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ABSTRACT

Implementation of a Reduced­Order Model for the Navier­Stokes Equations using the
POD­Galerkin Method

Jens Polzin

The Proper Orthogonal Decomposition (POD)­Galerkin method was applied to the finite
volume approximation of the Navier­Stokes Equations. For validation, the lid­driven cavity

flow test case was selected. An incompressible, 3­dimensional flow simulation was
performed using Ansys Fluent. Flow state data obtained from this simulation was then used
to calculate the dominant modes of the system. Inserting these modes into the Galerkin

projection of the Navier­Stokes equations generated a linear system of equations capable of
predicting the flow behavior within the system. The implemented technique decreased the
calculation time by several orders of magnitude while also introducing an instability to the
system. Reduced­Order Model (ROM) results immediately start to deviate noticeably from
the numerical results, highlighting the need for further validation of the ROM program.
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1 Introduction

1.1 Motivation
The research field of Computational Fluid Dynamics (CFD) is directly linked to the compu­
tational resources available. Therefore, it has seen rapid advancements over the past decades.
The overall growth in computational power is quantified and emphasized in Moore’s law, stat­
ing that the transistor count of state­of­the­art integrated circuits doubles roughly every two
years. This observation has been accurate for decades and is projected to remain valid for
years to come [2]. New simulation capabilities have become quickly accessible in the recent
past in correspondence with this trend. In the early 1970s, calculating a transonic potential
flow solution around an airfoil depicted the limit of what was possible. By 1975, computing
this solution over a swept wing was technically feasible. In 1982, the problem was solved for
an entire aircraft [3]. This trend continued and enabled the simulation of evermore complex
and even reacting flow problems. In addition to the applications, the usage of CFD has also
changed. Previously used as a research tool only available to institutions with access to im­
mense computational resources, it has become a design tool commonly employed in industrial
development processes. Nowadays, small­scale simulations are often run on common comput­
ers or laptops to validate or review design choices. It is also to be noted that this development
has been backed by the increased availability of open­source CFD software.

Yet, CFD simulations remain demanding. Obtaining accurate solutions for complex flows
is often only possible using simplification models that result in errors of varying extend. A
complete Direct Numerical Simulation (DNS) is technically infeasible for most flow cases.
This complexity is inherent to CFD, which formulates multiscale, multiphysics problems. It
combines several scientific disciplines (e.g., thermodynamics, gas dynamics, chemistry) into
a single problem expressed on multiple length scales. In a turbulent flow, the largest scale is
the integral length scale. A direct energy cascade then transports energy down to Kolmogorov
length scales. While eddies below this scale are dampened by viscous effects of the fluid,
even smaller length scales can be of importance for reacting flows. Combustion zones can be
thinner than theKolmogorov length, and combustion itself happens on amolecular length scale.

As a result, CFD has become a critical resource for numerous engineering applications while
remaining exceedingly challenging at the same time. This contrast is especially apparent in
aerospace applications, which rely on highly optimized designs for safety and efficiency while
often subjected to complex flow behavior. Hence, a reduction of the problem complexity is
critical to support full CFD functionality at a manageable computational expense. This fact
often justifies sacrificing accuracy to a degree to achieve a better simulation performance.
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1.2 Literature Review
Since this project uses a combination of different research fields, a literature review can be
divided into two subsections. The first will cover the numerical simulation that generates the
baseline and provides training data for the ROM. The second subsection will discuss literature
connected to the ROM itself.

1.2.1 Numerical Simulation
All numerical simulations for the project have been conducted using tools of the Ansys soft­
ware suite, especially the CFD module Ansys Fluent 2021 R21. The software is based on a
plethora of scientific literature and centuries of fluid dynamics research. Essential papers are
reviewed in the following paragraphs.

Physical flow equations composing the core of a CFD problem were formulated centuries
ago. The Euler equations describing adiabatic and inviscid flow were phrased in 1755 [4].
A set of coupled differential equations describing the viscous flow of Newtonian fluids was
composed in 1822 and are commonly known today as the Navier­Stokes equations [5].

Since turbulent flows exhibit a seemingly random and chaotic behavior, averaged flow val­
ues are often of higher interest than the fluctuating values themselves. Osborne Reynolds
proposed separating a fluctuating variable u into its average, and a fluctuating part in 1895 [6],
known today as Reynolds decomposition. The average of the fluctuating variable part is 0.

u = u+u′ (1.1)
u′ = 0 (1.2)

After applying this decomposition to the Navier­Stokes equations, they are referred to as
the Reynolds­averaged Navier­Stokes Equations (RANS). For non­stationary processes, the
so­called Unsteady Reynolds­averaged Navier­Stokes Equations (URANS) should be used,
where the derivatives with respect to time are not equal to zero.

A density­based average of some variables is often beneficial when compressible fluid be­
havior, strong temperature gradients, or combustion occurs. This approach was first proposed
by Favre in 1965 [7] and is hence referred to as the Favre­average.

u = ũ+u′′ (1.3)

ũ =
ρu
ρ

(1.4)

ρu′′ = 0 (1.5)
1https://www.ansys.com/products/fluids/ansys-fluent
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Since the analytical solution to the resulting Partial Differential Equations (PDEs) is rarely
known or calculable, numerical methods are commonly employed. Ansys Fluent was used
to set up a Finite Volume Method (FVM) for this paper. The literature on these methods is
extensive. An overview is provided by the books of Munz and Westermann [8], MacCormack
[9], and Lomax, Pulliam, and Zingg [10] or Magoules [11].

A gradient reconstruction scheme needs to be selected when setting up the simulation. Infor­
mation about the gradient values of state variables at different grid positions is used for linear
upwind differencing schemes and non­orthogonal correctors. Figure 1.1 shows different gra­
dient reconstruction schemes for the C­gradient at the cell­center and the F­gradient at the
center of the cell face. It is possible to formulate a node­based and a cell­based configuration
for every gradient reconstruction scheme shown. A cell­based version of the weighted least­
squares schemes was also used to calculate the gradients needed for the Galerkin projection.

Gradient Reconstruction Schemes

Least Squares (Element­free)

Green­Gauss (Element­based)

Cartesian Coordiantes Regions with Curvature

Exact Mapping Approximate MappingWeighted Unweighted

FWLSQ CWLSQ FULSQ CUSLSQ FEMLSQ CEMLSQ FAMLSQ CAMLSQ

Figure 1.1: Gradient reconstruction scheme classifications

Diskin and Thomas [12] describe different gradient reconstruction schemes in detail and
analyze their accuracy for different structured high aspect ratio grids. They concluded that a
node­centered Weighted Least­Squares (WLSQ) scheme produces a very accurate C­gradient
reconstruction. Furthermore, they showed that the order of accuracy of gradient reconstruc­
tion schemes depends on the selected mesh type. This result is supported by the findings of
Syrakos et al. [13]. They write that the assumed second­order accuracy of Green­Gauss and
WLSQ for every grid is a misconception and only holds for structured grids. Theoretical anal­
ysis revealed first­order accuracy for unstructured grids for a cell­centered CWLSQ scheme
and possible zeroth order of accuracy for a cell­based Green­Gauss C­gradient scheme. This
result was confirmed by numerical simulations using an in­house CFD code as well as Open­
FOAM.
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The flux across the cell faces in a FVM can be separated into convective and viscous flux.
A numerical flux scheme is needed to discretize the convective flux. The Advection Upstream
Splitting Method (AUSM) has been selected for all simulations conducted within the scope
of this project. The method was first introduced by Liou and Steffen in 1993 [14]. Its objec­
tive was to mimic the Flux­Difference Splitting (FDS) schemes in accuracy while achieving
an order of operations per grid point similar to Flux­Vector Splitting (FVS) methods. While
FDS methods like Roe­ [15] or Osher­splitting [16] have shown a high accurate in the past,
both are of second­order. This order is due to the necessary differentiation of fluxes for the
Roe­splitting. Osher­splitting requires the calculation of the intermediate states the connect
the states between grid points, which is computationally expensive. While FVS methods like
Steger­Warming [17] and Van­Leer splitting [18] are simple and computationally inexpensive,
their accuracy is significantly reduced by numerical diffusion. Liou and Steffen propose a
scheme that separates the pressure term from the convective flux. It recognizes that this term
is dependent on the acoustic wave speeds, unlike the convective terms, which are governed by
the flow velocity. By basing the scheme on physics, a stable first­order method was created,
which has been shown to produce results similar in accuracy to the Roe­scheme. Furthermore,
the scheme has been shown to calculate accurate results even in some fringe cases the Roe­
scheme can not model accurately, like the 2D supersonic flow over a blunt cylinder. In 1995,
Liou presented the modified AUSM+ scheme [19] which proved to be more reliable than the
original scheme.

