
 

 

Deep Learning Neural Network 

Based Convergence Criteria for 

Computational Fluid Dynamics 

 

a project presented to 

The Faculty of the Department of Aerospace Engineering 

San José State University 

 

in partial fulfillment of the requirements for the degree 

Master of Science in Aerospace Engineering 

by 

Joshua F. Diaz 

December 2022 

 

D. Dalle, PhD[1], P. Papadopoulos, PhD[2] 
Industry Advisor [1], Faculty Advisor [2] 

 

 

 

 



 

 

 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2022 

Joshua F. Diaz 

ALL RIGHTS RESERVED 

  



 

 

 

 

iii 

ABSTRACT 

Determining if a computational fluid dynamics (CFD) solution has converged is critical to the 

quality of the solution. Assuming the grid and solver settings for a CFD simulation are adequate 

then the CFD simulation will conclude when a solution satisfies specified convergence criteria. 

This paper presents a comparison between convergence classification based on simple 

convergence criteria and a supervised machine learning model. The machine learning model 

utilizes the open-source artificial intelligence (AI) framework TensorFlow paired with the 

hyperparameter optimizer KerasTuner. The CFD simulations were conducted using the NASA 

developed viscous flow solver, FUN3D. The training and validation dataset consist of 300 cases 

covering an ascent trajectory of a near axisymmetric rocket. Each case is classified as either 

converged or not converged by an expert user based on the iterative history of three force 

coefficients and one moment coefficient. A comparison between the simple algorithms and the 

training data shows monitoring physical quantities of interest for asymptotic behavior, both with 

and without feature smoothing, are not able to achieve satisfactory accuracy; 67.3% and 71.3% 

respectively for a threshold of ±0.0005 over 500 iterations. Two datasets were created to test each 

method’s performance: an ascent trajectory comprised of 25 cases, and 50 high supersonic cases 

respectively. For the high supersonic dataset, each model achieved on average within 1% of the 

user’s results. For the ascent trajectory dataset, a machine learning model which sampled 2000 

iterations achieved on average between 1.82-2.94%; a machine learning model which sampled 

1000 iterations achieved between 2.21-4.57%; the asymptotic criteria achieved on average 

between 3.26-4.31%; and the asymptotic with smoothing criteria achieved on average between 

3.25-4.33%. For each test dataset, a substantial decrease in computational resources was observed 

relative to the user. 
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1. Introduction 

As most undergraduate engineers taking their first fluid mechanics course learn, the 

Navier-Stokes equations are non-linear and through analytical restrictions, an iterative approach 

can be utilized to achieve a solution. As they continue their education and begin to resolve full 

flow fields using computational fluid dynamics (CFD) simulations, one of the first questions asked 

is, “How do we know when it is done?”. They are usually provided an answer about the residuals 

dropping a few magnitudes and leveling out[1]. Although looking to observe asymptotic behavior 

in either the properties of interest or residuals can be a good guide, simulation outputs may never 

exhibit this ideal behavior. Noise or oscillations in the solutions may result from poor grid quality, 

solver settings, or unsteady flow phenomena[2]. When an ideal output cannot be achieved, it is 

often left to “engineering judgement” to determine if a case has sufficiently converged on a 

solution. 

 

 For large scale databases, leaving each CFD case to be judged by a user can not only be 

time consuming, but introduces inconsistency given differences in each contributing user’s 

convergence criteria. Looking to resolve these hindrances is NASA Ames Research Center’s 

Computational Aerosciences Branch. The branch is responsible for creating large scale databases 

for the three versions of the Artemis Program’s Space Launch System (SLS)[3]. Each database 

consists of tens of thousands of CFD cases covering either ascent or booster separation. Currently, 

each case is judged on two pages of outputs. The first page consists of approximately nine plots 

depicting force and moment coefficients and residuals. The second page consist of flow 

visualization for various views. Each time a case completes its specified iteration count, a case 

report is compiled and judged for convergence. If the case is deemed not yet converged, either the 

solver settings are altered, or additional iterations are specified.  

 

 To reduce the manual oversight of this workflow, automated convergence criteria can be 

implemented. In the past, simple algorithms have been insufficient for the many flow solvers, such 

as Cart3d and FUN3D. Machine learning models offer a more complex approach through pattern 

recognition. The machine learning models presented in this paper seek to classify each CFD case 

as either converged, given the label “PASS”, or not yet converged, given the label “EXTEND”. 

The methodology and implementation of these models, along with the data used to train and 

validate the models, will be discussed in subsequent chapters.  
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2. Background 

 The two fields of machine learning and CFD both have their roots in the early 20th century. 

Two dimensional CFD calculations were first performed in the 1940’s. In the 1960’s, a more 

modern approach of discretizing a surface was implemented. However, it was not until the 1970’s 

as computational power increased that there was a shift from solving the linearized potential 

equations to the non-linear, or full potential equations[4]. Similarly, machine learning theory was 

developed in the 1940’s, evolving to a computer program for playing checkers in the 1950’s. The 

field continued to advance into the 1970’s, but was limited by inefficiencies of both the algorithms 

and computational power[5]. It wasn’t until the 1990’s that both fields exploded with the rapid 

advancement of computer technology.  

 

Machine learning presents wonderful opportunities in CFD, and numerous applications of 

machine learning techniques have already been identified. Machine learning techniques have been 

utilized to guide the development of run matrices[6], optimize grid generation[7], predict physical 

quantities[8], and even develop new Reynolds Averaged Navier-Stokes (RANS) models[9].  

2.0 CFD Convergence 

 Developing an adequate convergence criterion is a crucial step in any iterative method. 

CFD simulates complex physical processes, ranging from natural convection to multi-component, 

non-equilibrium hypersonic flows. A model is thought to be converged when the error in the 

physical quantity of interest has decreased below the required precision. An indicator of the current 

error is a residual value which measures the local imbalance of a conserved variable 

[https://www.engineering.com/story/3-criteria-for-assessing-cfd-convergence]. Since each cell of 

a grid will have its own residual, the root mean square (RMS) is often used to output a single value 

per iteration. Throughout the iterative process, the residuals are expected to progressively decay 

to smaller values up until they level out and substantial changes stop occurring[10]. As a rule of 

thumb, a drop of three orders of magnitude in the RMS residuals is the minimum level of 

convergence required for useful results[11]. 

 

 Although tracking residuals can provide valuable insight, physical properties can also be 

important convergence indicators. One text book giving an example of biomass combustion 

modeling is Ansys Fluent recommends net flux imbalance should end in a result inferior to 1% of 

the smallest flux through the smallest inlet/outlet result[10]. Another conference journal 

investigating the efficiency of vaned diffuser of centrifugal compressor  used a convergence 

criteria of mass flow rate discrepancy at the stage inlet equal to 0.001 kg/s, and temperature 

discrepancy at the exit equal to 0.1ºC[12].  For a more complete list of convergence criteria 

recommendations, see chapter 7 of [13].  
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2.1 Deep Learning  

For CFD simulations that cannot automate termination of a case using the convergence 

criteria provided in section 2.1, it is often left to the practitioner’s judgement. The simulation 

outputs may be too noisy or complex and thus require more complex algorithms. To classify a 

CFD case with more complex outputs, a deep learning model can be implemented. Deep learning 

is a type of machine learning that employs multiple layers of processing to extract higher level 

features in data. As a deep learning model is trained, it automatically detects features, also known 

as feature learning or representation learning, and can then classify each case.  

2.1.1 Shallow Learning Representation  

A shallow learning representation is utilized to provide a mathematical look under the hood 

of the deep learning model presented in this paper. A shallow learning model consist of an input 

layer, a single hidden layer, and an output layer, whereas deep learning models can be comprised 

of multiple inputs and hidden layers, forming the basis of a neural network.  Figure 2.1 visualizes 

the shallow learning model discussed in the subsequent paragraphs. 

