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ABSTRACT 

 
Prediction of Stress Using Machine Learning for Aerospace Applications 

 
Nataliya Grigoryan 

 
 

As machine learning is becoming omnipresent, applications in aerospace industry have 
the potential to aid standard aircraft maintenance and reduce operating costs. Data driven 
approaches allow for further additional utilization of past and present data within the industry. If 
properly implemented, machine learning has the ability to significantly decrease computational 
time and power when compared to traditional testing and FEA. Given input and output data from 
equations of motion or Finite Element Analysis in Ansys, a supervised regression learning 
approach is applied to several engineering systems. Systems included in the project are a spring 
mass damper system, a static channel beam, and static wing with internal geometry and airfoil. 
Linear regression, decision tree, random forest, and neural network algorithms are used for the 
machine learning in MATLAB. Highest performing models among all cases explored are trained 
with the random forest algorithm, with trained R2 values being larger than 0.99 for all cases. 
Decision tree models have slightly lower R2 values compared to random forest models but show 
milder overfitting. Linear regression was not ideal for any system as the models do not have 
consistent performance among cases and tends to overfit or underfit data. Neural network models 
show great potential but requires further study and fine tuning due to lack of consistency in 
performance.   
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1. Introduction 
1.1 Motivation 

The aviation industry has been striving to reduce operating costs as the demand for air 
travel continues to rise. Maintenance of aircraft is a crucial aspect of airworthiness and is 
generally a very conservative process. Globally in 2018, maintenance, repair, and overhaul 
accounted for about 10% of total annual operational costs of airlines [1]. Structural health 
monitoring (SHM) has gained popularity as airline operators are actively driving its integration 
in traditional maintenance procedures. Programs have introduced adaptations of SMH by 
utilizing comparative vacuum monitoring sensors, which present challenges during preparation 
and installation [2]. Finite element modeling has also been widely used for analyzing complex 
systems, though it requires high computational power and time. Studies have demonstrated the 
ability for machine learning techniques to accurately surrogate traditional Finite Element 
Analysis (FEA), while also drastically reducing computational time [3]. If in-flight data, along 
with finite element models, can provide sufficient data to train machine learning algorithms 
further FEA would not be necessary. Traditionally, during certification, extensive testing is 
conducted on wing loads to certify the design and airworthiness. Machine learning algorithms 
could provide much more data and insight on the structural behavior of the wing and transform 
maintenance procedures and timelines. 

1.2 Literature Review 

Engineering reliance has begun to shift from academic knowledge to artificial 
intelligence in the last several decades. Intelligent systems assist, and at times replace, human 
capabilities including, but not limited to, learning, optimization, recognition, and classification 
[4]. As part of artificial intelligence, machine learning is a study where computer algorithms are 
trained using data without relying on human mediation. Machine learning assists in data 
processing and allows for valuable analysis; familiar examples include search engines, spam 
classification, and self-driving cars. Design optimization of turbine discs utilizing surrogate 
models demonstrated a decrease in computational time and cost due to the decreased number of 
FEA required [5]. The optimal design illustrated the feasibility and validity of the method for 
shape optimization problems [5].Studies have demonstrated that trained algorithms can operate 
without compromising accuracy [6][7]. Learning algorithms with co-training and self-training 
approaches for planetary exploration rovers with terrain classification showed an error reduction 
of close to 8% when compared to a supervised approach [8]. Collaborations with aerospace 
manufacturers have presented approaches of using machine learning to assist engineers during 
the design process that could lead to savings in time and resources [9].  

