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ABSTRACT

INTERPLANETARY TRAJECTORY ANALYSIS
USING

INVARIANT MANIFOLDS

by Jazmine Eubanks

The purpose of this project is to study the dynamics of low energy

interplanetary trajectories starting in the Earth-Moon system, with the potential to

reach Mars. The intended methodology to study these low energy trajectories

involve calculating periodic orbits in the Earth-Moon system and the invariant

manifolds associated with these orbits, then expanding them to become

interplanetary trajectories. Potential applications of these low energy trajectories

can be applied to sending satellites to a Martian orbit from Earth using minimal

changes in velocity. This project will explore the viability of achieving an

interplanetary trajectory using manifolds.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The study of low energy transfers can become very useful for sending supplies

to a Lunar or a Martian base. These low energy transfers may take a long time, but

could potentially use less propellant than a Hohmann Transfer orbit, expanding the

capacity in the spacecraft for additional cargo or supplies [1]. Currently, there is

some research in optimizing low energy transfers between libration points L1 and

L2, but limited research on interplanetary transfers between multiple planetary

bodies. Topputo et al. exploits a patched conics path, using a series of three-body

problems to refine an interplanetary trajectory [2]. This project will be researching

the beginning methods to refine a path for an interplanetary trajectory using the

Circular Restricted Three-Body Problem (CR3BP), and will set up a foundation to

study multi-planetary trajectories in the future, by determining where the

trajectories propagate within the solar system.

1.2 Literature Review

Koon et al. discuss the heteroclinic connections between the Lagrangian

points in applications using low energy transfer orbits and to explain the dynamics

of asteroids and comets [1]. Koon et al. describe the transition in resonance of

comet orbits while outside of Jupiter’s sphere of influence, and inside the orbit of



Jupiter [1]. Koon et al. note that resonance transitions of the comets of Jupiter

follow the invariant manifolds associated with Lagrangian points L1 and L2 [1].

There exists homoclinic orbits and heteroclinic trajectories about L1 and L2.

Homoclinic orbits asymptotically approach Lyapunov periodic orbits, and

heteroclinic trajectories are orbits connecting intersections of stable and unstable

manifolds of two different periodic Lyapunov orbits [1]. By demonstrating a

heteroclinic connection, it is possible to predict a temporary transition orbit. The

findings of Koon et al. can be used to design multi-planetary space missions, or

missions from planets to their outer moons, including between the Earth and Moon

[1]. Koon et al. focuses on using the Hamiltonian structure by using the covariance

of the Lagrangian formulation and using the coordinates in a moving frame. Using

this method provides the Lagrangian form and the Hamiltonian form given by the

Lengendre transformation, though Koon et al. also derives the equations of motion

using Newton’s method [1].

Cox et al. added low thrust in the CR3BP, which use the Hamiltonian

approach to derive the equations of motion. Cox et al. also develops an energy

plane, which is defined as the low thrust arc that lies fixed in an Earth-Moon

rotating frame. By using the Hamiltonian values in the energy plane, Cox et al.

were able to manipulate the forbidden regions about L1 and L2 [3]. Between the

forbidden regions, there is an opening at L1 and L2, called gateways. The lower

energy trajectories cannot pass through the L1 gateway and stay within the interior

region of the planetary orbit. The trajectories within a specified energy set have just

enough energy to pass through the L1 gateway but does not have enough energy to

pass through the L2 gateway. A small percentage of these trajectories will not pass

through the L1 gateway, even though the trajectories have sufficient energy,

verifying that passage through L1 is not guaranteed. The high energy trajectories
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pass through both the L1 and the L2 gateway, though it’s not guaranteed that these

trajectories will pass through the L2 gateway [3].

Topputo et al. solved for a four-body problem describing interplanetary

transfers using two coupled three-body problems, such as the Sun-Earth and

Sun-Jupiter systems, and various other Sun-planet systems [2]. Topputo et al. used

a linear approximation to calculate the manifolds of the Lyapunov orbit before

intersecting the stable and unstable manifolds to determine the optimal

interplanetary trajectory [2]. Topputo et al. calculated the departure and arrival

candidate trajectories from the generated manifolds of the Earth-Jupiter transfer

[2]. By using Poincaré sections, Topputo et al. were able to search for an optimal

transfer orbit between Earth and Jupiter [2]. According to Topputo et al., the

method of intersecting departure manifolds from Earth and arrival manifolds from

Jupiter works for travel to outer planets in the solar system, or outer planets and

their respective moons, though travel to the Lyapunov periodic orbits near the inner

planets such as Earth, Venus, and Mars, is more difficult due to the departure and

arrival manifolds rarely intersecting. To remedy this situation, Topputo et al. added

an intermediary arc to connect the arrival and departure manifolds. Even though

manifolds of periodic orbits about inner planets do not intersect often, outer planets

and systems involving planets and their moons often have intersecting manifolds [2].

Heiligers et al. takes a different approach and investigates solar sail transfers

between multiple three-body problems [4]. The time-optimal transfer is sought by

using a direct pseudospectral method, and is a constraint on the attitude of the

solar sails. Although the current work will not be accounting for external thrusts

generated by the solar sail, Heiligers et al. accounts for perturbations of the planets

outside of the three-body problem in focus, and interestingly takes a “two-phase

approach” and creates a linkage trajectory, or a connection between Earth L2 halo

3



orbit and Mars L1 halo orbit [4].

Vaquero studied unstable resonant orbits between multi-body systems. A

multi-dimensional Newton-Raphson differential corrections process, also known as

the multiple shooting algorithm, was used to connect a series of patch points, the

estimated positions, together to create a continuous trajectory and allow more

control over the trajectory by applying constraints [5]. Vaquero used the multiple

shooting algorithms to create a continuous multi-body transfer trajectory from the

initial state, calculated using differential corrections with information from the State

Transition Matrix [5].