 

 
 

Figure 2.1 single hidden layer neural network. 

 

 The input layer is comprised of a vector of elements 𝑥1 to 𝑥𝑛. For this paper’s purposes, 

the input vector is the iterative history for a single aerodynamic coefficient from a single simulation. 
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The super script denotes which layer is being referenced, layer 0, 1, 2 corresponding to input, 

hidden, and output layer. 

𝑥[0] = (𝑥1, 𝑥2, … , 𝑥𝑛−1,𝑥𝑛) (2.1) 

 

Each neuron in the hidden layer takes the full input vector as an input, performs two 

operations, and outputs a single value. The first operation is each input element multiplied by a 

corresponding weight plus a corresponding bias. The second operation is an activation function, 

which determines the output of the neuron. For this example, the hidden layer utilizes a rectified 

linear unit (ReLu) activation function. These two steps for the hidden layer are presented in 

vectorized form in questions 2.2 and 2.3. A depiction of the ReLu activation function is presented 

in Figure 2.2. 

 

𝑧[1] = �⃑⃑⃑⃑�[1]�⃑�[0] + �⃑⃑�[1] (2.2) 

 

�⃑�[1] = 𝜙(𝑧[1]) (2.3) 

 

𝑊ℎ𝑒𝑟𝑒, 𝜙(𝑧) =  {
0  𝑖𝑓 𝑧 ≤ 0 
𝑧  𝑖𝑓 𝑧 > 0

 
(2.4) 

 

 
Figure 2.2. ReLu activation function graphed. 

 

 The number of neurons in the output layer will correspond to the number of classes. 

Therefore, a binary classification problem utilizes a single neuron. For this example, the single 

neuron implements a sigmoid activation function is used to return values between 0 and 1. Like 

the hidden layer, the inputs of the output layer are first multiplied by the weights in the output 

layer. A depiction of the sigmoid activation function is presented in Figure 2.3. 
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𝑧[2] = �⃑⃑⃑⃑�[2]�⃑�[1] + �⃑⃑�[2] (2.5) 

 

�⃑�[2] = 𝜎(𝑧[2]) (2.6) 

 

𝑊ℎ𝑒𝑟𝑒, 𝜎(𝑧) =  
1

1 + 𝑒−𝑥
  

(2.7) 

 

 
Figure 2.3. sigmoid activation function graphed. 

 

 For a binary classification problem, one label would correlate to outputs greater than 0.5, 

while the other label would correlate to values less than or equal to 0.5.  

 

{
𝐿𝑎𝑏𝑒𝑙𝑎 𝑖𝑓 𝜎(𝑧[2]) ≤ 0.5 

𝐿𝑎𝑏𝑒𝑙𝑏  𝑖𝑓 𝜎(𝑧[2]) > 0.5
 

(2.8) 

 

 A loss function is used to ascertain how close the output layer’s output was to the correct 

answer. It does so by comparing the output to the correct label. Equation 2.9 presents the binary 

cross-entropy loss function. In this equation, 𝑦 represents the true value, 0 or 1, and 𝑝 represents 

the neural network output.  

 

𝐻 =  −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))  
 

(2.9) 

 Training a neural network often refers to adjusting the weights and biases to minimize the 

loss function. This can be done through optimization methods such as gradient descent. 



 

 

 

 

6 

2.1.2 TensorFlow API 

  TensorFlow[14] is an end-to-end, open-source artificial intelligence (AI) framework 

which provides high level application programming interfaces (API). Machine learning models 

built with TensorFlow use a hierarchy of APIs. Low-level APIs perform the bulk of mathematical 

operations and are implemented behind the scenes in high-level APIs. Mid-level APIs are the 

building blocks of a model, such as data transformations, neuron layers, and loss functions. High 

level APIs contain many of the tools needed for building models[15].  

 

 
Figure 2.4. TensorFlow API hierarchy [15] 

 

The high-level API, Keras, specializes in deep learning, and is therefore employed in each 

model. Within Keras, there are two main APIs for building models. First is a sequential API, which 

as the name may imply, each layer is built in a sequence one atop another. This is a more intuitive 

API, and only takes a single input and gives a single output. The second method is a functional 

API. The functional API is more flexible and allows branching and merging of layers, allowing 

for multi-input models.  

2.1.3 Applied TensorFlow 

 TensorFlow is a powerful and popular machine learning framework that has been widely 

adopted in industry. Although machine learning algorithms have not previously been applied to 

classifying CFD convergence, there are similar model types and structures that can suggest best 

practices.  

 

  The Modified National Institute of Standards and Technology (MNIST) dataset consists 

of 70,000 28x28 pixel images of handwritten digits 1 through 10 and is commonly used as an 

introduction to machine learning. A multi-class convolutional neural network (CNN) is used to 

extract feature data from each image and properly classify the digit. A study seeking to demonstrate 

TensorFlow’s capabilities examined six different activation functions for the MNIST dataset. An 
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activation function defines the output of a neuron and can be thought of as the on and off switch 

for a single neuron. For 60,000 training samples and 10,000 testing samples, the ReLu activation 

function provided the best accuracy, 98.43%[16].  

 

 Similarly, another study sought to use a CNN to classify 3670 224x224 RGB images into 

five classes: rose, daisy, dandelion, sunflower, and tulip. The models utilized the Keras application 

MobileNet, a general architecture designed to maximize CNN accuracy while limiting 

computational resources. This study achieved greater than 90% classification accuracy for each 

flower, and demonstrated that model size influences accuracy[17].  

 

 Lastly, a study used a TensorFlow deep learning neural network to predict asthma severity 

in patients. The HCUP National Inpatient Sample 2011 Database and the Medical Information 

Mart for Intensive Care III database were used for training the model. The key features included 

the patient’s age, number of chronic conditions, admission month, length of stay, and number of 

comorbidities. Using a three-layer deep learning neural network, the national database achieved 

an accuracy of 86%, and the local hospital database achieved in the lower 90’s. The same model 

was used for both datasets, and differences in accuracy are attributed to local environmental 

influences being better features in the hospital dataset[18].   
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3. Binary Classification Model Development 

It is important to first define the terms associated with the model and its architecture. Each 

model is a supervised binary classification deep learning model with either single or multiple 

inputs depending on the Keras API. Breaking each part of the description down, supervised 

learning is when feature data comes with an associated label, meaning the model is training while 

knowing the correct answer. Binary classification requires that each sample can only be labeled as 

one of two groups. Deep learning refers to a multi-layer, iterative machine learning model that 

uses back propagation to adjust internal parameters to minimize a loss function. In TensorFlow, 

the number of iterations a model implements are known as epochs. Finally, clarification is needed 

when discussing model inputs. The sequential API takes a single input tensor, where each 

dimension above two is a feature variable. The functional API has multiple input branches, where 

each input is a single feature variable tensor.  

 

Three models were created to initially develop best practices and model architecture: a 

single feature variable sequential API model; a multi-feature variable sequential API model; and 

a multi-feature variable function API model. The KerasTuner[19] framework is implemented on 

the third model to demonstrate hyperparameter optimization. 

3.0 Split Input Data  

The dataset used to initially determine best practices is different form the input data used 

to train the implemented model. Because the quality of the input data is crucial, the proper labeling 

was determined by surveying a professional practitioner. The survey is quite time intensive and 

therefore initial model development was performed in parallel with a pseudo dataset. The results 

of the survey and the final model are discussed in chapter 5.  

 

The pseudo dataset used to train and validate each deep learning model consists of 600 

samples, 300 converged cases and 300 not yet converged cases. Each coefficient from a sample 

represents a feature variable and the input features are the iterative history for each coefficient. 

