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ABSTRACT
Airfoil Boundary Layer Separation Prediction by Kartavya Patel

This project features a MatLab complied program that predicts  airfoil  boundary layer

separation. The Airfoil Boundary Layer Separation program uses NACA 4 series, 5 series and

custom coordinates to generate the airfoil geometry. It then uses Hess-Smith Panel Method to

generate  the  pressure  distribution.  It  will  use  the  pressure  distribution  profile  to  display the

boundary  layer  separation  point  based  on  Falkner-Skan  Solution,  Stratford’s  Criterion  for

Laminar  Boundary  Layer  and  Stratford’s  Criterion  for  Turbulent  Boundary  Layer.  From

comparison  to  Xfoil,  it  can  be  determined  that  for  low  angle  of  attacks  the  laminar  flow

separation  point  can  be  predicted  from  Stratford’s  LBL  criterion  and  the  turbulent  flow

separation point can be predicted from Stratford’s TBL criterion. For high angle of attacks, the

flow  separation  point  can  be  predicted  from  Falkner-Skan  Solution.  The  program  requires

MatLab  Compiler  Runtime  version  8.1  (MCR)  which  can  be  downloaded  free  at

http://www.mathworks.com/products/compiler/mcr/  .

http://www.mathworks.com/products/compiler/mcr/
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1. Introduction

1.1 Motivation:

The motivation behind this project was to investigate the flow within the boundary layer

region. Boundary layer is one of the most interesting subjects in Aerodynamics because it is

independent of the global flow. On a very large scale, all human dwellings, including high rise

building, is contained within the Earth’s Atmospheric Boundary Layer. On small scale, boundary

layer is very small region of flow where the velocity varies from zero to free stream. In the field

of Aerodynamics, boundary layer is a fascinating subject to study due to its complex nature of

attachment,  detachment,  and transition between laminar and turbulent.  Therefore,  this project

will examine the complex nature of boundary layer separation and with appropriate assumptions,

it will develop program that can approximate region of flow separation.

1.2 Project Objective:

The objective of this project is to develop a robust, standalone executable MatLab code

that will predict separation point for a given airfoil at an angle of attack. The input parameter of

the airfoil will be determined from NACA 4-series, 5-series, and from custom airfoil coordinates.

Pressure distribution around the airfoil will then be determined using the Panel Method and the

geometry input of the airfoil. Using the pressure distribution, the separation point on an airfoil

will  be determined using the following separation criteria:  Falkner-Skan Solution,  Stratford’s

Criterion for Laminar Boundary Layer and Stratford’s Criterion for Turbulent Boundary Layer.

The results will be verified for different airfoils to validate the code and determine the accuracy

of the criteria.



1.3 Literature Review & Background Information:

When an airfoil is traveling through a flow field, it acquires a boundary layer around the

surface where the viscous forces occur. This boundary layer can be laminar or turbulent. As the

flow moves further downstream, the pressure gradually increases, reaching a value slightly above

the free-stream pressure at the trailing edge. This region where the pressure increases in the flow

direction is the region of adverse pressure gradient. Consider the motion of the fluid element in

the boundary layer already being hindered by the effect of friction; in addition, it is now being

hindered by increase of pressure which will  further reduce its  velocity. As the fluid element

continues to move downstream, it may completely stop and reverse its direction and start moving

backward.  The figure  below illustrates  the  station  as  the fluid  element  goes  against  adverse

pressure gradient. [9]

Figure 1: Flow in adverse pressure gradient [1]

The result of this reverse-flow phenomenon is to cause the flow to separate from the

surface and create a wake of recirculating flow downstream of the surface as shown below. At

the point (b) where the boundary layer is being separated, the shear stress is zero and occurs

where dV/dn = 0 at the surface.



Figure 2: Effect of viscosity on a body [1]

The separation of the boundary layer causes change in the pressure distribution around

the  airfoil.  As  shown  in  the  figure  below,  the  separated  flow  has  much  greater  pressure

distribution  at  the  top  of  the  airfoil.  This  causes  the  airfoil  to  have  less  lift  as  the  flow is

separated.  Also,  in  the  tail  section  of  the airfoil,  the separated  flow has  much  less  pressure

distribution.  The  horizontal  component  of  that  distribution  causes  the  airfoil  to  have  much

greater drag component.  Therefore,  the separation of the boundary layer  causes the airfoil to

have a drastic loss in lift which causes stall, and a major increase in drag. [9]



Figure 3: Pressure distribution [1]

Knowing where the flow separation occurs in different airfoils, greatly contributes to the

design of the wing. A wing with single airfoil design may experience an immediate stall where

wing with multiple airfoil can ensure that the tip stalls first and causes the plane to pitch down

which allows the flow to reattach itself and recover from the stall.

