysis. It may be appropriate at a

later time to use an XML input format if COEUS goes to a Graphical UI.

There are two types of les that COEUS requires. The rst are system level les

that control the analysis, execution, and variables. The second type is the

module con guration les. The latter controls what information from the system is

com-municated to and from the modules. The system le naming convention is

CASE-NAME.ext where \CASENAME" is chosen by the user to represent the

project being analyzed and \ext" is one of main, dsm, or var to denote the main,

design struc-ture matrix or n-square diagram, or variable declaration les,

respectively. For the module con guration les the naming convention is

NAME.con g, where \NAME" is the module name (e.g. STRUCTURES.con g)

without spaces or special characters other than an underscore ' '. The di erent

input les to COEUS and their format are described in subsequent sections.

3.5.1 Main Input

The main input le controls parameters that govern the type of analysis to be per-

formed; convergence controls; and variables used in sensitivity, trade study, and

op-timizations. There are four types of analysis in the main le that the user may

select from. Selecting none will result in a simple analysis on the initial system

con gura-tion. These four analyses are optimization, trade study, sensitivity study,

and Monte Carlo analysis. At this stage; simple analysis, trade study, and

sensitivity study are fully operational while optimization is basically functional.

The other parameters in this le will be described later in discussions of the types

of analysis that can be performed.

Figure 3.3: Example of the main input le to COEUS

3.5.2 Process Control Input

The process control le is a simpli ed representation of a Design Structure Matrix (DSM)

[2]. This le has a list of all the modules in the analysis and dictates the order in which

they are to be executed. The modules listed on each line of the le essentially represents

the modules or analysis tasks represented by the diagonal boxes in a DSM.

The modules in this le are executed from start to nish. As with a traditional DSM

many of the modules along the diagonal may be interdependent, requiring

information passed forwards and backwards. Feed forward is simply implied by

the order of the modules in the le. The current module would feed forward to the

module on the next line. However, feed back is speci ed by the occurrence of a

second module on the same line as the current module. If a line in the DSM le

contains more than a single module name, the rst module on that line would feed

back information to the second. If the output variables from the rst module

change by an amount greater than the convergence criteria set in the main le,

the module will feed back to the second module listed. Otherwise the process will

continue. An example of this le is shown in gure 3.4.

Figure 3.4: Example process control le using a simpli ed DSM

Here it can be seen that the BUOYANT FORCE module is executed prior to the

MASS EST module. However, inputs to BUOYANT FORCE are dependent on

outputs from MASS EST. Therefore, these two modules must iterate in order to

converge su ciently. The existence of the BUOYANT FORCE module listed after the

MASS EST module directs COEUS to iterate back to BUOYANT FORCE if the

output values from MASS EST di er from the values stored in the memory. The value

in memory is the value set in the variable le or stored from a previous iteration.

3.5.3 Variable De nition Input

The variable de nition le has a .var extension and is where the user de nes and

initializes all the variables in the analysis. Every variable that is used in the

analysis must be in this le in order to be initialized. This le also provides an

opportunity for the user to put a brief description of what each variable is, its

units, or where it comes from. On each line, any information after a \#" symbol is

considered to be a comment and only used for variable description.

Figure 3.5: Example variable de nition le

Figure 3.5 shows an example variable input le. Every variable used in the system

must be de ned here. The basic format is each line is variable name, value, and

comment delimited by spaces. In order to read these variables from les during an

analysis, COEUS must know what the type is for each variable whether it be integer,

double precision, or string. This type is not speci ed in the input le; rather, it is

interpreted from the initial values the user speci es in the input deck. The variable

type is determined by the following; if the value does not contain a decimal \."

and does not contain any non numeric or special characters then it is declared as

an integer, if it is not an integer (thus containing a decimal) and only contains

numeric characters then it is a double precision oat, and if it cannot be quali ed

as either of the previous then it is declared to be a string. This was done to

simplify the programming and to allow all variables to be stored in memory as

string types and converted when needed to their respective types.

Variable Name

COEUS allows the user to use one of two types of naming conventions for variables.

The rst is a simple naming convention (e.g. length, diameter, velocity) and the

second is a hierarchical or parent-child naming convention where the hierarchy of a

component's relation to the parent system is depicted in its name. Using the airship

example, consider a value for the volume of an airship gas envelop. the volume is an

attribute of the envelope, which is a component of the buoyancy subsystem of the

vehicle. Using the hierarchical convention this variable could be named vehi-

cle.buoyancy.envelope.volume. This approach is particularly useful for models with a

large number of variables. This format allows the user to group variables by variable

type, subsystem, or any other decomposition approach. For instance, in the example

there is an analysis group that has variables that pertain to tool paths and analysis

controls. There is also a vehicle group that is decomposed further to geometry,

beam, insulation, and so forth. This system allows up to 10 levels of decomposition

by the user. This format is illustrated in Figure 3.6.

When the program nishes executing there are two output les written; FinalVari-

ableList.txt and FinalVariableList-Readable.txt. The former is in the same format

as the variable declaration le including the comments. The only di erence in this

le is that there is a single header line. In the latter le, the variables are printed in

a tree structure.

Figure 3.6: Example of variable output in human-readable format

3.5.4 Module Con guration

The module con guration le controls what variables from the system are communi-

cated to and from a particular module. Each module will have its own con guration le

which is the only le that has some formatting to it. An example le is shown in Figure

3.7. One can see in the example that there are three sections to this le. The rst is the

declaration of the module program. The module is executed from COEUS

by a system call. The details of module execution will be discussed in section

3.6. The second section is the variable inputs to the module followed by section

three containing the output variables from the module. Both the input and output

variable sections are headed by a line that declares the number of variables to

read following the section header.

Figure 3.7: Example a module con guration le

3.6 Module Execution

As stated in section 3.5.4, the analysis modules are essentially stand alone

executables that COEUS executes via a system call. This allows the module to

be written in any programming language, compiled or interpreted, and

communicate with COEUS through reading and writing of les.

When a module is executed it is given two command arguments. Therst is the

name of the input le and the second is the output le. These input and output les

contain the value of the input and output variables, respectively. The input and output

les are a simple text le with one variable value listed per line. The order the values

are listed is the same order the variable names are listed in the input and output

sections of the module con guration le. Figure 3.8 shows a side by side comparison

of the module con guration le and the module input and output les.

Figure 3.8: Comparison of a con guration le and its respective module input and
output les. Note that the order of the variables in the con guration le corresponds
to the order in the input and output les.

3.7 Program Setup Features

Setting up a set of input les is often di cult for a tool like this since it is easy to make

formatting errors in the setup. This is partially addressed by the simpli ed and

minimally formatted les used as inputs to COEUS. To address it further, COEUS has

a set of commands used to generate default input les that give the general format

which users can simply edit. The command line options that the user would use to

generate inputs and execute a model are give in Table 3.1. The general form of the

COEUS execution command is coeus -(option) casename. The case name is chosen

by the user for the model. As a general naming convention, it is best not to use any

special characters other than dashes or underscores in the chosen casename.

Table 3.1: Command line options for COEUS

Option Description
input setup the default input les in the directory
setup set up the directories and module con g les
h print a help message
help print a help message
run run the selected case
pack pack a model into a single le for portability
unpack unpack a model to the current directory

3.7.1 Generating main, var, and DSM Files

If a user wished to begin setting up a new model named \example1." The rst step

would be begin in a fresh directory. Once in this fresh directory, generic input les

can be generated by running the command coeus -input example1. This will generate

the les; example1.main, example1.dsm, and example1.var.

3.7.2 Generating Module Directories

The module directories are named the same as the module names found in the DSM

le. The easiest way to generate these directories and related con guration les is

with the -setup option. Running the command coeus -setup example1 will read in the

DSM le (assuming it has already been updated with the modules the user wishes

to include in the model) and create directories with the same name and a generic

con guration le for each module. The user needs only to update the con guration

le for each module to include the module script or program name and the input

and output variable names.

3.7.3 Variable Name Declaration

In its current form, COEUS will check to ensure that every variable in the con g-

uration les exists in the variable le at run time. If this is not the case an error is

thrown and the program will exit. A future improvement that is desirable, but was

not able to be implemented in this study is a command to read all the module con

guration les and include any absent variables in the variable le. This would allow

the user to simply enter the variable value and any comments.

3.8 Program Execution

At program execution there are several checks performed to ensure that all the vari-

ables have been declared, only one type of analysis is selected in the main le, and a

check on the variable types. When COEUS runs, there is a substantial amount of

information printed to the screen for the user. This information includes an echo of all the

input les (main, DSM, variable, and module con guration les) and any warning or error

messages. COEUS will run with warnings but will not run with errors. One common

warning that could be encountered is if the user has speci ed a non oat value be

returned from a module. Due to the way convergence is computed in the presence of a

feedback loop, having a return value that is an integer could lead to oscillatory behavior

and never converge. Furthermore, it is obvious why convergence could not be computed

if the returned variable were a string. In such an instance, a warning is issued to inform

the user that these return variables are not to be used for convergence and will not in

uence a decision within COEUS to feed forward or feed

back.

3.9 Types of Analysis

The user has 5 options for the type of analysis that may be run. Currently only

four of these analyses are operational. These are a simple analysis, trade study,

optimization, and sensitivity study. The analysis that is started but not fully

implemented yet is Monte Carlo for uncertainty analysis.

3.9.1 Simple Analysis

In a simple analysis COEUS will execute the modules in the DSM le. In the case

of a feed back loop, COEUS will iterate until convergence is achieved. Once the

last module in the DSM le is executed COEUS will write the nal con guration and

exit.

3.9.2 Trade Study Analysis

A trade study analysis is used to run a matrix of variables in di erent con

gurations. The user has the option to specify what variables are to be traded and

at what values. The user may select any number of variables they wish to trade

from the system. There is no limit to the number of variables or the number of

states for each variable.

For each variable and value to be traded COEUS will run a simple analysis. The

di erence between the trade study and the sensitivity study is that in the trade study

a N-dimensional matrix of cases is run. If the user is trading ve variables, then a ve

dimensional matrix is the result. A trade study will run every combination of variable

values. As can be seen, performing a trade study with many variables, beyond

three, becomes more di cult to visualize and process.

Variables used in the trade study are listed in the last section of the main input

le. Figure 3.9 shows an example of the trade variable declaration section in the

main input le. The variable declaration section begins at the highlighted line.

Here the number of variables to parse is given. Each line below this header has

the variable name and a colon delimited list of values for that particular variable.

The output for the trade study is a ASCII plot le that contains all of the

analyses run for all the traded variables. Each line of this le represents an

analysis and each column represents a variable. An additional le that is output is

the key le. This le has the same case name as the var, DSM, and main les but

with a .key extension. This le contains a list of variable names and what column

they are found in the result plot le.

Figure 3.9: Example main input le illustrating the declaration of trade study vari-
ables and values.

3.9.3 Optimization Analysis

An optimization analysis allows the user to maximize or minimize a single variable within

the system based upon a set of other variables speci ed in the main input le. Figure 3.10

shows how the main input le would be con gured for an optimization analysis. Notice that

the \Objective" is speci ed to maximize the dependent variable. In this case the

dependent variable is set to the payload mass of the system. Looking at the variable

declaration section of the le this maximization of the payload mass is to be based upon

the aspect ratio of the vehicle (i.e. the ratio of length to diameter).

Figure 3.10: Example main input le illustrating the declaration of optimization
variables and their upper and lower bounds.

In the previous example for a trade study, the variables accompanying the

variable name in the declaration section was a colon delimited list of values at which

to analyze. In this case there is only two values, the lower and upper bounds.

The output les for the optimization analysis is the same for the general analy-

sis. These are the FinalVariableList.txt and FinalVariableList-Readable.txt les. In

addition to these les there is a convergence le that is written out that prints the

dependent variable and each independent variable for each iteration. This can be

used to track the convergence of the dependent variable.

Optimization Approach

The optimization approach used in this tool was intended to be an initial solution

for simple problems with additional optimizer options to be added later. What is

cur-rently available is a gradient based optimizer that works best for a single

independent variable. However, the optimizer will also handle multiple variables

so long as there are little to no interaction e ects of the independent variables.

The reason for this will be made clear shortly.

A standard approach for gradient based optimization with a single independent

variable is to compute the rst and second derivatives and use these to compute the

step required for the rst derivative to be zero, indicating the presence of an extrema.

This is currently the approach taken in COEUS and works reasonably well when

used for a single independent variable. However, with a system as complex as the

ones intended to be tackled with COEUS, it is unlikely that only a single independent

variable would be used. In this case since the independent variable is a vector the rst

derivative would be a vector as shown in Equation 3.1. Taking the derivative of this

would not result in a vector but rather a Hessian matrix as shown in Equation 3.2.

The current optimization implementation results in a Hessian matrix where only the

diagonal values are non-zero. This essentially is performing the optimization on each

variable independently of the others. If there were little interaction between variables

this would still be a viable solution. In reality this results in an ine cient and often

incorrect solution when dealing with multiple variables.

The best approach in this situation would be to use an optimization subroutine that

have been optimized for performance and validated. Furthermore, for complex systems

arriving at a maximum from a gradient optimizer does not guarantee a global

optima. To address this including stochastic optimization capabilities like genetic

algorithms would be valuable.

2
@f

6 @x1
6

rf(x) = g(x) = 6 :::
6
4

@f
@xn

3

7
7

7 (3.1)
7
5

2
@

2
 f

6 @x2
1

6

r2f(x) = H(x) = 6 :::
6
4

@
2
f

@x1@xn

:::

:::

@
2f

@x1@x2

@
2 f

@x
2
n

3
7
7

7 (3.2)
7
5

3.9.4 Sensitivity Study Analysis

The sensitivity study is similar to the trade study analysis. However, as stated earlier,

the trade study will run every combination of every value stated. The sensitivity study

will only vary one variable at a time not combinations of variables. In essence, the

sensitivity study trades one variable while leaving all others at their nominal values. If

trading more than one variable, upon completion of one variable trade, its original

(nominal) value is replaced before moving on to the next variable to trade.

The inputs for the sensitivity study are slightly di erent than the previous two

analysis types. This di erence is in the values given with the variable name. In

this case, the value given is a colon delimited list of 3 values. The rst value is an

integer indicating the number of samples to run in the sensitivity for that variable.