The coefficients used as feature variables are the axial force coefficient (CA), side force coefficient 

(CY), normal force coefficient (CN), and pitching moment coefficient (CLM). 300 cases varying 

Mach number and angle of attack were run using the CFD software FUN3D. Each case used a 

simplified geometry, slightly reminiscent of the Atlas V-401, referred to as the common launch 

vehicle (CLV). The geometry is depicted in figure 3.1.  
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Figure 3.1 common Launch Vehicle 

 

Each of the 300 cases are assumed to be correctly labeled as PASS. The last 1000 iterations 

of each case are used as features and labeled “PASS”. To create the not yet converged cases, 

iterations 800 to 1800 were extracted and given the label “EXTEND”. This assumption is sufficient 

for comparing model architectures, but, after further inspection of the input data, and confirmed 

later in the survey results, this assumption would have been inappropriate for the training the final 

model. The features for five cases are depicted for each feature variable in Figures 3.2 through 3.5.  

  
Figure 3.2. comparison between label data for CA 
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Figure 3.3 comparison between label data for CY 

 

  
Figure 3.4 comparison between label data for CN 
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Figure 3.5 comparison between label data for CLM 

 

 

Each force coefficient depicts less variation in the feature data associated with the PASS 

label, particularly in the latter half of the case features. For cases 0 and 50, their local mean 

continues to drift in the latter iterations, and an argument can be made that these cases have not 

yet converged. Alternatively, cases 100 and 150’s features for the EXTEND label appear more 

similar to converged cases.  

3.1 Single Feature Variable Sequential Model 

The simplest of the three models is the single feature variable binary classification model 

using the Keras sequential API. This model takes a single tensor input containing only one force 

coefficient. Given the relatively low number of training parameters (summation of layer input 

features multiplied by neuron density), this model completes training for epochs on the order of 

101.  To train and validate the model, 80% of the dataset was devoted to training, with the other 

20% being used for validation. The model summary and validation results are provided in figure 

3.6.  

The first dense layer is the input layer, and its output shape is the number of neurons 

contained within that layer. The next two layers are referred to as hidden layers and are where 

neurons receive weighted inputs and output values according to activation functions. A rectified 

linear activation function (ReLu) is implemented in each hidden layer. The ReLu activation 

function returns the input as is if the input is positive and returns zero if the input is negative and 

is the most popular activation function for deep neural networks. The final layer is the output layer 

and uses the sigmoid activation function to produce a single output value between 0 or 1. A 

threshold of 0.5 determines if the sample is classified as either PASS or EXTEND. 
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Table 3-1. Multi-Feature Variable Binary Classification Model Summary 
 

Model: "single feature variable sequential API" 

______________________________________________ 

Layer (type)                Output Shape              Param # 

========================================= 

             dense_0 (Dense)            (None, 50)                  75050 

 

          dense_1 (Dense)            (None, 25)                   1275 

 

          dense_2 (Dense)            (None, 10)                    260 

 

               dense_3 (Dense)            (None, 1)                       11 

 

========================================= 

Total params: 76,596 

Trainable params: 76,596 

Non-trainable params: 0 

______________________________________________ 

 

CA: validation loss, validation accuracy: [0.3647, 0.9167] 

Execution time in seconds: 9.77 

CY: validation loss, validation accuracy: [0.3928, 0.9000] 

Execution time in seconds: 9.37 

CN validation loss, validation accuracy: [0.4053, 0.8667] 

Execution time in seconds: 11.10 

CLM validation loss, validation accuracy: [0.5372, 0.7500] 

Execution time in seconds: 10.10 

 

How far the output value is from either 0 or 1 influences the output of the model’s binary 

cross entropy loss function. The objective function for this model is binary accuracy. The general 

structure of ReLu hidden layers followed by a sigmoid output layer, with a binary cross entropy 

loss function and binary accuracy cost function is consistent across all three models.  

3.2 Multi-Feature Variable Sequential Model 

 

 The multi-feature binary classification model is constructed very similar to the single-

feature model. Instead of an input tensor containing only a single feature variable, now its 

dimensionality has increased to pass through four feature variables: CA, CY, CN, CLM. The 

trainable parameters correlate linearly with the number of feature variables. To cope with this 

added complexity, epochs are needed on the order of 103.  
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Table 3-2. Multi-Feature Variable Binary Classification Model 

 

Model: "multi-feature variable sequential API" 

______________________________________________ 

Layer (type)                Output Shape              Param # 

========================================= 

             dense_0 (Dense)            (None, 64)                 256,000 

 

          dense_1 (Dense)            (None, 32)                   2080 

 

          dense_2 (Dense)            (None, 16)                    528 

 

          dense_3 (Dense)            (None, 8)                      136 

 

               dense_4 (Dense)            (None, 1)                        9 

 

========================================= 

Total params: 258,753 

Trainable params: 258,753 

Non-trainable params: 0 

______________________________________________ 

 

test loss, test acc: [0.0258, 1.0] 

Execution time in seconds: 335.94 

 

The test accuracy of this model exemplifies the need for multiple feature variables. The 

highest accuracy achieved by the singe feature variable sequential model was 91.67%; whereas 

100% accuracy was achieved by the multi-feature variable sequential model. The tradeoff comes 

in the greater execution time of the multi-feature variable sequential model.  

3.3 Multi-Input Functional Model 

Keras functional API allows for network branches, which take single feature variable 

tensors as inputs, processes the features through multiple hidden layers, and then merges the 

outputs back into a single tensor prior to the output layer.  

 

 The multi-feature variable functional model outperformed the multi-feature variable 

sequential model in every metric. Available in figure 3.9, the multi-feature variable functional 

model similarly achieved perfect accuracy, but in half the time for the same epochs and achieved 

a test loss two orders of magnitude less than the multi-feature variable sequential model. For these 

reasons, the function API is implemented for further model optimization 
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Table 3-3. Multi-Input Binary Classification Model Summary 
 

Model: “multi-input functional API " 

________________________________________________________________________ 

Layer (type)                   Output Shape         Param #     Connected to                      

=============================================================== 

CA (Input Layer)                  [(None, 1000)]             0           []                                

CY (Input Layer)                  [(None, 1000)]             0           []                                

CN (Input Layer)                  [(None, 1000)]             0           []                                

CLM (Input Layer)               [(None, 1000)]              0           []                                

dense (Dense)                     (None, 128)            128128      ['CA[0][0]']                      

dense_4 (Dense)                 (None, 128)            128128      ['CY[0][0]']                      

dense_8 (Dense)                 (None, 128)            128128      ['CN[0][0]']                      

dense_12 (Dense)               (None, 128)            128128      ['CLM[0][0]']                     

dense_1 (Dense)                 (None, 40)                5160        ['dense[0][0]']                   

dense_5 (Dense)                 (None, 40)                5160        ['dense_4[0][0]']                 

dense_9 (Dense)                 (None, 40)                5160        ['dense_8[0][0]']                 

dense_13 (Dense)               (None, 40)                5160        ['dense_12[0][0]']                

dense_2 (Dense)                 (None, 64)                2624        ['dense_1[0][0]']                 

dense_6 (Dense)                 (None, 64)                2624        ['dense_5[0][0]']                 

dense_10 (Dense)               (None, 64)                2624        ['dense_9[0][0]']                 

dense_14 (Dense)               (None, 64)                2624        ['dense_13[0][0]']                

dense_3 (Dense)                 (None, 8)                   520         ['dense_2[0][0]']                 

dense_7 (Dense)                 (None, 8)                   520         ['dense_6[0][0]']                 

dense_11 (Dense)               (None, 8)                   520         ['dense_10[0][0]']                

dense_15 (Dense)               (None, 8)                   520         ['dense_14[0][0]']                

concatenate (Concatenate)  (None, 32)                  0           ['dense_3[0][0]',                 

                                                                                             'dense_7[0][0]',                 

                                                                                               'dense_11[0][0]',                

                                                                                               'dense_15[0][0]']                

dense_16 (Dense)               (None, 36)                1188        ['concatenate[0][0]']             

dense_17 (Dense)               (None, 15)                 555         ['dense_16[0][0]']                

dense_18 (Dense)               (None, 9)                   144         ['dense_17[0][0]']                

dense_19 (Dense)               (None, 12)                 120         ['dense_18[0][0]']                

dense_20 (Dense)               (None, 1)                    13          ['dense_19[0][0]']                

                                                                                                   

=============================================================== 

Total params: 547,748 

Trainable params: 547,748 

Non-trainable params: 0 

______________________________________________ 

 

test loss, test acc: [0.0009, 1.0] 

Execution time in seconds: 170.20 
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3.4 Hyperparameter Optimization 

 Each of the three models previously presented were constructed through a heavily manual 

iterative process of educated tinkering. To better optimize a TensorFlow model, the KerasTuner 

optimization framework should be utilized. The KerasTuner framework introduces 

hyperparameters, allowing for internal model parameters, such as number of hidden layers or 

activation functions, to become variables.  Eleven hyperparameters were given a small range of 

two to four values. Given many hyperparameters, an optimization study with adequate spatial 

resolution is extremely computationally expensive.  