The project  “Determination  of  Flow Separation  Point  on NACA Airfoils  at  Different

Angles of Attack by Coupling the Solution of Panel Method with Three Different Separation

Criteria” was done in 2009 by San Jose State University students for Advanced Aerodynamics

class. The authors created a MatLab program for NACA 4 and used panel method to determine

the  pressure  distribution  and  used  the  Stratford  and  Falkner-Skan  criteria  to  determine  the

separation point on the airfoil. They were successfully able to develop the code and implement

the  separation  criteria  to  predict  separation  point  on  NACA  4  airfoils.  Their  code  was

benchmarked against their experimental data and showed that the Stratford’s turbulent boundary



layer criterion had highest accuracy for predicting separation point on NACA airfoil. Their future

work was to refine the program and extend it to predict separation on custom airfoils and make

the program independent from the MatLab service. [7]

This project will extend the work done in the past and expand the geometry selection

from NACA 4 series to 5; and it will include the option of importing user specified geometry.

The project  will  also validate  the program by benchmarking to  various other  2D simulation

programs such as JavaFoil and Xfoil.



2. Geometry

The first step in developing Airfoil Boundary Layer Separation program is to obtain the

geometry of any given airfoil. NACA airfoils were designed in 1930s to 1950s by the National

Advisory Committee  for  Aeronautics.  The shape is  described in  the numerical  code of each

airfoil.  The geometry can be numerically  calculated by using various equations  as shown in

detail in this paper. [6]

2.1 NACA 4 Series:

NACA 4 series are named in the following method: NACA MPXX, where:
o M: is the maximum camber divided by 100.
o P: is the position of the maximum camber divided by 10.
o XX: is the thickness as a percentage.

To generate  the  NACA 4  series  airfoil,  we must  first  determine  the  equation  of  the

camber line. Camber line is the line that is equidistance from the top and bottom surface of the

airfoil. For symmetric airfoils, that line would be the horizontal chord line. For cambered airfoil,

that line has an equation for before the max camber point and after the max camber point. In

NACA 4 series, the camber equations are given in the figure below.

Figure 4: Camber line NACA 4 series

Once we have the front and back camber equations, we must identify camber gradient.

This is necessary since the thickness of the airfoil is given as perpendicular distance from the

tangent of the camber line. Therefore derivative of the camber equation will provide the gradient

of the camber as shown in the figure below.



Figure 5: Gradient camber equation.

Thickness distribution equation for all NACA airfoil series is same. The constants of the

equations  are calculated for 20% airfoil  thickness and then readjusted into the equation as a

variable.  The a4 constant determines if the airfoil needs to have closed trailing edge or open

trailing edge. For numerical purposes, it is necessary to have closed trailing edge to use the panel

method for pressure distribution calculations. The thickness distribution equation is given in the

figure below.

Figure 6: Thickness equation

The program requires x and y coordinate of the top and bottom of the airfoil. Therefore,

the equation of the camber gradient is used to obtain the angle theta  as shown in the figure

below. The equations below identify coordinate change used to obtain the



Figure 7: Geometry of NACA 4 series

Figure 8: Flowchat describing NACA 4 series geometry

The  flowchart  above  shows  the  logical  process  the  program  will  use  to  obtain  the

geometry of the NACA 4 series airfoil. It will first consider the NACA 4 series values entered by

the user. From that, it will determine the value of M, P and T. The program will then go into loop



process and for every chord value from o to  P, it  will  calculate  camber  line values,  camber

gradient values and thickness values. It will then calculate the values from P to 1 using the back

equations for camber and camber gradient. After that, for every chord value, it will store a value

of x and y coordinates for upper and lower surfaces.

2.2 NACA 5 series:

The NACA 5 series have similar thickness distribution to the 4 series. However, they

have a new camber line that allows it to concentrate camber near the leading edge. The reflexed

camber line version is also designed to produce zero pitching moment. The NACA 5 series is

represented by the following numbers: LPQXX, where:

o L: This digit controls the camber near the leading edge by identifying the 

designed coefficient of lift (Cl = 3L/20)

o P: Position of the max camber: P/20.

o Q: Identifies if the airfoil has normal camber line (0) or reflexed camber line (1).

Reflexed camber line is a camber line that curves upward towards trailing edge to 

provide zero pitching moment.

o XX: Is thickness as percentage.

The geometry equation for NACA 5 series can be separated in to two types of airfoils:

Normal  Cambered  and  Reflexed  Cambered.  Once  we  have  the  camber  line,  the  thickness

equation used in the NACA 4 series can be used to obtain the x and y coordinates of the airfoil

geometry.



2.2.1  NACA 5 Series: Normal Cambered: LP0QXX

The standard 5 series camber line is given in the table below [6,8]. Where m is not the

position  of  the  maximum camber  but  it  is  related  to  the  maximum camber  position  by  the

equation [2.1.1]. The coefficient k1 is given by the following equation [2.1.2] and [2.1.3].

Table 1: NACA 5 series: Normal Cambered equations.

Front
(0≤x<m)

Back 
(m≤x≤1)

Camber
=

(  − 3   +   (3 −  ) )
= (1 −  )

6 6

Camber

− 6   +   (3 −  ))

Gradien
t = (3 = −6 6

= =  (1 − √ )[2.1.1]

= ,   =

[2.1.2
]

=
( )

− (1 − 2 ) ( − sin  (1 − 2 )) [2.1.3]

√ ()

2.2.2  NACA 5 Series: Reflexed Cambered: LP1QXX

The reflexed cambered 5 series is given by the equation in the table below [6,8]. Where m

is given by the equation: [2.2.1]. Similarly to the normal cambered airfoil, k1 and Q are given by

the equations: [2.2.2] and [2.2.3]. The k2/k1 ratio is given by the equation [2.2.4].