Based on the research and ideas to develop a solar system superhighway by Lo

[6], a metro map was developed to visually express the current work completed for

mostly low thrust trajectories within the solar system, similar to the metro map

representation in Dynamical Systems, the Three-Body Problem and Space Mission

Design [1]. Current work is completed extensively in the Earth-Moon system, where

this project will start developing the equations of motion and initial manifolds. The

metro map displayed in Figure 1.2.1 is a visual representation of researched

trajectories through the solar system using low thrust.

BepiColumbo is a dual spacecraft mission to Mercury on a journey that takes

approximately six years, using multiple gravity assist and solar electric propulsion

(SEP) thrust arcs [7]. The arrival approach implements a gravitational capture

using the Sun’s gravity to weakly capture the spacecraft in the Sun-Mercury system

[7]. The spacecraft then reaches a Mercury Orbit Insertion (MOI), placing the

spacecraft into a 400km by 1200km polar orbit [7].

Finocchietti et al. have also taken up the idea of the interplanetary

superhighway (IPS), and mentioned inner planets do not intersect and that pure low

energy IPS transfers without the use of thrusters cannot be used [8].

4
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The transfer to Venus includes a minimal number of ballistic phases [8]. Starting

from a Geostationary Transfer Orbit (GTO), in the Sun-Earth L1 system,

Finocchietti et al. followed the stable manifold of the Sun-Venus L2 to a ballistic

path inside the Sun-Venus L2 [8].

Kakoi attempts to find a manifold connecting the Sun-Earth and the Sun-Mars

system using various methodologies [9]. Blending the CR3BP into a four-body

problem has limitations in the level of accuracy due to the fact that the Mars’ orbit

is more eccentric than Earth’s and the Moon’s orbit, therefore a five-body problem

must be used [9]. The complex five body problem is constructed by using an

ephemeris state of the destination planet blended with the Sun-Earth-Moon system

[9]. The trajectory was calculated without taking into account Mars’ gravity since

the gravitational force is small [9]. Kakoi investigated multiple transfer scenarios,

including Sun-Earth manifold transfers, Earth-Moon manifold transfers, and direct

transfers [9], but the models were not optimized without use of ∆V .

Topputo and Belbruno constructed weak stability boundary (WSB), or a

ballistic capture transfer, from a heliocentric orbit in Earth’s sphere of influence

(SOI) to pass near Sun-Mars L1 ending a ballistic capture around Mars [10]. Using

ideas from Hiten, Belbruno [11] used a ballistic capture from Earth to the Moon,

Topputo and Belbruno investigated if a ballistic capture can be used to find a

trajectory that enters into a ballistic capture around Mars [10]. In the sample

solution Topputo et al. the trajectory orbits Mars approximately 6 times before

being pulled into a ballistic capture [10]. While there is a ∆V required, compared to

a Hohmann transfer, there is a 4-18% savings using a WSB [10].

Koon et al. found a trajectory touring the moons of Jupiter. The touring of

the moons involves making orbits around each moon for a duration of time before

continuing to the next planetary body, unlike Voyager’s missions which were flybys
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[1]. The trajectory uses impulsive thrusts with a ∆V of 22m/s for a tour around

Europa, Ganymede, and Callisto using heteroclinic connections. Barrabés et al.

constructed trajectories connecting Jupiter, Saturn, Uranus, and Neptune by

connecting two Restricted Three Body Problems (RTBP) using pseudo-heteroclinic

connections, with a small ∆V [12]. The Sun-Jupiter-Neptune and

Sun-Jupiter-Uranus systems have short term mass transport options between those

two systems, yet the Sun-Jupiter-Uranus and the Sun-Jupiter-Saturn systems do not

have clear intersections for short term transports, yet some longer term timeframes

were not tested, but seem optimal to improve connections between systems [12].

Bosanac et al. investigate trajectory design using invariant manifolds and

resonant gravity assists between Saturn and Titan [13]. They use stable manifolds

into a capture around Titan, and discover the ∆V for gravity assists and capture

vary based on the Jacobi constant, but the time of flight decreases as the Jacobi

constant decreases. [13]. The trajectory with the Jacobi of C = 3.008 has a total

∆V of 626.2m/s, the trajectory with the Jacobi of C = 3.010 has a total ∆V of

654.4m/s, and the trajectory with the Jacobi of C = 3.012 has a total ∆V of

645.7m/s, displaying that the ∆V is not dependent on the Jacobi constant [13].

Pergola et al. investigated the possibility of interplanetary transfer around

Uranus and its moons [14]. Starting at the Sun-Uranus system with Uranus SOI,

the trajectory ballistically follows the stable manifold to L2 in the Uranus-Oberon

system, then ballistically follows the stable manifolds to Uranus-Titania L1, and

Uranus-Miranda L1 [14]. The transfer from the Sun-Uranus system to

Uranus-Oberon L2 has a ∆V of 17.56km/s, and the transfer from Uranus-Oberon

L2 to Uranus-Titania L1 has a ∆V of 2.26km/s [14].

Stuchi et al. finds trajectories from the Sun-Neptune following a center

manifold on a Lyapunov orbit into Neptune-Triton L2 [15]. Some of the different

7



constraints faced in this Planet-Moon system unlike the other systems is the fact

that Neptune is oblate and highly inclined, and Triton is in a retrograde orbit

around Neptune [15].

Liang et al. studies the effects of L4 and L5 on low energy WSB transfers from

the Sun-Pluto system to Pluto-Moon systems where, Hydra is treated as a contact

binary system due to its irregular shape [16]. The WSB is calculated between

multiple trajectories on the Lyapunov orbit including Sun-Pluto L1 and

Pluto-Charon L5, and Sun-Pluto L1 and Pluto-Charon L4 [16]. One of the

calculated trajectories towards Hydra starts at a 200km parking orbit and include

three patch points [16]. The first patch point is between the parking orbit and

Sun-Pluto L1 using a ∆V of 125.75m/s, the second patch point is between the

Sun-Pluto L1 and Pluto-Hydra L2 uses a ∆V of 16.29m/s, and the third patch point

is between Pluto-Hydra L2 and a Hydra capture, with a ∆V of 22.84m/s [16]. Liang

et al. also studies the trajectories to the Hydra contact binary libration points [16].