 

To mitigate computational cost, a Bayesian optimization approach is used to optimize the 

set of hyperparameters. Bayesian optimization is a probabilistic approach that considers already 

tested combinations to sample the next combination. Randomly generated samples can be used as 

initial training data for Bayesian optimization. If no amount of initial random seeds is specified, 

TensorFlow will randomly generate samples 3 times the dimensionality of the hyperparameter space. 

An example of a set of hyperparameters in presented in table 3.1. The best performing model is 

tracked as trials progress.  

 

Table 3-4. Example of hyperparameter combination when beginning Bayesian optimization. 

Search: Running Trial #1 

Value Best Value so Far HyperParameter 

192 ? input density 

3 ? n_layers_branch 

24 ? input_merge_density 

3 ? n_layers_merge 

40 ? dense_0_units_branch 

8 ? dense_1_units_branch 

24 ? dense_2_units_branch 

12 ? dense_0_units_merge 

12 ? dense_1_units_merge 

18 ? dense_2_units_merge 

0.001 ? learning_rate 

 

 

Each trial run is stored in event files that can be viewed with TensorBoard. TensorBoard 

is a visualization tool for tracking metrics and evaluating sampling coverage, and was used to 

confirm sufficient epochs. The Python code for this model can be found in Appendix D. 
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3.5 Model Sensitivity to Number of Features   

Determining the number of features  and feature variables is a difficult question. To offer a 

brief insight in this problem, a study was performed to evaluate the sensitivity of the model’s 

performance to the number input features per feature variable. Three feature amounts are compared 

in Figures 3.10 and 3.11. The final 500, 1000, 1500 consecutive iterations for each force coefficient 

comprise PASS cases, while iterations 800:[1300,1800,2300] comprise EXTEND cases. For each 

amount of input features, 75 hyperparameter combinations were evaluated using Bayesian 

optimization. To ensure each model converged, an additional 200 training epochs were used for each 

additional 500 features. 300 training epochs were used for the initial 500 features. Increasing the 

number of epochs results in the computational time required for training a single hyperparameter 

combination more than doubles between the 500 and 1500 features. 

 
Figure 3.6 Validation Binary Accuracy of Models during Hyperparameter Optimization 
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Figure 3.7 Validation Binary Accuracy of Models during Hyperparameter Optimization 

 

 

 As seen in Figures 3.6 and 3.7, each feature number variation achieved excellent validation 

accuracy and on average excellent validation loss. As the number of input features increase, the 

validation loss increases for more model architectures. This study insinuates that for this training and 

validation dataset an optimized model is not particularly sensitive to the number of input features. 

However, this result can be attributed to the split input data referenced in ection 3.0. Splitting each 

CFD case introduces unique differences that may not exist in a higher quality training dataset. 

Knowledge pertaining to the nature of the CFD cases and the physical quantities of interest should 

guide the type of input feature variables and number of features per feature variable. Half of the 300 

cases are below Mach 1.10 and contain unsteady behavior in their iterative history. Considering this, 

500 iterations may be insufficient for capturing the transient frequency. 
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4. Simple CFD Convergence Criteria 

A common convergence criterion is to monitor physical quantities of interest for 

asymptotic behavior. If the quantity of interest does not change by a specified amount over a 

specified number of iterations, then the simulation has converged on a solution. The criteria can 

be expanded to track multiple quantities of interest with varying required precision.  

  

 Two simple convergence criteria are developed in this chapter and are later used as a 

comparison against an optimized multi-feature variable functional model in chapter 6. The first is 

a standard algorithm determining the maximum change across a specified number of iterations. 

The second algorithm also checks for asymptotic behavior, but first smooths the iterative history 

to account for oscillations. 

4.0 Asymptotic Criterion 

Although one of the simplest CFD convergence criteria, checking for asymptotic behavior 

is one of the most widely implemented algorithms. Both industry giants, Siemen’s STAR-CCM+ 

and Ansys Fluent have integrated the monitor into their respective programs. To check for 

asymptotic behavior, simply determine the maximum and minimum values in the desired iteration 

range. If the difference between these values exceeds the required precision, then the simulation 

continues.  

 

A change of less than 0.001 over the last 500 iterations for every force coefficient is deemed 

sufficient for classifying a solution as converged. 

 

{
𝑃𝐴𝑆𝑆

      𝐸𝑋𝑇𝐸𝑁𝐷
 

𝑖𝑓    |max(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒) − min(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒)|  < 0.001 

𝑖𝑓    |max(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒) − min(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒)|  ≥ 0.001 
(4.1) 

 

 The precision and iteration window were chosen to roughly match the PASS/EXTEND 

ratio of the survey results. 

 

4.1 Asymptotic Criterion with Feature Smoothing 

For subsonic and transonic Mach numbers, force coefficient plots produced in FUN3D can 

contain oscillations as a result of actual physical unsteadiness. These oscillations can have a 

relatively constant mean and be classified as converged solutions, but the large amplitude of the 

oscillations prevent a standard asymptotic algorithm from being applied. To remedy this, the 

iterative history is smoothed to allow for an asymptotic algorithm to be applied. An example of 

feature smoothing is depicted in Figure 4.1.   
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Figure 4.1 Feature Smoothing of an Oscillatory Iterative History 

 

 The feature smoothing was performed by stepping though averaging windows of 100 

iterations. The first value would be the average of iterations 0 to 100, the second value would be 

the average of iterations 1 to 101, and so on and so forth. Potential limitations of this method are 

if the frequency is greater than the specified window, then the smoothed features could be 

oscillatory. Once the features have been smoothed, simply apply the previous asymptotic check.  
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5. Final Machine Learning Model  

Referencing the best practices learned and studies performed in chapter 3, a multi-input 

functional model which samples 1000 iterations was selected. The following sections describe the 

training and validation dataset, the final model architecture, and preliminary convergence criteria 

comparisons using the training and validations dataset. 

5.0 Training and Validation Dataset 

To create the training and validation dataset, an expert practitioner of FUN3D was 

surveyed via a dash app hosted by Heroku. The survey consists of the 300 CFD cases referenced in 

section 3.0. Each coefficient’s iterative history can be viewed interactively using the Python graphing 

library Plotly. This interface allowed the expert full control to ensure a presented range or scale 

would not bias their decision. No information about the case was provided. The full survey can be 

found at https://jacket-sculpture-silica-g8mp.herokuapp.com/. Based on the expert’s classification, 

117 out of the 300 cases were labeled as PASS. From the first half of the cases, where the Mach 

number is 1.10 or less, 38 cases were labeled as PASS. A random 80% of the dataset was used for 

training, and 20% was used for validation and optimizing the hyperparameters.  

