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ABSTRACT
A Bi-impulsive Transfer Trajectory Between the Earth and Moon
Jay Mehta

A Bi-impulsive transfer between Earth and Moon is examined in this paper. The
trajectory simulation is done initially in MATLAB and then compared it with a NASA GMAT
simulation. Initial conditions for the orbit are taken from a previously published data and validity
of the MATLAB code is tested by comparing the simulation result with the previously published
data and the GMAT simulation data. In GMAT the trajectory transfer is solved by using a B-

Plane transfer and certain design decisions are made to make GMAT simulation as close to a
CR3BP.
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1. Introduction

NASA plans to send humans back on the Moon by 2024 [1]. This sparked an increased
interest in the Lunar exploration missions. In order to send humans and robotic missions to the
Moon efficiently, different optimal low and/or high thrust trajectory transfers are being studied.
The most simple and fast but not energy efficient approach is the Hohmann transfer[2].
Hohmann transfer requires two burns, one at the perigee of the orbit and another at the apogee.
Spacecraft are placed at perigee while in Earth parking orbit and apogee is set at the desired
Moon's orbit altitude. Another way to examine transfer of a spacecraft from Earth to Moon is by
using the patched-conics method. The patched-conics approximation relies on the Keplerian
decomposition of the solar system dynamics [3]. By carefully switching the SOI (Sphere of
Influence) along the orbit, the spacecraft's motion is only governed by one primary body at a
given time. For example, in the case of Earth to Moon transfer using patched conics, spacecraft
will be in Earth's SOI for most of the transfer and by only the Moon during the final time. Both
the Hohmann transfer, and patched conics are the simple, direct method of transfer in 2BP (2
body problem). Some alteration of Hohmann and patched conics transfer was used in all lunar
missions from the 1960s to the 1980s, including the Luna and Apollo mission. The 2BP transfer
to the Moon is limited by the launch window and requires multiple corrections burns, increasing
the total AV cost. In the case of Apollo 11, it had to perform two Lunar orbital Intersection burns
and four midcourse corrections. The total AV required for Apollo 11 to be in orbit around the
Moon was 13571.1 ft/s (4.136 km/s) [4].

below summarizes all the burn estimation to be performed by Apollo 11 Command Service
Module (CSM) to get to the Low Moon Orbit (LMO).



Table 1.1- CSM burn schedule [4]

BURN / MANEUVER | GETI ATTITUDE (DEG) LIGHTING AV (FPS) ULLAGE | TVC MODE | REFSMMAT
BURN TIME
AVC LH/LV  INERTIAL

S-IVB TLI 02:44:26 BURNOUT AT - PAD
5 MIN 20 SEC SUNRISE

SM/LM S-IVB DAYLIGHT G&N AUTO PAD
EVASIVE MNVR
- G&N AUTO PAD
s PIC
C, PIC
4 LDG SITE
101, DAYLIGHT G&N AUTO LDG SITE
- (S8 -1 HR 7 MIN)
101, 80:09:29.7 DAYLIGHT G&N AUTO LDG SITE
b 16.4 SEC (SR +9 MIN)
CSM/LM SEP 100:39:50.4 SUNLIGHT G&N AUTO LDG SITE
8 SEC (S8 -14 MIN)
*CSM PLANE CHANGE 107 G&N AUTO

1M JETTISON 131:53:04.7 DAYLIGHT G&N AUTO LIFT OFF
3.1 C (SR + N)
TEI DAYLIGHT G&N AUTO LIFT OFF
(SR +10 )
150:2 - G&N AUTO PTC
172:0 PTC
192:06 ENTRY

A trajectory calculated using CR3BP, a circular restricted three-body problem, can
provide a more accurate trajectory. As the name suggests, the perturbation caused by the third
body, for this project, Moon, is accounted in the motion of the spacecraft. A detailed derivation
of Equation of Motion (EOM) for an Earth-Moon, Circular Restricted Three-Body Problem is
developed in the later section of this paper. There are still assumptions made in a CR3BP, such
as both Earth and Moon are orbiting each other in a circular orbit, but the trajectory designed
using CR3BP provides accurate AV approximation over a 2BP (Two body problem).

1.1 Problem Definition

To design a Bi-impulsive transfer trajectory from Low Earth Orbit (LEO) to Low Moon
Orbit (LMO) in CR3BP in MATLAB and simulate it also in NASA's GMAT (General
Mission Analysis Tool). LEO altitude of 463 km and LMO altitude of 100 km is selected for
the mission. Identical altitudes are also used in NASA GMAT. ODE45 function is used to
integrate the EOMs in MATLAB.



2. Literature Review

Two body orbital mechanics have been shaped by Kepler's laws combined with Newton's
law of motion. Two-body orbital mechanics have been studied and researched extensively and
are also the foundation for 3-body and N-body problems.

2.1 CR3BP orbit transfer between Earth and Moon

Belbruno carried out research for low energy transfer between Earth and Moon using a
weak stability boundary. In his paper, he numerically demonstrated that the AV needed for the
transfer was 18% less than that of the Hohmann transfer. The time of flight (TOF) for such a
transfer was upwards of 3-5 months, not ideal for a manned mission but suitable for a robotic
mission. Belbruno's weak stability ballistic boundary transfer has been successfully demonstrated
by the Japanese spacecraft Hiten, which arrived at Moon on October 2, 1991 [5]. Belbruno's
work laid the foundation for the ballistic transfer between Earth and Moon.

Bi-Impulsive transfer in the CR3BP is also studied extensively. The goal of the study
has always been to find the minimal AV require for a permanent lunar capture. The study
conducted by Qi and Xu, students at Beijing universities, compared the AV for Lunar transfer
using the patched conics method and in CR3BP [6]. Table 2.1 below provides a summary of their
result for AV needed for patched conics transfer vs. transfer done in CR3BP.

Table 2.1 - Quick summary of AV needed for patched conics transfer vs. CR3BP [6]

Semi Major Axis around Moon [km] AV [km/s]
Patched Conics 23,300 3.453796
CR3BP 23,663 3.099713
Patched Conics 25,066 3.552857
CR3BP 25,268 3.103431

Qi and Xu also numerically optimized their CR3BP model to get an optimal Lunar transfer with
minimum AV. For the minimum theoretical AV they got a transfer time of infinite, so such a
transfer is not realistically possible. Figure 2.1 below summarizes the integral Jacobi Constant
for permanent Lunar orbit vs. the minimum AV needed for such a transfer.
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Figure 2.1 - Jacobi constant vs AV [6]

Giovani Mengali and Alessandro Quarta, two researchers from the University of Pisa,
also performed optimization of Bi-impulsive Trajectory in CR3BP for Earth-Moon transfer by
constraining TOF (Time of Flight) [7]. Spacecraft was parked in a circular orbit of radius 6545
km around the Earth and transferred to a circular orbit around Moon of radius1840 km. They
took the mission data from Belbruno and Miller [5] and used it as an initial condition for their
WSB (weak stability boundaries) approach in the CR3BP environment to validate their 3-body
model. They found the almost equivalent AV and transfer time was obtained without using the
sun perturbation. Table 2.2 below summarizes their result.

Table 2.2. - Summary of performance of different optimal transfer from earth circular orbit to
moon circular orbit [7]

Transfer Type AV [km/s] TOF (days)
Weak Stability Boundary 3.838 140
Biparabollic 3.953 Infinite
Hohmann (2body Problem) 3.991 5

Bielliptic 4.148 90

The optimal transfer done by Mengali and Quarta is ideal for robotics mission but are not
suitable for human flights due to their long transfer time. Optimization Study done by Miele and
Mancuso accounts for flight time suitable for a human mission, thus providing a bit more
realistic trajectories for the human Moon mission. They set up their problem in a simplified
restricted three-body model and optimized it using the sequential gradient-restoration algorithm.
The parameter to be optimized were the initial phase angle of the spacecraft with respect to Earth
and Moon, flight time, and the velocity impulse at departure and the arrival. Phase Angle also
referred as departure angle, is defined as the angle between v, of the spacecraft and the inertial
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X-axis of the Earth [Figure 2.2]. Table 2.3 below summarizes their Earth-Moon transfer results.

The critical thing to note is the transfer time, 4.5 days.

Table 2.3 - Earth to moon flight, clockwise LMO arrival [§]

Altitude LMO | AVipeqr (km/s) | AVggren (Km/S) | AVypon (km/s) | Phase Angle & | TOF (days)
(km) (deg)
100 3.882 3.068 0.814 -116.88 4.50
200 3.868 3.068 0.800 -116.88 4.50
300 3.855 3.068 0.787 -116.88 4.50
Y .
| -8 Xg

Up™.

Figure 2.2 - Definition of phase angle &

Building on Miele and Mancuso's research, Leonardi and Potani also perform a similar
study in two- and Three-dimensional Earth-Moon orbit transfer [9]. For their 2-D CR3BP (Planer
CR3BP) model, they use an LEO altitude of 463 km and LMO altitude of 100 km, similar to the
initial conditions used by Miele. Unlike Miele, their results are slightly more accurate because
they did not identify the center of Earth as the center of the entire system.

Table 2.4 below summarizes their optimized two-dimensional LEO-LMO orbit transfer
for clockwise arrival at Moon. Their paper does not explicitly state the time of flight, but it's a
reasonable assumption to assume it is similar to TOF found by Miele and Mancuso. The
trajectory solved using MATLAB in this paper uses the initial condition provided by reference 9.