The second and third values are the lower and upper bounds of the range to be

sampled for the speci c variable, respectively. Currently, only uniform sampling is

available. If COEUS determines that the rst value in the delimited list is not an

integer, but a oat, the program will issue a warning to the user but will proceed

after converting the given oat to an integer.

Figure 3.11: Example main input le illustrating the declaration of sensitivity vari-
ables and the sampling values.

The outputs are similar to the trade study analysis as well. However, instead

of listing all the results in a single plot le, each variable for which sensitivities are

computed is printed in a separate plot le. Since the order the variables are

printed to the plot les is consistent only a single key le is printed in the top

directory. Each of the plot les are in a separate directory using a naming

convention according to the variable being traded.

3.9.5 Monte Carlo Analysis

The Monte Carlo analysis is not operational at this time in the code. This would be a

valuable asset to have and, as such, will be left to future work. The input will likely be

very similar to the sensitivity study in that the lower and upper bounds will be speci

ed as well as the number of samples to take over that region. In addition, there will

be inputs that govern the type of distribution by which to sample and any values

required to drive the shape of the sampling distribution. Due to the complexity of

many of the models that COEUS can handle and without modi cations that would allow

execution on distributed systems or super computers, COEUS would most likely be set

up to use a Latin Hyper Cube approach rather than a brute force Monte Carlo.

3.10 COEUS Output Files

For a general analysis, COEUS outputs the system variables at their nal

converged state. As mentioned previously in section 3.5.3, this is done in two

forms. The rst is identical to the variable declaration le with the addition of a text

header line. The second is the more human readable format that was Illustrated

in Figure 3.6. These output les are present for any type of analysis that is

selected. However, it only has signi cance when running a simple analysis or an

optimization. If running a trade study or sensitivity study where many di erent

cases are run, only the last run con guration is written to these les. The outputs

for these other analyses will be discussed in subsequent sections.

3.10.1 Key File Format

The key le is written out for both the trade study and the sensitivity analyses. This

le tells the user what variable is located in what column of the result plot le. An

example key le is shown in Figure 3.12.

3.10.2 Plot File Output Format

As stated previously, the plot output format is used for the trade study and sensitivity

analyses. Each line in this le represents a di erent analysis case. And each column

represents a di erent variable of the system. This format allows the user to access the

Figure 3.12: Example key le

result from all of the cases run in a format that makes plotting easier by consolidating

all the results in a single le. The general format of the le is illustrated in Table 3.2

Table 3.2: Plot File General Format
case1 var1 case1 var2 case1 var3 case1 var4 ... case1 varN

case2 var1 case2 var2 case2 var3 case2 var4 ... case2 varN
case3 var1 case3 var2 case3 var3 case3 var4 ... case3 varN

case4 var1 case4 var2 case4 var3 case4 var4 ... case4 varN
...

caseN var1 caseN var2 caseN var3 caseN var4 ... caseN varN

Chapter 4

Example Application

The example that will be used to demonstrate the capabilities of COEUS will be an

airship model. This model is composed of a the following modules; parametric

geometry generation, buoyancy and forces, structure, subsystem mass estimation,

skin gore design, and manufacturing cost estimation. These modules and their

relationship are illustrated in the design structure matrix shown in Figure 4.1. These

modules will be discussed in more detail in subsequent sections.

4.1 Parametric Geometry

The parametric geometry module, named GEOMETRY in the analysis, is a script

wrapper to a shape generation tool written in C++ that uses inputs from the user to

generate a nite element representation of the vehicle skin and structure. This FE model

is used in all subsequent modules. The GEOMETRY module also computes the volume,

surface area, and drag reference area of the vehicle for subsequent use. Area

calculations are performed by calculating the surface area of each triangle using the

vector cross product of two sides as shown in Equation 4.1. In this equation vectors

40

Figure 4.1: Design structure matrix and representative outputs for the example model

~ ~
A and B represent two sides of the triangular element and Atri is the resulting area
of the triangular element.

~ ~
A

tri
= jA Bj

(4.1)2

The volume of the vehicle is calculated using the divergence theorem. This theo-rem

is shown in its general form in Equation 4.2. In the case of calculating the volume of a

discrete shell, the divergence theorem takes the form of Equation 4.3. Here V is the

volume of the enclosed region, Ai is the area of each discrete element, xcenti is the

x coordinate of the centroid of the triangular element, n^i is the unit normal vector

of the triangular element, and x^axis is a unit vector in the x direction.

ZZS dS
~

 F
~

(4.2)

n
Xi x

centi
n^

i
x^

axis
)

V = (Ai (4.3)
=0

Figure 4.2: Module Con guration for the GEOMETRY module.

The geometry generation tool mentioned above takes inputs in a very simple

format like most of the modules. An example of the input is shown below. The

inputs are passed to this tool as stdin on the command line; therefore, everything

after the \#" character is ignored and is provided simply for the understanding of

the user. This is the le written out by the GEOMETRY module. The generated

geometry is comprised of line elements and triangular surface elements. The line

elements represent the beams of the structure and the surface elements

represent the skin or OML of the vehicle. An example of the resulting geometry is

shown in Figure 4.3

1 # Enter The number of Bar R e f i n e m e n t I t e r a t i o n s
0 # Enter the number of Sm o ot hi ng R e f i n e m e n t I t e r a t i o n s
2.500000 # Enter the power to use for the forbody ellipse
0.450000 # Enter the location of the max diameter
0.100000 # Enter the aft radius
1 # Enter the number of values on the fo ll o wi ng line
2.000000 # Enter the power d i s t r i b u t i o n for the super ellipse
2 3 9 . 0 0 0 0 0 0 # Enter the nominal major diameter (x)
4 2. 50 0 00 0 # Enter the nominal h o r i z o n t a l minor diameter (y)
4 2. 50 0 00 0 # Enter the nominal vertical minor diameter (z)
A001P # Provide a name for the output model to be written to
0 # 0 for no stl , 1 for stl
0 # Enter 1 to tr an sp o se x and z access or 0 not too
1 # 1 to generate surfaces and 0 to not
1.0 # vehicle Scale pa ra m et er
1 # vehicle geometry type
1 # vehicle geometry sm oo th i ng

Figure 4.3: Geometry output from parametric geometry generation tool

4.2 Buoyancy

This module is named BUOYANT FORCE and computes data related to the

buoy-ancy of the vehicle. This module is also written in Python. The input and

output variables to this module are listed and described in Tables 6.3 and 6.4,

respectively. The computations performed here are to determine the lift of the

system in the stated environment and prepare data for the structure module. The

primary functions of this module are to compute:

the ambient environment pressure, temperature, and density from the

opera-tional altitude.

the pressure on each panel relative to the ships keel based on the hydrostatic

equation given in Equation 4.4 where P is the pressure at the panel center, P0

is the reference pressure at the keel of the vehicle, is the local density, g is

the gravitational constant of 9.81 m=s2, and h is the height of the panel

above the keel.

the total lift of the system based on the hydrostatic pressure distribution.

the node forces resulting from the pressure on each panel. These forces

are written to a le that is used by the structure module, described later.

the center of lift based on the pressure distribution.

4.2.1 Ambient Environment

The ambient environment of the airship (pressure, temperature, and density) at the

operational altitude is determined from a table of gas states versus the altitude from

a standard atmosphere table. The nominal altitude of operation, which is de ned to

be at the keel of the ship, is speci ed by the user and is an input to this module.

The table lookup routine works by scanning the altitudes in the table. Once the

routine nds a line in the table that is below the speci ed value and the following

line is above the speci ed value. The requested properties (pressure,

temperature, and density) are found using a linear interpolation.

4.2.2 Surface Pressure

The surface pressure on every element in the structure is determined using the

hy-drostatic equation shown in Equation 4.4. This equation assumes that the

change in density from the top of the vehicle to the bottom of the vehicle does not

change appreciably. In equation 4.4; P is the local pressure, P0 is the pressure at

the keel of the ship, is the density, g is the gravitational constant of 9.81 m=s, and

h is the height of the panel in question above the keel.

P = P0 + gh (4.4)

4.2.3 Total System Lift

The total lift of the system is the summation of all the buoyancy pressure forces on

the vehicle. This force can be depicted by the summation in Equation 4.5. Here P i is

the pressure, assumed uniform over the element, for the ith element, Ai is the area

of the i
th

element, n^i is the normal vector of the i
th ^

element, and k is the vertical or

YAW axis of the vehicle.

n

L
tot

=

X

i PiAi(n^i k
^
) (4.5)

Since each element is triangular, the area can be found by taking two sides of the

triangle to be vectors, call them Vai and Vbi . The area of each element can then

be found using Equation 4.6. Similarly, once the dot product is found, the unit

normal vector of the element is computed by Equation 4.7.

Ai = V
~

ai V
~

bi (4.6)
2

~ ~
n^ = V

ai
V

bi (4.7)
V~aii V~

bi

4.2.4 Nodal Forces

The forces on the nodes are derived from the pressure loads on the elements. The

resulting force on the elements can be found as a product of the pressure and area,

acting in the normal direction, as discussed above. For each element, the resultant

force is divided by three and applied to each node. From the node perspective, this

would result in up to 6 di erent load vectors applied since each force is acting in the

normal direction. To determine a single load and direction, the vector sum of all loads

on a node are reported. These values are written to a le in a NASTRAN Bulk Data

Format for use by the structure module to be discussed later.

4.2.5 Center of Lift

The center of lift is determined by summing the moment about the nose of the vehicle.

This uses the discrete lift contributed by each element and is set equal to the total lift of

the vehicle multiplied by some lever arm. This lever length is the center of lift. This

approach is depicted in Equation 4.8 where Xcl is the location of the center of lift from the

nose, Li is the lift of the ith element, xi is the distance along the X axis

from the nose for the ith element, and Ltot is the total buoyant lift of the system.

This value is returned as a dimension in meters.

n (Li xi)

Xcl = Pi Ltot (4.8)

4.3 Structure

The STRUCTURE module is special in that it performs analysis at a higher delity

than the others. Its purpose is to determine the mass of the structure as well as the

con guration of all the beams in the structure. The beam con guration is in reference

to the thickness of the beam material and the number of supports that are required.

The STRUCTURE module completes this task through direct simulation with a

NASTRAN like nite element tool. The module takes the geometry input and loads

generated in previous modules and writes out the nite element model. With

additional work, this has the potential to be run at a very high delity, including modal

and buckling analysis. However, at this point the solution utilizes idealized elements.

While the actual beams are composed of a tri-member, truss-like structure the beam

elements in the analysis are taken to be ideal line elements. The nite element tool is

called twice in this analysis. The rst time determines the force imparted on the beam.

As all the beams in the analysis and in reality are straight, there are only axial and

gravity loads acting on the beams. At this point, load contributions from gravity are

assumed to be negligible and ignored. After the rst run the axial loads on every beam

are known. Each beam is then sized analytically such that it can withstand the axial

loads and resist buckling. Essentially, the total area of the three components of the

truss should be such that the beam should not fail due to yielding and the truss

should be wide enough where the area moment of

inertia is su cient to withstand static buckling.

While, in practice, this approach would have the de ciency if sizing dynamic

components by static methods, this approach is solely intended as a proof of

concept. This is a demonstration that high delity analysis can be automated and

included in this type of system level study.

The results of this module are handled in two ways. Some information like struc-

ture mass, total beam length, maximum and minimum beam length, etc are written

out and fed back into COEUS for use by modules downstream. Other information

like the beam con guration details discussed earlier are written to a le. This

information is not needed by COEUS; furthermore, it would be too di cult to feed that

quantity of information back in a meaningful way. Currently, this information is both

written to a data le as well as a plot le. Below is an excerpt from data le and the plot

le presenting the beam stress and displacement is shown in Figure 4.4.

i , * * * W , N , mass , length , bLen , si , force
1 1.490895 E -05 * * * 32 0.598045 44 .9 0 28 13 5. 678891 9 .6287 E -01 in -1419.900000
2 1.797642 E -05 * * * 27 0.674101 41 .9 7 66 73 5. 878877 1 .1610 E +00 in -1712.040000
3 1.485729 E -04 * * * 2 2.492354 1 8 .7 78 3 10 5.678892 9.5954 E +00 in -14149.800000
4 5.889198 E -05 * * * 7 1.259856 2 3 .9 47 0 12 5.878877 3.8034 E +00 in -5608.760000
5 1.485729 E -04 * * * 2 2.492353 1 8 .7 78 3 09 5.678892 9.5954 E +00 in -14149.800000
6 5.889198 E -05 * * * 7 1.259856 2 3 .9 47 0 11 5.878876 3.8034 E +00 in -5608.760000
7 1.491063 E -05 * * * 32 0.598113 44 .9 0 28 13 5. 678891 9 .6298 E -01 in -1420.060000
8 1.797716 E -05 * * * 27 0.674128 41 .9 7 66 73 5. 878877 1 .1610 E +00 in -1712.110000
9 1.634819 E -04 * * * 2 2.742455 1 8 .7 78 3 08 5.678892 1.0558 E +01 in 1 5 5 6 9. 7 0 0 0 0 0