5.1 Final Model Architecture 

The final model architecture was selected from the model sensitivity study conducted in 

section 3.5 and is depicted in figure 5.1. The model selected achieved the lowest validation loss 

while tuning the hyperparameters. Although this was expected to be the final model, for reasons 

discussed in chapter 6, a second model that considered a range of 2000 iterations was trained and 

optimized. The most notable change between these two models was an increase in the input dense 

layer from 192 neurons to 500 neurons. The second model was added later in the project, and 

results in chapter 5 do not depict the second model. Therefore, all subsequent references to 

machine learning model in this chapter refer to the machine learning model which samples 1000 

iterations. 

 

https://jacket-sculpture-silica-g8mp.herokuapp.com/
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Figure 5.1. Multi-Input Binary Classification Model Structure 

 

5.2 Test and Validation Dataset Results 

For results below, the machine learning model was asked to make a prediction for 100% of 

the 300 cases used for training and validation. This was done to provide a full comparison between 

the machine learning model and the simple algorithms.  
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Figure 5.2. Classification Results 

 

 Although the bar plot may infer that the models have similar predictions, table 5-1 tells 

otherwise. The expert disagreed with the machine learning model on 4% of cases and the asymptotic 

model on 33% of cases. Even the asymptotic model and the asymptotic model with feature 

smoothing disagreed on 17% of cases. The bottom row of the table states how many cases were 

labeled PASS by only that model. 

 

Table 5-1. Disagreements between Labels 
 Expert ML Model Asymptotic Asymptotic w/Smoothing 

Expert 0 12 98 86 

ML Model 12 0 92 88 

Asymptotic 98 92 0 52 

Asymptotic w/Smoothing 86 88 52 0 

Accuracy % N/A 96.0% 67.3% 71.3% 

Unique PASS 0 2 6 10 

 

Below is a case example for each of the predictive models’ unique PASS label. 
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Figure 5.3. PASS labels unique to machine learning model. 
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Figure 5.4. PASS labels unique to asymptotic without feature smoothing. 
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Figure 5.5. PASS labels unique to asymptotic with feature smoothing. 
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6. Results for Test Datasets 

Prior to this chapter, all results presented pertained to the training and validations dataset 

discussed in section 5.0. These 300 cases were used to train and tune the machine learning 

modules.  To test the performance of the final model, two datasets were constructed. The first 

dataset is comprised of 50 cases with Mach Numbers [2.6, 2,7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5], 

total angles of attack [0.0, 4.0], and roll angles [0.0, 90, 180, 270]. The high Mach numbers 

associated with this dataset allow the simulations to converge quite well and quickly. The second 

dataset is comprised of 25 cases with Mach Numbers [0.5, 0.95, 1.10, 1.75, 2.5], angle of attacks 

[0.0, 4.0], and roll angles [0.0, 90, 180, 270]. These cases take considerably longer to converge, with 

the final few thousand iterations of Mach numbers 0.5, 0.95, and 1.10 being time averaged. Of these 

25 cases, three cases experienced errors while running and are not included in the results.  

6.0 High Supersonic Dataset Results 

During the development of the code used to produce the results in this chapter, an unexpected 

occurrence was observed. When sampling batches of iterations from a case, a machine learning 

model may PASS a case only to then suggest extending the case in later samples. This means if only 

the last iterations of the case were used to pass judgement, then a converged case may be incorrectly 

labeled as EXTEND. Although more computationally expensive, stepping through batches of 1000 

or 2000 iterations, 50 iterations at a time, proved successful for catching the “sweet spot” or regions 

that are more representative of the training and validation dataset). 

Six cases were not classified as PASS by the machine learning model referenced in section 

5.1. which considers a range of 1000 iterations. These cases were not debatable, and clear failures 

on the part of the machine learning model. To check if this was a cause of the iterations sampled, a 

second machine learning model which considered a range of 2000 iterations was trained and 

optimized. The new model which considered 2000 iterations only failed to PASS one case. Cases 

that were not passed by the machine learning model were given NaN’s and not presented within the 

results below. The absence of these cases is why the total number of iterations provided in the third 

column of table 6-1 for both machine learning models are given an asterisk.  

Columns 4 through 7 of table 6-1 provide the average normalized delta between the 

coefficient at the last iteration of the window with which the case was classified PASS. Meaning if 

the asymptotic convergence criteria labeled the case as pass by looking at the iterative history range 

3000-3500, then the coefficient used corresponds to iteration 3500. The user could judge if a case 

had converged every 500 iterations, while the automated methods could judge every 50 iterations 

starting at 2500. The difference between the convergence predictive method and the user was 

normalized by the difference between the maximum and minimum coefficient value from iteration 

800 to the final iteration. 
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Table 6-1. Summary of each classification model’s performance for high supersonic CFD cases. 

 PASS EXTEND   ∑ 𝑰𝒕𝒆𝒓𝒔  ∆𝑪𝑨̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝒀̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝑵̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝑳𝑴̅̅ ̅̅ ̅̅ ̅̅  

[%] 
User 50 0 161,500 - - - - 

ML Model – 

1000 Iterations 
44 6 110,200* 0.49 0.69 0.70 0.81 

ML Model – 

2000 Iterations 
49 1 123,300* 0.50 0.75 0.71 0.77 

Asymptotic 50 0 126,000 0.51 0.74 0.73 0.76 

Asymptotic 

w/Smoothing 
50 0 125,350 0.51 0.75 0.74 0.78 

 

 As seen in table 6-1, there is little to differentiate each classification method from another. 

Each model achieved a normalized difference in coefficient of less than 1%, and only differs from 

every other method a few hundredths of a percent. The main difference is the cases the machine 

learning models did not correctly label as PASS. Even if these cases had been included, as a 

collective, the models not only achieved solutions on average within 1% of the user but did so in 

roughly 23% fewer iterations.  

 

Figures 6.1-6.5 depict the individual cases which makeup the values in Table 6-1. For 

figure 6.1, positive values in the difference between the number iterations required to label a case 

as PASS correlate to a lesser number than the user. Although the x-axis simply labels the cases 0 

through 49, they are also ordered so that every five cases the Mach number increases. This is also 

true for the figures presented in section 6.1. 

 

a)  b)  

Figure 6.1. Difference in iterations taken to be classified as PASS. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  
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a) b) 

 
Figure 6.2. Difference in CA. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model 

a) 

 

b) 

 
Figure 6.3. Difference in CY. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  
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a) 

 

b) 

 
Figure 6.4. Difference in CN. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  

 

a) 

 

b) 

 
Figure 6.5. Difference in CLM. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  

 

 

6.1 Ascent Dataset Results 

 

The ascent dataset was expected to challenge both the simple algorithms and machine 

learning models. Cases with a Mach number 1.10 or below can contain iterative histories 

displaying patterns indicative of transient flow features. Although half of the training and 

validation data consisted of simulations where the Mach number was 1.10 or below, only 38 of the 

150 cases were labeled as PASS. 
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Table 6-2. Summary of each classification model’s performance for ascent CFD cases. 

 PASS EXTEND   ∑ 𝑰𝒕𝒆𝒓𝒔  ∆𝑪𝑨̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝒀̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝑵̅̅ ̅̅ ̅̅  

[%] 
∆𝑪𝑳𝑴̅̅ ̅̅ ̅̅ ̅̅  

[%] 
User 22 0 243,750 - - - - 

ML Model – 

1000 Iterations 
18 4 43,050* 2.21 4.28 4.57 3.81 

ML Model – 

2000 Iterations 
21 1 60,550* 2.94 3.73 1.92 1.82 

Asymptotic 22 0 59,650 3.41 3.42 4.31 3.26 

Asymptotic 

w/Smoothing 
22 0 57,300 3.38 3.43 4.33 3.25 

 

As seen in table 6-2, the machine learning model which samples 2000 iterations achieved 

better coefficient deltas than the machine learning model which samples 1000 iterations and the 

samples algorithms. Like the high supersonic dataset, the machine learning model which samples 

1000 iterations failed to classify four cases, and the machine learning model which samples 2000 

iterations failed to classify one case. As a collective, the models decreased the total iterations by 

roughly 75%.  