Machine learning has many categories and types of algorithms. Supervised learning is a 
data driven regression approach that involves training an algorithm with collected data to predict 
an output. Data driven approaches for analyzing higher-order beams have shown to reflect results 
found through previous analytical models while not requiring specific assumptions [10]. This 
type of approach takes advantage of previously collected data and allows engineers to 
significantly reduce time cost when bypassing traditional analysis methods. The amount of data 
necessary for a data driven approach directly correlates to the accuracy of the results obtained 
[10]. The necessity, along with the high computational cost, of FEA has driven the development 
of approaches that combine FEA with machine learning. This combination approach used for 
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measuring delamination damage of composite materials “allows rapid non-destructive analysis 
for the iterative design of composites, accelerating the development of novel delamination-
resistant materials” [11]. More complex machine learning algorithms, such as deep learning or 
neural networks, can more accurately fit data than other regression models. Deep learning 
models have shown to significantly reduce computational time, obtaining stress distribution in 
one second compared to thirty minutes with traditional FEA [3]. The study developed a machine 
learning surrogate for FEA capable of estimating stress distributions with an error of less than 
0.5% when compared to FEA results [3]. Finite element mesh size reduction is also possible 
through neural network approaches, specifically for analyzing stress concentration where errors 
were found to be about 0.0012% [12]. Though these algorithms are powerful and accurate, there 
are cases where the model lacks generalizability. Efforts to overcome this obstacle were shown 
in a study that presented a physics-based approach for structural health monitoring, “which 
involves the integration of domain knowledge into the learning process” [13]. Machine learning 
has already begun to be integrated into aircraft fatigue stress predictions as focus is now shifting 
towards automated data processing and analysis for large amounts of complicated data [14]. As it 
is possible to recreate stress spectrums flight by flight with machine learning techniques, other 
applications include detecting corrosion and damage through image processing techniques [14]. 

1.3 Proposal 

The objective of this project is to design a program that utilizes machine learning 
algorithms along with finite element analysis for the prediction of stress in aerospace systems. A 
supervised regression learning approach, with known input and output data, will map input 
variables to some continuous function. Data will be collected by modeling structural dynamics 
with discretized equations of motion as well as FEA of a beam and wing geometry. Several types 
of algorithms will be tested and analyzed to determine which is able to accurately predict 
behavior of systems. With appropriate training, these algorithms will provide insightful analysis 
at a lower computational complexity. 

1.4 Methodology 

A three degree of freedom system is used for initial modeling. Displacement, velocity, 
and acceleration in the system are solved for and used to train the machine learning algorithm. A 
simple linear regression model is used as a starting point to predict several outputs given various 
combinations of inputs. The algorithm is trained with 80% of the data taken from the initial 
system to better assess the prediction. The accuracy is observed by the R2 value when comparing 
the model prediction to the given output. The R2 value will be compared for all combinations of 
inputs and outputs to spot the weak points of the machine learning. It is expected that a linear 
regression model will not be the most accurate due to the complexity of the system, therefore 
other algorithms with nonlinear terms and greater complexity will be explored. Further analysis 
will be done on other systems such as a cantilever beam system and a wing under various loads. 
A similar approach will be taken by starting with a simple linear regression model followed by 
more complex algorithms such as decision tree, random forest, and neural network. 
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2. Machine Learning Concepts 
 

2.1 Introduction to Machine Learning 

Machine learning is a relatively new field of study of algorithms programmed to 
automatically learn and improve with experience. The development of this field is strongly tied 
to artificial intelligence and information theory, as well as statistics, control theory, 
neurobiology, etc. Algorithms have already been incorporated into everyday life and have the 
potential to greatly benefit various applications. With the ability to recognizes relationships in 
large databases, machine learning can provide valuable information in fields such as engineering 
or medical for example. Its ability to perform without human interference aids in areas where 
human knowledge does not reach. This also aids in dynamic problems with varying inputs and 
outputs. Though this form of artificial intelligence does not yet compare to human intelligence, it 
is still able to efficiently learn and perform certain tasks including predictions, classifications, 
image processing, regression, etc.  

Machine learning problems can typically be categorized as either unsupervised or 
supervised [15]. Unsupervised learning only uses predictor data without a given response to 
predict future responses, whereas supervised learning is given a set of response data. The 
variables used to train supervised algorithms allow problems to also be classified as either 
regression or classification. Regression problems use quantitative variables that hold numerical 
value and create a relationship between variables by mapping predictor variables to some 
continuous function. Classification on the other hand follows a more qualitative approach where 
the predictor variables are mapped into discrete responses. For example, image processing is 
considered an unsupervised classification problem as there is no response data for the algorithms 
to use when learning. Image processing may also be supervised if there is human assistance. 
When beginning to design an approach, it is crucial to assess the type of problem at hand and 
properly categorize it. The focus of this paper is on the design of an algorithm for the prediction 
of stress, therefore the main approach to be discussed is supervised regression. 

Data sets, including given input and output values, are used to train models. Input values 
are independent variables, that are also referred to as the predictors, whereas output values are 
dependent. The output can also be considered as the response variable, as it is compared to the 
function the model produces. To assess performance of an algorithm, data sets are split into two 
subsets: training data and test data. Training data is used by the algorithm to learn and create a 
fit. Once a fit is created, it is evaluated using the test subset. 