Table 2: NACA 5 series: Reflexed cambered equations

(0 ≤  <  ) (  ≤  ≤ 1)

Camber
= (( −  ) − (1 −  )  −+   ) = ( (  −  ) − (1 −  )  −+   )Reflexed 6 6

Camber 3  

Gradient = (3(  −  ) − (1 −  ) −   ) = ( (  −  ) − (1 −  ) −   )6 6

Reflexed



= =  (1 − √ )[2.2.1]

= , = [2.2.2]

=
( )

− (1 − 2 ) ( − sin  (1 − 2 )) [2.2.3]

√  ( )

=
( )

[2.2.4]
( )

Once the cambered equation is identified, we can follow the method established in the

NACA 4 series to obtain the thickness equation and ultimately obtain the x and y coordinates of

the NACA 5 series airfoil. Example below shows the calculated NACA 5 series airfoil and how it

relates to the reflexed version of that airfoil.
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Figure 9: NACA 5 series: Normal & Reflexed cambered



2.3 Custom Airfoil:

One of  the requirements  for  this  project  was to  ensure that  it  can use custom airfoil
geometry  from the  user  and  perform analysis  on  that  geometry.  MATLAB has  a  variety  of
functions that can read text files and store the information onto variables. The method used in
this project is as follows:

load Airfoil.dat;
x = Airfoil(:,1);
y = Airfoil(:,2);

There are certain requirements that the input file must have inorder for it to be useful in 
this program:

1. The first requirement is that the file must be named “Airfoil.dat” and it must be in the 
same folder as the program.

2. The file must only contain the coordinates of the airfoil and any other information from
the text file must be removed. If the airfoil coordinates are obtained from another source,
they will  include general information such as name of the airfoil and number of data
points and they must be removed.

3. The file must have coordinates in two separate columns as shown below.
4. The file must  have coordinates arranged properly to ensure they’re useful in creating

pressure distribution since the pressure distribution method is using the panel method.
The coordinates  must  start  from the bottom trailing edge of the airfoil  to the bottom
leading edge and then follow the top leading edge to the top trailing edge. An example of
this coordinate system is shown in the figure below.



Figure 10: Example of Airfoil.dat file



3. Pressure distribution

The thin  airfoil  theory doesn’t  take  into  consideration  of  airfoil  thickness  and it  has

inaccurate pressure distribution near stagnation points. Also, airfoils with high camber and large

thickness can’t be used in thin airfoil  theory due to the assumptions made in the derivation.

Therefore, in order to provide accurate pressure distribution for a given geometry profile, we

must consider Panel-Method. [5]

The Hess-Smith Panel Method was developed by Hess and Smith of the Douglas Aircraft

in  1966.  It  uses  combination  of  the  solution  of  the  Laplace’s  equation  to  source/sinks  and

vortices derived from the Potential Flow Theory to simulate the airfoil by discretizing the surface

of the body into series of panels. The potential flow theory assumes inviscid, imcompressible and

irrotational flow to solve Laplace’s equation. [5]

= + + [3.1]
= ∫ ( ) n   [3.2]
= − ∫ ( )     [3.3]

The  equation  above  is  the  total  potential  function  which  contains  the  corresponding

potential flow of the free stream velocity, source distribution and vortex distribution. The source

and vortex distribution can contain varying strength throughout the airfoil. The Hess-Smith Panel

Method assumes constant vortex strength over the entire airfoil and uses kutta condition to fix its

value. It allows the source strength to vary from panel to panel. Together with constant vortex

distribution,  varying  source  strength  and  the  kutta  condition,  the  flow  tangency  boundary

condition must be satisfied [3]. The equation one is then discretized to:

= ( s +sin  ) + ∑ ∫ [ ( ) n  − ] [3.4]

Using tangency boundary condition and kutta condition, the panel matrix can be set up as

shown below. The tangency boundary conditions are used to determine the blue region of the

matrix. The kutta condition represents the red region of the matrix. The full derivation of the

process is described in reference [5].



Figure 11: Matrix of the panel method [5]

The  tangency  condition  represented  by  the  blue  region  matrix  is  represented  by  the

equation  [3.5]  stated  below.  The  green  region  is  represented  by  [3.6].  The  grey  region  is

represented by [3.7]. And the yellow region is represented by [3.8]. The r represents the distance

from midpoint of panel i to the jth node. β represents the angle subtended by the jth panel at the

midpoint of panel i.

∑ + = [3.5]

2 = sin( − ) n ( ) + s(  − ) [3.6]

2 = ∑ s( −  ) n ( ) − sin( −  ) [3.7]
= sin(  −  ) [3.8]

The  kutta  condition  which  represents  the  red  region  in  the  matrix  is  given  by  the

following relationship:

∑ + = [3.9]

2 = ∑ sin( − )   − s( − ) n [3.10]

2 = ∑∑ sin( − ) n ( ) + s(  − )   [3.11]

= − s( − ) − s( − ) [3.12]

Solving the matrix will result in the value of source strength q and the vortex strength γ.