 

Figures 6.6-6.10 depict the individual cases which makeup the values in Table 6-2. Similar 

to section 6.0, positive values in the difference between the number iterations required to label a 

case as PASS correlate to a lesser number than the user. Additionally, every five cases the Mach 

number increases. Cases 0 to 14 represent the subsonic and transonic regime, and are responsible 

for the significant decrease in iterations, and the increase in deltas between coefficients.  

 

 

a)  

 

b)  

Figure 6.6. Difference in iterations taken to be classified as PASS. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  
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a) 

 

b) 

 
Figure 6.7. Difference in CA. 

b) 1000 iteration range ML model. b) 2000 iteration range ML model 

a) 

 

b) 

 
Figure 6.8. Difference in CY. 

b) 1000 iteration range ML model. b) 2000 iteration range ML model  
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a) 

 

b) 

 
Figure 6.9. Difference in CN. 

b) 1000 iteration range ML model. b) 2000 iteration range ML model  

 

a) 

 

b) 

 
Figure 6.10. Difference in CLM. 

a) 1000 iteration range ML model. b) 2000 iteration range ML model  
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7. Conclusion 

Machine learning is often looked to as a tool for automating complex processes. In the field 

of computational fluid dynamics, properly classifying if a simulation has converged or not is one 

such problem. In this paper, two deep learning neural networks, trained on either 1000 or 2000 

iterations per force coefficient, were compared to expert judgement and monitoring for asymptotic 

behavior with and without feature smoothing. A run matrix comprised of 50 supersonic cases and 

a run matrix comprised of 25 cases simulating an ascent trajectory were used to test each 

classification method. All methods achieved on average within 1% of the expert user’s results for 

the supersonic run matrix and did so in fewer iterations for every case. For the ascent trajectory 

matrix, the machine learning model which sampled 2000 iterations achieved on average between 

1.82-2.94%; a machine learning model which sampled 1000 iterations achieved between 2.21-

4.57%; the asymptotic criteria achieved on average between 3.26-4.31%; and the asymptotic with 

smoothing criteria achieved on average between 3.25-4.33%. Each method had their largest 

differences for time accurate cases below Mach 1.10. For the machine learning models, this is 

mostly likely due to the disproportionate percent of PASS cases below Mach 1.10 in the training 

and validation dataset. One thing to note in the results is that the expert user’s values were accepted 

as the baseline to compare each of the other methods. One of the purposes of pursing machine 

learning models is to reduce the inconsistences between practitioners.  Comparing test case results 

for multiple expert users or running each test case for many more iterations could offer a more 

suitable baseline. 

 

These results exemplify a distinction for implementing convergence criteria for steady and 

time accurate CFD cases. It is difficult to implement simple convergence methods across multiple 

regimes, whereas a unique machine learning model can be trained and utilized for a specific 

regime. Depending on the geometry of the flight vehicle being simulated, a steady solution may 

be satisfactory for certain cases in the subsonic and transonic regimes. A multi-class machine 

learning model could be capable of not only extending or passing cases but switching from a steady 

solver to time accurate. Additionally, more complex analyses such as a Fast Fourier Transform or 

Power Spectral Decomposition can be utilized to inform a machine learning framework on the 

number of iterations to consider. 
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Appendix A – Model Script 

train-optimize-multifeature-fun.py 

 

""" 

This script imports features and label data, preps the data for 

use, builds the model architecture, and optimizes the 

hyperparameters of said model. These tasks are completed with 

the help of three modules: 

1) importdata.py 

2) prepdata.py 

3) buildmodel*.py 

""" 

 

# Standard library modules 

import os 

import sys 

import time 

 

# TensorFlow modules 

from tensorflow import keras 

from keras_tuner import tuners 

from keras.callbacks import TensorBoard 

 

# Local modules 

from modules import importdata 

from modules import prepdata 

from modules import buildmodel_binary_funAPI as bm 

 

# Add module folder to system path 

module_path = 

os.path.join(os.path.dirname(os.path.abspath(__file__)),'modules

') 

print(module_path) 

sys.path.insert(0, module_path) 
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# Track run time 

startTime = time.time() 

time_tracker = int(time.time()) 

 

# Training method 

train_method = "import" # options ["import", "split"] 

 

# Define Basic Model Parameters 

iters_conv = 1000 # Iteration count to consider 

iters_start = 800 # Iterations to start from for EXTEND case 

asym_threshold = 0.0015 # Max difference between values for 

classification 

iters_asym = 50 # Number of iterations to consider for 

asymptotic 

 

epochs_num = 10 # Number of training iterations 

comb_num = 1 # Number of hyperparameter combinations 

init_rand = 1 # Number of random searches prior to Bayesian Opt 

train_vs_test = 0.80 # Percent of data devoted to training  

 

# Define up one of file directory 

current_path = 

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  

# Define where data lives 

feature_path = 'data/sls/run/10000/f3_dac0' 

# Label path 

label_path = 'survey/results/clv-survey-results-ddalle.csv' 

# Files to load. Change the function 'update_graph' to match 

files_coeff = ['CA','CY','CN','CLM'] # number of branches 

dependent on coeff 

 

# Load coefficient data 



 

 

 

 

38 

coeffs, cases_num = importdata.features_mat(current_path, 

feature_path, files_coeff) 

 

 

if train_method == "split": 

    '''Train based on splitting the iterative history''' 

    # Convert features and labels into TF dataset 

    dataset_train, dataset_test = prepdata.split(coeffs, 

cases_num, iters_start, iters_conv, train_vs_test) 

elif train_method == "import": 

    '''Train based on surveyed labels''' 

    # Import labels 

    labels =  importdata.labels_csv(current_path, label_path) 

    # Import features 

    features = prepdata.features(coeffs, cases_num, iters_conv) 

    # Convert features and labels into TF dataset 

    dataset_train, dataset_test = prepdata.dataset(features, 

labels,  train_vs_test) 

else: 

    print( 

        'Invalid section. Choose either "import" or "split"' 

    ) 

    raise 

 

# Name of tensorboard log folder 

NAME = "TF-FunAPI-{}FV-{}iters-{}-{}comb-

{}".format((len(files_coeff)),iters_conv,train_method, comb_num, 

time_tracker) 

 

# For tracking and visualization 

tb_path = "logs/{}".format(NAME) 

tb = TensorBoard(log_dir=tb_path) 
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my_hyper_model = bm.MyHyperModel(iters_conv=iters_conv, 

files_coeff=files_coeff) 

# BayesianOptimization - probabilistic approach that takes into 

account already tested combinations to sample the next 

combination 

tuner = tuners.bayesian.BayesianOptimization( 

    hypermodel=my_hyper_model, # model-building function 

    objective='val_loss', # diff btwn true and predicted values 

    num_initial_points=init_rand, # Randomly generated samples 

for training 

    max_trials=comb_num, # number of combinations to test 

    executions_per_trial=1, # number of times to run each 

combination 

    directory=tb_path, # where to store optimization history 

) 

 

# Equivalent to model.fit 

tuner.search( 

    dataset_train, # training dataset 

    epochs = epochs_num, # training iterations 

    validation_data = dataset_test, # test dataset 

    callbacks=[tb], # TensorBoard callback to visualize results 

    verbose=2, # verbose=2 is recommended when not running 

interactively 

) 

 

# Print results and save best model 

print(tuner.results_summary()) # displays top 10 

print(tuner.get_best_models()[0].summary()) # displays best 

model 

model = tuner.get_best_models(num_models=1)[0] # get best model 

 

# Save best performing model 

model.save( 
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    os.path.join( 

        current_path, 

        "models/optimized/", 

        NAME 

    ), 

    overwrite=True, 

) 

 

# Save figure of model. Requirements: brew install 

[svn/graphviz] 

keras.utils.plot_model( 

    model,  

    os.path.join( 

        current_path,  

        "code/figs/{}.png".format(NAME) 

        ), 

    show_shapes=True 

) 

 

#Run Time 

executionTime = (time.time() - startTime) 

print('Execution time in seconds: ' + str(executionTime)) 
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Appendix B – Model Modules 

importdata.py 

 

import os 

import json 

import scipy.io as sio 

import pandas as pd 

import numpy as np 

from collections import defaultdict 

 

 

def features_mat(current_path, file_path, files_coeff): 

    """ 

    Import each coefficient's associated mat file. Compile into  

    a list of dictionaries. [iterations, case] addition of nan   

    since varying number of iterations. 