Nine additional components are needed to solve the RANS in three dimensions, six for the
symmetric Reynolds­stress tensor and three for the turbulent heat flux vector. This closure is
performed using simplifying turbulence models. One capable model is theMenter Shear Stress
Transport (SST). It was first described in 1994 by F. R. Menter [20]. By blending the two, it
addresses problems arising in either the k−ε or the k−ω models. It suggests using the k−ω
model in near­wall regions and a k− ε model for the rest of the flow with a smooth transition
in between. Furthermore, the SST model addresses inaccuracies arising in both the k−ω and
the k− ε model. They tend to overestimate the wall shear stress, which leads to inaccurate
flow separation estimation. The SST model, therefore, introduces a shear stress limiter, which
is implemented in the calculation of the eddy viscosity. Due to its low computational cost and
high accuracy, it is one of the most popular turbulence models currently used for CFD simu­
lations.

It is known that viscous flows generate a boundary layer near walls or solid objects inside
the flow. Since its first identification by Prandtl [21], this boundary layer has been studied
intensively [22, 23]. It is caused by the no­slip condition and has significant effects on the
overall flow behavior. While its dimensions in the wall­normal direction are small, it contains
steep temperature and velocity gradients. This behavior has to be considered when generat­
ing the mesh for a viscous flow simulation. Any mesh that fails to capture these near­wall
gradients will cause the simulation to become inaccurate and may introduce instabilities or
divergence. The two most important methods for boundary layer treatment within modern
CFD simulations are summarized by Bredberg [24]. The report details integrating and wall­
function approaches and discusses the respective derivations. The former approach resolves
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boundary layer behavior by utilizing an appropriate low­Reynolds­number turbulence model
and a substantial mesh refinement near the wall. The wall­function approach works using a
coarser mesh and so­called wall functions, which mimic the near­wall flow behavior. For this
project, a wall­function approach was selected. The mesh was generated accordingly. The
adaptive wall function method utilized was first proposed by Knopp et al. [25].

The flow over a lid­driven cubical cavity was selected as an appropriate test case. It has
been studied extensively both experimentally [26] and using DNS [27]. Prasad and Koseff
used polystyrene beads and two­dimensional laser­Doppler anemometer measurements to ex­
perimentally collect velocity data for different Reynolds number and spanwise aspect ratios of
the cavity along the horizontal and vertical centerlines. Leriche and Gavrilakis used a DNS
to examine the flow inside the cavity in detail. They imposed a velocity profile on top of the
cavity flow to mimic flow experiments more realistically. Their paper notes the long time
scales exhibited by the flow. The simulation revealed a mostly laminar flow with most of
its total kinetic energy near the lid. Energy from this near­lid flow is then transmitted onto a
downflowing jet that splits into two upwards streaming jets near the bottom of the cavity.

1.2.2 Reduced­Order Modeling
POD, also known as principal component analysis or Karhunen­Loève decomposition, was ini­
tially applied to fluid dynamics in 1967 by Lumley [28]. The paper describes the vector field
partition of a turbulent fluid motion into separate functions. Each resulting function contains
a part of the flow’s kinetic energy. Lumley noted that the method was previously indepen­
dently suggested by multiple scientists [29]. The application of POD in fluid dynamics has
been heavily researched since and covered by numerous papers and articles [30, 31].

POD uses so­called snapshot data of the system at different points in time. The snapshots
are made up of each mesh cell’s state variables, for example, density and velocity data. These
snapshots are concatenated and used to calculate a covariance matrix. The eigenvectors of this
matrix are the dominant modes of the system, as described by Weiss [32]. The eigenvalues
reflect the Turbulent kinetic energy (TKE) captured by the respective eigenvectors.

For most CFD applications, the total number of state variables far exceeds the number of
snapshots used. Hence, Sirovich suggested in 1987 to exchange the temporal and spatial data
while calculating the POD basis [33]. This method can accelerate the computation in cases
where the number of grid points is larger than the number of snapshots used to construct the
basis. This procedure is known as the method of snapshots or the Snapshot POD­method.

The POD­Galerkin method assumes that these modes are only a function of space and can
be linearly combined with temporal coefficients to approximate the original system. It is de­
scribed in detail by Kunisch and Volkwein [34] and Iliescu and Wang [35]. These linear com­
binations can then be inserted into the Navier­Stokes or Reynolds­Averaged Navier Stokes
equations, as described by Sirovich [33] and Lorenzi et al. [36].
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The ROM obtained through application of the POD­Galerkin method to the Navier­Stokes
equations often quickly become unstable. This issue is examined in the work of Akhtar et
al. [37]. Different stabilization techniques, supremizer enrichment and a Poisson equation
approach, are compared by Stabile et al. [38]. Supremizer enrichment relies on the inf­sup
condition and is described by Rozza and Veroy [39]. The second approach for ROM stabiliza­
tion changes the incompressibility condition with the Poisson pressure equation. The appli­
cation of this approach for finite volume methods was proposed in [40] by Stabile et al. The
paper concludes that the first approach seems to produce superior results for pressure fields. In
contrast, the second was able to model velocity fields more accurately. Computationally, the
second approach was less demanding while both managed to produce a significant speed­up
compared to the Full­Order Model (FOM). For long­term integrations, the supremizer enrich­
ment technique seems to be less stable.

The application of the POD­Galerkin method to the compressible Navier­Stokes Equations
is discussed in detail by Rowley et al. [41]. It differs from the incompressible Navier­Stokes
equation treatment since the pressure and other variables influence the flow behavior. There­
fore, additional conservation equations and a different choice for the inner product are required.

Carlberg et al. showed that ROM stability could be increased by changing the projection
[42]. They minimized the residual by applying a Petrov­Galerkin projection to the time dis­
cretized FOM and then using a weighted least­squares norm. Their work proves that the error
bounds for the resulting Least­squares Petrov Galerkin (LSPG) method are either equal to or
smaller than the error bounds of the Galerkin projection in the backward Euler case if the orig­
inal function is Lipschitz continuous. Furthermore, it acknowledges how the two approaches
are equivalent under certain conditions, for example, when the time step ∆t approaches zero.
Their resulting ROM has proven to be more accurate and stable in the examined test case than
the POD­Galerkin ROM, given that a proper time step was chosen. Since the resulting com­
putation time for the non­linear least­squares minimization could exceed even the calculation
time of the FOM, the authors propose using the gappy POD method, developed by Everson
and Sirovich [43]. They reduce the problem to a linear least­squares minimization by sam­
pling rows from the basis matrix and filling in the gaps. A Gauss­Newton with Approximated
Tensors ROM was built using a greedy method, which sped up computation significantly.