From that, the tangential velocity at the midpoint of each panel can be calculated to be:



= s( −  ) + ∑ [sin( − ) − s( −  ) n
]

+

∑ [sin( −  ) n + s( − ) ] [3.13]

Therefore, the pressure coefficient at each panel can also be determined to be:
(  ̅  ̅ ) = 1 − [3.14]

The program will integrate the Hess-Smith panel method described above and derived in

the reference [3] to generate the pressure distribution on the given geometry of the airfoil. Once

the pressure distribution is known, it can be used to identify the region of flow separation.



4. Separation Criteria

The program will use three different separation criteria: The Falkner-Skan Solution, The
Stratford’s  Criterion  for  Laminar  Boundary  Layer  (LBL),  and  The  Stratford’s  Criterion  for
Turbulent Boundary Layer (TBL). Each of the criteria uses pressure distribution obtained from
the panel method to predict the flow separation point on the airfoil. Once the separation point has
been determined, the program will plot the result on the geometry of the airfoil.

4.1 Falkner-Skan Solution:

The Blasius solution developed by H. Blasius in 1908 is valid for zero pressure gradient
problems. In 1930, Falkner and Skan developed the equation for incompressible boundary layer
with pressure gradient. The derivation of this equation is highlighted in the reference [1,9]. The
pressure term can be added to the x-momentum by the Euler’s equation to obtain:

(  ) + (  ) = ( ) + [4.1.1]

To obtain the self-similar solution, the independent variables (x,y) were transformed to
(s,η) where

= ∫[4.1.2],   = √ [4.1.3], and the new transformed stream function is
( )

=

[4.1.4]
This results in the transformed stream function and its derivatives to be in terms of η and 

the x-momentum becomes an ordinary differential equation:
+ + [1 − (  ) ]  = 0 [4.1.5]

= [4.1.6]

The boundary conditions for this equation are as follows:
(  0) = 0 and  (  0) = 0 and   ( ) = 1

Where β is the boundary layer separation criterion and for β = -0.1998, the = 0 and

( ) = 0 which indicates that the laminar boundary layer has separated. During the derivation of this method it was necessary to assume the flow is inviscid, and 
incompressible.



4.1.1 Program Approach: Falkner-Skan Solution:

The program will take the coefficient of pressure at each location to obtain the value for
[4.1.2] which will be used to obtain the result of β as shown in equation [4.1.6] at each point on
the top surface of the airfoil. This β value will be compared to -0.1998 to see if the laminar
boundary layer has separated. If the β value is lower than -0.1998, the program will output the x-
coordinate of that location as the result for Falkner-Skan Solution.

Figure 12: Flowchart of Falkner-Skan Solution in MatLab

4.2 Stratford’s Criterion for 2-D laminar Separation

In 1957 B. S. Stratford derived a formula for separation of the laminar boundary layer
that assumes the flow is inviscid and incompressible. The Stratford’s criterion for 2-D laminar
separation is given by [14,9]

 ̅(  ̅ 
 ̅ ) = 0 010 [4.2.1]

 ̅
= = 1 − [4.2.2]

  ̅= ∫  ( ) + (  −   ) [4.2.3]

  ̅ = ∫ ( )   [4.2.4]

 ̅ is the canonical pressure coefficient and   ̅is effective boundary layer length. The canonical pressure coefficient varies from 1 at the stagnation point to
0 at the start of the pressure recovery region. The flow separation point occurs at x location where the [4.2.1] has value of



0.0104 or larger. If the pressure recovery region starts from the leading edge, then the effective
boundary layer  length is equal to the actual boundary layer  length. However, in most  of the
problems this program will manage, there will be a region of favorable pressure gradient. In this
region, the effective boundary layer length can be replaced as length of an equivalent constant
pressure region with same location as the minimum pressure point as shown in [4.2.3].

4.2.1 Program Approach: Stratford’s Criterion for 2-D Laminar Separation

The program will use the coefficient of pressure curve obtained from the panel method. It
will first identify the location of the minimum coefficient of pressure and its x value. It will then
integrate  to solve equation [4.2.4] using trapezoid integration  method highlighted in  MatLab
index. Then it will use that information along with location of minimum coefficient of pressure
to  obtain  the  value  of    ̅ .  Then  it  will  compute  [4.2.2]  for  each  x  value.  Once  all  required
information is obtained it will compute equation [4.2.1] and compare each value starting from
point of lowest coefficient of pressure to trailing edge to identify at which location the value
exceeds 0.0104. It will output the x-coordinate of that value as a result.

Figure 13: Flowchart of Stratford's LBL criterion in MatLab



4.3 Stratford’s Criterion for 2-D Turbulent Separation:

The Stratford’s criterion for turbulent separation is difficult to compute without additional
assumptions due to the complexity of the equation. The general form of the equation is given by
[14,9]:

(2   ̅) (  ̅  ̅) = (10  ̅ ̅ ̅ ̅) [4.3.1]

Where β is a function of the shape of the pressure distribution in the region near the
separation point. Upon further simplification and assuming N=0.53, beta =0.66 or 0.69; the right
side of the equation can be simplified to:

 ̅(  ̅
 ̅

)

=

(10  ̅ ̅ ̅ ̅)

= 0 3[4.3.2]= 0 3

Similar to the laminar criterion, the equation for  
 ̅
and   ̅are given below.