10 7.686704 E -05 * * * 5 1.520585 2 2 . 14 40 4 6 5.878877 4.9643 E +00 in 7 3 2 0 .6 7 0 0 0 0
11 1.634840 E -04 * * * 2 2.742491 1 8 . 77 83 0 9 5.678892 1.0558 E +01 in 1 5 5 6 9. 9 0 0 0 0 0
12 7.686725 E -05 * * * 5 1.520589 2 2 . 14 40 4 7 5.878877 4.9644 E +00 in 7 3 2 0 .6 9 0 0 0 0
13 7.108448 E -05 * * * 9 2.334226 3 6 . 75 82 3 5 8.392129 4.5909 E +00 in 6 7 6 9 .9 5 0 0 0 0
14 1.008632 E -04 * * * 8 4.116257 4 5 . 68 31 5 9 1 0 .8 08 12 6 6.5141 E +00 in 9 6 0 6. 0 2 0 0 0 0
15 8.839152 E -05 * * * 7 2.699302 3 4 . 18 43 4 4 8.392093 5.7086 E +00 in -8418.240000
16 8.851479 E -05 * * * 9 3.743373 4 7 . 34 05 9 8 1 0 .8 08 14 6 5.7166 E +00 in -8429.980000
17 4.710101 E -05 * * * 8 0.866213 2 0 . 58 64 1 7 4.870516 3.0419 E +00 in 4 4 8 5 .8 1 0 0 0 0
18 4.076573 E -05 * * * 9 0.776902 2 1 . 33 32 7 7 4.870517 2.6328 E +00 in 3 8 8 2 .4 5 0 0 0 0
19 8.257022 E -06 * * * 88 1.021028 1 3 8 . 4 2 0 5 3 7 8 .392093 5.3327 E -01 in -786.383000
20 1.778900 E -05 * * * 52 1.884838 1 1 8 . 6 0 6 6 8 6 10 . 80 81 4 6 1.1489 E +00 in -1694.190000
21 4.220990 E -05 * * * 16 1.725727 45. 76 6 14 4 8. 392093 2.7261 E +00 in -4019.990000
22 3.397590 E -05 * * * 27 2.342337 77. 17 2 91 2 10 .8 0 81 46 2.1943 E +00 in -3235.800000
23 5.449427 E -05 * * * 6 0.929462 1 9 . 09 27 0 2 4.870517 3.5194 E +00 in 5 1 8 9 .9 3 0 0 0 0
24 5.449542 E -05 * * * 6 0.929482 1 9 . 09 26 9 7 4.870516 3.5195 E +00 in 5 1 9 0 .0 4 0 0 0 0
25 4.221137 E -05 * * * 16 1.725789 45. 76 6 19 7 8. 392102 2.7262 E +00 in -4020.130000

*
*

*

628 3.870960 E -06 * * * 43 0 .150907 43 .6 3 93 41 1 0. 27 4 88 4 2.5000 E -01 in 13 .1 89 5 00
629 3.870960 E -06 * * * 213 1.170117 3 3 8 . 3 7 3 9 8 9 1 0 .2 74 8 86 2.5000 E -01 in 3 0 9 . 6 1 3 0 0 0
630 3.870960 E -06 * * * 24 0 .036604 10 .5 8 49 92 2 .146473 2 .5000 E -01 in 1 0 1. 5 3 1 0 0 0
631 3.492983 E -05 * * * 10 0 .654784 20 .9 8 40 04 4 .628728 2 .2559 E +00 in 3 3 26 . 6 5 0 0 0 0
632 7.208250 E -06 * * * 5 0.013485 2.094077 0.555943 4.6553 E -01 in -686.500000
633 3.756165 E -05 * * * 9 0.680303 2 0 .2 74 22 0 4 .628728 2 .4259 E +00 in 3 5 7 7. 3 0 0 0 0 0
634 6.919196 E -05 * * * 4 1.033816 1 6 .7 25 30 8 4 .628727 4 .4687 E +00 in 6 5 8 9. 7 1 0 0 0 0
635 1.227650 E -05 * * * 2 0.020161 1.838306 0.555936 7.9286 E -01 in -1169.190000
636 6.919206 E -05 * * * 4 1.033818 1 6 .7 25 30 9 4 .628727 4 .4687 E +00 in 6 5 8 9. 7 2 0 0 0 0
637 3.756081 E -05 * * * 9 0.680288 2 0 .2 74 21 7 4 .628727 2 .4258 E +00 in 3 5 7 7. 2 2 0 0 0 0
638 7.207599 E -06 * * * 5 0.013483 2.094059 0.555938 4.6549 E -01 in -686.438000
639 3.492899 E -05 * * * 10 0 .654768 20 .9 8 39 99 4 .628727 2 .2558 E +00 in 3 3 26 . 5 7 0 0 0 0
640 3.333236 E -05 * * * 11 0 .645974 21 .6 9 37 82 4 .628727 2 .1527 E +00 in -3174.510000
641 6.143487 E -06 * * * 6 0.011960 2.179307 0.555938 3.9677 E -01 in 5 8 5 . 09 4 0 0 0
642 3.589100 E -05 * * * 10 0 .672802 20 .9 8 40 00 4 .628727 2 .3180 E +00 in -3418.190000
643 7.245998 E -05 * * * 4 1.082644 16 .7 25 30 8 4.628727 4.6797 E +00 in -6900.950000
644 1.440506 E -05 * * * 2 0.023656 1.838306 0.555936 9.3033 E -01 in 1 3 7 1 .9 1 0 0 0 0
645 7.245977 E -05 * * * 4 1.082641 16 .7 25 30 9 4.628727 4.6797 E +00 in -6900.930000
646 3.589078 E -05 * * * 10 0 .672798 20 .9 8 40 00 4 .628727 2.3180 E +00 in -3418.170000
647 6.143812 E -06 * * * 6 0.011961 2.179307 0.555938 3.9679 E -01 in 5 8 5 . 12 5 0 0 0
648 3.333183 E -05 * * * 11 0.645963 21 .6 9 37 81 4 .628727 2.1527 E +00 in -3174.460000

Figure 4.4: Structural module plot illustrating displacement and beam stress

4.4 Subsystem Mass

The MASS EST module is responsible for computing the masses of components and

subsystems that is not determined by direct simulation. This module uses a low -

delity approach where mass of each component is computed using a mass

estimating relation or MER. These MERs are often determined using parametric

equations de-veloped from existing vehicles or components that have been

developed in the past. In this case, the MERs were developed using a simpli ed

calculation from computed parameters. For example, to compute the skin mass,

The area of the vehicle skin is known reasonable well from the nite element

model. Therefore, the mass can be approximated reasonably well by multiplying

the skin area by an areal mass of the skin material that is speci ed by the user.

Equations 4.9 through 4.17 describe a selection of mass estimating relations

from the MASS EST module. These equations are provided to give a sense of

the low delity approach in this module.

mbF uel = Sskin E Kins Hc
(Tin

Tout) Mmass t

ins comb

m
bT ank

=

m

bF uel
tmf

m
ins

=

t
ins

S
skin

(
 ins out

)

M

mass

m
skin

=

S

skin skin
M

mass

m
fin

= (m
str

+

m

skin
)

f mf

K
ins

S
skin

(T
in

T
out

)
h

loss
=

t
ins

F
drag

=

C

d
q

1
S

drag

P
prop

=

F

drag
v

1

mpF uel =
p

prop
BSF C E

2:2

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

4.5 Skin Gore Design

The GORE DESIGN module designs the gores that make up the vehicle skin.

The outputs of the module give the number of gores required, gore length and

width, as well as an additional plot le that contains the actual gore coordinates

that could be fed into a CAD program or plotter.

The module takes information from the user, such as gore material width,

gore overlap, and the maximum vehicle geometry. With this information the

module computes the number of gores that will use the width of the supplied

material best. Based on the a contour le that is written out by the geometry tool,

gore width as a function of its length is computed and written to the plot le. Below

is an excerpt from that le.

X R S WIDTH HALF WIDTH
0 .0000 -0.0000 0 .0000 0.0200 0.0100
0 .0590 -1.5208 1 .5219 -0.0693 -0.0347
0 .2358 -2.6462 2 .6612 -0.1354 -0.0677
0 .5303 -3.6565 3 .7136 -0.1947 -0.0974
0 .9423 -4.5964 4 .7398 -0.2499 -0.1250
1 .4712 -5.4850 5 .7738 -0.3021 -0.1510
2 .1167 -6.3325 6 .8392 -0.3519 -0.1759
2 .8779 -7.1453 7 .9527 -0.3996 -0.1998
3 .7543 -7.9272 9 .1273 -0.4455 -0.2227
4 .7449 -8.6812 10 .3721 -0.4898 -0.2449
5 .8487 -9.4091 11 .6944 -0.5325 -0.2663
7 .0647 -10.1124 13 .0991 -0.5738 -0.2869
8 .3917 -10.7919 14 .5899 -0.6137 -0.3069
9 .8283 -11.4484 16 .1694 -0.6523 -0.3261

11 .3731 -12.0825 17 .8393 -0.6895 -0.3447
13 .0247 -12.6944 19 .6006 -0.7254 -0.3627
14 .7813 -13.2844 21 .4537 -0.7601 -0.3800
16 .6413 -13.8528 23 .3985 -0.7935 -0.3967
18 .6028 -14.3995 25 .4348 -0.8256 -0.4128
20 .6638 -14.9246 27 .5617 -0.8564 -0.4282
22 .8224 -15.4282 29 .7782 -0.8860 -0.4430
25 .0764 -15.9102 32 .0832 -0.9143 -0.4571
27 .4236 -16.3706 34 .4751 -0.9413 -0.4707
29 .8617 -16.8095 36 .9524 -0.9671 -0.4835
32 .3882 -17.2267 39 .5131 -0.9916 -0.4958
35 .0007 -17.6223 42 .1554 -1.0148 -0.5074
37 .6966 -17.9963 44 .8771 -1.0368 -0.5184
40 .4732 -18.3487 47 .6760 -1.0575 -0.5287
43 .3278 -18.6795 50 .5497 -1.0769 -0.5384
46 .2575 -18.9887 53 .4957 -1.0950 -0.5475
49 .2596 -19.2765 56 .5115 -1.1119 -0.5560
52 .3310 -19.5430 59 .5944 -1.1276 -0.5638
55 .4686 -19.7884 62 .7417 -1.1420 -0.5710

58 .6695 -20.0128 65 .9504 -1.1552 -0.5776

61 .9303 -20.2166 69 .2176 -1.1671 -0.5836
65 .2480 -20.4000 72 .5404 -1.1779 -0.5890
68 .6193 -20.5634 75 .9156 -1.1875 -0.5938
72 .0407 -20.7072 79 .3400 -1.1960 -0.5980

*
*
*

213 .9234 -7.5069 222 .4087 -0.4208 -0.2104
216 .1774 -6.9079 224 .7409 -0.3856 -0.1928
218 .3360 -6.3216 226 .9778 -0.3512 -0.1756
220 .3970 -5.7502 229 .1166 -0.3177 -0.1588
222 .3585 -5.1958 231 .1549 -0.2851 -0.1426
224 .2185 -4.6606 233 .0903 -0.2537 -0.1268
225 .9752 -4.1466 234 .9206 -0.2235 -0.1117
227 .6267 -3.6557 236 .6436 -0.1947 -0.0973
229 .1716 -3.1898 238 .2572 -0.1673 -0.0837
230 .6082 -2.7507 239 .7594 -0.1415 -0.0708
231 .9352 -2.3401 241 .1485 -0.1174 -0.0587
233 .1512 -1.9595 242 .4226 -0.0951 -0.0475
234 .2550 -1.6106 243 .5803 -0.0746 -0.0373
235 .2456 -1.2946 244 .6201 -0.0560 -0.0280
236 .1220 -1.0128 245 .5406 -0.0395 -0.0197
236 .8833 -0.7662 246 .3409 -0.0250 -0.0125
237 .5287 -0.5559 247 .0197 -0.0126 -0.0063
238 .0577 -0.3827 247 .5763 -0.0025 -0.0012
238 .4696 -0.2473 248 .0099 0.0055 0.0027
238 .7642 -0.1502 248 .3201 0.0112 0.0056
238 .9410 -0.0912 248 .5065 0.0146 0.0073
239 .0000 -0.0000 248 .6151 0.0200 0.0100

4.6 Cost Estimation

The current costing model has capability of calculating rough fabrication costs in-

cluding both materials and labor costs. Both use a similar approach to the MERs

discussed in Section 4.4. What is di erent in this instance is that there was some

unit of measure de ned and this unit of measure (UOM) has either a time or

monetary value assigned to it. From this UOM the total amounts at the system

and subsystem levels can be aggregated.

In the case of labor, the total time required to perform speci c tasks are

computed and a general labor cost per hour is applied to translate the value into

a monetary value. While this works ne for a proof of concept, in actuality one

would want to assign labor hourly costs by task or task type.

To illustrate the approach here, Equation 4.18 computes the time to fabricate

all the beams of the system. This equation is based on the fact that each beam

has 2 ends and each support structure requires 6 attachments. The 8.0 in the

denominator is simply a conversion from hours to days.

T
beamF ab

=
2

N

beams
T

end
+ 6

N

sup
T

joint M
time (4.18)8:0

4.7 COEUS Analysis Examples

In the following sections a number of examples will be presented that demonstrate

how the di erent types of analysis COEUS is capable of can be used in a design

environment. A simple analysis, trade study, and sensitivity study will be performed

to come up with a reasonable understanding of the a ects of a few variables on the

system. The simple analysis will present an initial baseline con guration or

benchmark. The sensitivity study will identify how modifying certain variables e ect

the performance of the system. And nally, a trade study of the same variables used

in the sensitivity study will be used to illustrate how the interaction a ects of varying

di erent variables simultaneously can in uence the systems overall performance.

4.7.1 Example Simple Analysis

In this case, a simple analysis will be performed on a starting con guration. This will

demonstrate the ability of COEUS to perform an analysis on a xed con gura-tion. In

this instance, a xed con guration means that the input variables are xed. However,

there are output variables that are to be determined. This example will demonstrate

how COEUS tracks convergence of these output variables and iterates on the di

erent modules until the vehicle is closed, where closure of the vehicle is

de ned as convergence of the output variables.

The section below shows the results of the analysis that are printed to screen. This

informs the user of what is happening during the run. The information echoed to the user

is, rst, the name and version of the tool. Second, is de nitions of the modules listed in the

order they are to be executed. Third, is the con guration information if the main, var, and

dsm les. Fourth, is the run information. This section contains all of the convergence

information for the various modules as well as which module is being executed at that

moment. Prior to the actual execution COEUS checks if the case setup is con gured

correctly. These checks include type declarations and ensuring that all variables used in

modules are declared in the variable le. If not, the beginning of this section will contain

error and/or warning messages.