Huang et al. [44] stated that reacting flows are especially sensitive to resolution and become,
in many cases, numerically unstable. The paper examines the root causes of this emerging in­
stability. Three possible origins were proposed, the first being conservation errors of the ROM.
The second is a loss of dissipation caused by the truncation of high­energy modes in the ROM.
The last proposed cause was the existence of unphysical local phenomena. Their investiga­
tion shows that only the latter has a measurable effect on ROM stability. In their calculations,
the occurrence of temperatures below 0K was observed, after which the ROM tends to ex­
plode. It is concluded that this occurrence can be attributed to the Gibbs phenomenon, which
is commonly present in reacting flow simulations due to the steep temperature gradients. Tem­
perature constraints were imposed on the ROM as a countermeasure. This action significantly
improved the stability of the model. In addition, the paper notes that an expected stability im­
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provement using the LSPG method, proposed by Carlberg et al. [42] was not observed in this
context.

Since these models use the dominant modes calculated through a solution of the FOM, only
state behavior within the space spanned by these modes can be captured. ROMs therefore
tend to produce inaccurate results when solving hyperbolic PDE, which often characterize
advection­based behavior. This limitation is addressed in another paper by Carlberg [45].
A method for increasing the reduced­order basis without reverting to the FOM is proposed.
This method constructs a tree for state variables by examining the proportionality and anti­
proportionality to each other and applying k­means clustering. It introduces an error approxi­
mation method, which is run for all top­level tree nodes in regular time intervals to assess the
model’s performance. Poorly performing nodes are split up if the total error exceeds a con­
trollable threshold. This refinement broadens the ROM basis and allows a controllable model
accuracy without requiring a FOM solve.

In addition to analytical methods, machine learning techniques can be employed to build
ROMs. An example for this is described by Wang et al. [46]. The paper uses an artificial
neural network to develop a non­intrusive ROM for unsteady flows. These models are, unlike
conventional intrusive ROMs, completely decoupled the online stage and the training stage.
Themodel was developed for a quasi­one­dimensional flow through the Continuously Variable
Resonance Combustor (CVRC) at Purdue University (Indiana, U.S.) [47]. The resulting model
generated robust results at a low computational cost.

1.3 Project Proposal
This project shall detail the application of the POD­Galerkin method to the incompressible
Navier­Stokes equations. The resulting ROM shall then be trained using flow information
from a well­understood test case, generated using a commercial CFD solver. A program shall
be written which imports flow data, applies the POD­Galerkin method, and outputs solutions
at different time steps. After verifying the solutions, and the performance of the ROM shall be
assessed. First steps for the extension of the ROM construction program towards applicability
to the RANS equations shall be made to accommodate future work.
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2 Flow Simulation
The following chapter details the basis for the conducted flow simulation. A finite­volume
method was used to numerically solve the PDEs describing the flow. A theoretical frame­
work for extension towards turbulent flow is outlined after detailing the incompressible Navier­
Stokes equations and the selected numerical methods. This includes the RANS equations and
the SST turbulence model.

2.1 Governing Equations
Systems of parabolic PDEs, based on the conservation of mass momentum and energy, are
used to characterize the flow behavior in a CFD simulation. These conservation equations are
detailed in the following subsections. Additional equations needed to achieve closure of the
RANS equations are detailed in section 2.3.

2.1.1 Incompressible Navier­Stokes Equations
The incompressible Navier­Stokes equations read as follows:

∂u
∂ t

=−(u ·∇)u+ν∇2u+
1
ρ

∇p (2.1)

where u denotes the velocity vector, containing the flow velocities in x­, y­ and z­ direction.
Incompressibility indicates that the divergence of the velocity vector is equal to zero, ∇ ·u= 0.
This relationship is known as the continuity equation. It can be seen that the Navier­Stokes
equations contain a convection term (−(u ·∇)u), a diffusion term (ν∇2u), and a pressure term
( 1

ρ ∇p). The resulting system of equations conserves momentum in every direction in space
and mass.

2.1.2 Incompressible RANS Equations
Applying the Reynolds decomposition to the mass conservation equation introduced in 2.1.1
leads to the following relationship:

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

+
∂u′

∂x
+

∂v′

∂y
+

∂w′

∂ z
= ∇u+∇u′ = 0 (2.2)
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By time­averaging this equation, the fluctuating terms become zero. Therefore,∇u= 0, and,
as a consequence, ∇u′ = 0. When applying Reynolds­averaging to equation 2.1, the following
momentum equations can be derived:

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+ν

∂ 2ui

∂xi∂x j
−

∂u′iu′j
∂x j

(2.3)

where the shear tensor Si j =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
and δi j denotes the Kronecker­Delta. The equa­

tions are written down using Einstein notation for the sake of brevity.

2.1.3 Additional Equations
Furthermore, equations for the shear stress τ within the fluid, the heat flux q, and an equation
of state are needed to define the system properly. In 1682, the shear stress for Newtonian flu­
ids was described by the Newtonian fluid hypothesis. The heat flux can be calculated using
Fourier’s law of heat conduction from 1822. For most technical applications, the ideal gas law,
first mentioned in 1834, can be used as an equation of state. Since the flow simulations within
this paper are conducted for an incompressible fluid, this equation does not apply. Instead, the
NIST real gas models implemented in Ansys were employed.

To calculate the shear stress τ , Sir George Stokes assumed isotropic flow, a linear depen­
dency of the stress tensor of the strain rate tensor, and a divergence of τ equal to 0. The
resulting stress tensor reads

τi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
+δi jλ

∂uk

∂xk
(2.4)

where δi j, again, denotes the Kronecker delta and λ the second coefficient of viscosity. A
common assumption for λ is −2/3µ [48]. In addition, this shear stress calculation requires
a model to evaluate the dynamic viscosity µ . Within the scope of this paper, a constant dy­
namic viscosity for water of µ = 0.001002Nm−2 s was assumed. For compressible gases, a
temperature­dependent viscosity model can be deployed. Sutherland’s law is frequently used.
It was first described by William Sutherland in 1893 [49] and states the following:

µ = µre f

(
T

Tre f

)3/2 Tre f +S
T +S

(2.5)

The respective parameters for standard air are listed in table 2.1 for later reference.

9



Table 2.1: Sutherland’s law coefficients for air [49]
Parameter [Unit] Value

µre f [ kg
ms ] 1.716 × 10−5

Tre f [K] 273.15
S [K] 110.4

If the temperature is considered, Fourier’s law for conductive heat transfer can be used to
calculate the heat flux q in most cases.

q =−κ∇T (2.6)

The thermal conductivity is herein denoted as κ . Constant Prandtl numbers for air of 0.72
(laminar), and 0.90 (turbulent) were assumed. Using the definition of the Prandtl number
Pr = cPµ

κ , the thermal conductivity can then be calculated. For the specific heat capacity at
constant pressure cp, a calorically perfect gas was assumed. The value of cp therefore stays
constant at 4184 Jkg−1K−1 for water and and 1004 Jkg−1K−1 for for dry air.

If the ideal gas law can be used as an appropriate equation of state, it writes as follows:

p = ρRT (2.7)

where R denotes the specific gas constant, defined as R =R/M. R symbolizes the universal
gas constant while M is the molecular weight of the gas. For dry air, the specific gas constant
reads 287.058 Jkg−1K−1.

2.2 Finite­Volume Methods
Finite­Volume (FV) methods are the most common class of numerical techniques for the solu­
tion of hyperbolic PDEs and are also commonly employed for the solution of parabolic PDEs.
They are the de facto standard for the numerical solution of non­linear problems and are hence
frequently used in the field of CFD.