Table 2.4 - Globally optimal two-dimensional LEO-LMO orbit transfer [9]

J- Jacobi Constant(km/s) AVigo 6 deg

3.885

3.069 -117.52

2.2 NASA’s GMAT

NASA GMAT, General Mission Analysis Tool, is an enterprise, multi-mission

opensource software system for space mission design, optimization, and Navigation [10]. It was
developed by NASA engineers, private industry, and other public and private contributors. It has
been used in real-world missions, most notably, Lunar Reconnaissance Orbiter (LRO),
Transiting Exoplanet Survey Satellite (TESS), OSIRIS-Rex. Figure 2.3 below lists the NASA
mission whose trajectory was designed using the GMAT. Some key features of GMAT are,

Dynamic and Environmental Modeling: GMAT contains high fidelity dynamics models
including gravity, drag, tides, Solar Radiation Perturbation (SRP). It also includes
information on the constellation, high fidelity ephemerides data, and a rich set of
coordinate systems such as J2000, ICRF, body fixed, body rotating, and many others.
Plotting, Reporting, and Product Generation: GMAT has tools like interactive 3-D
graphics, customizable plots, and reports, post computational animation, which can be
used to analyze data outside GMAT.

Optimization and Targeting: GMAT can be used to solve boundary value targets,
nonlinear problems, and constrained optimization problems.

Programming Infrastructure: GMAT uses MATLAB syntax to define equations in its
script. Users can define any variable, array, or string and solve it using the GMAT. It also
has MATLAB and Python interfaces and can easily use those tools.

Orbit Determination Infrastructure: GMAT has a Batch estimator, extended Kalman
Filter smoother, error modeling, process noise modeling, and many more incorporated to
determine the ideal orbit and analyze the result.
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Figure 2.3 - List of NASA mission whose trajectory was optimized using GMAT [11]
2.3 B-Plane

The B-Plane transfer is used in this project to transfer spacecraft from LEO to LMO in
NASA GMAT. B-plane, also called a body plane, is an imaginary plane that contains the target
body (Moon) and is orthogonal to the incoming asymptote of the spacecraft. A spacecraft
approaching the target body is assumed to be in a hyperbolic orbit. In this case, the target
insertion point is behind the target body, and the relationship between the target insertion point
and the current velocity is nonlinear due to the gravitational attraction of the target body.
Therefore, to adjust the miss distance caused by the perturbation forces, B-Plane targeting is
adopted [11]. B-Plane targeting allows for a linear relationship between the target B-Vector and
the instantaneous velocity of the spacecraft [12]. A simple B-Plane calculation is performed in
the lesson learned section of this paper.

Figure 2.4 bflow illustrates the B-Plane and its vector. To describe the vectors on the B-
plane, unit vectors R and T are used.
P S xN
15 % A| =
Where, S is a unit vector parallel to the spacecraft excess velocity from the C.G. (center of

gravity) of the target body and N is a normal unit vector of the target planet's equatorial plane. R
vector can be defined using the right-hand rule, i.e.