COEUS (C O n c u r r e n t E n g i n e e r i n g Utility for Systems)
POC : Ian . D u p z y k @ g m a i l . com
Version 1.4.2

ANALYSIS MODULES
1 GEOMETRY--> NONE
2 B U O Y A N T _ F O R C E --> NONE
3 S TR U CT UR E --> NONE
4 MASS_EST --> B U O Y A N T _ F O R
C E 5 G O R E _ D E S I G N --> NONE
6 COST --> NONE

M O D U L E _ C O N F I G U R A T I O N : GEOMETRY
Module Script : a i r s h i p _ g e o m e t r y . py

Input Va ri a bl es : 12
analysis . name
vehicle . geometry . d i am et er Y
vehicle . geometry . d i am et er Z
vehicle . geometry . length
analysis . r e f i n e m e n t s
analysis . s m o o t h R e f i n e m e n t s
vehicle . geometry . f o r e B o d y P o w
vehicle . geometry . crossPow
vehicle . geometry . m a x D i a m L o c a t i o n
vehicle . geometry . a f t R a d i u s P c t
vehicle . geometry . A s p e c t R a t i o
vehicle . geometry . geomType

Output V a ri ab le s : 5
vehicle . skin . area
vehicle . buoyancy . envelope . volume
vehicle . geometry . d i am et er Y
vehicle . geometry . d i am et er Z

vehicle . p r o p u l s i o n . d r a g R e f A r e a

M O D U L E _ C O N F I G U R A T I O N : B U O Y A N T _ F O R C E
Module Script : a i r s h i p _ b u o y a n c y . py

Input Va ri a bl es : 13
analysis . name
o pe ra ti o n . altitude . nominal
o pe ra ti o n . altitude . maximum
o pe ra ti o n . altitude . landing
o pe ra ti o n . t em pD e lt a
o pe ra ti o n . n e g T e m p D e l t a
vehicle . buoyancy . envelope . volume
vehicle . buoyancy . liftGas
vehicle . mass . dryMass
vehicle . buoyancy . H e O f f s e t M a s s F r a c t i o n
solar . s o l a r P a n e l N u
solar . s u r f S o l a r F l u x
solar . s i z e d P o w e r

Output V a ri ab le s : 14
vehicle . buoyancy . netLift
vehicle . buoyancy . l i f t P o s i t i o n
e n v i r o n m e n t . pAmbient
e n v i r o n m e n t . tempOut
vehicle . i n t e r n a l E n v i r o n m e n t s . tempIn
vehicle . i n t e r n a l E n v i r o n m e n t s . rhoIn
e n v i r o n m e n t . rhoOut
vehicle . buoyancy . volHeAlt
vehicle . buoyancy . volHeSTP
solar . e l e c t r i c P o w e r
vehicle . buoyancy . envelope . lift
vehicle . buoyancy . H e O f f s e t M a s s F r a c t i o n
vehicle . buoyancy . v o lH eL an d
vehicle . buoyancy . n e t L i f t L a n d

M O D U L E _ C O N F I G U R A T I O N : ST RU CT U RE
Module Script : a i r s h i p _ s t r u c t u r e . py
Input Va ri a bl es : 17

analysis . name
analysis . strPath
vehicle . beam . p r o p e r t i e s
vehicle . skin . p r o p e r t i e s
analysis . loadFile
vehicle . buoyancy . envelope . lift
vehicle . gondola . bounds
vehicle . buoyancy . l i f t P o s i t i o n
vehicle . geometry . length
vehicle . geometry . d i am et er Z
vehicle . mass . s t r u c t M a s s
vehicle . beam . area
margin . m a s s M a r g i n
vehicle . geometry . geomType
vehicle . mass . i n s u l a t i o n M a s s
vehicle . mass . skinMass
vehicle . mass . He En vM a ss

Output V a ri ab le s: 2
vehicle . mass. s t r u c t M a s s
vehicle . beam. t o t a l B e a m S u p p o r t s

M O D U L E _ C O N F I G U R A T I O N: MASS_EST
Module Script : / home / ian / Projects / Airship / Codes / A ir sh i p6 b / bin / a i r s h i p _ m a s s E s t . py
Input Va ri a bl es : 33

analysis . name
vehicle . skin . area
vehicle . buoyancy . envelope . volume
vehicle . beam . area
vehicle . beam . p r o p e r t i e s
vehicle . i n s u l a t i o n . T h e r m a l C o n d
vehicle . i n s u l a t i o n . Density
vehicle . skin . a r e a D e n s i t y
vehicle . skin . e n v D e n s i t y
vehicle . buoyancy . netLift
vehicle . buoyancy . n e t L i f t L a n d
margin . m a s s M a r g i n
o pe ra ti o n . d e s i g n E n d u r a n c e
o pe ra ti o n . range
vehicle . i n t e r n a l E n v i r o n m e n t s . tempIn
e n v i r o n m e n t . tempOut
vehicle . buoyancy . h e a t O f C o m b u s t i o n
vehicle . buoyancy . c o m b u s t E f f i c i e n c y
m a s s P e r P a s s e n g e r
vehicle . i n s u l a t i o n . Th i ck ne s s
vehicle . f i n M a s s F r a c t i o n
margin . h t F l u x M a r g i n
vehicle . buoyancy . liftGas
e n v i r o n m e n t . velocity
vehicle . p r o p u l s i o n . d r a g R e f A r e a
vehicle . p r o p u l s i o n . dragCoef
e n v i r o n m e n t . rhoOut
vehicle . p r o p u l s i o n . bsfc
vehicle . p r o p u l s i o n . n u m b e r O f E n g i n e s
vehicle . mass . s t r u c t M a s s
vehicle . mass . node . unitMass
solar . e l e c t r i c P o w e r
solar . p a n e l S p e c i f i c M a s s

Output V a ri ab le s : 32
vehicle . mass . skinMass
vehicle . mass . i n s u l a t i o n M a s s
vehicle . mass . p a y l o a d M a s s
vehicle . mass . b u o y a n c y F u e l M a s s
vehicle . p a s s e n g e r s
vehicle . i n t e r n a l E n v i r o n m e n t s . tempInF
vehicle . htFlux
vehicle . beam . Mi nL en g th
vehicle . beam . Ma xL en g th
vehicle . mass . finMass
vehicle . beam . quantity
vehicle . beam . t o t a l M a t L e n g t h
vehicle . mass . b u r n e r M a s s
vehicle . mass . b u o y a n c y F u e l T a n k M a s s
vehicle . mass . dryMass
vehicle . mass . He En vM a ss
vehicle . p r o p u l s i o n . pr o pP ow e r
vehicle . mass . p r o p u l s i o n . p r o p F u e l M a s s
vehicle . mass . p r o p u l s i o n . e n g i n e M a s s
vehicle . mass . p r o p u l s i o n . t o t a l E n g i n e M a s s
vehicle . node . quantity
vehicle . mass . node . to ta l Ma ss
vehicle . mass . s o l a r P a n e l M a s s
vehicle . p e r f o r m a n c e . e n e r g y P e r T o n K m
vehicle . p e r f o r m a n c e . e n e r g y P e r K m
vehicle . mass . r e q u i r e d B a l a s t
vehicle . mass . b a t t e r y P a c k
cost . b a t t e r y P a c k
vehicle . battery . c e l l Q u a n t i t y
o pe ra ti o n . d e s i g n E n d u r a n c e

o pe ra ti o n . range
e n v i r o n m e n t . velocity

M O D U L E _ C O N F I G U R A T I O N : G O R E _ D E S I G N

Module Script : a i r s h i p _ g o r e s . py
Input Va ri a bl es : 5

analysis . name
analysis . d a t F i l e P a t h
vehicle . skin . g o r e M a x W i d t h
vehicle . skin . g o r e O v e r l a p
vehicle . geometry . d i am et er Y

Output V a ri ab le s : 3
vehicle . skin . numGores
vehicle . skin . go re Wi d th
vehicle . skin . g o r e L e n g t h

M O D U L E _ C O N F I G U R A T I O N : COST
Module Script : a i r s h i p _ f a b C o s t . py

Input Va ri a bl es : 20
vehicle . node . quantity
vehicle . beam . t o t a l M a t L e n g t h
vehicle . beam . p r o p e r t i e s
vehicle . skin . area
vehicle . buoyancy . volHeSTP
cost . c o s t P e r N o d e
cost . c o s t P e r B e a m M a t e r i a l
cost . c o s t P e r S k i n S q M
cost . s o l a r C o s t P e r W a t t
cost . c o s t P e r E n v S q M
cost . l i f t G a s P C M
cost . c o s t M a r g i n
solar . e l e c t r i c P o w e r
cost . b e a m R i v e t C o s t
vehicle . beam . quantity
vehicle . node . quantity
vehicle . beam . t o t a l B e a m S u p p o r t s
cost . l a b o r P e r H o u r
vehicle . skin . numGores
vehicle . skin . g o r e L e n g t h

Output V a ri ab le s : 16
cost . t o t a l N o d e C o s t
cost . t o t a l B e a m C o s t
cost . skinCost
cost . e n v e l o p e C o s t
cost . liftGas
cost . so la r Co st
cost . t o t a l R i v e t C o s t
cost . labor
cost . to ta l Co st
time . beamFab
time . nodeFab
time . skinFab
time . e n v e l o p e F a b
time . i n t e g r a t i o n
time . total
cost . m f g C o s t P e r W a t t

MAIN FILE C O N F I G U R A T I O N

C o n v e r g e n c e 0.01
Max I t e r a t i o n s 20
O p t i m i z a t i o n 0

T r a d e S t u d y 0
S e n s i t i v i t y S t u d y 0
M o n t e C a r l o 0

INITIAL VEHICLE C O N F I G U R A T I O N :

VARIABLE LIST

VarName : analysis . name
VarName : analysis . strPath
VarName : vehicle . geometry . geomType
VarName : vehicle . geometry . length
VarName : vehicle . geometry . di am e te rY
VarName : vehicle . geometry . di am e te rZ
VarName : vehicle . geometry . A s p e c t R a t i o
VarName : analysis . r e f i n e m e n t s
VarName : analysis . s m o o t h R e f i n e m e n t s
VarName : vehicle . geometry . m a x D i a m L o c a t i o n
VarName : vehicle . geometry . a f t R a d i u s P c t
VarName : vehicle . geometry . f o r e B o d y P o w
VarName : vehicle . geometry . crossPow
VarName : vehicle . beam . area
VarName : o pe ra ti o n . altitude . landing
VarName : o pe ra ti o n . altitude . nominal
VarName : o pe ra ti o n . altitude . maximum
VarName : o pe ra ti o n . range
VarName : vehicle . i n s u l a t i o n . T hi ck n es s
VarName : vehicle . i n s u l a t i o n . T h e r m a l C o n d
VarName : vehicle . i n s u l a t i o n . Density
VarName : vehicle . skin . a r e a D e n s i t y
VarName : vehicle . skin . e n v D e n s i t y
VarName : o pe ra ti o n . d e s i g n E n d u r a n c e
VarName : o pe ra ti o n . t em pD e lt a
VarName : o pe ra ti o n . n e g T e m p D e l t a
VarName : margin . m a s s M a r g i n
VarName : margin . h t F l u x M a r g i n
VarName : vehicle . buoyancy . c o m b u s t E f f i c i e n c y
VarName : vehicle . buoyancy . h e a t O f C o m b u s t i o n
VarName : vehicle . buoyancy . liftGas
VarName : m a s s P e r P a s s e n g e r
VarName : vehicle . p r o p u l s i o n . dragCoef
VarName : vehicle . p r o p u l s i o n . bsfc
VarName : vehicle . f i n M a s s F r a c t i o n
VarName : solar . s u r f S o l a r F l u x
VarName : solar . p a n e l S p e c i f i c M a s s
VarName : solar . s o l a r P a n e l N u
VarName : vehicle . p r o p u l s i o n . n u m b e r O f E n g i n e s
VarName : e n v i r o n m e n t . velocity
VarName : vehicle . mass . node . unitMass
VarName : cost . c o s t P e r N o d e
VarName : cost . c o s t P e r B e a m M a t e r i a l
VarName : cost . s o l a r C o s t P e r W a t t
VarName : cost . c o s t P e r S k i n S q M
VarName : cost . c o s t P e r E n v S q M
VarName : cost . t o t a l N o d e C o s t
VarName : cost . t o t a l B e a m C o s t
VarName : cost . skinCost
VarName : cost . e n v e l o p e C o s t
VarName : cost . t ot al C os t
VarName : cost . c o s t M a r g i n
VarName : cost . liftGas
VarName : cost . l i f t G a s P C M

Value : A001P
Value : / home / ian / Codes / s ...
Value : 1
Value : 239.0
Value : 42.5
Value : 42.5
Value : -5.
Value : 1
Value : 0
Value : 0.45
Value : 0.1
Value : 2.5
Value : 2.0
Value : 0.00001
Value : 100.
Value : 1524.
Value : 1524.
Value : 2088.0
Value : 0 .0 00 0 00 1
Value : 0.0169
Value : 0. 00 0 00 01
Value : 0.074
Value : 0.074
Value : -24.00
Value : 0.0
Value : 0.0
Value : 1.2
Value : 1.1
Value : 0.85
Value : 46.00
Value : hybrid
Value : 120.0
Value : 0.015
Value : 0.45
Value : 0.0
Value : 1000.0
Value : 1.8
Value : 0.10
Value : 0
Value : 87.0
Value : 0.025
Value : 3.0
Value : 9.55
Value : 2.00
Value : 6.10
Value : 5.05
Value : 0.00
Value : 0.00
Value : 0.00
Value : 0.00
Value : 0.00
Value : 1.1
Value : 0.0
Value : 19.35