    """ 

    file_ext = '.mat' # currently must be mat files 

    # Load Data as list of dictionaries 

    # [iterations, case] addition of nan since varying number of  

    iterations 

    coeffs = [] 

    for each in files_coeff: 

        # loads each force coefficient as a dictionary 

        coeffs.append(sio.loadmat(os.path.join(current_path, 

file_path, each + file_ext))) 

        # Determine sample size 

        cases_num = len(coeffs[0][files_coeff[0]][0,:]) 

    return coeffs, cases_num 

 

def labels_csv(current_path, label_path): 

    # Initiate object 

    labels = [] 

    # Combine path 
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    path = os.path.join(current_path, label_path) 

    # Read in csv with labels 

    labels_csv = pd.read_csv(path) 

    for row in labels_csv['PASS (1 == PASS, 0 == EXTEND)']: 

        labels.append(row) 

    return labels 

 

 

# Full genericity 

def makehash(): 

    return defaultdict(makehash) 

 

 

def trials_json(current_path, metrics, trials): 

    """ 

    Read each trial json and assign specified metrics to a  

    nested dictionary. 

    """ 

 

    # Grab metrics and save as nested dict 

    trial_dict = makehash() 

 

    for trial in trials: 

        # Count number of trial 

        totalDir = 0 

        for base, dirs, files in 

os.walk(os.path.join(current_path,'logs/{}/untitled_project'.for

mat(trial))): 

            # print('Searching in : ',base) 

            for directories in dirs: 

                totalDir += 1 

        dir_range = np.arange(0,totalDir,1) 
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        for dir in dir_range: 

            # Define path to optimization logs 

            if dir < 10: 

                json_path = 

'logs/{}/untitled_project/trial_0{}'.format(trial,dir) 

            else:  

                json_path = 

'logs/{}/untitled_project/trial_{}'.format(trial,dir) 

            # json file name 

            json_file = 'trial.json'  

            # open json file 

            f = 

open(os.path.join(current_path,json_path,json_file)) 

            # load json 

            data = json.load(f) 

            for metric in metrics: 

                trial_dict[trial][dir][metric] = 

data["metrics"]["metrics"][metric]["observations"][0]["value"]   

 

    return trial_dict 
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prepdata.py 

 

from math import nan, isnan 

import numpy as np 

import tensorflow as tf 

 

def features(coeffs, cases_num, iters_conv, iters_consider = 

None): 

    """ 

    Removes nan from each case's coefficients. Take last group  

    of specified iterations. Returns a list of feature variables  

    and their features. 

    """ 

    # Initialize data set inputs 

    features = [] 

    # For each coefficient 

    for count, coeff in enumerate(coeffs): 

        # Get dict keys 

        coeff_name = [] 

        for key in coeff.keys(): 

            coeff_name.append(key) 

 

        # Initiate feature array 

        feature = np.zeros((cases_num,iters_conv,len(coeffs))) 

 

        # For each case, remove nan's and save coefficient 

history 

        for colm in range(len(coeff[coeff_name[3]][0,:])): 

            # Remove nan per case 

            coeff_colm = 

coeff[coeff_name[3]][:,colm][~np.isnan(coeff[coeff_name[3]][:,co

lm])] 

            # Save features and associated label 

            if iters_consider == None: 
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                feature[colm,:,count] = coeff_colm[ 

                    -iters_conv : iters_consider 

                    ] 

            else: 

                feature[colm,:,count] = coeff_colm[ 

                    iters_consider-iters_conv : iters_consider 

                    ] 

         

        features.append(feature[:,:,count]) 

 

    return features 

 

 

def dataset(features, labels, train_vs_test): 

    """ 

    Combines prepped features and imported labels into two  

    tensorflow datasets. One for training and one for  

    validation. 

    """ 

 

    # Number of cases  

    cases_num = np.size(features[0][:,0]) 

 

    # tf.data.Dataset API supports efficient input pipelines 

    dataset = tf.data.Dataset.from_tensor_slices( 

        ( 

            tuple(features), 

            labels 

        ) 

    ) 

    # Shuffle data 

    dataset = dataset.shuffle(10000) 

 

    # Allocate portion of data to either training or testing 
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    train_size = int(cases_num * train_vs_test) 

    # Everything up to train_size 

    dataset_train = dataset.take(train_size).batch(20) 

    # Everything after train_size 

    dataset_test = dataset.skip(train_size).batch(10) 

 

    return dataset_train, dataset_test 

 

 

def split(coeffs, cases_num, iters_start, iters_conv, 

train_vs_test): 

    """ 

    Remove nan from each case's coefficients. Split coefficient  

    history into extend and pass cases based on beginning and   

    end iterations. Returns features and associated labels as  

    tensorflow datasets. 

    """ 

    # Initialize data set inputs 

    labels = [] 

    features = [] 

    # For each coefficient 

    for count, each in enumerate(coeffs): 

        # Get dict keys 

        coeff_name = [] 

        for key in each.keys(): 

            coeff_name.append(key) 

 

        # Initiate feature array 

        feature = np.zeros((2*cases_num,iters_conv,len(coeffs))) 

 

        # For each case, remove nan's and save coefficient 

history 

        for colm in range(len(each[coeff_name[3]][0,:])): 

            # Remove nan per case 
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            coeff_colm = 

each[coeff_name[3]][:,colm][~np.isnan(each[coeff_name[3]][:,colm

])] 

            # Save features and associated label 

            feature[colm,:,count] = coeff_colm[-iters_conv:] 

            # Assign label 

            if count == 0: 

                labels.append(1) 

            else: 

                pass 

 

        # delete this section 

        for colm in range(len(each[coeff_name[3]][0,:])): 

            # Remove nan per case 

            coeff_colm = 

each[coeff_name[3]][:,colm][~np.isnan(each[coeff_name[3]][:,colm

])] 

            feature[cases_num+colm,:,count] = 

coeff_colm[iters_start:iters_start+iters_conv] 

            # Assign label 

            if count == 0: 

                labels.append(0) 

            else: 

                pass 

         

        features.append(feature[:,:,count]) 

 

    # tf.data.Dataset API supports efficient input pipelines 

    dataset = tf.data.Dataset.from_tensor_slices( 

        ( 

            tuple(features), 

            labels 

        ) 

    ) 
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    # Shuffle data 

    dataset = dataset.shuffle(10000) 

 

    # Allocate portion of data to either training or testing 

    train_size = int(2*cases_num * train_vs_test) 

    # Everything up to train_size 

    dataset_train = dataset.take(train_size).batch(20) 

    # Everything after train_size 

    dataset_test = dataset.skip(train_size).batch(10) 

 

    # Return tensorflow datasets 

    return dataset_train, dataset_test 

 

 

def smooth_features(files_coeff, cases_num, features): 

    ''' 

    Account for oscillations in the coefficient iterative  

    history by smoothing the features. Walks through features  

    and averages across the interval range. Returns identical  

    formatting as prepdata.features. 