R=SxT 2.2

By using these vectors, B-Vector can be defined as follows

B =B;T x BgR 2.2
M Unit Normal Vector = - - - - M Asymptote Vector §
of Plane of Interest N I r e S
I
| - - - - B Hyperbolic Path
The plane normal "Bp ; : : of Spacecraft
to asymptote line lane : ! '
: | i ,"B-Plane
Bovsms v guosd [ : ’/’ Unit Vector T
! /
Py » Asymptote Line
7/ 7
s 7’

~~~~~ Aim Point

“B-Plane ~ """~

Unit Vector R = W B-Vector B

\ . .
~ - - B Incoming Velocity v_

Figure 2.4 - B-plane definition

The complete derivation of B-Plane can be found in the appendix of reference 13. GMAT
adopted Kizner works, and the following two conditions need to be satisfied to set up a B-plane
project in GMAT [13]. Figure 2.5 below shows the geometry of the B-Plane as seen from the
viewpoint perpendicular to the B-plane.

e  GMAT should know r and v in F; coordinate (GMAT default coordinate frame)

e Fp is the coordinate system GMAT will perform the B-plane calculation in. GMAT will
place the T in the XY-plane of Fz and Fp should have a gravitational body at its origin. If
GMAT fails to find the gravitational body at its origin, it will error.



z-axis of Fp

Central Body
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Figure 2.5 - Geometry of the B-Plane as seen from a viewpoint perpendicular to the B-plane



3. Methodology

This section discusses the methodology used to simulate the orbital trajectory using

MATLAB and GMAT, starting with getting the equation of motion in CR3BP.

3.1 Circular Restricted 3-body Problem Equation of Motion

This section derives the equation of motion in CR3BP for Earth and Moon. Consider the
mass of Earth as my and mass of Moon as m,,. The constant scalar distance from the Earth to
Moon is 15y, as shown in Figure 3.1. Let's also consider a non-Newtonian reference frame at the
barycenter of Earth and Moon, By, such that the x-axis, Bx, is directed towards Moon, as shown
Figure 3.1. The Y-axis, By, lies in the orbital plane to which the z-axis,b,, is perpendicular. The
angular velocity of B around the barycenter as seen from a Newtonian reference frame N (Sun

reference frame) is given by,

NQB =Qb
Where 2T
5 Q=—-—
T
And T is the period of the orbit,
. 2T %
=—XT
Vi EM
Therefore,
a- &
TEm
Where,

U=GM = G(mg +my)

3.1

32

33

34

3.5

For a planer CR3BP, Earth and Moon lie in the orbit plane; hence their y and z coordinates are

zero. To determine their location on the x-axis, let's use the center of mass equation.

mExE + meM = 0

Since 15y, is known,

From equation 9 and 10

10

3.6

3.7

3.8



And

Mg 3.9

Xy = TEM

my + mg

Now to fully set up a Three-Body problem, let's introduce the third body, i.e., the spacecraft of
mass mg. Since the mg, < mg, my,, spacecraft mass does not affect the motion of the primary
body, but the Earth and Moon govern spacecraft motion. Unlike the 2-Body problem, spacecraft
motion in the 3-Body problem has no general, closed-form solution. By setting up the Equation
of Motion (EOM) and integrating it over time, spacecraft trajectory in the three-body problem
can be calculated.

Spacecraft

Xg B, ‘ Xy X
(Barycenter)

Earth

Moon
Tem
Figure 3.1- Earth-moon 3 body set up
In a barycenter frame, the position of the spacecraft w.r.t the Earth is given by,
E?Sz (XS_XE) Bx+ys By'l' Zg BZ 3.10
= (xS +—rEM> Bx +y53 +Z_gBZ 311
mg +my Y
Spacecraft position w.r.t. Moon,
M?SZ (xs - mETanM T'EM) Bx + Vs By + Zs BZ 3.12
And the position of the spacecraft w.r.t. the barycenter
BYS=xg by + y5 by, + z5 b, 3.13

The inertial velocity of the spacecraft can be found by taking the time derivative of equation 3.13
w.r.t the Newtonian reference frame N, from the center of Sun.

11



Nys— CD B2SL NoBx BTS — BySy NoBx BTS 3.14
dt
and,
By S= Spacecraft velocity w.r.t the barycentre = %sb, + ysb, + zsb, 3.15

And the acceleration of the spacecraft can be calculated by taking the time derivative of equation
3.14.

N By N -~
Nasz(d_t) ByS 4 NQByx ByS 3.16

= BaS+ax BrS+ax(@x BrsS)+2ax BYS
The rotational velocity of the barycenter is constant, thus Q=0
NaS=ax(@x BrS)+2ax BvS4 B3S 3.17
BaS= xshy + ysby, + Zsh, 3.18
Substituting equation 3.14,3.15 in 3.16,
Nas =0b, x [Qb, x (xsby + ysby + zsh,)| + 2(Qb,) X (%ksby + ysb, + 25b,) + ¥shy 3.19
+ ysby + Zsh,
Nas = —02 x (xsby + ¥sby) + 2Q xb, — 2Qyb, + Xsby + ysb, + 75h, 3.20
Reorganizing all the terms
Nas = (¥ — 2Qy — Q2x)b, + (J + 2Qx — Q%y)b,, + 7b, 3.21

The force acting on the satellites are gravitational forces caused by the Earth and Moon.
Therefore, by Newton's second law

F =ma = Fg + Fy 3.22
Mmgmg
Fy=GsElSpg 3.23
S—E
mym
Fy =G+ 1;1 erqM 3.33
Tsom
Let,
Ug = Gmg and py = Gmy 3.34
Nas = (& — 2Qy — Q%)b, + (J + 2Qx — Q)b + #b, = 3.35
Ug [( my >A ~ ~ ] Hm ( mg >A ~
—-—— +— by + ysb, + zsb,| — e — by + ysb
= Xs Mg + My TEm | Dx T YsbDy T ZgDy Toom Xs Mg + my Tem | Dx T Ysby

+ ZSBZ

12



Taking dot product of equation 3.35 w.r.t b,
.. . U
(% —2ay — 0*x) = — 3E <x5+
L

my Ky mg 3.36
TEm | — Xs ——— TEm
mg + my Yoy mg + my

Taking dot product of equation 3.35 w.r.t Ey

.. . U I
(3 + 20% — 0%y) = ———ys — ——s 337
- SSE Ts->m
Taking dot product of equation 3.35 w.r.t b,
2p S Teom o 3.38

The equation of 3.36, 3.37, and 3.38 will be integrated using ODE45 to plot the spacecraft's
trajectory under the gravitational force of Earth and Moon.

3.2 Trajectory simulation using MATLAB

Initially, the orbit transfer is numerically solved using MATLAB and its native ODE45
function. To identify the successful LEO-LMO transfer in two dimensions, having the proper
initial condition is essential. For this project, the optimal conditions needed for the two-
dimensional transfer are taken from the paper published by Leonardi and Pontani [9]. The
optimal transfer velocity, AV and the phase angle § calculated by Leonardi in his paper are
extremely close to the values found by Miele and Mancuso [8]. Error! Reference source not f
ound. below illustrates the relationship between the AV and & calculated by Leonardi. In plot the
J=AV, go + AV, - Table 3.1 summaries the AV, and § phase angle used for this project.

Table 3.1 - Initial condition used for MATLAB trajectory

AVigo [km/s]

O[deg]

Clockwise

3.069

-117.52
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Figure 3.2 - Contour plot of the objective function [9]

Following assumptions are also made to investigate the LEO-LMO transfer.

The Spacecraft trajectory lies entirely on the Moon orbital plane, i.e., it's a planar Circular
Restricted Three-Body Problem.

The third body perturbation in LEO and LMO is neglected.

Two impulsive burns will complete the transfer, the initial one at LEO called AV, g, and
the second one at LMO to circularize the orbit called AV} ;0

Spacecraft attitude at LEO is selected at 453 km,

Spacecraft altitude at LMO is chosen at 100 km.

EOM is numerically solved using the engineering units (km, km/s, kg) and not in
canonical forms (D.U., T.U.).

The position of the spacecraft where the tangential AV, z, burn takes place is calculated using the
following equation.

Where,

Where

Xs = Xg + R ppC0SO 3.39

Vs = Rygosind 3.40

Riro = Rggren + SpaceCraft Altitude at LEO 3.41
X = (QR g0 — Vg) X sind 3.42

Vs = (vg — QR o )COSO 3.43

1 3.44
vo = £ + AULEO
RLEO
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The initial velocity of the spacecraft at LEO is calculated using equation 3.44 Table 3.2 below
summarizes other constants used to solve the trajectory using MATLAB numerically.

Table 3.2 - Initial condition used in MATLAB

Constant Value Units
Gravitational Constant 6.67 x 10720 km?3
kg sec?
Radius of Earth 6378 km
Radius of Moon 1737 km
Distance between Earth and Moon 384400 km
Mass of Earth 5.9724 x 102%* kg
Mass of Moon 0.07346 x 10%* kg
UEarth 398600 km?3
sec?
UMoon 4903.02 km?3
sec?

The EOM of motion listed in equations 28.1 and 28.2 is integrated using ODE45 until the orbital
parameter Yy;nq;=-1837 km is achieved. Once the desired altitude around Moon is achieved, the

spacecraft's velocity w.r.t barycenter is converted to the velocity of spacecraft w.r.t. Moon. The
angle 6 between the r;_,,, and the x-axis is given by,

sin@ = yfinal 3.45
Xrinat 28

cosO = final Moon 3.46
RLMO

Where, Xfinqand Ypmq are final spacecraft position numerically integrated using ODE45. The

velocity of the spacecraft required for the circular orbit at LMO is calculated using the equation
listed below,

1 347
o moon .
Ximo = | sin® + Qyfinal
LMO
Ly 348
. oon
Yimo = — cos6 — Q(xfinal — XmooN)
LMO
Thus,
3.49

AVimo = \/(J'CLMO — Xrina)® + Vimo — Yfina1)?

3.3 GMAT Simulation

NASA GMAT is also used to simulate similar transfer orbit. Spacecraft is parked in the
circular orbit around the Earth at an altitude of 463 km, and the GMAT problem is set up such
that it uses B-Plane transfer to reach 100 km altitude above Moon. Later another problem is set
up in GMAT to achieve a circular orbit at 100 km altitude around Moon. GMAT uses Rung-
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Kutta 89 solver to solve the boundary value problem. This section shows users how the problem
is set up in GMAT, design decisions made while selecting specific settings, and a brief
explanation of certain GMAT features.

The first step in GMAT is to set up the spacecraft's circular parking orbit around the
Earth. To define the orbit around the Earth, a modified Keplerian state type is selected. The
radius of perigee and radius of apogee is inputted as 6840 km, and the inclination of the orbit is