VarName : cost . s ol ar C os t Value : 0.0
VarName : vehicle . beam . p r o p e r t i e s Value : 73. 1 e9 ,0.33 ,2680....
VarName : vehicle . skin . p r o p e r t i e s Value : 112.0 e9 ,0.36 ,1440...
VarName : analysis . loadFile Value : ../ B U O Y A N T _ F O R C E /...
VarName : vehicle . gondola . bounds Value : 0. 8
VarName : vehicle . buoyancy . H e O f f s e t M a s s F r a c t i o n Value : 20. 0
VarName : vehicle . mass . p r o p u l s i o n . e n g i n e M a s s Value : 0.0
VarName : vehicle . mass . p r o p u l s i o n . t o t a l E n g i n e M a s s Value : 0.0
VarName : solar . e l e c t r i c P o w e r Value : 0. 0
VarName : vehicle . mass . s o l a r P a n e l M a s s Value : 0.0
VarName : vehicle . p r o p u l s i o n . p ro pP o we r Value : 0.0
VarName : vehicle . mass . p r o p u l s i o n . p r o p F u e l M a s s Value : 0. 0
VarName : vehicle . p r o p u l s i o n . d r a g R e f A r e a Value : 0.0
VarName : vehicle . buoyancy . volHeAlt Value : 0.0
VarName : vehicle . buoyancy . volHeSTP Value : 0.0
VarName : vehicle . buoyancy . vo lH e La nd Value : 0. 0
VarName : vehicle . skin . area Value : 0.0
VarName : analysis . d a t F i l e P a t h Value : ../ GEOMETRY
VarName : vehicle . skin . g o r e M a x W i d t h Value : 1.27
VarName : vehicle . skin . g o r e O v e r l a p Value : 0.01
VarName : vehicle . skin . g o r e L e n g t h Value : 0.0
VarName : vehicle . skin . numGores Value : 0
VarName : vehicle . skin . go re W id th Value : 0.0
VarName : vehicle . buoyancy . envelope . volume Value : 0.0
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . rhoIn Value : 0.0
VarName : e n v i r o n m e n t . rhoOut Value : 0.0
VarName : vehicle . buoyancy . netLift Value : 0.0
VarName : vehicle . buoyancy . n e t L i f t L a n d Value : 0.0
VarName : vehicle . buoyancy . envelope . lift Value : 0.0
VarName : vehicle . buoyancy . l i f t P o s i t i o n Value : 0.0
VarName : vehicle . mass . r e q u i r e d B a l a s t Value : 0.0
VarName : vehicle . mass . dryMass Value : 0.0
VarName : vehicle . mass . skinMass Value : 0.0
VarName : vehicle . mass . He En v Ma ss Value : 0.0
VarName : vehicle . mass . i n s u l a t i o n M a s s Value : 0.0
VarName : vehicle . mass . s t r u c t M a s s Value : 0.0
VarName : vehicle . mass . node . to t al Ma s s Value : 0.0
VarName : vehicle . mass . b u r n e r M a s s Value : 0.0
VarName : vehicle . mass . finMass Value : 0.0
VarName : vehicle . mass . p a y l o a d M a s s Value : 0.0
VarName : e n v i r o n m e n t . tempOut Value : 0.0
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . tempIn Value : 0.0
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . tempInF Value : 0.0
VarName : e n v i r o n m e n t . pAmbient Value : 0.0
VarName : vehicle . mass . b u o y a n c y F u e l M a s s Value : 0.0
VarName : vehicle . mass . b u o y a n c y F u e l T a n k M a s s Value : 0.0
VarName : vehicle . p a s s e n g e r s Value : 0
VarName : vehicle . beam . Mi nL e ng th Value : 0.0
VarName : vehicle . beam . Ma xL e ng th Value : 0.0
VarName : vehicle . beam . t o t a l M a t L e n g t h Value : 0.0
VarName : vehicle . beam . quantity Value : 0
VarName : vehicle . node . quantity Value : 0
VarName : vehicle . htFlux Value : 0.0
VarName : vehicle . p e r f o r m a n c e . e n e r g y P e r T o n K m Value : 0.0
VarName : vehicle . p e r f o r m a n c e . e n e r g y P e r K m Value : 0.0
VarName : cost . b e a m R i v e t C o s t Value : 0.00
VarName : cost . t o t a l R i v e t C o s t Value : 0.0
VarName : vehicle . beam . t o t a l B e a m S u p p o r t s Value : 0
VarName : time . beamFab Value : 0.0
VarName : time . nodeFab Value : 0.0
VarName : time . skinFab Value : 0.0
VarName : time . e n v e l o p e F a b Value : 0.0
VarName : time . i n t e g r a t i o n Value : 0.0
VarName : time . t o t a l F a b r i c a t i o n Value : 0.0

VarName : cost . l a b o r P e r H o u r Value : 0.0
VarName : cost . labor Value : 0.0
VarName : cost . m f g C o s t P e r W a t t Value : 0.0
VarName : time . total Value : 0.0
VarName : solar . s i z e d P o w e r Value : 0.0
VarName : vehicle . mass . b a t t e r y P a c k Value : 0.0
VarName : cost . b a t t e r y P a c k Value : 0.0
VarName : vehicle . battery . c e l l Q u a n t i t y Value : 0

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . beam . t o t a l B e a m S u p p o r t s " IS NOT OF TYPE DOUBLE
check the d e c l a r a t i o n in the case . var file , double type should contain a decimal
This variable will not be used in d e t e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . p a s s e n g e r s " IS NOT OF TYPE DOUBLE check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d
e t e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . beam . quantity " IS NOT OF TYPE DOUBLE check the
d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d e t
e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . node . quantity " IS NOT OF TYPE DOUBLE check the
d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d e t
e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . battery . c e l l Q u a n t i t y " IS NOT OF TYPE DOUBLE check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal
This variable will not be used in d e t e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . skin . numGores " IS NOT OF TYPE DOUBLE check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d
e t e r m i n i n g c o n v e r g a n c e of a feedback module

MODULE : GEOMETRY IT E RA TI ON : 1

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 1

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . skinMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . i n su la t io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . i n t e r n a l E n v i r o ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M i nL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M a xL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . t o ta lM a tL ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . H e En vM a ss <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p r o p u l s i o n . pro ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p r op ul s io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . node . tota ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . b a t t e r y P a c k <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : cost . b a t t e r y P a c k <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : op er a ti on . d e s i g n E n d u r a n c e <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

<<< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1

MODULE : G O R E _ D E S I G N I T ER AT I ON : 1

MODULE : COST I TE RA TI O N : 1

FINAL VEHICLE C O N F I G U R A T I O N :

VARIABLE LIST

VarName : analysis . name Value : A001P
VarName : analysis . strPath Value : / home / ian / Codes / s ...
VarName : vehicle . geometry . geomType Value : 1
VarName : vehicle . geometry . length Value : 239.0
VarName : vehicle . geometry . di am e te rY Value : 4 2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . geometry . di am e te rZ Value : 4 2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . geometry . A s p e c t R a t i o Value : -5.
VarName : analysis . r e f i n e m e n t s Value : 1
VarName : analysis . s m o o t h R e f i n e m e n t s Value : 0
VarName : vehicle . geometry . m a x D i a m L o c a t i o n Value : 0.45
VarName : vehicle . geometry . a f t R a d i u s P c t Value : 0.1

VarName : vehicle . geometry . f o r e B o d y P o w Value : 2.5
VarName : vehicle . geometry . crossPow Value : 2.0
VarName : vehicle . beam . area Value : 0.00001
VarName : o pe ra ti o n . altitude . landing Value : 100.
VarName : o pe ra ti o n . altitude . nominal Value : 1524.
VarName : o pe ra ti o n . altitude . maximum Value : 1524.
VarName : o pe ra ti o n . range Value : 2 0 8 8 . 0 0 0 0 0 0 0 0 0 0 0 0 . . .
VarName : vehicle . i n s u l a t i o n . T hi ck n es s Value : 0 .0 00 0 00 1
VarName : vehicle . i n s u l a t i o n . T h e r m a l C o n d Value : 0.0169
VarName : vehicle . i n s u l a t i o n . Density Value : 0. 00 0 00 01
VarName : vehicle . skin . a r e a D e n s i t y Value : 0.074
VarName : vehicle . skin . e n v D e n s i t y Value : 0.074
VarName : o pe ra ti o n . d e s i g n E n d u r a n c e Value : 2 4 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : o pe ra ti o n . t em pD e lt a Value : 0. 0
VarName : o pe ra ti o n . n e g T e m p D e l t a Value : 0. 0
VarName : margin . m a s s M a r g i n Value : 1.2
VarName : margin . h t F l u x M a r g i n Value : 1. 1
VarName : vehicle . buoyancy . c o m b u s t E f f i c i e n c y Value : 0.85
VarName : vehicle . buoyancy . h e a t O f C o m b u s t i o n Value : 46.00
VarName : vehicle . buoyancy . liftGas Value : hybrid
VarName : m a s s P e r P a s s e n g e r Value : 120.0
VarName : vehicle . p r o p u l s i o n . dragCoef Value : 0.015
VarName : vehicle . p r o p u l s i o n . bsfc Value : 0.45
VarName : vehicle . f i n M a s s F r a c t i o n Value : 0.0
VarName : solar . s u r f S o l a r F l u x Value : 1000.0
VarName : solar . p a n e l S p e c i f i c M a s s Value : 1.8
VarName : solar . s o l a r P a n e l N u Value : 0.10
VarName : vehicle . p r o p u l s i o n . n u m b e r O f E n g i n e s Value : 0
VarName : e n v i r o n m e n t . velocity Value : 8 7 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . node . unitMass Value : 0.025
VarName : cost . c o s t P e r N o d e Value : 3.0
VarName : cost . c o s t P e r B e a m M a t e r i a l Value : 9.55
VarName : cost . s o l a r C o s t P e r W a t t Value : 2.00
VarName : cost . c o s t P e r S k i n S q M Value : 6.10
VarName : cost . c o s t P e r E n v S q M Value : 5.05
VarName : cost . t o t a l N o d e C o s t Value : 7 1 9 . 3 9 9 9 9 9 9 9 9 9 9 9 9 7 7 3
VarName : cost . t o t a l B e a m C o s t Value : 5 0 5 . 5 4 6 4 4 4 0 0 0 0 0 0 0 0 8 1
VarName : cost . skinCost Value : 1 6 0 4 7 3 . 0 0 5 0 0 0 0 0 0 0 . . .
VarName : cost . e n v e l o p e C o s t Value : 1 3 2 8 5 0 . 6 0 2 5 0 0 0 0 0 0 . . .
VarName : cost . t ot al C os t Value : 3 3 7 0 2 9 4 . 9 0 8 9 4 4 0 0 0 . . .
VarName : cost . c o s t M a r g i n Value : 1.1
VarName : cost . liftGas Value : 3 0 7 5 7 4 6 . 3 5 4 9 9 9 9 9 9 . . .
VarName : cost . l i f t G a s P C M Value : 19.35
VarName : cost . s ol ar C os t Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . beam . p r o p e r t i e s Value : 73.1 e9 ,0.33 ,2680....
VarName : vehicle . skin . p r o p e r t i e s Value : 112.0 e9 ,0.36 ,1440...
VarName : analysis . loadFile Value : ../ B U O Y A N T _ F O R C E /...
VarName : vehicle . gondola . bounds Value : 0.8
VarName : vehicle . buoyancy . H e O f f s e t M a s s F r a c t i o n Value : 2 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . p r o p u l s i o n . e n g i n e M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . p r o p u l s i o n . t o t a l E n g i n e M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : solar . e l e c t r i c P o w e r Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . s o l a r P a n e l M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . p r o p u l s i o n . p ro pP o we r Value : 6 6 7 2 0 0 . 7 1 8 6 7 4 0 0 0 0 . . .
VarName : vehicle . mass . p r o p u l s i o n . p r o p F u e l M a s s Value : 4 3 9 0 . 5 4 8 2 3 3 9 9 9 9 9 9 . . .
VarName : vehicle . p r o p u l s i o n . d r a g R e f A r e a Value : 1 4 3 0 . 0 1 0 0 2 7 9 9 9 9 9 9 . . .
VarName : vehicle . buoyancy . volHeAlt Value : 1 6 4 6 6 3 . 8 4 7 4 9 7 0 0 0 0 . . .
VarName : vehicle . buoyancy . volHeSTP Value : 1 4 4 5 0 2 . 7 8 2 3 4 5 9 9 9 9 . . .
VarName : vehicle . buoyancy . vo lH e La nd Value : 1 3 8 8 2 4 . 2 5 9 5 3 8 0 0 0 0 . . .
VarName : vehicle . skin . area Value : 2 3 9 1 5 . 5 1 8 8 2 5 9 9 9 9 9 . . .
VarName : analysis . d a t F i l e P a t h Value : ../ GEOMETRY
VarName : vehicle . skin . g o r e M a x W i d t h Value : 1.27
VarName : vehicle . skin . g o r e O v e r l a p Value : 0.01
VarName : vehicle . skin . g o r e L e n g t h Value : 2 4 8 . 6 1 5 1 0 6 9 9 9 9 9 9 9 9 4 7