The foundation of any FV method is the separation of the flow domain into a finite number
of discrete elements, commonly referred to as cells. Every cell features a respective value for
each flow property in question, i.e., flow velocity in x­, y­, or z­direction or static pressure.
The following conservation equation can be formulated, if the absence of sources or drains and
a fixed domain are assumed:

ut +∇ · f(u) = 0 (2.8)
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where u describes the cell state vector containing the calculated flow parameters. The index
t denotes the partial derivative with respect to time, ut =

∂u
∂ t . The matrix f denotes the flux

across the cell borders. The divergence of the flux ∇ · f(u) is also referred to as the residual
R(u). Equation 2.8 can be written for every cell in integral form:

d
dt

∫
Ωi

u dV =−
∫

∂Ωi

f(u) ·n dS (2.9)

The left­hand side describes the integral over the entire volume of cell i, and the right­
hand side describes the surface integral along its borders. A matrix consisting of unit vectors
orthogonal to the cell surfaces directed outward is denoted by n. The abbreviation of un

i for
the mean values of state vector u in cell i at time tn is frequently used1. The vector ui at time
tn+1 can be calculated by integrating the flux over time.

un+1
i = un

i −
1

|Ωi|

∫ tn+1

tn

∫
∂Ωi

f(u) ·n dS dt (2.10)

After assuming that cell i is constricted by a number ofm edgesE, this conservation equation
can be written as

un+1
i = un

i −
1

|Ωi|

∫ tn+1

tn

m

∑
k=1

∫
Ek

f(u) ·n dS dt (2.11)

The values for the flux f at the faces are interpolated from the state vector values at the
neighboring cell centers. When a face is only shared between two cells and the same interpo­
lation scheme is used for both cells, it can be inferred that conservation of the flow quantities
on the discrete level is achieved. This reconstructed flux is also known as the numerical flux
and will be written as g.

The flux calculation is commonly split into the reconstruction of the inviscid flux, meaning
the convective and pressure term flux, and the viscous flux, caused by the diffusion term in the
Navier­Stokes equations.
e

2.2.1 Inviscid Flux Calculation
To calculate the inviscid flux gI at every face of a cell, a number of numerical schemes can
be employed. The selected AUSM scheme separates FI into convective terms gC and pressure
terms gp [14]. Using the conservation equation, described in detail section 2.1, the following
can be formulated for the flux in x­direction for a 3­dimensional problem:

1un
i ≡ 1

|Ωi|
∫

Ci
u(x, tn)dx where x=

x
y
z

 for a 3­dimensional domain
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gI = gC +gP =


ρ
ρu
ρv
ρw
ρH

u+


0
p
0
0
0

 (2.12)

At the cell face, the convective numerical flux writes as

gC = Ma1/2


ρa

ρau
ρav
ρaw
ρaH


L/R

(2.13)

The index L/R denotes the selection of the left cell state values if M1/2 ≥ 0 and the right
cell state values otherwise. The advective velocity M1/2 is defined as

M1/2 = M+
L M−

R (2.14)

Liou and Steffen selected Van Leer Splitting [50] for the split Mach number M±:

M± =

{
±1

4 (M±1)2 , if ∥M∥ ≤ 1;
1
2 (M±∥M∥) , otherwise.

(2.15)

The pressure term p at the cell face is calculated using the following equation:

p1/2 = p+L + p−R (2.16)

A polynomial expansion of the characteristic velocities weighs the pressure splitting. Liou
and Steffen propose two possible polynomial expansions: one first­order, one second­order.
The second­order expansion writes as

p± =

{
p
4 (M±1)2 (2∓M) , if ∥M∥ ≤ 1;
p
2 (M±∥M∥)/M, otherwise.

(2.17)

The same method is also used to estimate the inviscid fluxes in y­direction and z­direction.

A modified version of this scheme, AUSM+, is implemented in ANSYS and was used for
the simulations.
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2.2.2 Viscous Flux Calculation
The viscous flux gv is less dominant than the convective flux in typical flows. It is defined as

gv = µtot


·

∂x
∂xi
∂y
∂xi
∂ z
∂xi

 (2.18)

Where µtot is the total viscosity, µtot = µdyn+µturb. The viscous flux is driven by diffusion.
Due to the random nature of diffusivity, it is commonly calculated using a central differencing
scheme.

2.2.3 Discretization in Time
Since the flow is unsteady, the equations must also be discretized in time. A second­order
implicit scheme was chosen. Implicit methods are stable for every time step size and are,
unlike explicit ones, capable of resolving transient incompressible flows. The second­order
discretization in time is expressed in the following update equation in Ansys Fluent:

3un+1 −4un +un−1

2∆t
= R(u) (2.19)

u is a scalar quantity of the flow. The exponents denote the time level and R(u) the residual.
This equation is solved iteratively at every time step until the residual is reduced below a preset
threshold.

2.2.4 Gradient Reconstruction
AWLSQmethodwas employed to reconstruct the gradients of the flow properties. The scheme
is based on the principle of least­squares minimization. The state variable ϕ is examined at
the node P and using its neighboring nodes N f with coordinates (x0,y0,z0) and (x f ,y f ,z f ),
respectively. For each neighboring point, the Taylor expansion at node P is then constructed.

ϕ(N f )−ϕ(P) = ∇ϕ(P) · (N f −P)+O(h2) (2.20)

The following notation is introduced:

∆xi ≡ xi − x0 (2.21)
∆yi ≡ yi − y0 (2.22)
∆zi ≡ zi − z0 (2.23)
∆ϕi ≡ ϕ(Ni)−ϕ(P) (2.24)
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The higher­order terms O(h2) from equation 2.20 are then neglected, and the expansions are
rearranged to


∆ϕ1
∆ϕ2
...

∆ϕF

=


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
...

...
...

∆xF ∆yF ∆zF

 · [∇lsϕ(P)
]

(2.25)

which forms a linear system of equations of the type

b = Ax (2.26)

This system has no exact solution due to the absence of higher­order terms. It has more
linearly independent equations than unknowns and is therefore overconstrained. Algebraically,
the vector b does not lie in the column space of matrix A. It is possible to minimize the error
e ≡ b−Ax by finding a solution in which its projection onto the column space of A is zero.
In this case, it is perpendicular to every column of A.

AT (b−Ax) = 0 (2.27)

This case minimizes the sum of the squared components of the error e. Least­squares gra­
dient schemes can be augmented by a diagonal weighting matrixW To take the different dis­
tances to the nodes into account. This weighting is vital if the cell contains skewed or stretched
cells, for example, near a no­slip wall.

W=

w1
. . .

w f

 (2.28)

(2.29)

The solution to equation 2.25 after multiplying both sides with the weighting matrix is

x = ∇lsϕ(P) = (ATWTWA)−1ATWTWb (2.30)

The weights making up the matrixW are usually of the form w f = (∆r f )
−q where r f is the

distance between nodes.

∆r f = ||N f −P|| (2.31)

The user can select the exponent q at his will. Common picks are q = 1 and q = 2. Syrakos
et al. also noted advantages of using q = 2/3 for specific grid types [13].
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2.3 Turbulence Model
In this case, the SST model was selected as a turbulence model.
The transport equation for the TKE k and the specific dissipationω in the SSTwrite as follows:

∂ (ρk)
∂ t

+
∂ (ρu jk)

∂x j
= τi j

∂ui

∂x j
−β ∗ρωk+

∂
∂x j

[
(µ +σkµturb)

∂k
∂x j

]
(2.32)

∂ (ρω)

∂ t
+

∂ (ρu jω)

∂x j
=

γ
νturb

τi j
∂ui

∂x j
−βρω2 +

∂
∂x j

[
(µ +σω µturb)

∂ω
∂x j

]
+2(1−F1)

ρσω2

ω
∂k
∂x j

∂ω
∂x j

(2.33)

with τi j = µturb

(
2Si j − 2

3
∂uk
∂xk

δi j

)
− 2

3ρkδi j and Si j =
1
2

(
∂ui
∂xi

+
∂u j
∂xi

)
. The blending function

F1 incorporates the cell centroid distance to the nearest wall d and is defined as F1 = tanh(arg4
1)

where

arg1 = min

[
max

( √
k

β ∗ωd
,
500ν
d2ω

)
,

4ρσω2k
CDkωd2

]
(2.34)

CDkω = max
(

2ρσω2
1
ω

∂k
∂x j

∂ω
∂x j

)
(2.35)

The empirical constants σk, σω , and β are blended in accordance with the blending function
F1.