kept at 25°. RAAN, AOP and TA are kept at 0°. Moon orbit around the Earth has an inclination
of 18.28°-28.58° [14]; thus, providing an initial inclination of 25° to the satellite is kept inplane
with Earth-Moon. Figure 3.3 below summarizes the initial spacecraft property.

® = || B3] | &3
Orbit  Attitude Ballistic/Mass Tanks  Power System SPICE  Actuators Visualization
Elements
Epoch Format UTCGregorian N
RadPer [ 6840.000000000001 |km
Epoch 15 Jul 2022 01:07:06.978
A RadApo | 6840.000000000001 |km
Coordinate System EarthMJ2000Eq v
INC | 25.00000000000002 |deg
State Type ModifiedKeplerian v
RAAN o |deg
AOP ]o ‘deg
TA o |deg

Figure 3.3 - Initial spacecraft property as defined in GMAT

The next step in GMAT is to define the two impulsive burns needed for the Earth-Moon transfer.
They are named TOI (Transfer Orbit Insertion) and MOI (Moon Orbit Insertion) for this project.
To rename the burns just right click on the burn and click rename or select the burn and click F2
key. The burns are impulsive burns, and the axes are set as VNB, which stands for Velocity-
Normal-Binormal [15]. The origin is set at Earth for TOI burn, while for MOI burn, the origin is
set at Luna (Moon). The initial value for the burns is zero because GMAT will find the optimal
value for that transfer. The mass change section is untouched cause the goal of this project is to
simulate the optimal transfer using GMAT.
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& ImpulsiveBurn - TOI (=] @ @® = || =] ) &3

Coordinate System Coordinate System
Coordinate System ' Local v Coordinate System | Local v
Origin Earth v Origin Luna v
Axes VNB ™ Axes VNB i
Delta-V Vector Delta-V Vector

Mass Change Mass Change
[[] Decrement Mass [[] Decrement Mass
No Fuel Tanks Avai v No Fuel Tanks Avai v
300 300
9.81 9.81
D oK App Cancel Help OK Apply Cancel Help

Figure 3.4 - TOI and MOI burn setup in GMAT

The next step is to model the propagator. A propagator is the GMAT component used to model
spacecraft motion [16]. For this project, a numerical integrator-type propagator with a force
model is used. Three propagators, NearEarth, EarthMoon, and NearMoon prop, are added to the
GMAT project. As the name suggests, NearEarth propagator is used to model the spacecraft
motion in LEO and only accounts for Earth gravitational force as a point mass. EarthMoon prop
is used to find the ideal transfer trajectory between LEO to LMO, and spacecratft is subjected to
both the Earth and Moon gravitational forces. And lastly, the NearMoonProp only accounts for
Moon gravitational force on spacecraft and simulates orbit around LMO. Earth and Moon are
modeled as point mass because by doing that, it allows users to only account for Earth and Moon
gravitational attraction and not the perturbation caused by the gravity of Earth and Moon. The
primary body are kept empties for all three propagators as a point mass model is implemented.
(Figure 3.5) The integrator type to solve for the spacecraft's motion is selected as RungeKutta89
with an accuracy of 9.99¢-12.
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Integrator Force Model
Type RungeKuttag9 o Error Control | RSSStep v
Initial Step Size | 60 ‘sec Central Body  |garth -
Accuracy | 9.999999999999999%€-12 ‘ Primary Body
Min Step Size | 0,001 ‘sec v
Max Step Size | 2700 ‘sec
Max Step Attempts | 50 ‘ Model
Stop If Accuracy Is Violated LEgiee / Ol / SIRLi
Gravity File
Tide
Data Source Model
Tide File
Drag

Atmosphere Model nope Setup

Drag Model Spherical

Point Masses | Earth Select

[JUse Solar Radiation Pressure  SRP Model Spherical

[] Relativistic Correction

OK Cancel Help

Figure 3.5 — NearEarthProp — GMAT properties only accounting for earth’s gravity
e PropSetup - NearMoonProp E @

Integrator Force Model
Type lRungeKuttaSS o ‘ Error Control  |RSSStep v
Initial Step Size l 60 lsec Central Body |Luna i
Accuracy [ 9.999999999999999€-12 ‘ Primary Body
Min Step Size [ 0.001 ‘ sec v
Max Step Size ‘ 160000 ‘ sec
Max Step Attempts ‘ 50 ‘
Stop If Accuracy Is Violated Begree / Ordey / SIMiLing
Gravity File
Tide
Data Source Model
Tide File
Drag
Atmosphere Model pope Setup
Drag Model Spherical
Point Masses l Luna Select

[JUse Solar Radiation Pressure  SRP Model Spherical

[J Relativistic Correction

| oK Apply Cancel Help

Figure 3.6 — NearMoonProp — GMAT properties only accounting for moon’s gravity
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@ PropSetup - EarthMoonProp

Integrator Force Model

Error Control RSSStep v

Type RungeKutta89 7

Initial Step Size ‘ 60 ‘sec Central Body | Earth v

Accuracy l 9.999999999999999€-12 ‘ Primary Body

Min Step Size [0001 |sec i

Max Step Size ‘ 160000 ‘ sec Gravity

Max Step Attempts l 50 ‘ Model

Stop If Accuracy Is Violated DEgEs / Gl / SIS
Gravity File

Tide
Data Source Model
Tide File

Drag

Atmosphere Model Nope

Setup

Drag Model Spherica

Point Masses ‘ Earth Luna Select

[J Use Solar Radiation Pressure  SRP Model Sl

[] Relativistic Correction

Figure 3.7 — EarthMoonProp — GMAT properties accounting for earth and moon gravity

To be able to visualize the transfer using GMAT, a couple of coordinate systems and orbit views
are added. The first two coordinate systems added to GMAT are, EarthMoon rotation systems,
and MoonEarth rotation system. An object referenced axis system is used to define this reference
frames. An object referenced axis system is defined by the motion of one object with respect to
another object. The Figure 3.8 defines six principal direction of an Object referenced axis
system. One is the relative position of the secondary object with respect to the primary object,
denoted by r which is expressed in the inertial frame. Second is the velocity of the secondary
object w.r.t the primary expressed in the inertial frame by v. The third vector, n, normal to the
direction of the motion which is calculated by n=r x v. [10]
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Location of Secondary

-

Location of Primary

»

Figure 3.8 Visual representation of object referenced frame

Figure 3.9 below displays the axes type and primary and secondary bodies selected for the
EathMoon and MoonEarth rotational frames.

@ | = | @ || 83 | | @ CoordinateSystem - MoonEarthRotation E=REEE X
A A
Origin |Earth v Origin Luna v
Axes Axes
Type |ObjectReferenced v Type | ObjectReferenced v
Primary Earth + Secondary | |una - Primary Luna | Secondary  Earth v
X: R v Y v|Z IN v X R v Y: v|Z: IN v
v v
< > < >

Figure 3.9 - EarthMoon and MoonEarth rotation frame as setup in GMAT

MoonMJ2000Eq and Moonlnertial frame is also added to this project. Moon MJ2000 is used to
solve the B-Plane problem, while the Moon inertial is used to visualize the orbit around the
Moon.
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() = @[] @ S @53
Origin |Luna v Origin Luna 7
Axes Axes
Type |MJ2000Eq v Type | Bodylnertial v
OK Apply Cancel Help OK Apply Cancel Help

Figure 3.10 - MoonMJ2000EQ and Moonlnertial reference frame as setup in GMAT

In addition to the Earth's inertial orbit view, two new orbit views are added for this project. One
of which is ‘EarthMoonRotational View’ rotation orbit view allows the user to see the whole
transfer trajectory in Earth Moon rotational frame as.it uses ‘EarthMoonRotational’ coordinate
frame. Figure 3.11 below shows the other orbit view parameter,

@ OrbitView - EarthMoonRotationView (=) @
A
Collect data every | 1 step Spacecraft Selected Spacecraft
Update plot every cycle
Max number of data points to plot | 20000
Enable Stars
Enable Constellations hats
Number of stars | 7000 o Draw Object
= Celestial Object Selected Celestial Object
Number of points to redraw D -
(Enter 0 to redraw whole plot) Jupiter Al <= Earth
Mars Luna
Show Plot Mercury
Show Labels Neptune
Pluto
Saturn v
< >
Drawing Option View Definition
[] Draw WireFrame Coordinate System | EarthMoonRotation
[ Draw Ecliptic Plane View Point Reference | MoonSat >
[] Draw XY Plane .
View Point Vector v km
Draw Axes Vector 0 0 H 30000
[] Draw Grid View Scale Factor
[ Draw Sun Line View Direction | Earth v
Solver Iterations Current
View Option View Up Definition
Use Initial View Def. Coordinate System |EarthMoonRotation ~| Axis|Y v
D OK Apply Cancel Help v

Figure 3.11 - EarthMoon rotational orbit view as setup in GMAT

‘MooninertialOrbital View’ orbit view allows the user to see the spacecraft's orbit around the
Moon. ‘Moonlnertial’ coordinate system is used for this viewer and point of reference is defined
as Moon. Figure 3.12 below displays other properties for the orbit viewer.
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® = | B &3
Collect data every step Spacecraft Selected Spacecraft )

Update plot every cycle
Max number of data points to plot | 20000
Enable Stars
Enable Constellations >
Number of stars | 7000 Ao Draw Object
: Celestial Object Selected Celestial Object
Number of points to redraw | o -
(Enter 0 to redraw whole plot) Jupiter Al <= Earth
Mars Luna
Show Plot Mercury
Show Labels Neptune
Pluto
Saturn v
< >
Drawing Option View Definition
[ Draw WireFrame Coordinate System Moonlnertial v
[ Draw Ecliptic Plane View Point Reference || yna v
Draw XY Plane i :
S View Point Vector |vector v|[20000 |[20000 ][20000 [km
[] Draw Grid View Scale Factor | 1
(] Draw Sun Line View Direction || yna v
Solver lterations |Current v
View Option View Up Definition
Use Initial View Def. Coordinate System |Moonlnertial v Adis|Z v