 ̅
= = 1 − [4.3.3]

Assuming we have a turbulent boundary layer from the stagnation point, then the   ̅ would be determined by:

  ̅ = ∫ ( )   [4.3.4]

  ̅= ∫  (  ) + (  −   [4.3.5]

)

It should be noted that the criterion is invalid if  ̅is greater than 4/7.

4.3.1 Program Approach: Stratford’s Criterion for 2-D Turbulent Separation:

The program will use the values of x and coefficient of pressure obtained from the panel method. It
will first determine the location of minimum x value and the minimum coefficient of pressure. It will then
determine    ̅by integrating equation [4.3.4]. It then computes equation [4.3.3] and [4.3.2]. The program then
compares equation [4.3.2] to either 0.35 or 0.39 by checking if the pressure recovery region is concave or
convex. It will also compare equation [4.3.2] to 4/7 to ensure if the solution obtained is valid.



Figure 14: Flowchart of Stratford's TBL criterion in MatLab



5. MatLab Set Up and Integration

MatLab is a numerical computing environment that contains various built in functions to
numerically solve mathematical expressions. Therefore it is can serve as an ideal platform for
this  project.  The program generated  in 2013a version of MatLab requires  MatLab Complier
Runtime (MCR) version 8.1 in order to execute the program. MCR can be downloaded for free at
http://www.mathworks.com/products/compiler/mcr/  . The Graphic User Interface for the program
is shown in the figure below. The program is created to take the geometry as input value and it
will  output  the  flow  separation  region  for  various  criteria  and  it  will  display  the  pressure
distribution of the airfoil as well.

Figure 15: Example of the program's GUI

http://www.mathworks.com/products/compiler/mcr/


6. Results & Validation

The results obtained in this program will be validated using various methods. First, the
geometry of NACA airfoils and custom airfoil used in the program needs to be validated with
AirfoilTools.com. Second, the pressure distribution obtained by the panel method needs to be
validated by comparing it to JavaFoil. Then the results obtained in this program from separation
criteria will be compared to the results from Xfoil.

6.1 Geometry Validation:

The  geometry  obtained  from  NACA  4  and  5  series  are  shown  above.  The  exact
coordinates  in MATLAB differs from the ones created by AirfoilTools.  However, due to the
exact nature of the equations used for the geometry of NACA series, the resultant geometry is
nearly identical.  Similar  to AirfoilTools,  the MatLab program created uses cosine method to
generate more points at the leading and trailing edge of the airfoil. It can also be shown that the
201 points generated to create the airfoil  geometry is sufficient enough to capture the airfoil
profile. [10, 11]
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Figure 16: NACA 0012 geometry: MatLab vs AirfoilTools.com



NACA 23012 Geometry Comparision
y

0.1

0.05

0 MATLAB
0 0.2 0.4 0.6 0.8 1 Airfoil 

Tools-0.05



-0.1

Chord length

Figure 17: NACA 23012 Geometry: MatLab vs AirfoilTools.com

6.2 Pressure Distribution:

JavaFoil was used to compare the pressure distribution created in MATLAB program.
JavaFoil uses the classic vortex panel method to determine the linear potential flow field around
single  and  multi-element  airfoils.  In  comparison,  MatLab  uses  Hess-Smith  panel  method  to

obtain the pressure distribution.  Both method uses numerical  analysis  to solve (# panel +1)2

matrix to obtain the pressure distribution. The results are compared in the graph below. Figure
[18] is for NACA 0012 airfoil with zero degree angle of attack and figure [19] is NACA 0012
airfoil with 10 degree angle of attack. The pressure distribution obtained by MatLab is very close
to the results from JavaFoil. Therefore, the panel method used in the coding of this program
provides accurate results that can be used to predict the flow separation point. [4]

Figure 18: NACA 0012 Pressure Distribution: Matlab vs JavaFoil, AoA 0



Figure 19: NACA 0012 pressure distribution: MatLab vs JavaFoil, AoA = 10

6.3 Flow Separation:

In order to provide accurate benchmark for flow separation, the results from MATLAB
program were compared with Xfoil  at  various  Reynolds  numbers.  Xfoil  is  a 2-D interactive
program that uses given geometry or airfoil number to analyze subsonic, incompressible flow.
For a given airfoil and Reynolds number Xfoil calculates the pressure distribution. It has the
option of solving viscous boundary layer numerically. From the resolved boundary layer, Xfoil
can  plot  the  coefficient  of  friction  vs  chord  length  and  the  flow  separation  point  can  be
determined when Cf curve is less than or equal to zero. For NACA 0012, viscous boundary layer
analysis was performed using Xfoil at various angles of attack and Reynolds number vary at

1x105, 3x105 and 5.5x105. [3]