 Linear regression models solve for an interpretable mathematical relationship, allowing 
humans to understand the relationship. Decision trees and neural networks are considered black 
box models since the relationship is created directly by the algorithm and does not clearly 
present the prediction function. Black box models are used for complex problems with 
incomprehensible relationships between variables. For an approximation of a mathematical 
relationship, there are parameters associated with variables in model. Different parameters result 
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in different function approximations, each of which will have different errors based on the fit. 
Models solve a minimization model to find the parameters that result in the best fit. An iterative 
approach minimizes the square difference of the predicted values and the training data. This is 
termed as cost function, also referred to as mean squared error, and will be discussed in more 
detail in a further section.  

2.3 Brief History of Machine Learning 

Many previously developed concepts have built the foundation of machine learning. The 
earliest form of linear regression can be dated to the publication by Adrien-Marie Legendre in 
1805 on the method of least squares. The technique introduced a procedure for using data to fit 
linear equations and was quickly recognized by mathematicians and physicists, such as Carl 
Friedrich Gauss who used the method of least squares to calculate orbits of celestial bodies. An 
additional approach was proposed for qualitative predictions in 1936 by Fisher, who proposed 
linear discriminant analysis which is used in supervised classification problems. In the late 
1980’s, spoken word recognition and autonomous vehicles were utilizing machine learning 
[16,17]. Not soon after, further development of human and animal learning models advanced 
algorithms and allowed for human performance of backgammon at the world champions [18,19].  

The first definition of machine learning was given by Arthur Samuel in 1959 as the 
following: “field of study that gives computers the ability to learn without being explicitly 
programmed” [20]. Throughout the evolution of this field, many other definitions were 
introduced and there is still debate on how to fitly define machine learning. A more recent 
definition was given in Tom Mitchells Machine Learning textbook: “a computer program is said 
to learn from experience E with respect to some task T and performance measure P, if its 
performance at tasks in T, as measured by P, improves experience E” [21]. 

2.4 Assessing Quality of Algorithms  

Machine learning encompasses many different algorithms that vary in accuracy 
depending on the problem type, therefore assessing the quality of these algorithms is crucial. 
There are several measures used to assess the performance and accuracy of algorithms such as 
mean squared error, root mean squared error, and R2 (R squared). Mean squared error (MSE) 
evaluates how close the prediction is when compared to the given training data. In mathematical 
terms MSE is the mean of the square of the difference between the data (𝑦!) and the prediction 
(𝑓$(𝑥!)).  

 
𝑀𝑆𝐸 =

1
𝑛-.𝑦! − 𝑓$(𝑥!)0

"
#

!$%

 (2.1) 

This measures the average of square of the residuals (distance from the data to the 
predicted function). Lower MSE values correlate with higher accuracy in the algorithm. Root 
mean square error (RMSE) is the root of MSE and returns values in the same unit as the data and 
predictor values. Though there is no clear correlation between machine learning methods and 
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MSE, evaluating MSE for test data may demonstrate which method will result in a smaller MSE 
[15].  

Another common measure of error is R2, which is the percentage of variance between 
predicted data and independent variables. It is calculated with the residual sum of squares (RSS), 
variance of training and response data, and the total sum of squares (TSS), variance within the 
training data. 

 𝑅" = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆 (2.2) 

Values of R2 range between zero and one, where greater values typically indicate a better 
fit. Although providing insight on the how well the model fits training data, this alone does not 
give the necessary grounds for determining the quality of the model. No model can achieve a R2 
value of one, as this would require the model to accurately predict all variance within the training 
data. 

Plotting the training data with the model prediction provides a visual representation of the 
model’s performance. In an ideal case, where the model predicts all variance, the training data 
and model prediction will be equal. This would be represented in the plots as a positive linear 
trend with a slope of one. 

2.5 Linear Regression  

One of the most common and simple algorithms in machine learning is linear regression. 
This approach approximates a relationship between the predictor variables in vector 𝒙 and the 
quantitative response vector	𝒚	 as a linear relationship. Most applications of linear regression are 
for interpolation and the prediction of future responses. The estimated linear relationship also 
allows to find responses for data sets not within the training set. In cases where more than one 
predictor is estimated, the simple linear regression model is expanded to the multiple linear 
regression model. Given p number of predictor variables, the multiple linear regression approach 
estimates beta coefficients so that [15]: 

 𝒚 = 𝛽& + 𝛽%𝒙𝟏 + 𝛽"𝒙𝟐 +⋯𝛽)𝒙𝒑 + 𝜖 (2.3) 

Unknown parameters in Eq. (2.3) include slope coefficients (𝛽)) for each predictor, as well as 
intercept 𝛽& and an unpredictable error function 𝜖. This approach provides an equation that 
allows for a quantitative and analytical understanding of the relationship between variables.  