Using all of the previous literature as a guide to determine the gaps to

contribute to the IPS, this paper will explore the use of a different type of orbit, the

Period-Three Distant Retrograde Orbit (P3DRO) instead of the common Lyapunov

and halo orbits used in previous literature.

1.3 Current Project

This project will analyze trajectories in the Earth-Moon rotating frame by

calculating the invariant manifolds associated with periodic orbits in the CR3BP.

By generating a periodic orbit in the rotating reference frame and propagating the

trajectories on the manifolds associated with different positions on the periodic

orbit, it is possible to determine where the trajectories propagate in the solar

8



system. Firstly, the equations of motion and initial manifolds are generated in the

Earth-Moon system using a Lyapunov orbit, to ensure the accuracy of the

propagation. Next, the manifolds associated with an Earth-Moon P3DRO are

calculated and evaluated as potential transfer trajectories to the Sun-Mars system.

1.4 Methodology

The CR3BP system includes two bodies, in this case the Earth-Moon system,

containing multiple solutions and infinite number of periodic orbits, where each

periodic orbit is associated with invariant manifolds. To start, the equations of

motion are derived and linearized, the Earth-Moon mass ratios are calculated,

including the characteristic parameters: mass, length, and time values in the

Earth-Moon system, and the location of the libration points L1-L5 are calculated.

The Jacobi Constant is utilized to verify the equations of motion. From the

linearized equations of motion, the state transition matrix elements are defined, and

implemented in a shooting method to generate Lyapunov periodic orbits about one

of the libration points, the equilibrium solutions of the CR3BP. The Monodromy

Matrix is generated to analyze the dynamical stability of the orbit, and is used to

propagate the trajectories on the invariant manifolds. Once the manifolds are

generated, the trajectories residing on the manifolds are propagated to see the path

traced in the solar system. The manifolds are generated in P3DRO orbits around

Earth-Moon L1.

9
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CHAPTER 2

EQUATIONS OF MOTION

2.1 Dynamics of the Circular Restricted Three-Body

Problem

Koon et al. suggests starting with the planar CR3BP to estimate an

appropriate starting model [1]. The use of the planar CR3BP is ideal for problems

where the bodies of interest are mostly under the gravitational force of one

planetary body, such as the Sun. There are multiple ways to derive the equations of

motion, and this paper will derive the equations of motion using Newton’s method,

similarly to Koon et al. [1].

To develop the equations of motion for a particle, P in reference to two

planetary bodies, m1, and m2, represent the larger and smaller primary masses

respectively. Start with Newton’s equations, ~F = m~a, or ~F = d
dt
m~v, where m is the

mass of the particle, ~a is the acceleration vector of the particle, and ~v is the velocity

vector of the particle. To differentiate between vectors and scalars, vectors are

defined with a vector symbol, and scalars are italicized.

2.1.1 Derivation of Equations of Motion

Traditionally there are three main ways to approach the equations of motion,

the Newtonian, Lagrangian, and the Hamiltonian approach. Here, the Newton

approach is used to derive the equations of motion as visualized in Figure 2.1.1.



Figure 2.1.1: Visualization of the CR3BP

While deriving the equations of motion, the following assumptions are made: the

m1 is much larger than m2, which is much larger than the negligible mass of the

spacecraft, all the masses are considered point masses, gravity is the only force

acting on the bodies, and the primary masses are orbiting about a barycenter in the

rotating frame. Knowing Newton’s equation, ~F = m~a, derive the acceleration vector

starting with position and angular velocity:

R~rP = x~px + y ~py + z ~pz (2.1.1)

R ~wBF = 1~pz (2.1.2)

Since the problem is defined in the rotating frame, it is easier to define it in

dimensionless terms, so all parameters in Equations (2.1.1) and (2.1.2) are

non-dimensional [17].
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Deriving the velocity from the position and angular velocity, equations 2.1.1 and

2.1.2:

R~vP = P F d

dt
R~rP + R ~wBF × R~rP (2.1.3)

= [ẋ ~px + ẏ ~py + ż ~pz] + 1~pz × [x~px + y ~py + z ~pz] (2.1.4)

= (ẋ− y)~px + (ẏ + x)~py + (ż)~pz] (2.1.5)

Deriving the acceleration from the velocity and angular velocity, equations 2.1.2 and

2.1.5:

R~aP = P F d

dt
R~vP + R ~wBF × R~vP (2.1.6)

= [(ẍ− ẏ)~px + (ÿ + ẋ)~py + z̈ ~pz] + 1~pz × [(ẋ− y)~px + ((̇y) + x)~py + (ż)~pz]

(2.1.7)

= (ẍ− 2ẏ − x)~px + (ÿ + 2ẋ− y)~py + (z̈)~pz] (2.1.8)

Now the acceleration is derived from Newton’s approach. To derive the force from

Newton’s method:

−Gmm1
RrP

1
r3

1
− Gmm2

RrP
2

r3
2

= mRaP (2.1.9)

−Gmm1
RrP

1
‖RrP

1 ‖

RrP
1

‖RrP
1 ‖
− Gmm2

RrP
2

‖RrP
2 ‖2

RrP
2

‖RrP
2 ‖

(2.1.10)
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where

RrP
1 = RrP + µ2 ~px (2.1.11)

RrP
1 = (x+ µ2)~px + y ~py + z ~pz (2.1.12)

r1 = ‖RrP
1 ‖ =

√
(x+ µ2)~px + y ~py + z ~pz (2.1.13)

RrP
2 = RrP − µ1 ~px (2.1.14)

RrP
2 = (x− µ1)~px + y ~py + z ~pz (2.1.15)

r2 = ‖RrP
2 ‖ =

√
(x− µ1)~px + y ~py + z ~pz (2.1.16)

1
m

(−Gmm1
RrP

1
r3

1
− Gmm2

RrP
2

r3
2

) =RaP (2.1.17)