VarName : vehicle . skin . numGores Value : 107
VarName : vehicle . skin . go re W id th Value : 1 . 2 4 7 8 2 9 0 0 0 0 0 0 0 0 0 1
VarName : vehicle . buoyancy . envelope . volume Value : 2 0 6 0 6 5 . 2 0 5 4 2 8 9 9 9 9 . . .
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . rhoIn Value : 0 . 3 2 9 1 2 1 0 0 0 0 0 0 0 0 0 0
VarName : e n v i r o n m e n t . rhoOut Value : 1 . 0 5 7 4 1 4 0 0 0 0 0 0 0 0 0 1
VarName : vehicle . buoyancy . netLift Value : 1 4 7 2 2 4 1 . 6 3 5 9 9 9 9 9 9 . . .
VarName : vehicle . buoyancy . n e t L i f t L a n d Value : 1 4 1 7 2 4 9 . 8 5 1 9 9 6 9 9 9 . . .
VarName : vehicle . buoyancy . envelope . lift Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . buoyancy . l i f t P o s i t i o n Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . r e q u i r e d B a l a s t Value : 1 3 6 9 5 9 . 1 5 8 8 7 8 9 9 9 9 . . .
VarName : vehicle . mass . dryMass Value : 7 5 1 0 . 7 6 9 7 6 5 0 0 0 0 0 0 . . .
VarName : vehicle . mass . skinMass Value : 2 1 2 3 . 6 9 6 3 9 9 9 9 9 9 9 9 . . .
VarName : vehicle . mass . He En v Ma ss Value : 2 1 2 3 . 6 9 6 3 9 9 9 9 9 9 9 9 . . .
VarName : vehicle . mass . i n s u l a t i o n M a s s Value : - 0 . 0 0 3 0 3 5 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . s t r u c t M a s s Value : 3 2 5 6 . 8 4 1 7 9 8 9 9 9 9 9 9 . . .
VarName : vehicle . mass . node . to t al Ma s s Value : 6 . 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . b u r n e r M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . finMass Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . p a y l o a d M a s s Value : 1 1 5 1 4 5 . 0 9 6 0 2 7 0 0 0 0 . . .
VarName : e n v i r o n m e n t . tempOut Value : 2 7 8 . 2 4 4 0 0 0 0 0 0 0 0 0 0 2 8 2
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . tempIn Value : 2 7 8 . 2 4 4 0 0 0 0 0 0 0 0 0 0 2 8 2
VarName : vehicle . i n t e r n a l E n v i r o n m e n t s . tempInF Value : 4 1 . 1 6 9 1 9 9 9 9 9 9 9 9 9 9 6 5
VarName : e n v i r o n m e n t . pAmbient Value : 8 4 4 4 0 . 8 8 0 0 0 0 0 0 0 0 0 . . .
VarName : vehicle . mass . b u o y a n c y F u e l M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . mass . b u o y a n c y F u e l T a n k M a s s Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . p a s s e n g e r s Value : 959
VarName : vehicle . beam . Mi nL e ng th Value : 0 . 5 5 5 9 3 6 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . beam . Ma xL e ng th Value : 1 9 . 5 8 1 4 8 6 0 0 0 0 0 0 0 0 1 7
VarName : vehicle . beam . t o t a l M a t L e n g t h Value : 7 5 7 8 . 6 4 4 3 8 9 0 0 0 0 0 0 . . .
VarName : vehicle . beam . quantity Value : 648
VarName : vehicle . node . quantity Value : 218
VarName : vehicle . htFlux Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . p e r f o r m a n c e . e n e r g y P e r T o n K m Value : 5 3 5 . 5 8 7 7 6 1 0 0 0 0 0 0 0 0 0 4
VarName : vehicle . p e r f o r m a n c e . e n e r g y P e r K m Value : 5 . 1 0 5 0 6 1 0 0 0 0 0 0 0 0 0 1
VarName : cost . b e a m R i v e t C o s t Value : 0.00
VarName : cost . t o t a l R i v e t C o s t Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : vehicle . beam . t o t a l B e a m S u p p o r t s Value : 17481
VarName : time . beamFab Value : 3 2 . 7 2 5 0 0 0 0 0 0 0 0 0 0 0 1 4
VarName : time . nodeFab Value : 1 4 4 . 2 1 8 2 5 0 0 0 0 0 0 0 0 1 1 8
VarName : time . skinFab Value : 1 8 2 . 8 8 7 4 0 8 9 9 9 9 9 9 9 9 1 0
VarName : time . e n v e l o p e F a b Value : 1 8 2 . 8 8 7 4 0 8 9 9 9 9 9 9 9 9 1 0
VarName : time . i n t e g r a t i o n Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : time . t o t a l F a b r i c a t i o n Value : 0.0
VarName : cost . l a b o r P e r H o u r Value : 0.0
VarName : cost . labor Value : 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : cost . m f g C o s t P e r W a t t Value : - 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VarName : time . total Value : 5 4 2 . 7 1 8 0 6 9 0 0 0 0 0 0 0 1 4 1
VarName : solar . s i z e d P o w e r Value : 0.0
VarName : vehicle . mass . b a t t e r y P a c k Value : 1 6 3 . 1 9 9 9 9 9 9 9 9 9 9 9 9 8 8 6
VarName : cost . b a t t e r y P a c k Value : 2 9 7 6 0 . 0 0 0 0 0 0 0 0 0 0 0 . . .
VarName : vehicle . battery . c e l l Q u a n t i t y Value : 4800

#
##
COEUS T E R M I N A T E D
##

#

The primary outputs of the run are stored in one of two les. Both les store

the same information; however, one is in a similar format as the variable le and

one is in a more readable, hierarchical structure. Below is the the hierarchical

version of the output le showing the inputs and nal outputs. This format is useful

in nding speci c variables by system or subsystem, so long as the project has

been setup appropriately.

analysis
name A001P
strPath / home / ian / Codes / s t r u c t T o o l
r e f i n e m e n t s 1
s m o o t h R e f i n e m e n t s 0
loadFile ../ B U O Y A N T _ F O R C E / load . bdf
d a t F i l e P a t h ../ GEOMETRY

vehicle
geometry

geomType 1
length 239.0
d ia me te r Y 4 2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d ia me te r Z 4 2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A s p e c t R a t i o -5.
m a x D i a m L o c a t i o n 0.45
a f t R a d i u s P c t 0.1
f o r e B o d y P o w 2.5
crossPow 2.0

beam
area 0 .00001
p r o p e r t i e s 73.1 e9 ,0.33 ,2680.0 ,1.0 e8 ,6.35 e -3 ,0.0002032
M in Le ng t h 0 . 5 5 5 9 3 6 0 0 0 0 0 0 0 0 0 0
M ax Le ng t h 1 9 . 5 8 1 4 8 6 0 0 0 0 0 0 0 0 1 7
t o t a l M a t L e n g t h 7 5 7 8 . 6 4 4 3 8 9 0 0 0 0 0 0 0 4 6 5
quantity 648
t o t a l B e a m S u p p o r t s 17481

i n s u l a t i o n
T hi ck ne s s 0. 0 00 00 0 1
T h e r m a l C o n d 0.0169
Density 0 .0 0 00 00 1

skin
a r e a D e n s i t y 0.074
e n v D e n s i t y 0.074
p r o p e r t i e s 112.0 e9 ,0.36 ,1440.0 ,2.0 e8 ,1.5875 e -3
area 2 3 9 1 5 . 5 1 8 8 2 5 9 9 9 9 9 9 5 3 5 3
g o r e M a x W i d t h 1.27
g o r e O v e r l a p 0.01
g o r e L e n g t h 2 4 8 . 6 1 5 1 0 6 9 9 9 9 9 9 9 9 4 7
numGores 107
g or eW id t h 1 . 2 4 7 8 2 9 0 0 0 0 0 0 0 0 0 1

buoyancy
c o m b u s t E f f i c i e n c y 0.85
h e a t O f C o m b u s t i o n 46.00
liftGas hybrid
H e O f f s e t M a s s F r a c t i o n 2 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
volHeAlt 1 6 4 6 6 3 . 8 4 7 4 9 7 0 0 0 0 0 9 7 5 2 8
volHeSTP 1 4 4 5 0 2 . 7 8 2 3 4 5 9 9 9 9 9 2 6 8 5 4
v ol He La n d 1 3 8 8 2 4 . 2 5 9 5 3 8 0 0 0 0 1 2 9 8 0 8
envelope

volume 2 0 6 0 6 5 . 2 0 5 4 2 8 9 9 9 9 9 4 1 8 3 0

lift 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

netLift 1 4 7 2 2 4 1 . 6 3 5 9 9 9 9 9 9 9 4 0 3 9 5 4
n e t L i f t L a n d 1 4 1 7 2 4 9 . 8 5 1 9 9 6 9 9 9 9 3 2 4 5 3 0
l i f t P o s i t i o n 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p r o p u l s i o n
dragCoef 0.015
bsfc 0.45
n u m b e r O f E n g i n e s 0
p ro pP ow e r 6 6 7 2 0 0 . 7 1 8 6 7 4 0 0 0 0 0 3 3 7 5 1
d r a g R e f A r e a 1 4 3 0 . 0 1 0 0 2 7 9 9 9 9 9 9 9 2 0 2

f i n M a s s F r a c t i o n 0.0
mass

node
unitMass 0.025
t ot al M as s 6 . 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p r o p u l s i o n
e n g i n e M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t o t a l E n g i n e M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p r o p F u e l M a s s 4 3 9 0 . 5 4 8 2 3 3 9 9 9 9 9 9 8 6 5 8

s o l a r P a n e l M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r e q u i r e d B a l a s t 1 3 6 9 5 9 . 1 5 8 8 7 8 9 9 9 9 9 5 0 6 7 7
dryMass 7 5 1 0 . 7 6 9 7 6 5 0 0 0 0 0 0 0 0 6 7
skinMass 2 1 2 3 . 6 9 6 3 9 9 9 9 9 9 9 9 8 1 2 3
H eE nv Ma s s 2 1 2 3 . 6 9 6 3 9 9 9 9 9 9 9 9 8 1 2 3
i n s u l a t i o n M a s s - 0 . 0 0 3 0 3 5 0 0 0 0 0 0 0 0 0 0
s t r u c t M a s s 3 2 5 6 . 8 4 1 7 9 8 9 9 9 9 9 9 8 0 9 9
b u r n e r M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
finMass 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p a y l o a d M a s s 1 1 5 1 4 5 . 0 9 6 0 2 7 0 0 0 0 0 6 8 7 0 4
b u o y a n c y F u e l M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b u o y a n c y F u e l T a n k M a s s 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b a t t e r y P a c k 1 6 3 . 1 9 9 9 9 9 9 9 9 9 9 9 9 8 8 6

gondola
bounds 0.8

i n t e r n a l E n v i r o n m e n t s
rhoIn 0 . 3 2 9 1 2 1 0 0 0 0 0 0 0 0 0 0
tempIn 2 7 8 . 2 4 4 0 0 0 0 0 0 0 0 0 0 2 8 2
tempInF 4 1 . 1 6 9 1 9 9 9 9 9 9 9 9 9 9 6 5

p a s s e n g e r s 959
node

quantity 218
htFlux 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p e r f o r m a n c e

e n e r g y P e r T o n K m 5 3 5 . 5 8 7 7 6 1 0 0 0 0 0 0 0 0 0 4
e n e r g y P e r K m 5 . 1 0 5 0 6 1 0 0 0 0 0 0 0 0 0 1

battery
c e l l Q u a n t i t y 4800

o pe ra t io n
altitude

landing 100.
nominal 1524.
maximum 1524.

range 2 0 8 8 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d e s i g n E n d u r a n c e 2 4 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t em pD e lt a 0.0
n e g T e m p D e l t a 0.0

margin
m a s s M a r g i n 1.2
h t F l u x M a r g i n 1.1

solar
s u r f S o l a r F l u x 1000.0
p a n e l S p e c i f i c M a s s 1.8
s o l a r P a n e l N u 0.10
e l e c t r i c P o w e r 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s i z e d P o w e r 0.0

e n v i r o n m e n t
velocity 8 7 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rhoOut 1 . 0 5 7 4 1 4 0 0 0 0 0 0 0 0 0 1
tempOut 2 7 8 . 2 4 4 0 0 0 0 0 0 0 0 0 0 2 8 2
pAmbient 8 4 4 4 0 . 8 8 0 0 0 0 0 0 0 0 0 4 6 5 6 6

cost
c o s t P e r N o d e 3.0
c o s t P e r B e a m M a t e r i a l 9.55
s o l a r C o s t P e r W a t t 2.00
c o s t P e r S k i n S q M 6.10
c o s t P e r E n v S q M 5.05
t o t a l N o d e C o s t 7 1 9 . 3 9 9 9 9 9 9 9 9 9 9 9 9 7 7 3
t o t a l B e a m C o s t 5 0 5 . 5 4 6 4 4 4 0 0 0 0 0 0 0 0 8 1
skinCost 1 6 0 4 7 3 . 0 0 5 0 0 0 0 0 0 0 0 4 6 5 6 6
e n v e l o p e C o s t 1 3 2 8 5 0 . 6 0 2 5 0 0 0 0 0 0 0 8 1 4 9 1
t ot al C os t 3 3 7 0 2 9 4 . 9 0 8 9 4 4 0 0 0 0 2 4 3 4 8 5
c o s t M a r g i n 1.1
liftGas 3 0 7 5 7 4 6 . 3 5 4 9 9 9 9 9 9 9 8 1 3 7 3 5
l i f t G a s P C M 19.35
s ol ar C os t 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b e a m R i v e t C o s t 0.00
t o t a l R i v e t C o s t 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l a b o r P e r H o u r 0.0
labor 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m f g C o s t P e r W a t t - 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b a t t e r y P a c k 2 9 7 6 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

time
beamFab 3 2 . 7 2 5 0 0 0 0 0 0 0 0 0 0 0 1 4
nodeFab 1 4 4 . 2 1 8 2 5 0 0 0 0 0 0 0 0 1 1 8
skinFab 1 8 2 . 8 8 7 4 0 8 9 9 9 9 9 9 9 9 1 0
e n v e l o p e F a b 1 8 2 . 8 8 7 4 0 8 9 9 9 9 9 9 9 9 1 0
i n t e g r a t i o n 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t o t a l F a b r i c a t i o n 0.0
total 5 4 2 . 7 1 8 0 6 9 0 0 0 0 0 0 0 1 4 1

There are other outputs of the system in its presently con gured state that are

a result of the modules and not the architecture. Some of these include nite

element models, structural loading results, fabrication procedures, cut schedules,

and gore pattern les for the skin.

4.7.2 Example Sensitivity Study

The sensitivity study is useful in a design environment when the user wishes to un-

derstand how the system is a ected by changes in one variable at a time. COEUS is

designed to be capable of executing multiple sensitivities in a single run. However,

this is not to imply that the interactions of these di erent variables are captured. In

actuality, only a single variable is run at a time, but many cases can be batched

together in one run.

In the example below it is of interest to understand the sensitivity of the

nominal velocity, nominal altitude, and the vehicle's aspect ratio. This case was

set up to perform sensitivities of all three variable from the baseline con guration

used in the previous example. This sensitivity consisted of 9 data points ranging

from chosen upper and lower bounds. Table 4.1 summarizes the sensitivity

constraints for this example.

Table 4.1: Sensitivity example constraints summary

Sensitivity Variable Number of Cases Lower Bound Upper Bound
operation.altitude.nominal 9 1200.0 1800.0
environment.velocity 9 50.0 100.0
vehicle.geometry.AspectRatio 9 5.0 15.0

Due to the quantity of information that is printed to screen in an analysis such

as this one the results will not be shown in their entirety as with the previous

example. However, the types of information are identical in nature. What is di

erent in this type of analysis is how the results are stored. As there are multiple

solutions run in this type of analysis each case is stored in a separate directory.

This allows individual cases to be rerun if necessary, as well as providing access

to additional information and outputs that may not necessarily be included in the

variable le. Upon completion of this analysis, the working directory would contain

three additional directories, one for each of the sensitivities to run. The naming of

these directories is in the form sensitivity [Variable Name]; therefore, the results

of the velocity sensitivity would be in a folder named sensitivity

environment.velocity. Within each of the sensitivity folders would be a folder for

each of the sensitivity cases and a le that contains the results of case.