Training data produces estimates of 𝛽$+, that model the slope coefficients, and 𝒚:, 
prediction of 𝒚, so that [15]: 

 
 

𝒚: = 𝛽$& + 𝛽$%𝒙𝟏 + 𝛽$"𝒙𝟐 +⋯+ 𝛽$+𝒙𝑷 (2.4) 

Given that the model is not able to predict 𝜖, the results will inherently include some error if the 
predictor function fits the data to the best of its ability. Coefficients are estimated using n 
observation sets of x and y measurements as training data [15]: 
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;𝑥%%, 𝑥%", … 𝑥%+, 𝑦%>, ;𝑥"%, 𝑥"", … 𝑥"+, 𝑦">, … , ;𝑥#%, 𝑥#", … 𝑥#+, 𝑦#> 

For a given prediction of 𝒚 based on an ith set of observations, the residual is calculated using 
Eq. (2.5) [15]: 

 𝑒! = 𝑦! − 𝑦@! (2.5) 

The residual sum of squares (RSS), Eq. (2.6) expanded into Eq. (2.7), is minimized using the 
least squares approach. 

 
 

𝑅𝑆𝑆 = 𝑒%" + 𝑒"" +⋯+ 𝑒#" 
 

(2.6) 

 
 𝑅𝑆𝑆 =-(𝑦! − 𝑦@!)"

#

!$%

=-;𝑦! − 𝛽$& + 𝛽$%𝑥!% + 𝛽$"𝑥!" +⋯+ 𝛽$+𝑥!)>
"

#

!$%

 (2.7) 

 

 
Figure 2.1 – Linear fit for a given data set minimized by RSS [15]. 

 In Fig. 2.1, the blue line represents the linear fit determined for the observations 
represented as red dots. This allows to predict response values to specific points that are not 
included in the given data, inside or outside the domain. The error for each observation, 
represented as a grey line, is minimized through the residual sum of squares. The fit is influenced 
by the amount of given data, as well as the distribution of the data.  

The complexity of multivariable regression is most easily represented through matrix 
algebra. The 𝛽 estimates are optimized by taking the first derivative of Eq. (2.7) with respect to 
each estimated 𝛽 variable and set to zero. This results in a system of equations that can be 
represented in matrices.  

For example, given three sets of observations (𝑥%%, 𝑦%), (𝑥"%, 𝑦"), and (𝑥-%, 𝑦-) the 
prediction will be: 

 
 

𝒚: = 𝛽$& + 𝛽$%𝒙𝟏 
 (2.8) 

The residual sum of squares for this example: 
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 𝑅𝑆𝑆 =-(𝑦! − 𝑦@!)"
#

!$%

= (𝑦% − 𝑦@%)" + (𝑦" − 𝑦@")" + (𝑦- − 𝑦@-)" (2.9) 

To optimize the estimate 𝛽$&, the following derivative is taken: 

𝑑(𝑅𝑆𝑆)
𝑑;𝛽$&>

= 2(𝑦% − 𝑦@%)
𝑑(−𝑦@%)
𝑑;𝛽$&>

+ 2(𝑦" − 𝑦@")
𝑑(−𝑦@")
𝑑;𝛽$&>

+ 2(𝑦- − 𝑦@-)
𝑑(−𝑦@-)
𝑑;𝛽$&>

= 0 (2.10) 

 
 −2;𝑦% − 𝛽$& − 𝛽$%𝑥%%> − 2;𝑦" − 𝛽$& − 𝛽$%𝑥"%> − 2;𝑦- − 𝛽$& − 𝛽$%𝑥-%> = 0 (2.11) 

 
 −𝑦% + 𝛽$& + 𝛽$%𝑥%% − 𝑦" + 𝛽$& + 𝛽$%𝑥"% − 𝑦- + 𝛽$& + 𝛽$%𝑥-% = 0 

 
(2.12) 