ϕ = F1ϕ1 +(1−F1)ϕ2 (2.36)

Respective empirical values for ϕ1 and ϕ2 can be found in table 2.2. The constant β ∗ is
assumed to be 0.09 in the SST model.

ϕ1

σk1 0.85
σω1 0.65
β1 0.075

ϕ2

σk2 1.00
σω2 0.856
β2 0.0828

Table 2.2: Empirical constants in the SST model

Furthermore, both the k−ω and the k− ε model tend to overestimate the wall shear stress,
which leads to inaccurate flow separation estimation. The SST model, therefore, introduces a
shear stress limiter, which is implemented in the calculation of the eddy viscosity µturb.
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µturb =
ρa1k

max(a1ω,SF2)
(2.37)

where a1 is a SST closure constant and equal to 0.31. This calculation uses the blending
function F2 which is defined as

F2 = tanh(arg4
2) (2.38)

arg2 = max

( √
k

β ∗ωd
,
500ν
d2ω

)
(2.39)
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3 Test Data Generation
The selected test case to generate detailed flow data is a lid­driven flow within a cubical cavity.
The numerical simulation is discussed in detail in this section. After elaborating on simulation
inputs like the lid geometry and flow properties, the simulation mesh is discussed. A brief
overview of the results is shown, and an a posteriori mesh check is performed to verify that
the chosen mesh refinement does not introduce errors in the simulation.

3.1 Simulation Inputs
The cavity was designed with a spanwise aspect ratio of 1:1. Its depth and width are 150mm,
each. An isometric view of the cavity is shown in figure 3.1.

Figure 3.1: Isometric view of the simulated cavity

Experiments by Koseff et al. were conducted for this geometry using isothermal water flow
[26]. Within the scope of this simulation, water is treated as an incompressible fluid. Simula­
tion input parameters can be found in table 3.1.
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Temperature [K] 293.15
Pressure [Pa] 101 325
Density [kg/m3] 998.2071
Dynamic viscosity [Pa · s] 0.001002

Table 3.1: Input parameters of the fluid simulation

Many lid­driven cavity flow simulations choose a constant flow velocity in x­direction when
defining the Dirichlet boundary conditions imposed on the cavity. Leriche et al. note that this
is physically inconceivable and propose a polynomial velocity distribution of degree 36 for the
u­velocity instead [27]. This distribution was selected based on a series of 2­dimensional flow
simulations conducted prior. The flow simulation performed within this project’s scope uses
an identical flow velocity distribution to enable a direct comparison of results. It is given by

u(x,y) = u0

(
1−
(

2x
h
−1
)n)2(

1−
(

2y
h
−1
)n)2

(3.1)

where n= 18 for a polynomial distribution of degree 36, h= 150mm and u0 is the maximum
flow velocity. The average flow velocity on top of the lid can be calculated by integrating the
function and dividing by the total lid area:

ū =
1

(0.15)2

0.15∫
0

0.15∫
0

u0

(
1−
(

2x
0.15

−1
)18
)2(

1−
(

2y
0.15

−1
)18
)2

dxdy ≈ 0.8496 ·u0

(3.2)

The flow simulation was conducted for two different maximumReynolds numbers at the lid,
Remax = 3200 and Remax = 12000. These two simulations represent an essentially laminar flow
regime and a turbulent one. Therefore, the average Reynolds numbers on top of the cavity are
approximately 2718 and 10196, respectively. The maximum velocities in x­direction imposed
on the cavity are

u01 =
Remax1 ·µ

h ·ρ
≈ 0.021414 m/s (3.3)

u02 =
Remax2 ·µ

h ·ρ
≈ 0.080304 m/s (3.4)

and the average velocities in the x­direction are

ū1 =
Re ·µ
h ·ρ

≈ 0.018189 m/s (3.5)

ū2 =
Re ·µ
h ·ρ

≈ 0.068230 m/s (3.6)
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The u­velocity distribution on top of the cavity for the laminar flow simulation is shown in
figure 3.2.

Figure 3.2: Imposed velocity distribution on top of the cavity

The test cases were simulated for ten seconds. Only five seconds were used to generate flow
data for training the ROM. The remaining five seconds were used for validation of the ROM
data results. To iterate through time, a two­step iteration scheme was chosen. It allows for a
relatively high accuracy even when using a large outer step size. A ∆t of 0.05 s was selected.
The maximum number of inner iterations per time step was set to 15.

3.2 Mesh
To accurately simulate viscous flows near a wall, it is necessary to account for the boundary
layer. It increases the production of turbulence and dampens wall­normal flow velocities.
Research has shown that the boundary layer can be divided into three sections [51]. It is
common to describe the boundary layer in terms of y+. This parameter denotes the wall­normal
distance normalized using the friction velocity uτ . It is defined as

y+ = y ·uτ/ν = y ·uτ ·ρ/µ (3.7)

where uτ =
√

τw/ρ . The wall shear stress τw is defined as τw = 1
2ρu2c f . Near the wall,

at , the friction velocity is dominated by viscous flow effects.This viscous sub­layer occurs at
distances around 0 < y+ 5. At those distances, the normalized velocity profile in x­direction
u+ = u/uτ can be approximated by a linear function. In the so­called inertial sub­layer, tur­
bulent effects dominate the flow behavior. It is located at distances of 20 < y+ 200. The
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velocity u+ can be approximated by a logarithmic function. This can also be seen in figure
3.3.

Figure 3.3: U­velocity profile with linear and log­law approximation. Channel flow, DNS­
data, Reτ=395 [1]

The buffer layer is between those two sub­layers, where both viscous and turbulent effects
influence the flow behavior. In this layer, the highest amount of turbulence is produced. Be­
cause different turbulence models utilize additional turbulence production terms and the flow
behavior inside the buffer layer is generally challenging to model, the centroid of the mesh cell
closest to the wall should not be placed within this region. Instead, the following approaches
are used:

• Placing the wall­nearest cell centroid in the viscous sub­layer and incorporate a low­
Reynolds­number model (wall­resolved approach)

• Placing the wall­nearest cell centroid in the inertial layer and use a high­Reynolds­
number model (wall function approach)

Becausewall­resolved flow simulations typically become impractical at highReynolds num­
bers, these flows then require a wall function approach. In this case, a wall­resolved approach,
often called the integration method, was selected. It is to note that the sub­layer ranges are
given for flow over a flat plate and can vary due to pressure gradients, wall curvature, or flow
separation. Therefore, it is common practice to select a y+ value of 1 when generating a mesh
for a wall­resolved simulation1. To calculate an initial estimate for the skin friction coefficient
1https://www.cfd-online.com/Forums/main/111896-why-y-1-a.html
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c f , an equation proposed by Schlichting [23] was used. It is based on empirical data and relates
c f to the Reynolds number of a fully turbulent flow over a flat plate.

c f = (2 · log10(Re)−6.5)−2.3 (3.8)

A wall­function approach with an initial value of y+= 100 was selected. The height of the
first mesh cell height at a wall was calculated using the previously introduced relationships,
the input data from 3.1, and a characteristic length of 150mm:

c f ≈ 4.6990 (3.9)
τw ≈ 1.0755 N/m2 (3.10)
uτ ≈ 0.03282 m/s (3.11)

ycc1 =
y+µ
uτ1ρ

≈ 3.0581 ·10−3 m (3.12)

The centroid is located at half the cell height for a hexahedral mesh cell. The resulting in an
initial cell height is therefore

yc1 = 2∗ ycc1 ≈ 6.11626 ·10−3 m (3.13)

For the turbulent flow case, this process is analogous and results in the following geometry
value:

c f 2 ≈ 0.3124 (3.14)
τw2 ≈ 1.0055 N/m2 (3.15)
uτ2 ≈ 0.031739 m/s (3.16)

ycc2 =
y+µ
uτ2ρ

≈ 3.1627 ·10−3 m (3.17)

yc2 = 2∗ ycc2 ≈ 6.3254 ·10−3 m (3.18)

Its maximum thickness δ is calculated to ensure that the mesh can resolve the boundary
layer accurately. For the laminar flow, this value can be approximated using a solution derived
from the Blasius equations, as described by Schetz and Bowersox [22].