−µ1[(x+ µ2)~px + y ~py + z ~pz]
[(x+ µ2)2 + y2 + z2] 3

2
− µ2[(x− µ1)~px + y ~py + z ~pz]

[(x− µ1)2 + y2 + z2] 3
2

= (2.1.18)

where µ is the mass ratio, µ2 = µ, µ1 = 1− µ, µ1 + µ2 = 1. Combining the derived

acceleration, equation 2.1.8, and the derived force, equation 2.1.18:

−µ1[(x+ µ2)~px + y ~py + z ~pz]
[(x+ µ2)2 + y2 + z2] 3

2
− µ2[(x− µ1)~px + y ~py + z ~pz]

[(x− µ1)2 + y2 + z2] 3
2

= (2.1.19)

(ẍ− 2ẏ − x)~px + (ÿ + 2ẋ− y)~py + (z̈)~pz (2.1.20)

Collecting coefficients:

~px : − µ1(x+ µ2)
[(x+ µ2)2 + y2 + z2] 3

2
− µ2(x− µ1)

[(x− µ1)2 + y2 + z2] 3
2

= ẍ− 2ẏ − x (2.1.21)

~py : − µ1y

[(x+ µ2)2 + y2 + z2] 3
2
− µ2y

[(x− µ1)2 + y2 + z2] 3
2

= ÿ + 2ẋ− y (2.1.22)

~pz : − µ1z

[(x+ µ2)2 + y2 + z2] 3
2
− µ2z

[(x− µ1)2 + y2 + z2] 3
2

= z̈ (2.1.23)
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Substituting in equations 2.1.13 and 2.1.16, the equations of motion are defined as

~px : x− µ1(x+ µ2)
r3

1
− µ2(x− µ1)

r3
2

= ẍ− 2ẏ (2.1.24)

~py : y − µ1y

r3
1
− µ2y

r3
2

= ÿ + 2ẋ (2.1.25)

~pz : −µ1z

r3
1
− µ2z

r3
2

= z̈ (2.1.26)

2.1.2 Derivation of Effective Potential

To determine the effective potential, integrate the left hand side of the

equations of motion:

U = x2 + y2

2 + µ1

r1
+ µ2

r2
(2.1.27)

Using chain rule, where (x+ µ2)2 + y2 + z2 = e1, ∂
∂e

1
e1/2

∂e
∂x

where ∂
∂e

1
e1/2 = − 1

2e3/2 and
∂e
∂x

= ∂
∂x

(x+ µ2)2 + y2 + z2 = 2(x+ µ2). Applying the same rules for the x,y,z

derivatives are now equal to the left hand side:

Ux :∂U
∂x

= x− µ1(x+ µ2)
r1

− µ2(x− µ1)
r2

(2.1.28)

Uy :∂U
∂y

= y − µ1y

r1
− µ2y

r2
(2.1.29)

Uz :∂U
∂z

= −µ1z

r1
− µ2z

r2
(2.1.30)
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We can solve for the second derivative of the effective potential

Ux =x− µ1(x+ µ2)
r1

− µ2(x− µ1)
r2

= x− µ1x+ µ1µ2

r1
− µ2x− µ1µ2

r2
(2.1.31)

Uxx =−
[
µ1

r1
− µ1(x+ µ2)2

r3
1

]
−

[
µ2

r2
− µ2(x− µ1)2

r3
2

]
(2.1.32)

Uxy =yµ1(x+ µ2)
r3

1
− yµ2(x− µ1)

r3
2

= Uyx (2.1.33)

Uxz =zµ1(x+ µ2)
r3

1
− zµ2(x− µ1)

r3
2

= Uzx (2.1.34)

Uy =y − µ1y

r1
− µ2y

r2
(2.1.35)

Uyx =yµ1(x+ µ2)
r3

1
− yµ2(x− µ1)

r3
2

= Uxy (2.1.36)

Uyy =−
[
µ1

r1
− µ1y

2

r3
1

]
−

[
µ2

r2
− µ2y

2

r3
2

]
(2.1.37)

Uyz =yzµ1

r3
1
− yzµ2

r3
2

= Uzy (2.1.38)

Uz =z − µ1z

r1
− µ2z

r2
(2.1.39)

Uzx =zµ1(x+ µ2)
r3

1
− zµ2(x− µ1)

r3
2

= Uxz (2.1.40)

Uzy =yzµ1

r3
1
− yzµ2

r3
2

= Uyz (2.1.41)

Uzz =−
[
µ1

r1
− µ1z

2

r3
1

]
−

[
µ2

r2
− µ2z

2

r3
2

]
(2.1.42)

2.2 Characteristic Parameters

Three characteristic parameters must be defined: the characteristic length, l∗,

the characteristic mass M , and the characteristic time t∗. The characteristic length

is defined as the distance between the two primary masses in the CR3BP, in this

case, the Earth and the Moon. The characteristic mass is defined as the sum of the

15



two masses, and characteristic time is the dimensionless time value in the system.

The characteristic length is average distance between two planetary bodies, the

characteristic mass is calculated from m1 +m2, and characteristic time is calculated

from
√
l∗3/G(m1 +m2), where G is the gravitational constant [18, 19]. The mass

ratio, as discussed earlier, is calculated from µ = m2/(m1 +m2). The values in

Table 2.1 are verified from Koon et al. and Pavlak [1, 20].