 3𝛽$& + 𝛽$%(𝑥%% + 𝑥"% + 𝑥-%) = 𝑦% + 𝑦" + 𝑦- 
 

(2.13) 

Similarly estimate 𝛽$% is optimized: 
 

𝑑(𝑅𝑆𝑆)
𝑑;𝛽$%>

= 2(𝑦% − 𝑦@%)
𝑑(−𝑦@%)
𝑑;𝛽$%>

+ 2(𝑦" − 𝑦@")
𝑑(−𝑦@")
𝑑;𝛽$%>

+ 2(𝑦- − 𝑦@-)
𝑑(−𝑦@-)
𝑑;𝛽$%>

= 0 (2.14) 

 
 𝑑(𝑅𝑆𝑆)

𝑑;𝛽$%>
= −2(𝑦% − 𝑦@%)(𝑥%%) − 2(𝑦" − 𝑦@")(𝑥"%) − 2(𝑦- − 𝑦@-)(𝑥-%) = 0 (2.15) 

 
 
−;𝑦% − 𝛽$& − 𝛽$%𝑥%%>(𝑥%%) − ;𝑦" − 𝛽$& − 𝛽$%𝑥"%>(𝑥"%) − ;𝑦- − 𝛽$& − 𝛽$%𝑥-%>(𝑥-%) = 0 (2.16) 

 
 𝑥%%𝛽$& + 𝛽$%𝑥%%" + 𝑥"%𝛽$& + 𝛽$%𝑥"%" + 𝑥-%𝛽$& +	𝛽$%𝑥-%" = 𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦- (2.17) 

 
 (𝑥%% + 𝑥"% + 𝑥-%)𝛽$& + (𝑥%%" + 𝑥"%" +	𝑥-%" )𝛽$% = 𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦- (2.17) 

 

The estimates 𝛽$& and 𝛽$% are simultaneously solved for through matrix algebra using Eqs. (2.13) 
and (2.17): 
 

E
3 𝑥%% + 𝑥"% + 𝑥-%

(𝑥%% + 𝑥"% + 𝑥-% 𝑥%%" + 𝑥"%" +	𝑥-%" F G
𝛽$&
𝛽$%H

= I
𝑦% + 𝑦" + 𝑦-

𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦-J
 (2.17) 

 From Eq. (2.17), the 𝛽$& and 𝛽$% coefficients are then substituted into Eq. (2.8) to 
determine the prediction 𝒚:.  

The simple implementation of this method and low complexity and interpretation of 
results is advantageous. This has led it to be one of the more common models with many 
available resources. However due to its simplicity, it is more than likely that this method will 
oversimplify problems. The assumption of a linear relationship between predictor and response 
variables may inaccurately model the complexity of most engineering applications. This model 
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also possesses sensitivity to outliers in data, required attention to the training data set to enhance 
the response prediction. 

2.6 Decision Trees 

Regression and classification are fundamental methods for decision trees. Compared to the 
previously discussed linear regression, decision trees are a much simpler non-parametric method 
for the approximation of discrete-valued functions [21]. The representation of a decision tree is 
intelligible and consists of a root node, branches, internal nodes, and terminal nodes [15].  A 
common example of a classification decision tree structure is the PlayTennis concept (figure 
2.2), which determines whether conditions are suitable for playing tennis. 

 

 
Figure 2.2 – PlayTennis decision tree representation [21]. 

 In figure 2.2, the decision tree starts at the root node “Outlook” and branches out the 
terminal nodes, or leaves, “Yes” and “No”. Internal node “Humidity” tests attribute values 
“High” and “Normal” to classify down to a terminal node. Following the branches, a sunny day 
with high humidity will not be suitable for playing tennis. Whereas an overcast or rainy day with 
weak winds would be suitable.  

 Regression trees follow a similar approach, but create splits based on predictor values. A 
simple example predicts miles per gallon of a car from displacement (𝑥1), horsepower (𝑥2), and 
weight (𝑥3) predictors [22]. A simple decision tree trained with 3 splits in MATLAB using the 
“carsmall” sample data set is seen below [22]. 

Outlook 

Sunny Overcast 

Yes 
Humidity Wind 

Yes Yes No No 

Rain 

High Normal Strong Weak 
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Figure 2.3 – Decision tree trained to predict miles per gallon of car. 

 In this example, the first split is taken at the root node based on the displacement of the 
car. The two resulting branches then determine the miles per gallon of the car based on weight 
and horsepower. This regression tree only produces four predictions which will likely not be a 
suitable model and require more branches. 