δ1 ≈ 5.0
x√
Re

= 5.0
0.15 m√

3200
≈ 0.013258 m (3.19)

For the turbulent case, an approximation for the boundary layer thickness over a flat plate
in turbulent flow was employed. This relationship is given by Schlichting [23].
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δ2 ≈ 0.37
x

Re1/5 = 0.37
0.15 m

120001/5 ≈ 0.008481 m (3.20)

n= 7 layers were placed within the boundary layer for both of thesemeshes. The growth rate
GR can be calculated using the boundary layer thickness and the first cell height, the growth
rate GR can be calculated.

GR1 =

(
δ1

yc1

) 1
n

≈ 1.11680 (3.21)

GR2 =

(
δ2

yc2

) 1
n

≈ 1.04278 (3.22)

A mesh with a regular cell size of 8mm was selected for both flow cases. The mesh for the
laminar flow case can be seen in figure 3.4. Two cylindrical refinement zones near the top side
of the cavity were added. Both zones extend to a a radius of 75mm and were placed normal to
the main flow direction. Within the refinement zones, a standard cell height of 0.0025mmwas
defined. These zones were added to increase the accuracy of the simulation since the largest
pressure gradients are expected within these domains. The resulting mesh consists of 149552
hexahedral cells spanning between 156392 nodes.

(a) 3­dimensional view (b) Cross­section

Figure 3.4: Mesh for the laminar flow case

The mesh for the turbulent flow case is shown in figure 3.5. It is similar to the laminar mesh,
but features a thinner boundary layer and lower wall­adjacent cell height.
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(a) 3­dimensional view (b) Cross­section

Figure 3.5: Mesh for the turbulent flow case

3.3 Wall Function
The adaptive wall function was selected for the simulation. It has been validated by Carlson
et al. [52] by comparison with theoretical and experimental data and produced very accurate
results. The method by Knopp et al. [25] is based on the work of Reichardt [53] and Spalding
[54]. It uses a hyperbolic tangent function to blend the log­law equation for the friction velocity
and the law­of­the­wall equation by Reichardt. The former can be written as

uτ |Log =
1
κ

ln(y+)+5.1 (3.23)

Herein, κ denotes the von Kármán constant, here set to 0.41. The latter equation takes the
form of

uτ |Reichardt =
ln(1+0.4y+)

κ
+7.8

(
1− e−y+/11 − y+

11
e−y+/3

)
(3.24)

Using the blending function ϕb1, the modified Reichardt equation writes as follows:

uτ |Reichardt,m = (1−ϕb1)uτ |Reichardt+ϕb1uτ |Log (3.25)

with

ϕb1 = tanh(arg4) (3.26)

arg =
y+

27
(3.27)
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In a second step, this function is then blended with the friction velocity function by Spalding
in a similar fashion. For the SST turbulence model, this primarily affects the results in the
buffer layer.

uτ |Spalding= u++ e−κ5.2
(

eκu+ −1−κu+− (κu+)2

2
− (κu+)3

6

)
(3.28)

uτ |SST = (1−ϕSST )uτ |Spalding+ϕSST uτ |Reichardt,m (3.29)

ϕSST = tanh(arg2) (3.30)

arg =
y+

50
(3.31)

Knopp et al. also propose an alternative calculation method for the, the specific dissipation
rate ω near the wall:

ω = ϕωb1 +(1−ϕ)ωb2 (3.32)

ϕ = tanh(arg4), arg =
y+

10
(3.33)

ωb1 = ωvis +ωlog, ωb2 =
(

ω1.2
vis +ω1.2

log

)1/1.2
(3.34)

ωvis =
6ν

β1y2 , ωlog =
uτ√
β ∗κy

(3.35)

The parameters β1 and β ∗ can be found in section 2.3.

3.4 Simulation Results
The simulation results for the laminar and the turbulent flow case are detailed in the following
subsections.
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3.4.1 Laminar Flow Case
The laminar, lid­driven cavity simulation resulted in the following findings: The streamlines,
plotted at the central cross­section in figure 3.6a, confirmed the expected flow behavior. A
large­scale circulation flow forms in the cavity. The plot of the flow direction vector field,
shown in figure 3.6b, reveals two low­velocity re­circulation zones, or secondary eddies, at
the bottom of the lid.

(a) Streamlines at the central cross­section (b) Flow directions at the central cross­section

Figure 3.6: Cavity flow at ∆t = 5 for the laminar flow case

The pressure and velocity profiles at the central cross­section at ∆t = 5 are plotted in figure
3.7. The minor pressure variations have their maximums near the upper x­normal edges of
the cavity. The plotted pressure is the gauge pressure, i.e. the pressure zero­referenced by the
normal pressure of 101325Pa. The maximum flow velocities can, as expected, be found in the
main flow near the lid in the x­direction. Figure 3.7a shows how only a very minor portion of
the lid flow momentum is transported down into the cavity in the laminar flow case. The pres­
sure profile is plotted at different cross­sections along the x­axis is plotted in figure 3.8. The
pressure profiles within the boundary layers display smoother contours due to the increased
mesh resolution. The figure confirms the pressure profile indicated by figure 3.7b and visu­
alizes the 3­dimensional nature of these pressure peak zones, as well as a certain symmetry
within the cavity.

In general, the system behaves very laminar. The initial TKE present in the cavity is trans­
ported outwards and quickly dissipates at the walls of the cavity, as shown in figures 3.10a
and 3.10b, respectively. The TKE remaining after five seconds is located at the center of the
cavity, see figure 3.10a.
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(a) Pressure profile at the central cross­section (b) Velocity profile at the central cross­section

Figure 3.7: Flow quantities at ∆t = 5 for the laminar flow case

Figure 3.8: Pressure contours for the laminar flow case at different positions

26



Figure 3.9: Volume­averaged turbulent kinetic energy over time for the laminar flow case

(a) Turbulent kinetic energy (b) Turbulent kinetic energy dissipation

Figure 3.10: Flow quantities at the central cross­section in y­direction for the laminar flow case
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3.4.2 Turbulent Flow Case
The turbulent, lid­driven cavity simulation produced the following results: The streamlines
confirm that the large­scale circulation flow, which appeared in the laminar flow case, is still
present. They are plotted at the central cross­section in figure 3.11a. The center of this cavity­
dominating vortex is moved downstream in the turbulent flow case. The plot of the flow
direction vector field, shown in figure 3.11b, supports this claim and reveals the presence of
two secondary eddies at the bottom of the lid. These eddies are significantly smaller than the
ones occurring in the laminar flow case.