Table 2.1: Parameters in the Earth-Moon system

Quantity Parameter Value
Mass of Earth mE 5.9724× 1024 kg
Mass of Moon mm 7.3460× 1022 kg
Mass Ratio µ 0.0122
Characteristic Length l∗ 3.8250× 1008 m
Characteristic Mass M 6.0459× 1024 kg
Characteristic Time t∗ 3.7240× 1005 s or 4.3102 days

2.3 Libration Points

The libration points are calculated in the following way: starting from the

equations of motion, knowing that libration points L1, L2, and L3 are collinear, the

y component will always be 0. To solve for the x component, the roots of the

complex equation are calculated in equations (2.3.6), (2.3.7) and (2.3.8) [17]. L4 and

L5 are solved using geometry. L1, L2, and L3 are collinear, and also unstable, while

L4 and L5 are stable.

r2
1 =(x+ µ2)2 + y2 + z2 (2.3.1)

r2
2 =(x− µ1)2 + y2 + z2 (2.3.2)
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ẍ− 2ẏ − x =− µ1(x+ µ2)
r3

1
− µ2(x− µ1)

r3
2

(2.3.3)

ÿ + 2ẋ− y =− µ1y

r3
1
− µ2y

r3
2

(2.3.4)

z̈ =− µ1z

r3
1
− µ2z

r3
2

(2.3.5)

Since the equilibrium points do not have a velocity or acceleration, they are set to 0,

and the equations are reorganized,

0 =− µ1(x+ µ2)
r3

1
− µ2(x− µ1)

r3
2

+ x (2.3.6)

0 =− µ1y

r3
1
− µ2y

r3
2

+ y (2.3.7)

0 =− µ1z

r3
1
− µ2z

r3
2

(2.3.8)

Since L1, L2, and L3 are all collinear, y = 0. Both L4 and L5, use geometry, so

the coordinates are [(1/2)− µ,
√

3/2], [(1/2)− µ,−
√

3/2]. Table 2.2 lists the

location of the libration points L1 - L5.

Table 2.2: Location of the libration points in the Earth-Moon system

Libration Point x y
L1 0.83691800731693 0
L2 1.15567991309474 0
L3 −1.0050624018205 0
L4 0.487849536707764 0.866025403784439
L5 0.487849536707764 −0.866025403784439

2.4 Coordinate Transformation

Currently, the problem is defined in the rotating frame, so it needs to be

transformed into the inertial frame rotating about the center of mass between the

17



Figure 2.3.1: Location of libration points in the Earth-Moon system
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two bodies to make calculations simpler.

Equation (2.4.1) is the transformation between the inertial and rotating frames

using, with (X, Y, Z) as the coordinates of the rotating frame, and (x, y, z) as the

coordinates of the inertial frame [1].

Figure 2.4.1: Rotation transformation


X

Y

Z

 = At


x

y

z

 (2.4.1)

where

At =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (2.4.2)

The inertial frame positions for the larger primary mass is

(X1, Y1, Z1) = (−µ2 cos θ,−µ2 sin θ, 0) (2.4.3)

and the inertial frame position for the smaller primary mass is

(X2, Y2, Z2) = (µ1 cos θ, µ1 sin θ, 0) (2.4.4)
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In this scenario, µ is the mass parameter, assuming that m1 is the larger primary

mass and m2 is the smaller primary mass, µ = m2
(m1+m2) , where µ1 = 1− µ, and

µ2 = µ. The mass of the particle is negligible due to the minuscule mass of the

particle in relation to the planetary bodies [1]. Knowing the derivation of the EOM,

Equations (2.1.1) and (2.1.5) and substituting in (2.4.1), the transformation is

derived to form the 6× 6 transformation matrix, defined in Equation (2.4.5) [20]



X

Y

Z

Ẋ

Ẏ

Ż



=



cos θ − sin θ 0 0 0 0

sin θ cos θ 0 0 0 0

0 0 1 0 0 0

− sin θ − cos θ 0 cos θ − sin θ 0

cos θ − sin θ 0 sin θ cos θ 0

0 0 1 0 0 1





x

y

z

ẋ

ẏ

ż



(2.4.5)

Given the developed transformation matrix, the pseudo-potential can be defined

with the expression given in equation (2.4.6).

U = µ1

r1
+ µ2

r2
− 1

2(x2 + y2) (2.4.6)

where (x, y, z) is the position of particle P . r1 and r2 are the distances to the

satellite to the two planetary bodies, m1, and m2, respectively, defined as

r2
1 = (X + µ2 cos θ)2 + (Y + µ2 sin θ)2 + Z2, (2.4.7)

r2
2 = (X − µ1 cos θ)2 + (Y − µ1 sin θ)2 + Z2 (2.4.8)

with respect to the rotating frame and

r2
1 = [(x+ µ2) cos θ − y sin θ]2 + [(x+ µ2) sin θ + y cos θ]2 + z2, (2.4.9)

r2
2 = [(x− µ1) cos θ − y sin θ]2 + [(x− µ1) sin θ + y cos θ]2 + z2 (2.4.10)

with respect to the inertial frame.
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2.5 Jacobi Constant

The Energy Integral and the Jacobi Constant represent the same concept and

is used as a verification of the equations of motion. The energy integral is

represented as E(x, y, z, ẋ, ẏ, ż) = 1/2(ẋ2 + ẏ2 + ż2) + Ū(x, y, z), the Jacobi constant

equation is represented as C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2)− 2Ū , and the Jacobi

constant is −2E. Numerically, the Jacobi Constant is a relatively constant value to

the degree of accuracy of the numerical integrator used to propagate the EOMs, as

demonstrated in Figure 2.5.1.
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Figure 2.5.1: Jacobi constant of an orbit around L1 in the Earth-Moon system
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CHAPTER 3

GENERATING PERIODIC ORBITS

To generate the Lyapunov periodic orbits, the pseudo potential from Chapter

2 must be used to calculate the individual elements of the State Transition Matrix

(STM). Once the STM is computed, a periodic orbit can be generated by using a

differential corrector such as the single shooting method.

3.1 State Transition Matrix

The State Transition Matrix (STM) is a sensitivity matrix for the system, the

elements measure the sensitivity of the final variation in a state to its initial

perturbation [21]. The STM is denoted as Φ(τ, τ0), and maps the deviations in the

state vector from non-dimensional times τ0 to τ , where non-dimensional time is

defined as τ = t
t∗ [22]. The states, q̄ = [x, y, z, ẋ, ẏ, ż]T , ˙̄q = [ẋ, ẏ, ż, ẍ, ÿ, z̈]T , where ∂q̄

represents a small deviation from the nominal trajectory. f̄(q̄ + ∂q̄) is a non-linear

function, approximated using a Taylor series expansion. Neglecting the higher-order

terms, expansion simplifies into: ∂ ˙̄q = ∂f̄(q̄)
∂q̄

∂q̄. The solution to the expansion is:

∂q̄ = Φ(τ, τ0)∂q̄0, where the STM is defined as Φ(τ, τ0) = ∂q̄(t)
∂q̄(t0) , consists of partial

derivatives of the state, and where Φ(τ0, τ0) = I. The fundamental matrix,

A(t) = ∂ ˙̄q(t)
∂q̄(t) , is evaluated along various points on a trajectory, and is generally

considered not constant over the course of a trajectory [22].