Decision trees are created by dividing a predictor space and assigning predictions to 
observations that fall in specific regions. For example, a given set of values 𝑋%, 𝑋", … , 𝑋+ will be 
divided into J separate regions 𝑅%, 𝑅", … , 𝑅+ [15].  For the regression tree example above, the 
predictor values are used to create four regions which are the terminal nodes. Every value of 𝑥 
that falls into region 𝑅. will have the same response. These regions are constructed as high 
dimensional rectangles, and are optimized for the lowest RSS by [15]: 

 

--(𝑦! − 𝑦@/!)
"

!∈/!

1

.$%

 (2.18) 

However, a recursive binary splitting approach is used instead, as minimizing the RSS is 
computationally infeasible [15]. This approach is considered a top-down, greedy approach that 
creates partitions from the root node and selects the best splits at each step [15]. Consider a 
splitting point 𝑠 in regions 𝑅% and 𝑅" that minimize RSS. The split at 𝑠 is for a predictor 𝑋. 
denoted as [15]: 
 

𝑅%(𝑗, 𝑠) = N𝑋O𝑋. < 𝑠Q	, 𝑅"(𝑗, 𝑠) = N𝑋O𝑋. ≥ 𝑠Q	 (2.19) 

The following equation is minimizing to find values of 𝑗 and 𝑠, where 𝑦@/! is the mean 
response for training observations in  𝑅.(𝑗, 𝑠) [15]:  

 

- (𝑦! − 𝑦@/")
"

!:	4#∈/"(.,7)

+ - (𝑦! − 𝑦@/$)
"

!:	4#∈/$(.,7)

 (2.20) 

 

𝑥1 < 153.5		 △ 		𝑥1 ≥ 153.5 	

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162 	 𝑥2 < 116	 △ 		𝑥3 ≥ 116	

33.7353 	 27.5517	 20.8333	 14.6875	
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 This process is repeated for every predictor variable each time a region is split until the 
terminal nodes are reached. The response for the terminal nodes is determined by the mean of 
training observations in each of the regions. 

 The accuracy of each attribute is determined by entropy (Eq. (2.21)), which measures the 
uncertainty of a collection of observations. Across K classes, the proportion of observations in 
the 𝑚th region from the 𝑘th class (�̂�9:) are used to measure the purity of the 𝑚th node [15]: 

 
𝐷 = −-�̂�9:𝑙𝑜𝑔�̂�9:

;

:$%

 (2.21) 

 This is used during the decision tree process to determine the quality of a split. In an 
undesirable case where all observations belong to one class (�̂�9: = 1), the entropy will be 0 and 
not the training set would not be suitable for machine learning. 

2.6.1 Random Forest 

 Improving the performance of the decision tree method is done by creating a random 
“forest” of multiple decision trees until reaching terminal nodes. Each tree in the forest will 
randomly build new data sets to use as training data, which is known as bootstrapping. The 
decreases the sensitivity to the data set, as every tree is trained with a different data set. The 
algorithm only considers subsets of predictors at each split, resulting in more reliable and 
consistent trees [15]. From a full set of 𝑝 predictors, a random sample of 𝑚 predictors is used as 
split candidates [15]. At each split, new samples of 𝑚 predictors are taken where 𝑚 ≈ \𝑝.  
Small values of 𝑚 are beneficial for bigger data sets and tend to reduce errors. The results from 
each tree are averaged, which is termed aggregation. Bootstrapping along with aggregation is 
referred to as bagging and is a general process for reducing variance in the model. Another 
approach for improving predictions that can be applied to models is boosting. Unlike bagging, 
where trees are built parallel to each other, boosting builds trees sequentially [15]. This increases 
the complexity of the model, as well as the accuracy. 

 Consider the example from the regression tree, where the model is trained to predict 
miles per gallon of a car. A random forest model will consist of multiple regression trees built 
and trained with random sets of data and predictors. This increases diversification among the 
trees and decreases the dependency of the model to the data. An example of a random forest with 
three regression trees is seen in the figure below. 
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Figure 2.4 – Random Forest trained to predict miles per gallon of car. 

 Each individual tree in a random forest is built using the process discussed in the 
previous section. This method was designed to prevent overfitting therefore the number of trees 
used is determined on a trial-and-error basis [23]. Increasing the number of trees has shown to 
have no effect on the performance of the model [23]. 