(a) Streamlines at the central cross­section (b) Flow directions at the central cross­section

Figure 3.11: Cavity flow at ∆t = 5 for the turbulent flow case

The contour plot of the gauge pressures present at the central cross­section in y­direction
shows the formation of a high­pressure region near the lid’s trailing edge. It is shown in figure
3.12b. The peak pressure is one order of magnitude above the peak pressure calculated for the
laminar flow case. Besides this region, the cavity is subject to smaller variations in pressure.
At a lower height, near the backside of the cavity in the x­direction, another pressure peak
can be detected. This maximum is located below a zone of negative gauge pressure. Figure
3.12a shows the velocity distribution at the central cross­section. It is noticeable that higher
flow velocities are present in the cavity compared to the laminar flow case. The momentum
introduced into the flow via the lid is transported downwards in a high­velocity jet. The jet
travels through the region of negative gauge pressure and separates from the cavity wall. It is
dispersed at the height of the lower pressure peak.
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(a) Pressure contours at the central cross­section (b) Velocity contours at the central cross­section

Figure 3.12: Flow quantities at ∆t = 5 for the turbulent flow case

Figure 3.13: Pressure contours for the turbulent flow case at different positions

Figure 3.13 shows pressure contour plots at different cross­sections within the cavity. It in­
dicates symmetry in the y­direction and shows the extent of the pressure peak near the trailing
wall and the zone of negative gauge pressure above it.
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Similar to the laminar flow case, the highest amount of TKE is present in the center of the
cavity. This distribution can be seen in figure 3.14a. Additionally, an increased concentration
of TKE can be found near the leading edge of the lid. The energy is low where the downwards
high­velocity jet separates from the cavity wall. Figure 3.14b shows how the TKE dissipates
due to the no­slip conditions at the cavity walls. This dissipation causes the TKE present in the
cavity to be lowest in near­wall regions. Additional dissipation is present close to the constant
velocity lid­flow.

(a) Turbulent kinetic energy (b) Turbulent kinetic energy dissipation

Figure 3.14: Flow quantities at the central cross­section in y­direction for the turbulent flow
case
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4 Reduced­Order Model
A reduced­order model can be built using the information generated in the so­called offline
stage, calculated using a finite­volume method within this project. The following chapter
details the basis selected for this ROM. After describing an alternative to the direct POD basis
calculation, the Galerkin projection is applied to the Navier­Stokes equations.

4.1 Proper Orthogonal Decomposition
Several different techniques are available to construct a ROM basis, for example, dynamic
mode decomposition, eigenfunctions, or the POD. The latter approach was selected for this
project because it can capture the highest amount of TKE using the fewest number of modes
possible. The decomposition assumes that flow behavior can be separated into a sum of prod­
ucts of spatial functions and temporal coefficients. For a flow quantity q, this can be written
as

q(x, t)≈ qr(x, t) =
∞

∑
k=1

Φk(x)ak(t) (4.1)

where Φ denotes the spatial POD modes. The word proper in POD implies that the maxi­
mum amount of energy of the system is captured by the first nmodes. The orthogonal indicates
that the POD nodes are orthogonal to each other, meaning that the integral with respect to space
of the product of modes n and m is 1 if n = m and 0 in every other case.

Snapshots of data at different points in time are used to calculate the PODmodes of a system.
These snapshots have to be selected in observance of the system’s timescales that need to be
resolved. Sub­scale behavior can not be captured by the POD model. For Ns snapshots, the
snapshot data can be written as

qn ≡ q(x, tn), n = 1, ..,Ns (4.2)

After selecting appropriate snapshots, the data is rearranged into matrix U . For this, the
vectors of snapshot information are concatenated into a row vector. The resulting snapshot
vectors are then stacked on top of each other. If m data points are observed at n points in time,
matrixU is of size n×m. The dominant modes of this system can then be found by calculating
the covariance matrix C, defined as
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C =UTU (4.3)

It can be seen that the size of the covariance matrix is of size m×m. Each diagonal ma­
trix element of C denotes the data variance at the respective data point while the off­diagonal
elements quantify the statistical correlation ρ between two points. For data points i and j, it
is defined as ρ =

ci j√ciic j j
. A ρ­value of 1 implies a perfect correlation between two points,

while a value of 0 means there is no correlation at all. A value of negative 1 indicates a perfect
anti­correlation. Since the matrix C is produced by multiplying a matrix and its transpose,
it is naturally symmetric. The dominant modes of the covariance matrix are those that max­
imize the variance values of each axis, written on the matrix diagonal. Since the modes are
orthogonal to each other, there is no correlation. Every off­diagonal element is, therefore, zero.

It is known from linear algebra that the eigenvectors of a symmetric matrix form an orthog­
onal basis in which said matrix can be diagonalized:

C = ΞΛΞ−1 (4.4)

where Λ is a diagonal matrix with the eigenvalues ofC as its entries and

Ξ = [ξ1,ξ2, ...ξn] (4.5)

The eigenvectors of the correlation matrix are denoted with ξi while n is its dimensions.
The eigenvalues indicate the total energy represented by the corresponding eigenvector. The
further left eigenvectors are stored in the eigenvector matrix Ξ, the more dominant they are.
This property is caused by assorting the eigenvalues by value. The POD basis function can
then be constructed as follows:

ϕi(x) =
Ns

∑
n=1

ξi,n, i = 1, ...,Nr (4.6)

Nr denotes the number of modes used to create the ROM.

4.2 Basis Calculation
Since the size of the correlation matrix ism×m, the eigenvalue calculation becomes infeasible
for large spatial domains. The Singular Value Decomposition (SVD) can be used to mitigate
this problem. It factorizes the snapshot matrixU into

U = LΣRT (4.7)

32



Calculating the correlation matrix using this equality leads to

UTU =(LΣRT )T (LΣRT ) (4.8)
=(RΣT LT )(LΣRT ) (4.9)
=(RΣT ΣRT ) (4.10)

When comparing this relationship to equation 4.4, it can be seen that Λ = ΣT Σ, the diagonal
matrix of the system’s eigenvalues. Ξ = R, a matrix composed of the system’s eigenvectors.
The temporal correlation can be calculated as follows:

Cs =UUT =(LΣRT )(LΣRT )T (4.11)
=(LT ΣR)(RΣT LT ) (4.12)
=(LΣΣT LT ) (4.13)

Where L is the eigenvector matrix. It can be shown that the non­zero elements of the diago­
nal matrices ΣT Σ and ΣT Σ are identical. The eigenvectors of the spatial correlation matrix can
therefore be calculated using the eigenvalues and vectors of the temporal correlation matrix.

RT = Σ−1L−1U (4.14)

Since the eigenvectors are orthogonal to each other, L−1 = LT . The inverse of the Σ is a
diagonal matrix with the reciprocal entries of Σ.

R = (Σ−1LTU)T (4.15)

An equivalent POD basis to 4.6 can therefore be found by

ϕi(x) =
1√
λi

Ns

∑
n=1

ζi,nun(x), i = 1, ...,Nr (4.16)

The eigenvectors of the temporal correlation matrix are written as ζi. The nth row of the
snapshot matrix is denoted by un. Since the number of snapshotsNs is often far smaller than the
number of data points in the domain for typical flow calculations, this technique can notably
accelerate the POD basis calculation.
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4.3 Galerkin­Projection
To predict the system’s behavior, equation 4.1 is inserted into the incompressible Navier­Stokes
equations. Since a is only a function of t and ϕ is only a function of x, the following system
results:

ut +(u ·∇)u−ν∆u+∇p = 0 (4.17)
Nr

∑
i=1

ϕiait = ν∆
Nr

∑
i=1

ϕiai − (
Nr

∑
i=1

ϕiai ·∇)
Nr

∑
i=1

ϕiai −∇p (4.18)

The number of modes used to construct the ROM is denoted by Nr. The system 4.17 is
therefore approximated by the system 4.18. For every temporal coefficient ai, the following
linear system can be constructed:

ϕiait = ν∆ϕiai − (ϕiai ·∇)
Nr

∑
j=1

ϕ ja j −∇p (4.19)

Since the POD modes are orthogonal to each other by design, meaning ϕiϕ j = 0 for every
i ̸= j, the system simplifies to

ϕiait = ν∆ϕiai − (ϕiai ·∇)ϕiai −∇p (4.20)

ait =
ϕ T

i

|ϕ 2
i |

ν∆ϕiai −
ϕ T

i

|ϕ 2
i |
(ϕiai ·∇)ϕiai −

ϕ T
i

|ϕ 2
i |

∇p (4.21)

In most cases, the pressure term can be neglected [34–36], ∇p = 0. Hence, to extrapolate
the flow behavior into the future, the following initial value problem needs to be solved:

ait = ȧi =νBiai −aiCiai (4.22)

Bi =
ϕ T

i

|ϕ 2
i |

∆ϕi (4.23)

Ci =
ϕ T

i

|ϕ 2
i |
(ϕi ·∇)ϕi (4.24)

The flow velocity information at the last calculated time step of the offline phase is used to
calculate an initial value for a. This data is denoted ut f .

a0i =
ϕi

|ϕi|2
ut f (4.25)

34



5 Model Analysis
In the following chapter, the results of the POD­Galerkin method are discussed and compared
to the numerically generated results.