nv - Cancal Unln v
< >

Figure 3.12 - Moon inertial orbit viewer as setup in GMAT

Spacecraft property, burns, propagators, outputs, and coordinate systems are all the GMAT
components defined in the resources tab for this project. The mission tab contains the two target
commands and the final orbit propagation around the Moon. ‘Target’ and ‘EndTarget’
commands in GMAT are used to solve condition(s) by varying one or more parameters. A Target
sequence numerically solves a boundary value problem to determine the control variable's value
required to satisfy the constraints. Control variables are defined using Vary commands, and
constraints variables are defined using Achieve commands [16].

The first Target sequence is used to solve for the AV, needed to get to the 100km
altitude above Moon. The problem is set up such that B-Plan target, B.R, and B.T are set as
constrain variables (achieve variable), and spacecraft RAAN, AOP, and TOI element one is set
as the control variable (vary variable). Since GMAT is a hi-fidelity trajectory simulator, by
varying the RAAN and AOP, the Earth to Moon transfer is converted into a 2-D problem similar
to the MATLAB simulation. The key thing to note is the spacecraft motion at LEO is not
simulated in GMAT, and because of that, RAAN and AOP variation does not cost any additional
AV since GMAT varies the initial condition of the orbit. If the spacecraft orbit is simulated at
LEO, changing the spacecraft trajectory to the ideal RAAN and AOP will add to the AV, g, . TOI
Element1, also known as the vector component (tangential) of the velocity, is allowed to be
varied for this target sequence. B.R and B.T are set to 5090 km and 0 km, respectively. The
values for which are found by trial and error and by examining the spacecraft altitude around the
Moon. Then, the spacecraft is propagated to the desired radius around the Moon using the
‘EarthMoonProp’. ‘EarthMoonProp’ accounts for both Earth and Moon effects on the spacecraft
motion and finds the ideal trajectory based on the boundary value problem at hand. In summary,
the following are the steps taken to set up the first Target sequence (Figure 3.21)

22



Create a Target Sequence: Right click on ‘Mission Sequence’ = Append and =
Target. Rename the target by right clicking or by pressing F2 to ‘FindLunarTarget’

Vary RAAN: Setup a first control variable. Modify the lower and upper value and max

2

™ = =Objectfype — = Object Properties

ImpulsiveBurn
Variable

Attached Hardware List

pAivoauian I

I AltEquinoctialP

|| AltEquinoctialQ

1| AngularVelocityX
AngularVelocityY
AngularVelocityZ

4 aop
AZI
BrouwerLongAOP
BrouwerLongECC v

< >

[ ]
[ ]
step. To RAAN as an option click on Edit and select spacecraft.
ent1 -0.8436883632580975 -0.8436883632580975 0
o =@
NSy
iR@ Solver pefaultdC v 1
| VariableSetup - - 1
SEl Variable MoonSatRAAN ! Edit 1
I
= Initial Value  Perturbation Lower . — Upper Max Step
200 [0.0001 |[-099e300 |[999e300 |[2
Additive Scale Factor 0.0
Multiplicative Scale Factor | 1,0
I= oK Cancel Help

®©

OK Cancel

Selected Value(s) B

Help

Figure 3.13 Initial step to setup RAAN as variable in GMAT

Solver pefaultDC

Variable Setup

Variable

= [ B[]
MoonSat.RAAN Edit
Initial Value  Perturbation Lower Upper Max Step
200 0.0001 -9.99e300 9.99e300 2
Additive Scale Factor 0.0

Multiplicative Scale Factor | 1.0

Figure 3.14 — Final parameter setup for varying RAAN
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e Vary AOP: Similar to Figure 3.13, set up a control variable for AOP and update the
upper and lower values and max step as shown below

& Vary AOP

Solver DefaultDC
Variable Setup

Variable MoonSat.AOP

= e

Edit
Initial Value  Perturbation Lower Upper Max Step
0 0.0001 -9.99e300 9.99e300 2
Additive Scale Factor 0.0

Multiplicative Scale Factor

1.0

Figure 3.15 - Final parameter setup for varying AOP

e Vary TOI Element1: Setup a control variable for element 1 of TOI burn and update the
upper and lower limit for the control variable.

& Vary TOI

Solver | DefaultDC
Variable Setup

=)

Variable TOl.Element1 Edit
Initial Value  Perturbation Lower Upper Max Step
1.3370303028|| 0.0001 -9.99e300 9.99e300 0.2
Additive Scale Factor 0.0

Multiplicative Scale Factor | 10

Figure 3.16 Final parameter setup for varying TOI element 1

e Apply TOIL: Add a maneuver and select TOI burn and spacecraft name.
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Burn TOI v
Spacecraft MoonSat v
[]Backprop

Figure 3.17 - Apply TOI maneuver to the spacecraft

e Propagate to the Moon: Add a propagator and propagate the spacecraft to the periapsis
of the spacecraft in orbit around the Moon. ‘EarthMoonProp’ is selected as the
propagator, and the stopping condition parameter is set at ‘Luna.Periapsis’.

@rropT == =]
Propagators and Spacecraft
Propagate Mode: None v [[] Backwards Propagation [ ] Propagate STM [ ] Compute A-Matrix
Propagator Spacecraft List ~
IEanhMoonProp [ |Moon5at
- v
< >

Stopping Conditions

Parameter Condition

J MoonSat.Luna.Periapsis I |_|
I | &= v

< >

Colors
Override Color For This Segment ~ Orbit Color| I

Figure 3.18 — GMAT propagate properties to propagate to moon periapsis

Figure 3.19, shows the steps needed to get Luna Periapsis.

@® ParameterselectDialog - [m} X
Object Type Object Properties Selected Value(s)
Spacecraft v |MRP2 ) upP MoonSat.Luna.Periapsis

MRP3

Object List OrbitPeriod DN
OutgoingBVAZI

S OutgoingC3Energy

OutgoingDHA i

OutgoingRadPer

OUtGOINgRAA
Attached Hardwarl

PlanstodeticAZl =>

£ >

Central Body

Luna B2

OK Cancel Help

Figure 3.19 Initial Steps to get luna periapsis as GMAT propagate parameter
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e B.R and B.T Constrain variable: Two constrain variables are added to achieve desired
transfer. The B.R and B.T are defined using the MoonMJ2000EQ coordinate system, and
the default tolerance is kept for these two constrained variables.

= '@ | 53 || @ Achieve BdotT =0 fCN X"
Solver DefaultDC v Solver DefaultDC v
Goal MoonSatMoonMJ2000EQBdotR Edit el MoonSat.MoonMJ2000EQBdotT Edit
Value ‘ 5090 ‘ Edit Value ’ 0 ’ Edit
Tolerance ‘ 0.1 ‘ Edit Tolerance ‘ 0.1 ’ Edit

Figure 3.20 - B.R and B.T constrain variables

—-2 Mission Sequence
—@ FindLunarTarget
@ Vary RAAN

(@ Vary AOP

G) Vary TOI

-a¥ Apply TOI
% Prop To Moon
@ Achieve BdotR

----- @ Achieve BdotT

_____ « End FindLunarTarget

Figure 3.21 — Overview of find lunar target sequence

The second target sequence is set up to find the AV}, needed to circularize the orbit

around Moon. This burn takes place at the periapsis radius since the last propagator stops once
the spacecraft reaches the periapsis radius around the Moon. Unlike the previous target, this one
only has one control variable, the MOI burn's tangential velocity (element 1). There are two
constraints, achieve the radius of apoapsis of 1837 km (similar apoapsis radius as the MATLAB)
and achieve 0 eccentricities around Moon. Moon has an equatorial radius of 1738.1 km and polar
radius of 1736.0 km [14], and since GMAT accounts for that radial fluctuations, the tolerance
for ‘AchieveRapo’ is kept at 2 km while eccentricity is maintained at 0.001. Following are the
steps are taken to set up the second target, ‘CircularOrbitAroundMoon’.

e Create a Target Sequence: Right click on ‘Mission Sequence’ = Append and =
Target. Rename the target by right clicking or by pressing F2 to

‘CircularOrbitAroundMoon’

e Vary MOI: Vary element 1 of the MOI burn. A key thing to note is to vary MOI initial
value is kept at -1, and this is because GMAT is throwing an unknown error when the
initial value is kept at zero. Upper and lower limits are also updated. For this control
variable, upper value can be kept at zero since it's known that the burn has to be
retrograde burn, but it's kept at a positive infinity for consistency.
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© 0 BEiral

Solver| pefaultDC v

Variable Setup

Variable ' MOIL.Element?1 Edit
Initial Value  Perturbation Lower Upper Max Step
-1 0.1 -9.9e300 9.9e300 0.2
Additive Scale Factor 0.0

Multiplicative Scale Factor | 10

Figure 3.22 — Final variable setup to vary MOI element 1

e Apply MOI: The next step is adding the maneuver by selecting the MOI burn and the
correct spacecraft.

@ AppiyMOI EEREEE %Y

Burn MOI v
Spacecraft MoonSat v
[]Backprop

Figure 3.23 - Apply the MOI maneuver

e PropToApoapsis: A propagator is added to propagate the spacecraft to the apoapsis of
the Moon. ‘NearMoonProp’ is used to propagate the spacecraft, and the stopping
parameter is set to Luna. Apoapsis.
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®

Propagators and Spacecraft

Propagate Mode: ' None v

Propagator

|NearMoonProp

= [=]ER]

[[] Backwards Propagation []Propagate STM [ ] Compute A-Matrix

Spacecraft List ~

| |MoonSat

-|

<

Stopping Conditions

Parameter

|MoonSat.Luna.Apoapsis

] v

Condition

|

<

Colors

Override Color For This Segment

Orbit Color NN

Figure 3.24 -GMAT propagator setup to propagate to moon apoapsis

e Achieve Radius of Apoapsis: The first constrain is set to achieve the radius of Apoapsis
of 1837 km, i.e., approximately 100 km orbit around the Moon. The key thing to note is
the tolerance is set to 2 km because of the difference in radius between Moon's equator

and Moon's poles.

e Achieve Eccentricity: The second constrain is set to achieve the eccentricity of 0, i.e., a