Table 3: Results from Program and Xfoil

AoA
Falkner - Stratford’s Stratford’s Xfoil Xfoil Xfoil

Skan LBL TBL 50k 300k 550k

0 0.41405 0.61671 0.95565 0.68493 .705119 1

1 0.353 0.53922 .94896 0.521678 .635656 1

2 0.29427 0.44514 .94896 0.427753 0.55754 1

3 0.22552 0.38329 .94183 0.334303 0.45660 1

4 0.15209 0.32328 N/A 0.236928 0.30888 1

5 0.073733 0.28006 N/A 0.131248 0.18214 1

6 0.032336 0.2523 N/A 0.058826 0.051501 0.049208

7 0.022162 0.23878 N/A 0.031729 0.027815 0.027217

8 0.013875 0.058172 N/A 0.020646 0.018736 0.018488

9 0.010449 0.027016 N/A 0.015646 .013559 0.013552

10 0.010449 0.017781 N/A 0.018154 0.010655 0.010725

11 0.0075061 0.0138775 N/A 0.01527 0.008525 0.008725

12 0.0075061 0.0138775 N/A 0.012226 0.00725 0.007612

13 0.0075061 0.010449 N/A 0.010431 0.006351 0.006571

14 0.007061 0.010449 N/A 0.008638 0.005875 0.006055

15 0.0050492 0.010449 N/A 0.006923 0.00545 0.005524
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Figure 20: Results NACA 0012 at 0 degree
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Figure 21: Results NACA 0012 at 5 degree
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Figure 22: Results NACA 0012 at 10 degree
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Figure 23: Results NACA 0012 at 15 degree



6.4 Results:

The results from MATLAB program and Xfoil are shown in the table above for NACA
0012. At low angles of attack of 0-3: for low Reynolds number the best criterion is Stratford’s
LBL criterion and for high Reynolds number the best criterion is Stratford’s TBL criterion. At
lower Reynolds number the results from Xfoil are very close to the results from Stratford’s LBL
criterion. As we increase the Reynolds number the results get closer to the Stratford’s turbulent
separation  criterion.  As we get  into  Reynolds  number  above 500,000 the  results  from Xfoil
shows  that  there  is  no  boundary  layer  separation.  In  comparison,  the  Stratford’s  criterion
identifies the separation at the very trailing edge of the airfoil. The Falkner-Skan Solution in the
region for low angle of attack does not represent an accurate solution to Xfoil results.

At medium angles of attack of 3-5 the Stratford’s Laminar Boundary Layer criterion represents accurate result for all
range  of  Reynolds  Numbers.  This  result  falls  after  Falkner-Skan  Solution and before  the Stratford’s LBL criterion.  As  the
Reynolds number increases, the results are closer to Stratford’s laminar boundary layer criterion. At high Reynolds number, the
Xfoil shows that the boundary layer is still attached. However, the Stratford’s turbulent criterion is no longer valid because the 

 ̅
is

greater than 4/7 as detailed in the derivation section.
At high angles  of  attack  of  6-10,  the results  from Falkner-Skan criterion  show great

accuracy when compared to the results from Xfoil. For both low and high Reynolds number the
Falkner-Skan criterion is able to predict the flow separation point with very small  margin of
error.

The separation  criterions  used in  this  program will  generally  under  predicts  the flow
separation region when compared to Xfoil which solve the boundary layer numerically. MatLab
program generated for this  project uses the pressure distribution profile obtained from Panel
Method  and  various  separation  criterions  to  predict  the  flow  separation.  From  the  result
comparison of NACA 0012, it  is  determined that  for low angle of  attacks  the laminar  flow
separation  point  can  be  predicted  from  Stratford’s  LBL  criterion  and  the  turbulent  flow
separation point can be predicted from Stratford’s TBL criterion. For high angle of attacks, the
flow separation point can be predicted from Falkner-Skan Solution.
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APPENDIX A : MATLAB GUI CODE
function varargout = GUI_v1(varargin)
% GUI_V1 MATLAB code for GUI_v1.fig
% GUI_V1, by itself, creates a new GUI_V1 or raises the existing
% singleton*.
%
% H = GUI_V1 returns the handle to a new GUI_V1 or the handle to
% the existing singleton*.
%
% GUI_V1('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUI_V1.M with the given input arguments.
%
% GUI_V1('Property','Value',...) creates a new GUI_V1 or raises the
% existing singleton*.  Starting from the left, property value pairs are
% applied to the GUI before GUI_v1_OpeningFcn gets called.  An
% unrecognized property name or invalid value makes property application
% stop.  All inputs are passed to GUI_v1_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI_v1

% Last Modified by GUIDE v2.5 06-May-2014 14:00:53

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GUI_v1_OpeningFcn, ...
'gui_OutputFcn', @GUI_v1_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback' , []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT

% --- Executes just before GUI_v1 is made visible.
function GUI_v1_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI_v1 (see VARARGIN)



% Choose default command line output for GUI_v1
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI_v1 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = GUI_v1_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function FourDigit_Callback(hObject, eventdata, handles)
% hObject handle to FourDigit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of FourDigit as text
% str2double(get(hObject,'String')) returns contents of FourDigit as a
double

% --- Executes during object creation, after setting all properties.
function FourDigit_CreateFcn(hObject, eventdata, handles)
% hObject handle to FourDigit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function FiveDigit_Callback(hObject, eventdata, handles)
% hObject handle to FiveDigit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)