COEUS (C O n c u r r e n t E n g i n e e r i n g Utility for Systems)
POC : Ian . D u p z y k @ g m a i l . com
Version 1.4.2

ANALYSIS MODULES
1 GEOMETRY --> NONE
2 B U O Y A N T _ F O R C E --> NONE
3 S TR U CT UR E --> NONE
4 MASS_EST --> B U O Y A N T _ F O R C E
5 G O R E _ D E S I G N --> NONE
6 COST --> NONE

M O D U L E _ C O N F I G U R A T I O N : GEOMETRY

*
*
*

INITIAL VEHICLE C O N F I G U R A T I O N :

VARIABLE LIST

VarName : analysis . name Value : A001P
VarName : analysis . strPath Value : / home / ian / Codes / s ...
VarName : vehicle . geometry . geomType Value : 1
VarName : vehicle . geometry . length Value : 239.0
VarName : vehicle . geometry . di am e te rY Value : 42.5

*
*
*

VarName : vehicle . beam . area Value : 0.00001
VarName : o pe ra ti o n . altitude . landing Value : 100.
VarName : time . total Value : 0.0
VarName : solar . s i z e d P o w e r Value : 0.0
VarName : vehicle . mass . b a t t e r y P a c k Value : 0.0
VarName : cost . b a t t e r y P a c k Value : 0.0
VarName : vehicle . battery . c e l l Q u a n t i t y Value : 0

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . beam . t o t a l B e a m S u p p o r t s " IS NOT OF TYPE
check the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used
in d e t e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . p a s s e n g e r s " IS NOT OF TYPE DOUBLE check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d
e t e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . beam . quantity " IS NOT OF TYPE DOUBLE check the
d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d e t
e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . node . quantity " IS NOT OF TYPE DOUBLE check the
d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d e t
e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . battery . c e l l Q u a n t i t y " IS NOT OF TYPE DO check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d e t
e r m i n i n g c o n v e r g a n c e of a feedback module

< WARNING >>> MODULE OUTPUT VARIABLE " vehicle . skin . numGores " IS NOT OF TYPE DOUBLE check
the d e c l a r a t i o n in the case . var file , double type should contain a decimal This variable will not be used in d
e t e r m i n i n g c o n v e r g a n c e of a feedback module

Running S e n s i t i v i t y : e n v i r o n m e n t . velocity case number : 1

MODULE : GEOMETRY IT E RA TI ON : 1

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 1

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . skinMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . i n su la t io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . i n t e r n a l E n v i r o ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M i nL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M a xL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . t o ta lM a tL ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . H e En vM a ss <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p r o p u l s i o n . pro ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p r op ul s io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . node . tota ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . b a t t e r y P a c k <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : cost . b a t t e r y P a c k <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : op er a ti on . d e s i g n E n d u r a n c e <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s
VARIABLE : vehicle . mass . dryMass

<<< C O N V E R G E N C E NOT
ACHIEVED >>> <<< C O N V E R G E N C E
NOT ACHIEVED >>>

*
*
*

Running S e n s i t i v i t y : e n v i r o n m e n t . velocity case number : 3

*
*
*

Running S e n s i t i v i t y : op e ra ti on . altitude . nominal case number : 1

*
*

*

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 1

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . skinMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . i n su la t io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M i nL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . beam . M a xL en g th <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . dryMass <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . H e En vM a ss <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p r o p u l s i o n . pro ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . p r op ul s io ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . node . tota ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1
VARIABLE : vehicle . mass . p a y l o a d M a s s <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . p e r f o r m a n c e . en ... <<< C O N V E R G E N C E NOT ACHIEVED >>>
VARIABLE : vehicle . mass . r e qu ir e dB ... <<< C O N V E R G E N C E NOT ACHIEVED >>>

MODULE : B U O Y A N T _ F O R C E IT E RA TI O N : 2

< MODULE C O NV ER G ED IN 2 I T E R A T I O N S >>>

MODULE : ST RU CT U RE I TE RA T IO N : 1

MODULE : MASS_EST IT E RA TI ON : 1

MODULE : G O R E _ D E S I G N I T ER AT I ON : 1

MODULE : COST I TE RA TI O N : 1

#
##
COEUS T E R M I N A T E D
##
#

To demonstrate the results of the sensitivities, plots of payload mass versus veloc-ity,

altitude, and aspect ratio are presented in Figures 4.5, 4.6, and 4.7, respectively.

The result of this analysis indicate the following. For Velocity, there is an inverse

relationship with payload mass. As the velocity increases the payload mass that can

be carried is decreased. This makes sense as the quantity of fuel required to travel

at higher speeds is greater. This is due to the fact that, for a given con guration, the

Figure 4.5: Sensitivity of payload mass to nominal velocity (mi/h)

Figure 4.6: Sensitivity of payload mass to nominal altitude (m)

drag force on the system is proportionate to the square of the velocity.

The sensitivity of payload mass to the altitude has some interesting results. As

the vehicle ascends higher there is more payload capacity. However, looking at the

scale the amount of extra lift is rather low, having a change in payload of only 400

kg. This change in payload appears to contrast what one would think. However, by

Figure 4.7: Sensitivity of payload mass to vehicle aspect ratio

looking at the whole vehicle it can be determined that this extra payload mass is

actually due to less fuel required at that altitude due to decreased drag. The plot

of fuel mass is shown in Figure 4.8.

Figure 4.8: Sensitivity of propulsion fuel mass to altitude

When used in a system analysis, having the ability to run multiple sensitivity cases

and look at what a ects each of those variables has on the entire system can be

enormously valuable to a project.

4.7.3 Example Trade Study

The following shows an example of a trade study analysis. This di ers from the

sensitivity study in that, a sensitivity study varies a single variable at a time. A

trade study in COEUS, on the other hand, will run every combination of variable

values the user speci es. While a sensitivity gives the user insight into the

primary e ect of a variable on the system, the trade study analysis will give the

user additional insight into interaction e ects.

The user inputs for the trade study are similar to that of the sensitivity study

except that each value the user would like to run for a give variable is speci ed.

Unlike the sensitivity study where the upper and lower bounds are speci ed along

with the number of cases to run. This allows the user to cluster cases in a speci c

areas while still running a broad range of cases. Furthermore, clustering is important

due to the large quantity of cases. Since the case list is a combination of all chosen

values, the solution sets can get very large, very fast. In the example shown here,

there are three variables and 9 values each resulting in 729 cases. The values in the

run matrix are listed in Table 4.2. These values were chosen such that they would

coincide with the values run in the sensitivity analysis for easier comparison. One

can see how running additional variables at a time quickly becomes a very large

problem. Even with the 729 cases in this run, being executed in series, the set took

about 45 minutes to complete. The power of a tool such as this one would greatly be

improved with parallelization. With the way COEUS is currently set up, parallelization

would be fairly straight forward.

To demonstrate the e ects of variable interactions, the following plots were devel-

Table 4.2: Trade study example run matrix

operation.altitude.nominal environment.velocity vehicle.geometry.AspectRatio
1200.00 50.00 5.00
1275.00 56.25 6.25
1350.00 62.50 7.50
1425.00 68.75 8.75
1500.00 75.00 10.00
1575.00 81.25 11.25
1650.00 87.50 12.50
1725.00 93.75 13.75
1800.00 100.00 15.00

oped to show the original sensitivity plots with the trade study plots superimposed.

This gives an idea of the additional implications modifying a multivariate system can

have and why it can be so valuable to have an architecture, like COEUS, to help

understand those e ects rapidly.

Figure 4.9: Comparison of Velocity sensitivity to Trade Study

Each of the previous plots gives some insight into the trends; however, a better

way of looking at the data can be found in Figure 4.12. This plot was generated using

Figure 4.10: Comparison of Altitude sensitivity to Trade Study

Figure 4.11: Comparison of Aspect Ratio sensitivity to Trade Study

Tableau [3] and illustrates the trends of the three variables in the study. In Figure 4.12,

the plot has payload mass on the vertical axis and aspect ratio on the horizontal axis

with velocity and altitude plotted parametrically. The di erent velocity param-eters are

represented by the diameter of the circles with larger circles representing higher

velocities. Altitude is represented in color, with a key on the right hand side.

From gure 4.6 it appears as though there is a reasonably strong e ect of the alti-tude

on the payload mass. However, in this case one can see that it is di cult to

distinguish between data points of like aspect ratio and velocity indicating that in a

global view there is only a small e ect of that variable on the payload of the system.

The aspect ratio of the vehicle appears to have the largest e ect, and understandably

so since the volume of the envelope (thus the lift) is substantially smaller at higher

aspect ratios. Finally, the velocity of the airship has a fairly signi cant e ect on

payload mass; however, the impact diminishes as the aspect ratio increases. This is

apparent by the spread in the circles from the top to the bottom. Data points at the

bottom (i.e. higher aspect ratios) are more concentric than those at the top.

Figure 4.12: Representation of trade variables global a ect on payload mass

Chapter 5

Conclusion

The work performed in this project for the degree of Master's of Science in

Aerospace Engineering was the development of a multi-disciplinary design and

analysis tool framework named COEUS. Its name stands for COncurrent

Engineering Utility for Systems.

The goal of this framework was to develop a tool that facilitates and promotes

concurrent engineering in the early design phase of a system. While the true

value of COEUS would be realized at the early phases where there are a great

deal of trades and system related studies that occur, there is still value in its use

later in the project as simply an integration tool that executes all the modules of a

system in concert. In addition to the development of COEUS, this project also

covers a detailed model intended to support the design, analysis, and fabrication

of a class of large rigid airships.

COEUS, itself, is not an analysis tool. It is a tool that stores information about a

system and manages both the communication of vehicle information to and from the

various analysis segments or modules and the execution of those modules according to

a design structure matrix supplied by the user. The actual analysis is performed

77

by user supplied modules that are tailored to the speci c needs of the analysis. This

fact allows COEUS to be applicable to a wide range of simulations and industries.

While COEUS is not, necessarily, industry or application speci c, it is tailored to

handle engineering speci c problems better than other integration analysis frame-

works by managing the type of study at the architecture level and not at the model

level. In the design and analysis of engineering systems it is very common to run

analyses, sensitivity studies, and trade studies. With traditional integration systems

like Sandia's Dakota framework, the type of analysis is built into the model, i.e. the

model must be set up for an analysis or sensitivity study. COEUS is di erent, in that

the user de nes a model and selects what type of analysis to perform from the anal-

ysis. The currently available analysis types o ered by COEUS are simple analyses,

sensitivity studies, trade studies, and simple single-variable optimization.

The examples used to demonstrate the capability of COEUS included a simple

analysis, sensitivity study, and a trade study. The latter two analyses were performed on

three system variables with 9 values each. These cases demonstrated the more

common uses of COEUS on a representative system containing 126 variables and six

analysis modules. The rst of these modules creates the vehicle geometry using a

parametric geometry tool developed for this purpose. The remainder of the modules

perform analysis on di erent components or subsystems of the vehicle. One of these

modules uses a high delity structural analysis tool and the remainder use more empirical

methods demonstrating that this type of conceptual tool can incorporate higher delity

analysis methods usually reserved for detailed analysis phases.

The current state of COEUS shows promise in conceptual and early phase system

studies. There is; however, additional work that would improve the capability and

performance of this tool. First and foremost would be parallelization of the analysis. As

this is designed to be a concurrent engineering tool, the parallelization could be

done in a number of ways. Each analysis from start to nish could be done as a

separate thread or each module could be executed in parallel. The second area of

work would be to improve the optimization analysis to include multi-variate opti-

mization capability. And nally, adding capability for additional analysis types such as

uncertainty analysis using Monte Carlo or Latin Hyper Cube sampling methods.

Chapter 6

Appendix A

This chapter contains all the variable names and their descriptions for all the

modules in the example analysis model.

6.1 GEOMETRY Inputs and Outputs

Table 6.1: GEOMETRY Module Input Variables

Input Variable Name Variable Description

analysis.name The name assigned to the model. This can

be the same or di erent from the name of the

entire analysis model.

vehicle.geometry.diameterY The maximum diameter in the Y-, or PITCH

axis direction.

vehicle.geometry.diameterX The maximum diameter in the Z-, or YAW

axis direction.

80

vehicle.geometry.length The length of the airship structure from nose

to tail along the X direction.

analysis.re nements The number of geodesic re nements of the ini-

tial geometry to perform

analysis.smoothingRe nements Further geodesic re nements to result in a

smoother Outer Mould Line (OML) de ni-

tion. Using this option will also result in

curved beams as opposed to straight, two-

point members.

vehicle.geometry.foreBodyPow The power applied to the super ellipse that

governs the shape of the airship forebody

from maximum diameter forward in the X-Z

plane.

vehicle.geometry.crossPow A comma delimited list of values greater than

2.0 that is distributed along the length of the

vehicle from nose to tail. These de ne the

shape in the Y-Z plane. These are the powers

applied to the super ellipse equation for the

Y-Z plane.

vehicle.geometry.maxDiamLocation Location of the maximum diameter location

described as a fraction of the vehicle length

measured from the vehicle nose.

vehicle.geometry.aftRadPct Radius of curvature of the vehicle tail.

vehicle.geometry.AspectRatio Ratio of the length to diameter of the vehi-

cle. This value is used in place of manually

specifying the diameters in the X and Y direc-

tions. If this value is negative it is ignored and

the current values for X and Y diameters are

used. If it is positive, the X an Y diameters

are computed from the length of the vehicle

and this value.

vehicle.geometry.geomType Geometry selection option. The geometry

program has the option to have multiple con-

tours for the OML of the vehicle. This is an

integer ag that is used to select from the

available pro les.

Table 6.2: GEOMETRY Module Output Variables

Output Variable Name Variable Description

vehicle.skin.area Total area of the vehicle OML.

vehicle.buoyancy.envelope.volume Total volume of the vehicle OML

vehicle.geometry.diameterY Diameter in the Y- or PITCH axis. Used to

update the Y diameter value if the aspect ra-

tio value is positive.

vehicle.geometry.diameterZ Diameter in the Z- or YAW axis. Used to

update the Z diameter value if the aspect ratio

value is positive.

vehicle.propulsion.dragRefArea The maximum reference area used in compu-

tation of the vehicle drag based upon drag

coe cient and free-stream dynamic pressure.