For the CR3PB, A is given as:

A =

03x3 I3x3

Uxyz Ω

 (3.1.1)

where

Uxyz =


∂2U
∂x∂x

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y∂y

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z∂z

 (3.1.2)

and

Ω =


0 2 0

−2 0 0

0 0 0

 (3.1.3)

so that

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂2U
∂x∂x

∂2U
∂x∂y

∂2U
∂x∂z

0 2 0
∂2U
∂y∂x

∂2U
∂y∂y

∂2U
∂y∂z

−2 0 0
∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z∂z

0 0 0



(3.1.4)
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the STM is defined as:

Φ = ∂x(t)
∂x(t0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0



(3.1.5)

Substituting the general solution into the differential equations, the matrix is

defined as Φ̇(τ, τ0) = A(t)Φ(τ, τ0). The 36 differential equations must be integrated

along-side the EOMs for the CR3BP to obtain trajectory sensitivity information.

The Monodromy matrix is defined as the STM over one orbit period and is useful in

calculating manifolds.

3.1.1 Verifying the State Transition Matrix

To verify the STM, calculate the STM manually by starting with the initial

state, then propagate it over time t, usually less than 2 days, or approximately less

than 8.62 units in non-dimensional time to receive a final state. Then perturbate

the initial state by 1× 10−3 over time t, to get a final perturbed state. By taking

the difference between the final state and the final perturbed state, and dividing it

by the perturbation, the manually calculated STM is generated and compared to

numerical integration to verify accuracy. Another way to verify the STM is by

propagating it over an extremely short period of time, of approximately 0.01, and

verify that the STM is close to identity.
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3.2 Differential Corrector

The shooting method, also known as Newton method, adjusts the initial

conditions for the EOM to turn a chaotic orbit into a periodic orbit. The shooting

method propagates the trajectory for a specified time and initial conditions. The

error is minimized to determine the exact velocity of the particle to maintain the

orbit. The equations of motion are solved using explicit integration, and the STM

provides the gradient information to ’correct’ the orbit. In this project, the single

shooting algorithm will be implemented to solve the boundary value problem.

Figure 3.3.1, is the propagation of the EOM about L1 before differential correction,

and figure 3.3.2 is a differentially corrected Lyapunov orbit about L1.

3.3 Periodic Orbits

There are many different families of periodic orbits around the collinear

libration points, such as the Lyapunov, halo, and distant retrograde orbits.

According to the Mirror Theorem from Roy and Ovenden [23], the CR3BP EOMs

are invariant under the transformation of reflection across the x-axis and negative

time [24, 25].

Theorem 3.3.1 (The Mirror Theorem). If n-point masses are acted
upon by their mutual gravitational forces only, and at a certain
epoch the radius vector from the (assumed stationary) center of
mass of the system is perpendicular to every velocity vector, then the
orbit of each mass after that epoch is a mirror image of its orbit
prior to that epoch.
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The desired initial condition for an orbit like a Lyapunov orbit is given by

~xi(τ0) = [xi(τ) 0 0 0 ẏi(τ0) 0]T (3.3.1)

where xi and ẏi are the initial conditions for the orbit. A set of initial conditions of

the form as given in equation (3.3.1) is used to calculate periodic orbits by

propagating the state in the CR3BP. Using L1 Lyapunov initial conditions provided

in Grebow’s thesis [22], a differential corrections method was applied to adjust the

orbit to become periodic. The differential corrector was developed by implementing

fzero in Matlab, searching for the exact value of ẏ given the EOM and propagating

the trajectory for one orbit period, and adjusting the calculated ẏ for the next

propagation, until the initial and final x are exactly the same. An events function is

set up to determine where the trajectory crossed the y axis in the Earth-Moon

frame so it will stop calculation at the point where the periodic orbit started.

Distant Retrograde Orbits (DRO) are a retrograde family of orbits that are

x-axis symmetric periodic, from Theorem 3.3.1 [25]. Period-3 DRO (P3DRO) are

three-revolution periodic orbits, indicating a period-tripling bifurcation occurring at

the lowest Jacobi constant. The P3DROs used in this work were calculated by Dr.

Capdevila as detailed in her dissertation [25]. The P3DRO is shown in Figure 3.3.3,

the Earth is the blue point, and the Moon is the cyan point on the plot, as well as

the libration points, indicating where the periodic orbit lies in the Earth-Moon

rotating frame.
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Figure 3.3.1: Initial guess for L1 Lyapunov orbit in Earth-Moon system

28



Figure 3.3.2: Lyapunov periodic orbit about L1 in Earth-Moon system
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Figure 3.3.3: P3DRO periodic orbit
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CHAPTER 4

INVARIANT MANIFOLDS

Invariant manifolds allow for a series of trajectories to be propagated from

points on the corrected orbit. There are two sides to the manifold based on the

eigenvalues calculated from the Monodromy Matrix, a stable and unstable side,

both with positive and negative directions. Invariant manifold theory is based upon

linear stability analysis in continuous and discrete time systems, both of which will

be reviewed below [26].

4.1 Manifold Theory of fixed points

Definition of a manifold: an n-dimensional manifold M ⊂ RN is a set for

which each x ∈M has a neighborhood U for which there is a smooth invertible

mapping (diffeomorphism) φ : Rn → U(n ≤ N) [27]. Guckeheimer et al. notes

smooth to mean across an infinite differential.