The normalized eigenvalues corresponding to the POD modes are shown in figure 5.1a. It
can be seen that the energy corresponding to the respective POD mode rapidly declines. The
truncation error for the reconstruction is below 10−12 when 77 modes are used. Only 46 modes
are needed to achieve a truncation error below 10−9. Additional truncation errors for recon­
structions usingNr modes are listed in table 5.1. The truncation error is plotted over the number
of modes used for the reconstruction in figure 5.1b.

(a) Energy captured per POD mode (b) Truncation error for different reconstructions

Figure 5.1: POD reconstruction properties of the laminar flow case

Nr 2 4 5 7 12 24
etrunc 7.44e­04 1.43e­5 5.07e­6 7.98e­7 9.61e­8 8.88e­9

Nr 46 60 68 77 89 98
etrunc 9.56e­10 8.54e­11 8.38e­12 9.32e­13 9.34e­14 5.57e­15

Table 5.1: Truncation errors for different reconstruction

The results for the POD­Galerkin method employed within this project’s scope were cal­
culated using the first 24 most dominant modes of the system. The truncation error should
therefore be close to 10−8. The ROM was run over a total period of five seconds. It was
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Figure 5.2: Numerical results at different time steps

constructed using 100 snapshots with intervals of 0.05 seconds between them. The selected
time step size for the ROM was therefore 0.05 seconds, too. Since only information with this
temporal resolution was used, the model fails to capture flow phenomena below that scale.
The error hence increases, as shown by Carlberg et al. [42].

The numerical simulation shows that the velocity profiles in every direction become more
pronounced with time. Figure 5.2 plots the velocities at every centroid in the domain for two
different times. The graphs show that the velocities in x­ and z­direction exceed the velocity
in the y­direction by order of magnitude. Since the three left plots show the profiles at t = 1s,
likely, the flow has not fully developed yet, and the result is highly dependent on the selected
initialization. As time progresses, the dominant flows in the system become more distinct, and
the simulation results become more robust.

An online stage of 5 seconds was compared against results of a numerical simulation to
validate the ROM. Since the model was trained on data generated for 5 seconds of flow time,
the temporal domain for the online stage is between 5 and 10 seconds. Numerical results for
this stage are shown in figure 5.3. The figure plots the velocities in x­, y­, and z­direction for
every centroid within the domain concatenated into one velocity profile. This growth of this
velocity profile is visualized by overlapping the data generated at different steps in time.
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Figure 5.3: Cell velocity profile over time

The velocity profiles generated by the first four dominant POD modes are shown in figure
5.4. The velocity in y­direction was not shown since its magnitude is far below the magnitudes
of the x­ and z­velocities. The first two modes seem to mostly model the flow behavior near
the lid and the walls normal to the flow direction. The third mode captures the large circula­
tion flow trough the cavity. Since none of the first few dominant modes show the two reflow
regions at the bottom of the cavity, the momentum carried by these flows can be estimated to
fairly insignificant. The less dominant a mode is, the smaller the scale of the flow behavior
captured by it seems to be. The non­dominant POD modes capture small fluctuations in the
flow to further approach the accuracy of the FOM. The model implemented within the scope
of this project should reach a FOM accuracy at Nr = 100 if assumption 4.1 holds, since 100
snapshots in time were used to construct it.
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(a) Magnitudes of POD mode 1 (b) x­Velocity of POD mode 1 (c) z­Velocity of POD mode 1

(d) Magnitudes of POD mode 2 (e) x­Velocity of POD mode 2 (f) z­Velocity of POD mode 2

(g) Magnitudes of POD mode 3 (h) x­Velocity of POD mode 3 (i) z­Velocity of POD mode 3

(j) Magnitudes of POD mode 4 (k) x­Velocity of POD mode 4 (l) z­Velocity of POD mode 4

Figure 5.4: POD mode velocity profiles at the central cross section in XZ direction

38



Figure 5.5 shows the five a coefficients corresponding to the most dominant modes of the
system plotted over 5 seconds. It can be seen that only the first coefficient experiences notable
change. The profile of the coefficient suggests that the system will quickly become unstable.
This suspicion is further reinforced by the plot of the Root Mean Square Error (RMSE) over
time, shown in figure 5.7.

Figure 5.5: Temporal coefficients of the POD­Galerkin ROM

This deviation from the expected system behavior can also be seen in figure 5.6. When com­
pared to figure 5.3, it can be seen that the Galerkin projection captured critical characteristics
of the flow while quickly starting to deviate from the numerical solution.

The calculation time of the ROM using the POD­Galerkin method is significantly lower
than performing a numerical simulation. While the FV method took hours to run on standard
laptop hardware, the model was computed in less than four minutes. The majority of this time
was dedicated to Input/Output. Furthermore, the program can be optimized to require only
a fraction of its current runtime by removing output functions devoted to the validation and
debugging of the program.
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Figure 5.6: ROM cell velocity profile over time

Figure 5.7: RMSE over time
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6 Conclusion and Outlook
The ROM was able to capture the dominant flow behavior extracted from the numerical data
and make accurate predictions into the future. The well­known instabilities occurring after a
short time using the POD­Galerkin method were observed and quantified using the RMSE.
The POD modes were also used to analyze the cavity flow and isolate different flow phenom­
ena within the cavity.

The accuracy of the model, and potentially its stability, could be further increased by using
more than 24 POD modes to construct it. Due to hardware limitations, this mode limit was not
exceeded within this project’s scope. Using more modes increases the storage space in RAM
required drastically. Further program optimization could mitigate this limitation without re­
quiring large amounts of RAM.

While the model computed orders of magnitude faster than the numerical simulation, it can
be further optimized. The embedding of a ROM solver into CFD software will remove the
input/output bottleneck and has the potential to reduce computation time by over 90%. This
combination has been done for CFD codes like “AERO­F”, developed by the Farhat Research
Group at Stanford University.

The results computed by the ROM program require further verification. The flow velocities
start to deviate immediately from the numerical ones at a faster pace than the truncation er­
ror, calculated using the POD eigenvalues, suggests. Furthermore, the occurring instabilities
are caused by unrestricted growth of the a coefficients instead of fluctuations, shedding doubt
upon the results. Additional unexpected predictions calculated using the model can be ob­
served. A Galerkin­projection based on 24 POD modes should capture all the dominant flow
characteristics. Figures 5.3 and 5.6 suggest that some regions are modeled poorly. A possible
explanation for this phenomenon is inherent to the method applied. POD­Galerkin is known
to model behavior that has not been previously observed within the domain very inaccurately.
It fails to recreate propagating shocks modeled by the Burger’s equation and similar transport
phenomena.

After further verification of the ROM, additional measures should be implemented to in­
crease its robustness. These measures could include changing the projection type, implement­
ing adaptive h­refinement, or using supremizer enrichment for stabilization. The model should
also be adapted to mimic the RANS equations. A possible verification case could be the lid­
driven cavity with a significantly higher lid velocity.
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