6.2 BUOYANT FORCE Inputs and Outputs

Table 6.3: BUOYANT FORCE Module Input Variables

Input Variable Name Variable Description

analysis.name The name assigned to the model. This can

be the same or di erent from the name of the

entire analysis model.

operation.altitude.nominal Operational altitude in meters for nominal

operation

operation.altitude.maximum Maximum altitude that will be experienced

during vehicle operation in meters

operation.altitude.landing Nominal Landing altitude in meters. This is

used in the active lift calculations.

operation.tempDelta Temperature increase for increasing vehicle

lift in Celsius degrees.

operation.negTempDelta Temperature decrease for decreasing vehicle

lift in Celsius degrees.

vehicle.buoyancy.envelope.volume Volume of the vehicle OML.

vehicle.buoyancy.liftGas Type of lift gas used by the vehicle. Option

are air, Helium and Hydrogen.

vehicle.mass.dryMass Dry mass of the vehicle.

vehicle.buoyancy.HeO setMassFraction Fraction of the dry mass of the vehicle that is

to be o set by Helium when active lift is not

employed.

solar.solarPanelNu Solar panel e ciency for cases with solar

power.

solar.surfSolarFlux Solar ux constant to be used in solar power

computation. Typically 1000 W is used.

solar.sizedPower Power rating of the solar panels in Watts.

Table 6.4: BUOYANT FORCE Module Output Vari-

ables

Output Variable Name Variable Description

vehicle.buoyancy.netLift The total lift of the vehicle during nominal

operation. Lift force is in Newtons.

vehicle.buoyancy.liftPosition Location of the center of lift. Measured in

meters from the nose of the vehicle.

environment.pAmbient Outside ambient temperature in pascals.

Value is determined from the altitude using

a standard atmosphere table.

environment.tempOut Outside temperature in Kelvin determined

from the standard atmosphere table.

vehicle.internalEnvironments.tempIn Internal envelope temperature based on the

external temperature and the temperature

delta speci ed by the user.

vehicle.internalEnvironments.rhoIn Internal bulk density of the vehicle. This den-

sity accounts for both the volume of helium

and volume of air that may also be in the vehi-

cle as the helium volume will not ll the entire

vehicle unless the vehicle is at its maximum

operational altitude.

environment.rhoOut External density determined from the stan-

dard atmosphere table.

vehicle.buoyancy.volHeAlt Volume of helium at nominal operating alti-

tude.

vehicle.buoyancy.volHeSTP Volume of helium at Standard Temperature

and Pressure (STP).

solar.electricPower Electrical power output from the system in

Watts if solar panels are present.

vehicle.buoyancy.envelope.lift Lift force of the vehicle in Newtons for nomi-

nal operation.

vehicle.buoyancy.HeO setMassFraction Fraction of the dry mass of the vehicle that is

to be o set by Helium when active lift is not

employed.

vehicle.buoyancy.volHeLand Volume of helium in the envelope at landing.

vehicle.buoyancy.netLiftLand Lift of the vehicle at landing.

6.3 STRUCTURE Inputs and Outputs

Table 6.5: STRUCTURE Module Input Variables

Input Variable Name Variable Description

analysis.name The name assigned to the model. This can

be the same or di erent from the name of the

entire analysis model.

analysis.strPath Path to the structure analysis program exe-

cutable.

vehicle.beam.properties A comma delimited list of Young's modulus,

Poisson ratio, density, allowable stress, beam

material width, beam material thickness.

vehicle.skin.properties Similar to beam properties but not currently

used.

analysis.loadFile Name of the le from the BUOY-

ANT FORCE module writes the forces

acting on the structure.

vehicle.buoyancy.envelope.lift Total lift of the vehicle in Newtons.

vehicle.gondola.bounds Limiting bounds of the gondola attachment

points. Any structure node within these

bounds will support the gondola. This value

is listed as a fraction of the length of the

vehicle. For example, a value of 0.25 would

mean that from the center of lift, the gondola

bounds would span one quarter of the vehicle

forward and one quarter aft.

vehicle.buoyancy.liftPosition Location of the center of lift. Measured in

meters from the nose of the vehicle.

vehicle.geometry.length Length of the vehicle.

vehicle.geometry.diameterZ Diameter in the Z- or YAW axis. Used to

update the Z diameter value if the aspect ratio

value is positive.

vehicle.mass.structMass Mass of the vehicle rigid structure.

vehicle.beam.area Initial guess of the beam material cross sec-

tion in square meters.

margin.massMargin Margin applied to the vehicle and component

masses.

vehicle.geometry.geomType Geometry selection option. The geometry

program has the option to have multiple con-

tours for the OML of the vehicle. This is an

integer ag that is used to select from the

available pro les.

vehicle.mass.insulationMass Mass of the skin insulation.

vehicle.mass.skinMass Mass of the vehicle skin.

vehicle.mass.HeEnvMass Mass of the helium envelope mass.

Table 6.6: STRUCTURE Module Output Variables

Output Variable Name Variable Description

vehicle.mass.structMass Mass of the rigid structure for the vehicle.

vehicle.beam.totalBeamSupports Number of cross supports for all the beams in

the structure. Used in determining both cost

and fabrication time later.

6.4 MASS EST Inputs and Outputs

Table 6.7: MASS EST Module Input Variables

Input Variable Name Variable Description

analysis.name The name assigned to the model. This can

be the same or di erent from the name of the

entire analysis model.

vehicle.skin.area Total area of the vehicle OML.

vehicle.buoyancy.envelope.volume Volume of the vehicle OML.

vehicle.beam.area Nominal Starting beam cross sectional area in

square meters.

vehicle.beam.properties A comma delimited list of Young's modulus,

Poisson ratio, density, allowable stress, beam

material width, beam material thickness.

vehicle.insulation.ThermalCond Thermal conductivity of the skin insulation.

vehicle.insulation.Density Density of the skin insulation.

vehicle.skin.areaDensity Skin mass per square meter. Used to deter-

mine the total skin mass.

vehicle.skin.envDensity Gas envelope mass per square meter. Used to

determine the total skin mass.

vehicle.buoyancy.netLift Total lift of the vehicle at nominal operating

conditions.

vehicle.buoyancy.netLiftLand Vehicle lift at landing in Newtons.

margin.massMargin Mass margin to apply to the system. Typi-

cally 1.0 to 1.3.

operation.designEndurance Vehicle design endurance in hours.

vehicle.internalEnvironments.tempIn Internal temperature of the gas inside the en-

velope.

environment.tempOut External temperature based on the altitude

and a standard atmosphere table.

vehicle.buoyancy.heatOfCombustion Heat of combustion for the burner fuel. This

option is for an option to use fuel burning

heaters to control the vehicle lift.

vehicle.buoyancy.combustE ciency E ciency of converting the chemical energy

of the burner fuel to thermal energy in the

lifting gas.

massPerPassenger Passenger mass to determine the number of

passengers for the resulting payload mass ca-

pability.

vehicle.insulation.Thickness Thickness of the skin insulation in meters.

vehicle. nMassFraction Mass fraction used to determine the mass of

the ns as a function of the mass of the entire

structure.

margin.htFluxMargin Margin applied to heat rate capability of the

heaters.

vehicle.buoyancy.liftGas Type of lift gas used by the vehicle. Option

are air, Helium and Hydrogen.

environment.velocity Velocity of the vehicle at nominal operating

conditions. Units are miles per hour.

vehicle.propulsion.dragRefArea Reference area used in drag calculations. This

is the projected area of the largest diameter

location.

vehicle.propulsion.dragCoef Drag coe cient of the vehicle. Currently this

value is input by the user but will eventually

be performed with an engineering level aero-

dynamics code.

environment.rhoOut Ambient air density outside the vehicle.

vehicle.propulsion.bsfc Brake Speci c Fuel Consumption (BSFC) of

the engines used for propulsion.

vehicle.propulsion.numberOfEngines Number of engines on the vehicle

vehicle.mass.structMass Mass of the vehicles rigid structure.

vehicle.mass.node.unitMass Unit mass of the structure nodes.

solar.electricPower Electric power generated by the solar panels.

solar.panelSpeci cMass Panel mass per kW.

Table 6.8: MASS EST Module Output Variables

Output Variable Name Variable Description

vehicle.mass.skinMass Skin mass of the vehicle

vehicle.mass.insulationMass Insulation mass.

vehicle.mass.payloadMass Resulting payload mass.

vehicle.mass.buoyancyFuelMass Mass of fuel used to keep the vehicle aloft for

the speci ed endurance.

vehicle.passengers Total number of passengers capable of being

lifted.

vehicle.internalEnvironments.tempInF Internal temperature in Fahrenheit.

vehicle.htFlux Heat rate for thermal losses through the skin

insulation.

vehicle.beam.MinLength Minimum beam length in the vehicle struc-

ture.

vehicle.beam.MaxLength Maximum beam length in the vehicle struc-

ture.

vehicle.mass. nMass Mass of the vehicle empennage.

vehicle.beam.quantity Total number of beams in the vehicle struc-

ture.

vehicle.beam.totalMatLength Total length of all beams in the structure.

vehicle.mass.burnerMass Mass of the burners for the active lift control.

vehicle.mass.buoyancyFuelTankMass Tank mass for the burner fuel. These val-

ues are taken from existing LP tanks that are

commercially available.

vehicle.mass.dryMass Mass of the vehicle less fuels and payload.

vehicle.mass.HeEnvMass Mass of the gas envelope.

vehicle.propulsion.propPower Propulsive power required to maintain speci-

ed velocity.

vehicle.mass.propulsion.propFuelMass Fuel mass of the propulsion engines based

on maintaining the speci ed velocity for the

speci ed endurance.

vehicle.mass.propulsion.engineMass Single engine mass for the vehicle.

vehicle.mass.propulsion.totalEngineMass Total engine mass for the vehicle.

vehicle.node.quantity Total number of nodes in the structure.

vehicle.mass.node.totalMass Total mass of all the structure nodes.

vehicle.mass.solarPanelMass Mass of the solar panels.

vehicle.performance.energyPerTonKm Performance metric to show the amount of

energy required in fuel to transport one metric

ton of payload one kilometer.

vehicle.performance.energyPerKm Performance metric to show the amount of

energy per vehicle kilometer.

vehicle.mass.requiredBalast Ballast required at landing to keep the un-

laden vehicle on the ground.

6.5 GORE DESIGN Inputs and Outputs

Table 6.9: GORE DESIGN Module Input Variables

Input Variable Name Variable Description

analysis.name The name assigned to the model. This can

be the same or di erent from the name of the

entire analysis model.

analysis.datFilePath Path from the GORE working directory to

the data le that provides the pro le shape of

the vehicle. This should be a relative path.

vehicle.skin.goreMaxWidth Maximum width of material available to man-

ufacture the gores.

vehicle.skin.goreOverlap Amount of overlap of adjacent gores for gluing

or sewing.

vehicle.geometry.diameterY Maximum diameter of the vehicle. This

drives the number of gores needed around the

circumference of the vehicle.

Table 6.10: GORE DESIGN Module Output Variables

Output Variable Name Variable Description

vehicle.skin.numGores Number of gores around the circumference of

the vehicle.

vehicle.skin.goreWidth Actual width of each gore at its widest point.

vehicle.skin.goreLength Total length of a single gore from nose of the

vehicle to tail.

6.6 COST Inputs and Outputs

Table 6.11: COST Module Input Variables

Input Variable Name Variable Description

vehicle.node.quantity Number of nodes in the structure.

vehicle.beam.totalMatLength Total material length for fabrication of the

beams.

vehicle.beam.properties A comma delimited list of Young's modulus,

Poisson ratio, density, allowable stress, beam

material width, beam material thickness.

vehicle.skin.area Total area of the vehicle skin.

vehicle.buoyancy.volHeSTP Volume of helium at STP conditions.

cost.costPerNode Cost of manufacturing each node.

cost.costPerBeamMaterial Cost of the beam material per kilogram.

cost.costPerSkinSqM Cost of the skin material per square meter of

material.

cost.solarCostPerWatt Cost of the solar panels per Watt.

cost.costPerEnvSqM Cost of the gas envelope material per square

meter of material.

cost.liftGasPCM Cost of the lifting gas per cubic meter.

cost.costMargin Margin multiplier on the system cost.

solar.electricPower Electric power capability of the solar panels.

cost.beamRivetCost Cost per rivet for beam fabrication.

vehicle.beam.quantity Total number of beams.

vehicle.node.quantity Total number of nodes.

vehicle.beam.totalBeamSupports Total number of beam supports in the entire

structure.

cost.laborPerHour Total cost of labor per hour.

vehicle.skin.numGores Number of gores in the vehicle skin.

vehicle.skin.goreLength Length of a single gore.

Table 6.12: COST Module Output Variables

Output Variable Name Variable Description

cost.totalNodeCost Total cost for all nodes in the structure.

cost.totalBeamCost Total cost for all beams in the structure.

cost.skinCost Cost for the vehicle skin.

cost.envelopeCost Cost for the gas envelope.

cost.liftGas Cost for the lifting gas.

cost.solarCost Cost for the solar panels.

cost.totalRivetCost Cost for the beam rivets.

cost.labor Labor cost for fabrication of components

cost.totalCost Total cost of the vehicle.

time.beamFab Time to fabricate and assemble all the beams.

time.nodeFab Time to fabricate and assemble all the nodes.

time.skinFab Time to assemble the skin.

time.envelopeFab Time to assemble the gas envelope

time.integration Time to integrate all the components into the

assembled vehicle.

time.total Total time to to complete the vehicle.

cost.mfgCostPerWatt Cost of manufacturing the system per Watt

of solar power.

Bibliography

[1] David M. Anderson. Design for Manufacturability and Concurrent Engineering.

CIM Press, 2010.

[2] T. R. Browning. Applying the design structure matrix to system decomposition

and integration problems: A review and new directions. IEEE Transactions on

Engineering Management, 48(3):292{306, 2001.

[3] P Hanrahan. Visual analysis for everyone. http://www.tableausoftware.com/

whitepapers/visual-analysis-everyone, 2012.

[4] Pheonix Integration. Model center. http://www.phoenix-int.com/software/

phx_modelcenter.php, 2008.

[5] Sandia National Laboratories. http://dakota.sandia.gov/software.html.

[6] Lucy C. Morse and Danial L. Babcock. Managing Engineering and

Technology. Prentice Hall, 2010.

[7] Unknown. Waterfall vs. agile. http://agileintro.wordpress.com/2008/01/

04/waterfall-vs-agile-methodology/, January 2008.

[8] James P. Womack, Danial T. Jones, and Danial Roos. The Machine That

Changed The World. Free Press, 1990.

97