circular orbit around the Moon.

@ [ | ‘ @ ‘ gg ‘
Solver DefaultDC A2
Goal MoonSat.Luna.RadApo Edit
Value [ 1837 [ Eait
Tolerance ‘ 2 ‘ Edit

@ AchieveEcc E=1EEE @
Solver DefaultDC ~
Goal MoonSat.Luna.ECC Edit
Value ’ 0 ‘ Edit
Tolerance ’ 0.001 ‘ Edit

Figure 3.25 — GMAT setup to achieve desired moon orbit

Lastly, the spacecraft orbit around the Moon is simulated for another day using a
NearMoon propagator to visualize the circular orbit at LMO. Figure 3.27 summarizes the
CircularOrbitAroundMoon target sequence and final LMO orbit propagator.
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Propagators and Spacecraft

Propagate Mode: [[]Backwards Propagation [ ] Propagate STM [_] Compute A-Matrix

Propagator Spacecraft List ~
... [NearMoonProp .. |MoonSat
[ | N
< >
Stopping Conditions
Stop Tolerance: | 1e-07
Parameter Condition ~
.. [IMoonSat.ElapsedDays =| |l
L I ~
< >
Colors

Override Color For This Segment Orbit Color:]

Figure 3.26 — Another day of moon orbit view setup

=@ CircularOrbitAroundMoon
-{@ VaryMOI

----- %, PropToApoapsis

-@ AchieveRadApoapsis

@ AchieveEcc

----- «l End CircularOrbitAroundMoon
-2 LMO

Figure 3.27 - Mission sequence for circularization orbit around moon

29



4. Results

This section covers the result for MATLAB simulation, GMAT simulation and compares
them to the previously published data.

4.1 MATLAB Result

Equations 28.1 and 28.2 are integrated using the native MATLAB ODE45 function to
plot the spacecraft's trajectory. Constants used for these scripts are listed in Table 3.1 The

AVigo = 3.069 kTm and phase angle § = —117.52° used for this problem are taken from
reference 9. The ODE function is integrated until the following orbit condition is met.

Spacecraft Final position,
Xfinal = Xmoon T TMoon + SpacecraftAltitude 4.1

To find x40, €quation 12 is used and 7y, is a constant defined in Table 3.1, and spacecraft
altitude is defined as 100 km above the surface of the Moon. Figure 4.1 shows the overall orbit
trajectory as seen from the Z-axis of the Earth-Moon rotational frame.

x10°

2L 4
1.5 .
1F _

€

X
> 0.5 .
0F _
-0.5 .
-1 B I 1 I I I 1 I E
0 0.5 1 1.5 2 25 3 3.5 4

X, km %10°

Figure 4.1 - Spacecratft trajectory calculated using MATLAB
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Figure 4.2 - Spacecraft approach at Moon using MATLAB

AV} o 1s calculated using equation 4.2. The total AVy,;4; cost for the transfer between LEO to
LMO is calculated,

AVrotar = AVigo + AVimo . 4.2
m
AVrgiar = 3.069 +0.7718 = 3.8408—

The transfer for LEO to LMO calculated using MATLAB takes 4.41 days.
4.2 GMAT Results

GMAT is used to simulate a similar trajectory from LEO to LMO. Instead of inputting
initial AV and a phase angle &, the trajectory is solved using the GMAT native RungKutta89
solver by setting up a boundary value problem using the GMAT Target sequences. Overall orbit
trajectory seen from the Z-axis of the Earth-Moon rotational frame is shown in Figure 4.3. The
trajectory seems to follow a similar shape as displayed in Figure 4.1.
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Caelum

Dorado
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Horologium

Figure 4.3 - GMAT Satellite overall trajectory

AV, go calculated by GMAT to transfer to spacecraft from LEO to ~100 km altitude above Moon
is 3.0681, very close to the AV} g, value used in the MATLAB simulation.

Solver Window - Target ‘FineLunarTarget’ DefaultDC {SolveMode = Solve, ExitMode = DiscardA... | ] H (=] ”&I

Control Variable Current Value Last Value Difference
MoonSat.RAAN 194.1588159424351 194.1588159424351 -2.842170943040401e-14
MoonSat.AOP -8.96758828634216 -8.96758828634216 0
TOLElement1 3.068165035580054 3.068165035580054 0

Constraints Desired Achieved Difference
(==) MoonSat.MoonMJ2000E( 5090 5089.997739910057 -0.002260089942865307
(==) MoonSat.MoonMJ2000E( 0 0.002988065325325806 0.002988065325325806
CONVERGED

Figure 4.4 - Solver window for TOI (Transfer Orbit Insertion)

AV yo calculated using GMAT to circularize the orbit at LMO is 0.8436 kTm . The AVrorar
calculated using GMAT is,

AVrotaigmar = AVigogmat + AVimogmar 4.3
AVroraicmar = 3.0681 + 0.8436 = 3.9117
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Control Variable

MOI.Element1

Constraints

(==) MoonSat.Luna.RadApo

(==) MoonSat.Luna.ECC
CONVERGED

Current Value
-0.8436834554086824
Desired

1837
0

= <

Last Value Difference
-0.8436834554086824 0

Achieved Difference
1837.496218440698 0.4962184406981578

4.726587719259852e-05 4.726587719259852e-05

Figure 4.5 - Solver window for MOI (Moon Orbit Insertion)

Figure 4.6 - Orbit insertion and orbit around the moon

The transfer time needed to send the spacecraft from circular LEO to circular LMO is 4.1 days.

4.3 Result Summary and Comparison

Table 4.1 below summarizes the LEO to LMO transfer result between MATLAB
simulation, GMAT simulation, and Leonardo and Pontani published data [9].

Table 4.1 - LEO-LMO result summary

Variable MATLAB GMAT Published Note
Data
km | 3.069 3.0681 3.069 For the Matlab Simulation AV} g, is
AVLEO - . .o, . o, .
s used as an initial condition
km | 0.7718 0.8436 0.8160
AVimo -
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TOF 4.41 4.1 4.5 Published data do not explicitly state
(days) their TOF is 4.5 days but hints that
the result is similar to the published
data in reference 8

Percent error between each result is calculated in Table 4.2. Since GMAT is the hi-
fidelity simulation, data calculated using GMAT is considered as the most accurate result, and
percent error is calculated as follows,

UE B |GMAT Result — MATLAB Result| 100 44
osTTOT = GMAT Result
And
W B |GMAT Result — Published Result| 100 4.5
omTTOT = GMAT Result
Table 4.2 - Simulation percentage error
Variable MATLAB %Error Published Result %Error
km 0.029 % 0.029 %
AVigo -
km 0 0
AVLMOT 9.30 % 3.57%
TOF (days) 7.56 % 9.75 %

34




5. Lesson Learned

The following section covers the lesson learned while working on the project.

5.1 MATLAB Simulation /Canonical Form

The orbit trajectory in MATLB is numerically solved in the engineering units and not in
canonical form. Since the orbital parameter are in high order numbers i.e. 10> or more, minor
fluctuations cause a drastically different answer. For example, the orbit simulation in MATLAB
km3
. : sec?
compared with the previously published data and GMAT. But if the same simulation is run with

3
the pgaren = G * mg = 3.9836 X 10° 2=

displays the spacecraft motion under both initial conditions. Using the Canonical unit system
mitigates these problems since constants are no longer huge numbers.

is done by using pgqrtr=398600 which provides a pretty accurate trajectory when

the result is much different. Figure 5.1 below

6000 | — Mu=398600 i

Bl carth
[ Moon

4000 | Mu=CM -

2000

T
1

y, km

-2000

T
|

-4000

3.72 3.74 3.76 3.78 3.8 3.82 3.84 3.86
X, km %10°

Figure 5.1 - Difference in result because of minor difference in pgy,¢, variable

5.2 Calculating initial B.R and B.T value
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For this project, B.R and B.T values used in GMAT simulation for the B-Plane transfer is
assessed using trial and error. The values were constantly edited until the desired altitude around
the moon is achieved. This section covers how to calculate the initial B.R and B.T value
mathematically by knowing desired position and velocity vector. To calculate the B-Plane values
the orbit position and velocity needs to be in 3-dimensions and in body centric inertial frame,
MCI (Moon Centric Inertial) for this transfer. Figure 5.2 below defines the MCI coordinate
systems. Zy,c; passing through Lunar north pole, Xy, passing through the vernal equinox and
Yucr passing through the Lunar equator such that it satisfy the right hand rule.

YZymcr

\J

Ymci
i
Xmcr
Figure 5.2 Moon centered inertial frame
5.2.1: Sample Calculation
Following position and velocity vector are used,
[rx, 1y, rz] = [0, 1.837,-689] km 5.1
[vx, vy, vz] = [0, 1.2970,2.007] km/s 5.2
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Both position and velocity vector initial guess are taken from the CR3BP MATLAB code. Since
the CR3BP is solved in 2-D, following assumption is made,

X position in CR3BP=Y position in MCI frame
Y position in CR3BP = Z position in MCI frame

And X position in MCI frame = 0 = Spacecraft is in Polar orbit with inclination =90° and RAAN
=90°

- L km? 5.3
h=7xv=[4.5689,0, 0] -

Semiparameter

h? 5.4
p= 7 = 42578 km

Semimajor axis

~ = —7135.0 km 33
rv

2 -
u

D 5.6
e = 1—E: 1.2636

True anomaly (cosine and sine)

a =

Eccentricity,

- 7T
cosd =2 = 09260 rad 5.7
e xr

1l 5.8
sin@ =——— = 0.3774 rad
exU

B-Plane magnitude

b =./p=*|al =5511.7 km 5.9

Fundamental unit vectors

_rU—7T 5.10
2=——=10,03512,0.9363]
p = cos6  — sinf 2 = [0,0.7345 , —0.6786] 5.11
q = sinf # + cos6 2 = [0,0.6786,0.7345] 5.12
where,
7 RB 5.13
f=—andr =—
|7 7|
S Vector
§——L“+LA—[0 0.9961, —0.0880] 514
Va2t b2l JaZtpE ol LT
B- Vector
B b 2L, [0,—485.0 — 5490.3] k >3
- =[0,—485.0 — 3] km
Vaz b2 " VaZ+bE
T — vector
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B (SZ’_S)%,O)T 5.16

T =[1,0,0]
/Sf +5;
R -Vector
R=SxT=1[0,-0.0880,—0.9961] 5.17
B.T =0km 5.18
B.R =5511.7 km 5.19

The B. R calculated mathematically is 9% higher than the one estimated using the trial-and-error
method on GMAT. This is because the initial value of position and velocity used for the