    ''' 

 

    # Initialize list 

    features_smoothed = [] 

    for count,coeff in enumerate(files_coeff): 

        # for coefficients 

        holder = [] 

        for case in range(cases_num): 

            # for number of cases 

            x_del = 0  

            avg_np = [] 

            for scan in range(100):  

                # how many steps to walk  

                x = -np.size(features[count][case,:]) 
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                x = x + x_del 

                average = [] 

                for interval in range(20): 

                    y = x + 100 

                    if y == 0 and x_del == 0: 

                        tmp = 

np.average(features[count][case,x:]) 

                    elif x > -100: 

                        tmp = np.nan 

                    else: 

                        tmp = 

np.average(features[count][case,x:y]) 

                    x += 100 

                     

                    average.append(tmp) 

                     

                avg = np.array(average) 

                avg_np.append(avg)  

                x_del += 1 

            holder.append(avg_np)     

         

        coeff_smooth = [] 

        for case in range(cases_num): 

            a = [] 

            for each in range(np.size(holder[0][0])): 

                for every in range(9): 

                    a.append(holder[case][every][each]) 

            coeff_smooth.append(a) 

        features_smoothed.append(coeff_smooth) 

         

    for count,coeff in enumerate(files_coeff): 

        for case in range(cases_num): 

            features_smoothed[count][case] = [x for x in 

features_smoothed[count][case] if isnan(x) == False] 



 

 

 

 

50 

 

    features_tmp = [] 

    for count,coeff in enumerate(files_coeff): 

        features_tmp.append(np.array(features_smoothed[count])) 

    features_smoothed = features_tmp 

 

    return features_smoothed 
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predict.py 
 

""" 

This script is capable of two prediction types.  

    1) Using a pre-trained machine learning model. 

    2) By checking for asymptotic behavior 

""" 

 

import os 

import numpy as np 

import tensorflow as tf 

 

def labels_model(model_name, features): 

    ''' 

    Make prediction based on a pre-trained TensorFlow model.  

    Returns list of predictions. 

    ''' 

    # Define up one of file directory 

    current_path = 

os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(

__file__)))) 

 

    # Load tensorflow model 

    model = tf.keras.models.load_model( 

        os.path.join( 

            current_path, 

            "models/optimized/{}" 

            ).format(model_name) 

    ) 

    # Continue training 

    prediction = np.round( 

        model.predict( 

            features, # input sample 

        ) 
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    ) 

 

    return prediction 

 

 

 

def labels_asymptotic(files_coeff, cases_num, features, 

asym_threshold,iters_asym): 

    ''' 

    Determine if the difference between the maximum and minimum  

    coefficient values in the last specified iterations is below  

    the asym_threshold argument. Return a list of labels based  

    on the criteria  

    ''' 

 

    # Number of coefficients 

    coeff_num = np.size(files_coeff) 

 

    # Initialize numpy array 

    coeff_diff = np.zeros([cases_num,coeff_num]) 

    # For each coefficient 

    for count,coeff in enumerate(files_coeff): 

        # For each case 

        for i in np.arange(cases_num): 

            # max value 

            coeff_max = np.max(features[count][i,-iters_asym:])  

            # min value 

            coeff_min = np.min(features[count][i,-iters_asym:])  

            # difference between max and min 

            coeff_diff[i, count] = (np.abs(coeff_max-coeff_min))  

 

    # Initialize list 

    diff_max = [] 

    # For each case 



 

 

 

 

53 

    for i in np.arange(cases_num): 

        # Max value between coefficients 

        diff = np.max(coeff_diff[i,:]) 

        diff_max.append(diff) 

 

    # Initialize list 

    labels = [] 

    # For each case 

    for i in np.arange(cases_num): 

        # Assign PASS if below threshold 

        if diff_max[i] <= asym_threshold: 

            labels.append(1) 

        # Assign EXTEND otherwise 

        else: 

            labels.append(0) 

 

    # Return list of labels 

    return labels 
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buildmodel_binary_funAPI.py 

 

import tensorflow as tf 

from tensorflow import keras 

from kerastuner.engine.hyperparameters import HyperParameters as 

hp 

from kerastuner import HyperModel 

 

class MyHyperModel(HyperModel): 

 

    def __init__(self, iters_conv, files_coeff): 

        # Additional model arguments 

        self.iters_conv = iters_conv 

        self.files_coeff = files_coeff 

 

    def build(self, hp): 

        ''' Constructs the model's architecture. Includes a  

   branch for each coefficient consisting of an input  

   layer, hidden layers, and an output layer. Ends with a   

   trunk which merges the branches and consist of an input  

   layer, hidden layers, and an output.''' 

 

        # hyperparameters 

        # input layer density 

        input_density = hp.Int( 

            "input_density", 

            min_value=128, 

            max_value=192, 

            step=32, 

        ) 

        # number of hidden layers in each branch 

        n_layers_branch = hp.Int("n_layers_branch", 3,3) 

        # input layer density when merging branches 

        input_merge_density = hp.Int( 
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            "input_merge_density", 

            min_value=18, 

            max_value=36, 

            step=6, 

        ) 

        # number of hidden layers after merge 

        n_layers_merge = hp.Int("n_layers_merge",3,3) 

 

        # Initialize layer input and output holders 

        coeff_output = [] 

        coeff_input = [] 

        for coeff in self.files_coeff: 

            coeff = coeff.lower() 

            # define two sets of inputs 

            input_coeff = keras.Input(shape=(self.iters_conv,), 

name=coeff) 

 

            # Define input layers 

            dense_input_coeff = keras.layers.Dense( 

                input_density, 

                activation="relu", 

                name='Branch-Hidden_Layer-0-{}'.format(coeff) 

            ) 

 

            # Branch for each input 

            locals()[coeff] = dense_input_coeff(input_coeff) 

            for i in range(n_layers_branch): 

                # Define Hidden Layer 

                dense_hidden = keras.layers.Dense( 

                    hp.Int( 

                        "dense_{}_units_branch".format(i), 

                        min_value=8, 

                        max_value=64, 

                        step=8, 



 

 

 

 

56 

                    ), 

                    activation="relu", 

                    name='Branch-Hidden_Layer-{}-

{}'.format(i+1,coeff) 

                ) 

                locals()[coeff] = dense_hidden(locals()[coeff]) 

            locals()[coeff] = keras.Model( 

                inputs=input_coeff,  

                outputs=locals()[coeff] 

            ) 

            coeff_output.append(locals()[coeff].output) 

            coeff_input.append(locals()[coeff].input) 

 

        # combine the output of the two branches 

        combined = keras.layers.concatenate( 

            coeff_output 

        ) 

 

        # combined layers 

        # Define Hidden Layer 

        dense_merge = keras.layers.Dense( 

            input_merge_density, 

            activation="relu", 

            name='Trunk_Hidden_Layer-0' 

        ) 

        m = dense_merge(combined) 

 

        for i in range(n_layers_merge): 

            # Define Hidden Layer 

            dense_merge_hidden = keras.layers.Dense( 

                hp.Int( 

                    "dense_{}_units_merge".format(i), 

                    min_value=9, 

                    max_value=21, 
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                    step=3, 

                ), 

            activation="relu", 

            name='Trunk_Hidden_Layer-{}'.format(i+1) 

            ) 

            m = dense_merge_hidden(m) 

 

     

        m = keras.layers.Dense(1, activation="sigmoid", 

name='Trunk-Output_Layer-Sigmoid')(m) 

         

        # then output a single value 

        model = keras.Model( 

            inputs=coeff_input,  

            outputs=m, 

            name="Multi-Feature_Variable-Binary_Classification-

Functional_API" 

        ) 

 

        # Define optimizer 

        opt = keras.optimizers.Adam(hp.Choice("learning_rate", 

values=[1e-2,1e-3,1e-4])) 

        # Configure model for training 

        model.compile( 

            # True if no activation function is used in final 

layer 

            # True may be more numerically stable. Applies own 

sigmoid transformation 

            

loss=keras.losses.BinaryCrossentropy(from_logits=False),  

            optimizer=opt, 

            metrics=[tf.keras.metrics.BinaryAccuracy()] 

        ) 
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        return model 
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