To start calculating the manifolds in the nonlinear system, the initial value

problem is defined in Equation 4.1.1 [27]:

ẋ = f(x), x ∈ Rn, x(0) = x0 (4.1.1)

where x is a member of all real n-space numbers. Starting to study the nonlinear

system ẋ = f(x), by solving for the zeros, or the ’fixed points’ of the initial value

problem 4.1.1.



Here, x̄ is a fixed point, to understand the behavior near the solutions near the fixed

point, equation 4.1.1 needs to be linearized to become [27]:

ξ̇ = Df(x̄)ξ, ξ ∈ Rn (4.1.2)

where Df(x̄) is the total derivative of f at the fixed point x̄, also defined as

Df = [∂fi/∂xj], the Jacobi matrix, and x = x̄+ ξ, |ξ| � x. Guckenheimer and

Holmes provide Theorem 4.1.1 describing the stable manifold for a fixed point,

[27, 9].

Theorem 4.1.1 (Stable Manifold Theorem for a Fixed Point).
Suppose that ẋ = f(x) has a hyperbolic fixed point x̄. Then there
exist local stable and unstable manifolds W s

loc(x̄), W u
loc(x̄), of the

same dimensions ns, nu as those of the eigenspaces Es, Eu of the
linearized system 4.1.2, and tangent to Es, Eu at x̄. W s

loc(x̄),
W s

loc(x̄) are as smooth as the function f.

where W s
loc(x̄) and W u

loc(x̄) are the local invariant subspaces, or submanifolds for the

system, ns and nu are the stable and unstable manifold dimensions respectively, and

Es and Eu are the stable and unstable subspaces for linearized systems respectively.

Theorem 4.1.1 states that at any fixed point along the periodic orbit there exists a

stable and unstable manifold. Stable manifolds flow towards the fixed point forward

in time, while unstable manifolds flow towards the fixed point backward in time, as

shown in equation 4.1.3 and equation 4.1.4 [27]. The fundamental

existence-uniqueness of equation 4.1.1 ensures that distinct fixed points and their

associated invariant manifolds cannot intersect.
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W s(x̄) =
⋃
t≤0

φt(W s
loc(x̄)), (4.1.3)

W u(x̄) =
⋃
t≥0

φt(W u
loc(x̄)). (4.1.4)

Perko states in theorem 4.1.2 for nonlinear systems [28].

Theorem 4.1.2 (The Fundamental Existence-Uniqueness
Theorem). Let E be an open subset of Rn containing x0 and assume
that f ∈ C1(E). Then there exists an a > 0 such that the initial
value problem

ẋ = f(x) (4.1.5)
x(0) = x0 (4.1.6)

has a unique solution x(t) on the interval [−a, a].

where E is an open subset of Rn. Perko went into further detail of the proof of the

fundamental existance-uniqueness theorem in his book [28].

Guckenheimer and Holmes provide Theorem 4.1.3 describing the stable

manifold for a fixed point where W s
loc(x̄) and W u

loc(x̄) are the local invariant

subspaces, or submanifolds for the system, ns and nu are the stable and unstable

manifold dimensions respectively, and Es and Eu are the stable and unstable

subspaces for linearized systems respectively [27].

Theorem 4.1.3 (Stable Manifold Theorem for a Fixed Point). Let
G: Rn → Rn be a (C1) diffeomorphism with a hyperbolic fixed point
x̄. Then there are local stable and unstable manifolds W s

loc(x̄),
W u

loc(x̄), tangent to the eigenspaces Es
x̄, Eu

x̄ of DG(x̄) at x̄ and of
corresponding dimensions. W s

loc(x̄), W u
loc(x̄) are as smooth as the

map G.
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4.1.1 Eigenvalues

Definition of eigenvector: An eigenvector v of an n× n matrix A is a nonzero

vector whch satisfies Av = λv or (A− λI)v = 0 for some λ ∈ C; λ is the eigenvalue

of v, where C are complex numbers [27]. Associated with the monodromy matrix for

a particular periodic orbit in the CR3BP, there are a set of six eigenvalues, two are

close to zero, two are equal to each other, and the ones without complex parts are

the ones used to calculate the manifolds. The position of the eigenvalues determines

the correct set of eigenvectors to use in manifold calculation.

4.2 Methodology to Calculate Invariant Manifolds

Starting with the differentially corrected periodic orbit, the number of points

along the periodic orbit to start trajectories is determined. It is best to start with a

relatively small number of cases such as 20 when generating a series of trajectories

on the manifolds. Next, the fixed points and their respective times along the

periodic orbit are selected, and stored in a variable for future reference. Next the

STM is recalculated for each fixed point for approximately 2 orbit periods, and the

corresponding eigenvalues and eigenvectors are calculated. This processes of

calculating manifolds is demonstrated in the flowchart shown in Figure 4.2.1.

Using the eigenvalues and corresponding fixed points, the initial conditions

used to propagate in the CRTBP are recalculated depending on the manifolds

generated, such as stable or unstable, and the direction of the manifold, whether it

is positive or negative. The eigenvalues selected correspond to the set of

eigenvectors used to determine the new initial conditions for the specific manifold.

The general equation for the initial conditions that will be propagated in the

CR3BP is noted in Equation 4.2.1:
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Figure 4.2.1: Flowchart for detecting crashing manifold trajectories
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~x± d ~v

‖~̃v‖
(4.2.1)

‖~̃v‖ = ‖[xyz]T‖ (4.2.2)

Where ~x = [xyzẋẏż]T are the fixed points along the periodic orbit, vector ~v is

the eigenvector of the monodromy matrix associated with a specific fixed point

along the periodic orbit. The eigenvectors are a 6× 1 vector that are corresponding

to the selected eigenvalue λ, and d is the distance away from the fixed point, here

set to 1× 10−5 non-dimensional length units. The largest and smallest magnitude

eigenvalues and associated eigenvectors must be identified for each fixed point along

the periodic orbit.