calculation came by solving the equation motion in CR3BP. Mathematically calculated B.R and
B.T still can be used as the initial guess on the GMAT.
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6. Conclusion

Bi-Impulsive LEO-LMO transfer is examined in this paper. Trajectory is generated using
both MATLAB and NASA GMAT. GMAT simulation result is than compared with the
MATLAB result and previously published data for the similar trajectory. Percent error between
the GMAT and the MATLAB simulation for the AV}, is less than 10% and the AV}, is less
than 0.03%. Similarly, percent error between the GMAT and published data is 0.03% and 3.57%
for AV, ;o and AV} orespectively. Trajectory in MATLAB is simulated using engineering units
which could be a possible source of the error as minor fluctuation in constant values, such as
gravitational constant of the Earth, can cause a large integral error.
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Appendix A. Three Body problem using MATLAB

AE 295B - Earth to Moon transfer using a 3 body Equation of Motion
Jay Mehta Advisor: Jeanine Hunter AE 295B

clear all
close all
clc

Global Variables

global x_Earth x_Moon mu_Earth mu_Moon mu_System omega Ratio_Earth Ratio_Moon DistanceEarthMoon
Radiusmoon

Constants

GConstant=6.67e-20; % Gravitational constant kmA3/kg*secA2
RadiusEarth=6378; %Radius of Earth in Km

RadiusMoon=1737; %Radius of Moon in Km
DistanceEarthMoon=384400; %Distance of Moon from Earth in km
MassEarth=5.9724e24; %Mass of Earth in Kg
MassMoon=0.07346e24; %Mass of Moon in Kg

TotalMass=MassEarth+MassMoon; %Total mass of the system since spacecraft mass is negligible in Kg
Ratio_Earth=MassEarth/TotalMass; %Dimensionless Mass of the Earth

Ratio_Moon=MassMoon/TotalMass; %Dimensionless Mass of Moon

mu_Earth=GConstant*MassEarth; %Gravitational Constant of Earth

%mu_Moon=GConstant*MassMoon; %Gravitational Constant of Moon

mu_Moon=4903.02;

mu_Earth=398600; %Gravitational Constant of Earth

mu_System=mu_Earth+mu_Moon; %Gravitational Constant of whole system
omega=sqrt(mu_sSystem/DistanceEarthMoonA3); %Angular velocity of Earth and moon around 1its
barycenter

X_Earth=-Ratio_Moon*DistanceEarthMoon; % distance of Earth from the barycenter in km
X_Moon=Ratio_Earth*DistanceEarthMoon; %distance of Moon from the barycenter in Km

%Initial Condition

SpacecraftAltitude=463; %Altitude of the spacecraft around the Earth in km
delta_ang=-117.52; %Phase Angle; value chosen from previously published Data
deltav=3.069; % Delta V applied at LEO, value chosen from previously published Data

SpacecCraftRadius=RadiusEarth+SpacecraftAltitude; %LEO Orbit Radius
vO=sqrt(mu_Earth/SpacecraftRadius)+deltav; %Inital velocity at LEO
t0=0; %Intial Time

tf=5%24*%60%60; %Max Time for ODE 45 solver
x0=SpacecCraftRadius*cosd(delta_ang)+x_Earth;
yO=SpacecCraftRadius*sind(delta_ang);
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vx0
vy0

(omega*sSpacecCraftRadius-v0)*sind(delta_ang);
(v0-omega*SpacecraftRadius)*cosd(delta_ang);

IC=[x0;y0;vx0;vy0]; %Inital Condition passed to ODE45 solver

options

= odeset('AbsTol', 1le-29,

'RelTol', 1le-29,'Events',@events) %Eventfunction sets a

stopping condition for the ODE solver
de45(@eoM, [tO tf], IC,options);

[t,f] =0
xSpacecCr
ySpacecCr
vxSpaceC
vySpaceC
xFinal =
yFinal
vxFinal
vyFinal

options

struct

MSta

aft = f(:,1);
aft = f(:,2);

raft = f(:,3);

raft =f(:,4);

xSpacecCraft(end);
ySpacecCraft(end);
= vxSpacecCraft(end);
= vySpacecCraft(end);
df = norm([xFinal - x_Moon, yFinal - 0]) - RadiusMoon;
vf = norm([vxFinal, vyFinall);

with fields:

AbsToT:

BDF:

Events:
Initialstep:
Jacobian:
JConstant:
JPattern:
Mass:
MassSingular:
Maxorder:
MaxStep:
NonNegative:
NormControl:
outputFcn:
OoutputSel:
Refine:
Rel1Tol:
Stats:
Vectorized:
teDependence:
MvPattern:
InitialSlope:

1.0000e-29
[]
@events
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
1.0000e-29
[]

[]

[]

[]

[]

warning: RelTol has been increased to 2.22045e-14.

CoastingArch Plots
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figure,

plot(xSpacecraft, ySpacecCraft)

%Set plot display parameters

xmin = -20.e3; xmax = 4.e5;

ymin = -20.e3; ymax = 1.e5;

axis([xmin xmax ymin ymax])

axis equal

xlabel('x, km'); ylabel('y, km')

grid on

hold on

earth = circle(x_Earth, 0, RadiusEarth);
moon = circle(x_Moon, 0, RadiusMoon);
orbit=circle(x_Moon,0,RadiusMoon+100) ;
fillCearth(:,1), earth(:,2),'b");
fi11C moon(:,1), moon(:,2),'g");
%plot(orbit(:,1),orbit(:,2),'r"');

«10°

y, km

0 05 1 15

Orbit of the Moon

theta=asind(yFinal/1837)
theta2=acosd((xFinal-x_Moon)/1837);

xdot=sqrt(mu_Moon/1837)*sind(theta)+omega*yFinal

ydot=-sqrt(mu_Moon/1837)*cosd(theta2)-omega* (xFinal-x_Moon)
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deltaviMP=sqrt((xdot-vxFinal)A2+(ydot-vyFinal)A2)
v=norm([vxFinal,vyFinal])
V-deltavLMP

j=deltav+deltavLMP

theta =

-22.0582

xdot =

-0.6154

ydot =

-1.6386

deTtavLMP =

0.7718

2.3843

ans

1.6125

3.8408

Published with MATLAB® R2016b

Appendix B. GMAT three body script

%General Mission Analysis Tool(GMAT) Script
%Created: 2021-11-12 18:14:37
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A Spacecraft

Create Spacecraft MoonSat;

GMAT MoonSat.DateFormat = UTCGregorian;
GMAT MoonSat.Epoch ='15 Jul 2022 01:07:06.978";
GMAT MoonSat.CoordinateSystem = EarthMJ2000Eq;
GMAT MoonSat.DisplayStateType = ModifiedKeplerian;
GMAT MoonSat.RadPer = 6840.99999999999;
GMAT MoonSat.RadApo = 6840.999999999995;
GMAT MoonSat.INC = 25.00000000000002;

GMAT MoonSat.RAAN = 199.9999999999999;
GMAT MoonSat.AOP = 0;

GMAT MoonSat. TA = 8.537699999999958;

GMAT MoonSat.DryMass = 850;

GMAT MoonSat.Cd =2.2;

GMAT MoonSat.Cr=1.8;

GMAT MoonSat.DragArea = 15;

GMAT MoonSat.SRPArea =1;

GMAT MoonSat.SPADDragScaleFactor = 1;

GMAT MoonSat.SPADSRPScaleFactor = 1;

GMAT MoonSat.NAIFId = -10000001;

GMAT MoonSat.NAIFIdReferenceFrame = -9000001;
GMAT MoonSat.OrbitColor = Red;

GMAT MoonSat.TargetColor = Teal;
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GMAT MoonSat.OrbitErrorCovariance =[ 1e+7000000;01e+700000;00 1et70000;
0001et7000;00001e+t700;00000 1et+70 ];

GMAT MoonSat.CdSigma = 1e+70;

GMAT MoonSat.CrSigma = 1e+70;

GMAT MoonSat.Id = 'Satld";

GMAT MoonSat.Attitude = CoordinateSystemFixed;

GMAT MoonSat.SPADSRPInterpolationMethod = Bilinear;
GMAT MoonSat.SPADSRPScaleFactorSigma = 1e+70;
GMAT MoonSat.SPADDraglnterpolationMethod = Bilinear;
GMAT MoonSat.SPADDragScaleFactorSigma = 1e+70;
GMAT MoonSat.ModelFile = 'aura.3ds";

GMAT MoonSat.ModelOffsetX = 0;

GMAT MoonSat.ModelOffsetY = 0;

GMAT MoonSat.ModelOffsetZ = 0;

GMAT MoonSat.ModelRotationX = 0;

GMAT MoonSat.ModelRotationY = 0;

GMAT MoonSat.ModelRotationZ = 0;

GMAT MoonSat.ModelScale = 1;

GMAT MoonSat.AttitudeDisplayStateType = 'Quaternion';
GMAT MoonSat.AttitudeRateDisplayStateType = 'AngularVelocity';
GMAT MoonSat.AttitudeCoordinateSystem = EarthMJ2000Eq;
GMAT MoonSat.EulerAngleSequence = '321";
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e — ForceModels

Create ForceModel EarthMoonProp ForceModel;

GMAT EarthMoonProp ForceModel.CentralBody = Earth;

GMAT EarthMoonProp ForceModel.PointMasses = {Earth, Luna};
GMAT EarthMoonProp ForceModel.Drag = None;

GMAT EarthMoonProp ForceModel.SRP = Off;

GMAT EarthMoonProp ForceModel.RelativisticCorrection = Off;
GMAT EarthMoonProp ForceModel.ErrorControl = RSSStep;

Create ForceModel NearMoonProp ForceModel;

GMAT NearMoonProp ForceModel.CentralBody = Luna;
GMAT NearMoonProp_ForceModel.PointMasses = {Luna};
GMAT NearMoonProp ForceModel.Drag = None;

GMAT NearMoonProp ForceModel.SRP = Off;

GMAT NearMoonProp ForceModel.RelativisticCorrection = Off;
GMAT NearMoonProp ForceModel.ErrorControl = RSSStep;

Create ForceModel NearEarthProp ForceModel;
GMAT NearEarthProp ForceModel.CentralBody = Earth;
GMAT NearEarthProp ForceModel.PointMasses = {Earth};
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GMAT NearEarthProp ForceModel.Drag = None;

GMAT NearEarthProp ForceModel.SRP = On;

GMAT NearEarthProp ForceModel.RelativisticCorrection = Off;

GMAT NearEarthProp ForceModel.ErrorControl = RSSStep;

GMAT NearEarthProp ForceModel.SRP.Flux = 1367;

GMAT NearEarthProp ForceModel.SRP.SRPModel = Spherical;

GMAT NearEarthProp ForceModel.SRP.Nominal Sun = 149597870.691;

7 Y — Propagators

Create Propagator EarthMoonProp;

GMAT EarthMoonProp.FM = EarthMoonProp ForceModel;
GMAT EarthMoonProp.Type = RungeKutta89;

GMAT EarthMoonProp.InitialStepSize = 60;

GMAT EarthMoonProp.Accuracy = 9.999999999999999¢-12;
GMAT EarthMoonProp.MinStep = 0.001;

GMAT EarthMoonProp.MaxStep = 160000;

GMAT EarthMoonProp.MaxStepAttempts = 50;

GMAT EarthMoonProp.StopIfAccuracylsViolated = true;

Create Propagator NearMoonProp;

GMAT NearMoonProp.FM = NearMoonProp_ForceModel;
GMAT NearMoonProp.Type = RungeKutta89;

GMAT NearMoonProp.InitialStepSize = 60;

GMAT NearMoonProp.Accuracy = 9.999999999999999¢-12;
GMAT NearMoonProp.MinStep = 0.001;
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GMAT NearMoonProp.MaxStep = 160000;
GMAT NearMoonProp.MaxStepAttempts = 50;
GMAT NearMoonProp.StopIfAccuracylsViolated = true;

Create Propagator NearEarthProp;

GMAT NearEarthProp.FM = NearEarthProp ForceModel;
GMAT NearEarthProp.Type = RungeKutta89;

GMAT NearEarthProp.InitialStepSize = 60;

GMAT NearEarthProp.Accuracy = 9.999999999999999¢-12;
GMAT NearEarthProp.MinStep = 0.001;

GMAT NearEarthProp.MaxStep = 2700;

GMAT NearEarthProp.MaxStepAttempts = 50;