% Hints: get(hObject,'String') returns contents of FiveDigit as text
% str2double(get(hObject,'String')) returns contents of FiveDigit as a
double

% --- Executes during object creation, after setting all properties.
function FiveDigit_CreateFcn(hObject, eventdata, handles)
% hObject handle to FiveDigit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function N_Callback(hObject, eventdata, handles)
% hObject handle to N (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of N as text
% str2double(get(hObject,'String')) returns contents of N as a double

% --- Executes during object creation, after setting all properties.
function N_CreateFcn(hObject, eventdata, handles)
% hObject handle to N (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in EXECUTE4.
function EXECUTE4_Callback(hObject, eventdata, handles)
% hObject handle to EXECUTE4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
N = 100;
FourDigit = str2num(get(handles.FourDigit,'String'));

alpha = str2num(get(handles.alpha4,'String')); 
global xFS;



global xSL;
global xST;
global yFS;
global ySL;
global yST;
global xU;
global CpU;
global x;
global y;
global xL;
global yL;
global CpL;
if FourDigit > 9999

error = 'Invalid NACA 4 Series';
set(handles.MSG, 'String', error);

elseif alpha > 90
error = 'Invalid Angle of Attack';

set(handles.MSG, 'String', error);

elseif alpha < 0
error = 'Invalid Angle of Attack';
set(handles.MSG, 'String', error);

else
[x,y]= Airfoil4 (N,N,FourDigit);

[xmid,ymid,Cp]=HessSmithPanel (x,y,alpha);

[xU,yU,CpU]=UpperSurface (xmid,ymid,Cp,N);

[xL,yL,CpL]=LowerSurface (xmid,ymid,Cp,N); 
if floor(FourDigit/1000)==0

if (alpha ~= 0)==0
xL =0;
yL = 0;
CpL = 0;
end

end
[iU_FS,xU_FS] = FalknerSkan(xU,CpU);
[iU_SL,xU_SL] = StratfordLBL(xU,CpU);
[iU_ST,xU_ST] = StratfordTBL(xU,CpU);
xFS=xU_FS;
xSL=xU_SL;
xST=xU_ST;

yFS=yU(iU_FS);
ySL=yU(iU_SL);
yST=yU(iU_ST);

FSx= num2str(xFS);
SLx= num2str(xSL);
STx= num2str(xST);



set(handles.FSx, 'String', ['x/c = ',FSx]);
set(handles.SLx, 'String', ['x/c = ',SLx]);
set(handles.STx, 'String', ['x/c = ',STx]);
axes (handles.axes1);
plot(x,y,'k',xFS,yFS,'*g',xSL,ySL,'*b',xST,yST,'*r');
axis([-.1 1.1 -.4 .4]);
legend ('Airfoil Profile','Falkner-Skan', 'Stratford Laminar', 'Stratford

Turbulent');

xlabel('x/c');
ylabel('y/c' );
error = '';
set(handles.MSG, 'String', error);
guidata (hObject, handles);

end

% --- Executes on button press in FigureG.
function FigureG_Callback(hObject, eventdata, handles)
% hObject handle to FigureG (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global xFS;
global xSL;
global xST;
global yFS;
global ySL;
global yST;
global xU;
global CpU;
global x;
global y;

axes (handles.axes1);
plot(x,y,'k',xFS,yFS,'*g',xSL,ySL,'*b',xST,yST,'*r'); 
axis([-.1 1.1 -.4 .4]);
legend ('Airfoil Profile','Falkner-Skan', 'Stratford Laminar', 'Stratford

Turbulent');

xlabel('x/c');
ylabel('y/c');
guidata (hObject, handles);
global xFS;

% --- Executes on button press in FigureP.
function FigureP_Callback(hObject, eventdata, handles)
% hObject handle to FigureP (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB



% handles 
global xFS;
global xSL;
global xST;
global yFS;
global ySL;
global yST;
global xU; 
global CpU;
global x; 
global y; 
global xL; 
global CpL;

structure with handles and user data (see GUIDATA)

axes (handles.axes1);
plot(xU,CpU,'b',xL,CpL,'r');
set(gca, 'YDir', 'reverse');
axis auto
title('Pressure Distribution');
legend ('Top', 'Bottom');
xlabel('x/c');
ylabel('Cp');
guidata (hObject, handles);
% --- Executes on button press in EXECUTEC.
function EXECUTEC_Callback(hObject, eventdata, handles)
% hObject handle to EXECUTEC (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
N = 100;
alpha = str2num(get(handles.alphaC,'String'));
global xFS;
global xSL;
global xST;
global yFS;
global ySL;
global yST;
global xU;
global CpU;
global x;
global y;
global xL;
global yL;
global CpL;
if alpha > 90

error = 'Invalid Angle of Attack';
set(handles.MSG, 'String', error);

elseif alpha < 0
error = 'Invalid Angle of Attack';
set(handles.MSG, 'String', error);

else
[x,y,N]= AirfoilC ;
[xmid,ymid,Cp]=HessSmithPanel (x,y,alpha);
[xU,yU,CpU]=UpperSurface (xmid,ymid,Cp,N);
[xL,yL,CpL]=LowerSurface (xmid,ymid,Cp,N);
[iU_FS,xU_FS] = FalknerSkan(xU,CpU);