4.2.1 Calculating the Stable Manifolds

Since stable manifolds flow towards the orbit in forwards time, they are

computed in backwards time and are associated with the eigenvalue of the smallest

magnitude. To create the initial conditions that will be propagated, the smallest

magnitude eigenvalue is used to determine the corresponding eigenvector, which is

added to the initial starting point along the periodic orbit. Depending on the

direction of the trajectory, Equation 4.2.1 is either added for the positive direction,

or subtracted for the negative direction, as exemplified in Figures 4.2.2 and 4.2.3,

showing stable manifold trajectories associated with a Lyapunov and a P3DRO,

respectively. The green trajectories are positive meaning the eigenvectors were

added to the initial points, and the blue trajectories are negative, meaning the

eigenvectors were subtracted from the initial points. Figures 4.2.2 and 4.2.3 show a

projection of the manifold trajectories as they appear in the x-y plane. However the
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trajectories exist in a 6-dimensional space, where they do not intersect with each

other, as explained in Theorem 4.1.2.

4.2.2 Calculating the Unstable Manifolds

The unstable manifolds are computed forwards in time and are associated

with the larger magnitude eigenvalue. Similar to the stable manifold, the initial

conditions that will be propagated use the eigenvector associated with the larger

magnitude eigenvalue. Depending on the direction of the trajectory, Equation 4.2.1

is either added for the positive direction, or subtracted for the negative direction, as

exemplified in Figure 4.2.4, the stable manifolds around the Lyapunov orbit, and in

Figure 4.2.5. In this case, the red trajectories are positive, and the magenta

trajectories are negative. Forwards in time, the manifold trajectories flow away from

their respective periodic orbits, making them the best viable trajectories leading to

Mars.

4.2.3 Verifying the manifolds

To verify the computation of manifold trajectories, it is insightful to propagate

the stable manifolds forwards in time, and the unstable manifolds backwards in

time, that is opposite to how manifolds are calculated. When propagating the

unstable manifolds backwards in time, it is expected that the trajectory will

approach the periodic orbit. Propagating the unstable manifold backwards in time

by approximately two orbit periods and verifying that it converges to the periodic

orbit is how the manifolds are verified to be calculated correctly, as shown in Figure

4.2.6
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Figure 4.2.2: Stable Lyapunov manifolds
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Figure 4.2.3: Stable P3DRO manifolds
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Figure 4.2.4: Unstable Lyapunov manifolds
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Figure 4.2.5: Unstable P3DRO manifolds
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Figure 4.2.6: Verifying unstable manifolds converge into periodic orbit
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4.2.4 Finding a feasible trajectory

To find a feasible trajectory, trajectories that intersect with the planetary

bodies must first be eliminated. In Figures 4.2.7 and 4.2.8, the trajectories are

terminated at the surface of the planetary bodies they intersect. Thus, unfeasible

trajectories are eliminated before further evaluation. Figures 4.2.7 and 4.2.8 show

100 potential trajectories for each direction and their collisions with planetary

bodies, if they intersect with the surface of the planet. The cyan circle represents

the surface of the Moon, while the blue circle represents the surface of the Earth.

While it is known that the atmosphere can impact the geometry of trajectories, is it

not accounted for in this investigation.
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Figure 4.2.7: Trajectories intersecting with the Earth
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Figure 4.2.8: Trajectories intersecting with the Moon
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CHAPTER 5

ANALYSIS OF TRAJECTORIES AND RESULTS

Only the unstable manifolds can become candidate trajectories because they

naturally progress away from the periodic orbit. To find a suitable candidate

trajectory, the steps in Chapter 4 are implemented, 100 candidate trajectories are

calculated and a candidate trajectory leaving the Earth-Moon system is found.

After the viable trajectories are determined, one trajectory is further evaluated for

its potential to reach Martian orbit.

5.1 Viable Orbits

A viable orbit is identified as one associated with no collisions to a planetary

body, and if the manifold can extend out to Martial orbit. As shown in Figure 5.1.1,

out of 100 unstable trajectories in the positive direction and 100 unstable

trajectories in the negative direction, a potential 63 positive (red) viable orbits are

available, while a potential 71 negative (magenta) orbits exist to reach Mars’ orbit,

meaning they do not intersect with the Earth and Moon for a timeframe of 150

periodic orbit periods, or approximately 2,594.6 days. Of the 134 possible viable

trajectories, only some have the capacity to extend out far enough to reach Mars’

orbit. The Earth to Mars distance is between 203.7719 and 982.1283

nondimensional Earth-Moon units of distance, that is, between 78,327,500 and

377,518,500 km [29]. Figure 5.1.1 demonstrates that a trajectory can reach Mars’

orbit, where the black trajectory is a representation of the furthest distance the



viable trajectory would need to reach to intersect Mars’ orbit. The Sun’s orbit

around Earth is accurately depicted in yellow for reference.
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Figure 5.1.1: Potential viable trajectory to Mars in the rotating frame
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CHAPTER 6

CONCLUSION

In conclusion, the primary goal of determining the possibility of reaching Mars

using a P3DRO has been achieved. Initial goals involved contributing to the IPS [6],

and add to the current literature exploring a way to navigate the solar system with

the minimum amounts of ∆V . An Earth-Moon CR3BP was defined through the

calculation of the Earth-Moon characteristic quantities, simulated, and verified

through numerical propagation of the equations of motion. By generating and

verifying the state transition matrix, periodic orbits were created through

differential corrections to ensure periodicity. The invariant manifolds were

calculated from the periodic orbits and verified to ensure the trajectories produced

are indeed on the manifold associated with their respective periodic orbit. Lastly,

several viable trajectories towards Mars’ were identified, and it is now confirmed

that a trajectory originating from a P3DRO manifold can reach Mars.

6.1 Future Work

Future work involves looking at a higher fidelity model of the Martian orbit

transformed into the Earth-Moon rotating reference frame and/or the

transformation of manifold trajectories into Sun-centered inertial frame to more

accurately assess if manifold trajectories reach the Martian system. Once the

transformations are completed, the approach velocity of each trajectory can be

compared and determine how large of a ∆V will be required for a rendezvous within



the Martian system.
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