GMAT NearEarthProp.StopIfAccuracylsViolated = true;

Create ImpulsiveBurn TOI;

GMAT TOI.CoordinateSystem = Local;
GMAT TOI.Origin = Earth;

GMAT TOI.Axes = VNB;

GMAT TOIElementl = 0;

GMAT TOIElement2 = 0;

GMAT TOIElement3 = 0;

GMAT TOI.DecrementMass = false;
GMAT TOLIsp = 300;

GMAT TOI.GravitationalAccel = 9.81;
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Create ImpulsiveBurn MOI;

GMAT MOI.CoordinateSystem = Local;
GMAT MOI.Origin = Luna;

GMAT MOI.Axes = VNB;

GMAT MOI.Elementl = 0;

GMAT MOI.Element2 = 0;

GMAT MOI.Element3 = 0;

GMAT MOI.DecrementMass = false;
GMAT MOLIsp = 300;

GMAT MOI.Gravitational Accel = 9.81;

Yo---------- Coordinate Systems

Create CoordinateSystem EarthMoonRotation;

GMAT EarthMoonRotation.Origin = Earth;

GMAT EarthMoonRotation.Axes = ObjectReferenced;
GMAT EarthMoonRotation. XAxis = R;

GMAT EarthMoonRotation.ZAxis = N;

GMAT EarthMoonRotation.Primary = Earth;

GMAT EarthMoonRotation.Secondary = Luna;

Create CoordinateSystem MoonEarthRotation;

GMAT MoonEarthRotation.Origin = Luna;

GMAT MoonEarthRotation.Axes = ObjectReferenced;
GMAT MoonEarthRotation. XAxis = R;
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GMAT MoonEarthRotation.ZAxis = N;
GMAT MoonEarthRotation.Primary = Luna;
GMAT MoonEarthRotation.Secondary = Earth;

Create CoordinateSystem Moonlnertial;
GMAT Moonlnertial.Origin = Luna;
GMAT Moonlnertial. Axes = BodylInertial;

Create CoordinateSystem MoonMJ2000EQ;
GMAT MoonMJ2000EQ.Origin = Luna;
GMAT MoonMJ2000EQ.Axes = MJ2000Eq;

Create CoordinateSystem LunaFixed,
GMAT LunaFixed.Origin = Luna;
GMAT LunaFixed.Axes = BodyFixed;

A Solvers

Create DifferentialCorrector DefaultDC;

GMAT DefaultDC.ShowProgress = true;

GMAT DefaultDC.ReportStyle = Normal;

GMAT DefaultDC.ReportFile = 'Differential CorrectorDefaultDC.data';
GMAT DefaultDC.Maximumlterations = 150;

GMAT DefaultDC.DerivativeMethod = ForwardDifference;

GMAT DefaultDC.Algorithm = NewtonRaphson;
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| A— Subscribers

Create OrbitView EarthMoonRotationView;

GMAT EarthMoonRotationView.Solverlterations = Current;

GMAT EarthMoonRotationView.UpperLeft =[ 0.1708253358925144 0.1523341523341523 |;
GMAT EarthMoonRotationView.Size = [ 0.6301983365323096 0.6904176904176904 |;
GMAT EarthMoonRotationView.RelativeZOrder = 5;

GMAT EarthMoonRotationView.Maximized = false;

GMAT EarthMoonRotationView.Add = {MoonSat, Earth, Luna};

GMAT EarthMoonRotationView.CoordinateSystem = EarthMoonRotation;

GMAT EarthMoonRotationView.DrawObject = [ true true true ];

GMAT EarthMoonRotationView.DataCollectFrequency = 1;

GMAT EarthMoonRotationView.UpdatePlotFrequency = 50;

GMAT EarthMoonRotationView.NumPointsToRedraw = 0;

GMAT EarthMoonRotationView.ShowPlot = true;

GMAT EarthMoonRotationView.MaxPlotPoints = 20000;

GMAT EarthMoonRotationView.ShowLabels = true;

GMAT EarthMoonRotationView.ViewPointReference = Earth;

GMAT EarthMoonRotationView.ViewPointVector = 0 0 30000 ];

GMAT EarthMoonRotationView.ViewDirection = Earth;

GMAT EarthMoonRotationView.ViewScaleFactor = 20;

GMAT EarthMoonRotationView.ViewUpCoordinateSystem = EarthMoonRotation;
GMAT EarthMoonRotationView.ViewUpAxis = Y;

GMAT EarthMoonRotationView.EclipticPlane = Off;

GMAT EarthMoonRotationView.XYPlane = Off;

GMAT EarthMoonRotationView.WireFrame = Off;
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GMAT EarthMoonRotationView.Axes = Off;

GMAT EarthMoonRotationView.Grid = Off;

GMAT EarthMoonRotationView.SunLine = Off;

GMAT EarthMoonRotationView.Uselnitial View = On;
GMAT EarthMoonRotationView.StarCount = 7000;

GMAT EarthMoonRotationView.EnableStars = On,;

GMAT EarthMoonRotationView.EnableConstellations = On,;

Create OrbitView Moonlnertial View;

GMAT Moonlnertial View.Solverlterations = Current;

GMAT MoonlnertialView.UpperLeft = [ 0.0671785028790787 0.343980343980344 1],
GMAT Moonlnertial View.Size = [ 0.7485604606525912 0.5651105651105651 |;
GMAT MoonlnertialView.RelativeZOrder = 21;

GMAT Moonlnertial View.Maximized = false;

GMAT MoonlnertialView.Add = {MoonSat, Earth, Luna};

GMAT MoonlnertialView.CoordinateSystem = Moonlnertial;

GMAT MoonlnertialView.DrawObject = [ true true true [;

GMAT MoonlnertialView.DataCollectFrequency = 1;

GMAT Moonlnertial View.UpdatePlotFrequency = 50;

GMAT MoonlnertialView.NumPointsToRedraw = 0;

GMAT Moonlnertial View.ShowPlot = true;

GMAT Moonlnertial View.MaxPlotPoints = 20000;

GMAT MoonlnertialView.ShowLabels = true;

GMAT Moonlnertial View.ViewPointReference = Luna;

GMAT Moonlnertial View.ViewPointVector = [ 20000 20000 20000 ];

GMAT Moonlnertial View.ViewDirection = Luna;

GMAT Moonlnertial View.ViewScaleFactor = 1;

GMAT MoonlnertialView.ViewUpCoordinateSystem = Moonlnertial;
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GMAT MoonlnertialView.ViewUpAxis = Z;
GMAT MoonlnertialView.EclipticPlane = Off;
GMAT MoonlnertialView.XYPlane = On;
GMAT Moonlnertial View.WireFrame = Off;
GMAT MoonlnertialView.Axes = On;

GMAT Moonlnertial View.Grid = Off;

GMAT Moonlnertial View.SunLine = Off;
GMAT Moonlnertial View.Uselnitial View = On;
GMAT Moonlnertial View.StarCount = 7000;
GMAT Moonlnertial View.EnableStars = On;
GMAT Moonlnertial View.EnableConstellations = On;

Create OrbitView Earthlnertial View;

GMAT EarthlnertialView.Solverlterations = Current;

GMAT EarthInertial View.UpperLeft = [ 0.5310300703774792 0.1855036855036855 ];
GMAT EarthInertial View.Size = [ 0.5067178502879078 0.3525798525798526 |;
GMAT EarthlnertialView.RelativeZOrder = 73;

GMAT EarthlnertialView.Maximized = false;

GMAT EarthInertialView.Add = {MoonSat, Earth, Luna};

GMAT EarthInertialView.CoordinateSystem = EarthMJ2000Eq;

GMAT EarthInertialView.DrawObject = [ true true true |;

GMAT EarthInertialView.DataCollectFrequency = 1;

GMAT EarthInertialView.UpdatePlotFrequency = 50;

GMAT EarthlnertialView.NumPointsToRedraw = 0;

GMAT EarthlnertialView.ShowPlot = true;

GMAT EarthlnertialView.MaxPlotPoints = 20000;

GMAT EarthlnertialView.ShowLabels = true;

GMAT EarthlnertialView.ViewPointReference = Earth;
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GMAT EarthlnertialView.ViewPointVector =[ 0 0 30000 ];
GMAT EarthlnertialView.ViewDirection = Earth;

GMAT EarthlnertialView.ViewScaleFactor = 1;

GMAT EarthInertialView.ViewUpCoordinateSystem = EarthMJ2000Eq;
GMAT EarthInertial View.ViewUpAxis = Z;

GMAT EarthInertial View.EclipticPlane = Off;

GMAT EarthlnertialView.XYPlane = On;

GMAT Earthlnertial View.WireFrame = Off;

GMAT EarthlnertialView.Axes = On;

GMAT Earthlnertial View.Grid = Off;

GMAT EarthlnertialView.SunLine = Off;

GMAT Earthlnertial View.Uselnitial View = On;

GMAT EarthlnertialView.StarCount = 7000;

GMAT EarthlnertialView.EnableStars = On;

GMAT EarthlnertialView.EnableConstellations = On;

Create XYPlot XYPlotl;

GMAT XYPlotl.Solverlterations = Current;

GMAT XYPlotl.UpperLeft = [ -0.06845809341010876 0.2862407862407862 ];
GMAT XYPlotl.Size =[ 1.162507997440819 0.769041769041769 1;

GMAT XYPlotl.RelativeZOrder = 15;

GMAT XYPlotl.Maximized = false;

GMAT XYPlotl.XVariable = MoonSat.ElapsedDays;

GMAT XYPIlotl.Y Variables = {MoonSat.Luna.Altitude};

GMAT XYPlotl.ShowGrid = true;

GMAT XYPlotl.ShowPlot = true;

%
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e Arrays, Variables, Strings
%
Create Variable RAAN AOP;
GMAT RAAN =0;

GMAT AQP = 0;

Yo---------- Mission Sequence

BeginMissionSequence;

Target 'FineLunarTarget' DefaultDC {SolveMode = Solve, ExitMode = DiscardAndContinue,
ShowProgressWindow = true};

Vary 'Vary RAAN' DefaultDC(MoonSat.RAAN = 200, {Perturbation = 0.0001, Lower = -
9.99¢300, Upper = 9.99¢300, MaxStep = 2, AdditiveScaleFactor = 0.0,
MultiplicativeScaleFactor = 1.0});
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Vary 'Vary AOP' DefaultDC(MoonSat.AOP = 0, {Perturbation = 0.0001, Lower = -9.99¢300,
Upper = 9.99¢300, MaxStep = 2, AdditiveScaleFactor = 0.0, MultiplicativeScaleFactor = 1.0});

Vary 'Vary TOI' DefaultDC(TOI.Element1 = 1.337030302898004, {Perturbation = 0.0001,
Lower =-9.99¢300, Upper = 9.99¢300, MaxStep = 0.2, AdditiveScaleFactor = 0.0,
MultiplicativeScaleFactor = 1.0});

Maneuver 'Apply TOI' TOI(MoonSat);

Propagate 'Prop To Moon' EarthMoonProp(MoonSat) {MoonSat.Luna.Periapsis, OrbitColor =
[33 222 37]};

Achieve 'Achieve BdotR' DefaultDC(MoonSat.MoonMJ2000EQ.BdotR = 5090, {Tolerance =
0.1});

Achieve 'Achieve BdotT' DefaultDC(MoonSat.MoonMJ2000EQ.BdotT = 0, {Tolerance =
0.1});

EndTarget; % For targeter DefaultDC

Target 'CircularOrbitAroundMoon' DefaultDC {SolveMode = Solve, ExitMode =
DiscardAndContinue, ShowProgressWindow = true};

Vary 'VaryMOI' DefaultDC(MOI.Element1 = -1, {Perturbation = 0.1, Lower = -9.9¢300,
Upper = 9.9¢300, MaxStep = 0.2, AdditiveScaleFactor = 0.0, MultiplicativeScaleFactor = 1.0});

Maneuver 'ApplyMOI' MOI(MoonSat);

Propagate 'PropToApoapsis' NearMoonProp(MoonSat) {MoonSat.Luna.Apoapsis, OrbitColor
=1[0 0 255]};

Achieve 'AchieveRadApoapsis' DefaultDC(MoonSat.Luna.RadApo = 1837, {Tolerance =2});
Achieve 'AchieveEcc' DefaultDC(MoonSat.Luna. ECC = 0, {Tolerance = 0.001});
EndTarget; % For targeter DefaultDC

Propagate 'LMO' NearMoonProp(MoonSat) {MoonSat.ElapsedDays = 1, OrbitColor = [255 255
01};
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Appendix C. MATLAB and GMAT code

https://drive.google.com/drive/folders/1PSDQBbN-rm1elbiPrUkJHJ Y49;B5vdM
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