[iU_SL,xU_SL] = StratfordLBL(xU,CpU);
[iU_ST,xU_ST] = StratfordTBL(xU,CpU);
xFS=xU_FS;
xSL=xU_SL;
xST=xU_ST;

yFS=yU(iU_FS);
ySL=yU(iU_SL);
yST=yU(iU_ST);

FSx= num2str(xFS);
SLx= num2str(xSL);
STx= num2str(xST);

set(handles.FSx, 'String', ['x/c = ',FSx]);
set(handles.SLx, 'String', ['x/c = ',SLx]);
set(handles.STx, 'String', ['x/c = ',STx]);
axes (handles.axes1);
plot(x,y,'k',xFS,yFS,'*g',xSL,ySL,'*b',xST,yST,'*r');
axis([-.1 1.1 -.4 .4]);
legend ('Airfoil Profile','Falkner-Skan', 'Stratford Laminar', 'Stratford

Turbulent');

xlabel('x/c');
ylabel('y/c' );
error = '';
set(handles.MSG, 'String', error);
guidata (hObject, handles);

end

function alphaC_Callback(hObject, eventdata, handles)
% hObject handle to alphaC (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of alphaC as text
% str2double(get(hObject,'String')) returns contents of alphaC as a
double

% --- Executes during object creation, after setting all properties.
function alphaC_CreateFcn(hObject, eventdata, handles)
% hObject handle to alphaC (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end



% --- Executes on button press in EXECUTE5.
function EXECUTE5_Callback(hObject, eventdata, handles)
% hObject handle to EXECUTE5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

N = 100;
FiveDigit = str2num(get(handles.FiveDigit,'String'));
alpha = str2num(get(handles.alpha5,'String'));
global xFS;
global xSL;
global xST;
global yFS;
global ySL;
global yST;
global xU;
global CpU;
global x;
global y;
global xL;
global yL;
global CpL;
global yU;
L=floor(FiveDigit/10000);
P=floor(FiveDigit/1000)-L*10;
R=floor(FiveDigit/100)-L*100-P*10;
XX=FiveDigit-L*10000-P*1000-R*100;

if FiveDigit > 99999
error = 'Invalid NACA 5 Series: Value must not exceed 5 digits.';
set(handles.MSG, 'String', error);

elseif FiveDigit < 10000
error = 'Invalid NACA 5 Series';
set(handles.MSG, 'String', error);

elseif R > 1
error = 'Invalid NACA 5 Series: Third Digit Must be 0 or 1.';
set(handles.MSG, 'String', error);

elseif alpha <0
error = 'Invalid Angle of Attack.' ;
set(handles.MSG, 'String', error);

elseif alpha > 90
error = 'Invalid Angle of Attack.' ;
set(handles.MSG, 'String', error);

elseif P>5
error = 'Invalid NACA 5 Series: Second Digit Can Not Exceed 5.';
set(handles.MSG, 'String', error);

else
[x,y]= Airfoil5 (N,N,FiveDigit); 
[xmid,ymid,Cp]=HessSmithPanel (x,y,alpha); 
[xU,yU,CpU]=UpperSurface (xmid,ymid,Cp,N); 
[xL,yL,CpL]=LowerSurface (xmid,ymid,Cp,N);

[iU_FS,xU_FS] = FalknerSkan(xU,CpU);
[iU_SL,xU_SL] = StratfordLBL(xU,CpU);



[iU_ST,xU_ST] = StratfordTBL(xU,CpU);
xFS=xU_FS;
xSL=xU_SL;
xST=xU_ST;

yFS=yU(iU_FS);
ySL=yU(iU_SL);
yST=yU(iU_ST);

FSx= num2str(xFS);
SLx= num2str(xSL);
STx= num2str(xST);

set(handles.FSx, 'String', ['x/c = ',FSx]);
set(handles.SLx, 'String', ['x/c = ',SLx]);
set(handles.STx, 'String', ['x/c = ',STx]);
axes (handles.axes1);
plot(x,y,'k',xFS,yFS,'*g',xSL,ySL,'*b',xST,yST,'*r');
axis([-.1 1.1 -.4 .4]);
legend ('Airfoil Profile','Falkner-Skan', 'Stratford Laminar', 'Stratford

Turbulent');

xlabel('x/c');
ylabel('y/c');
error = '';
set(handles.MSG, 'String', error);
guidata (hObject, handles);

end

function alpha5_Callback(hObject, eventdata, handles)
% hObject handle to alpha5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of alpha5 as text
% str2double(get(hObject,'String')) returns contents of alpha5 as a
double

% --- Executes during object creation, after setting all properties.
function alpha5_CreateFcn(hObject, eventdata, handles)
% hObject handle to alpha5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end



function alpha4_Callback(hObject, eventdata, handles)
% hObject handle to alpha4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of alpha4 as text
% str2double(get(hObject,'String')) returns contents of alpha4 as a
double

% --- Executes during object creation, after setting all properties.
function alpha4_CreateFcn(hObject, eventdata, handles)
% hObject handle to alpha4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in inst.
function inst_Callback(hObject, eventdata, handles)
% hObject handle to inst (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
msgbox('Operation Complete');