Decision trees and random forest methods may be used for both classification and 
regression problems. Though random forests possess a higher computational time, they increase 
prediction accuracy. The bagging process in random forests also prevents overfitting for complex 
data sets. Preprocessing data is not necessary as null values and outliers have little effect on the 
performance of the method. 

2.7 Neural Networks  

 As decision trees resemble trees, neural networks resemble the nature and behavior of the 
human brain. This method was influenced by the basic neuroscience finding that networks of 
neurons drive mental activity through electrochemical activity [24]. In machine learning, these 
neurons process inputs through an activation function and are connected by links to form a 
network.  

 

Result 3 

𝑥3 < 2127.5	 △ 		𝑥3 ≥ 2127.5  

𝑥1 < 3117.5	 △ 		𝑥1 ≥ 3117.5  

𝑥2 < 89	 △ 		𝑥2 ≥ 89  𝑥2 < 142.5	 △ 		𝑥3 ≥ 142.5 

23.7667 18.9545 14 

𝑥1 < 153.5		 △ 		𝑥1 ≥ 153.5  

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162  𝑥2 < 116	 △ 		𝑥3 ≥ 116 

33.7353  27.5517 20.8333 14.6875 

𝑥3 < 3085.5		 △ 		𝑥3 ≥ 3085.5  

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162  𝑥2 < 115	 △ 		𝑥3 ≥ 115 

33.3056 26.8143 19.2857 14.42 

33.1786 28.875 

Result 1 Result 2 

Average Final Result 

Data 
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Figure 2.5 – Representation of the mathematical model for a neuron [24]. 

 Consider neuron 𝑖 linked to neuron 𝑗, and its respective activation 𝑎!. The strength of 
each link is determined by its numeric weight 𝑤!,.. The weight sum of the inputs for neuron 𝑗 is 
defined as [24]:  
 

𝑖𝑛. =-𝑤!,.

#

!$&

𝑎! (2.22) 

 The output is then obtained by the activation function [24]:  

 
𝑎. = 𝑔(𝑖𝑛.) = 𝑔 `-𝑤!,.

#

!$&

𝑎!a (2.23) 

  The activation function is typically either a hard threshold (binary step function) or a 
logistic function (sigmoid function), both of which allow for the representation of nonlinear 
functions [24]. Sigmoid functions typically work well with classifications problems.  

Once the neurons are established, the connection between them is created. This network 
consists of multiple neurons within multiple layers. An input layer at the beginning contains as 
many neurons as there are predictors. The output layer typically contains one neuron, the number 
of response variables. Between the input and output layers are hidden layers that are defined by 
the user as well as the number of neurons in each hidden layer. The hidden layers are optimized 
by reducing the error of the model. A representation of a neural network trained to predict miles 
per gallon from displacement, horsepower, and weight predictors is seen below. The model has 
three hidden layers with varying numbers of neurons. 

Input 
Links 

Activation 
Function 

Output Input 
Function 

Output 
Links 

- 	

			!#!

	

 

𝑔 
𝑎. 

𝑎. = 𝑔(𝑖𝑛.) 

𝑎! 
𝑤!,. 

𝑎& = 1 
Bias Weight 
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Figure 2.6 – Neural network trained to predict miles per gallon of a car. 

A feed forward network connects neurons in one direction, where a neuron receives an 
input from previous neurons and delivers output to the following neurons [24]. In a recurrent 
network, outputs of neurons are fed back into its own inputs, which is more fitting for modeling 
the brain [24]. The number of times the data passed through a model is measured in epochs. This 
value is typically determined on a trial-and-error basis and is dependent on the dataset and 
model.  It has been observed that as the number of epochs in a model increase, the test data set 
error will rapidly decrease then begin to increase after some point. This can be seen in Fig. 2.7 as 
the early-stopping point, which identifies the onset of overfitting [25]. The terms validation and 
test are usually interchangeable for data sets or samples that are used on a trained model for 
performance analysis. Low numbers of epochs correspond to an underfitted model, whereas 
epoch numbers after the early-stopping point correspond with overfitted models.  

Hidden Layers Output Layer Input Layer 

MPG 

Displacement 

Horsepower 

Weight 
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Figure 2.7 – Early-stopping point based on training and validation (test) sample errors [25]. 
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3. Spring Mass Damper System 
 It is common to model various engineering problems with spring mass damper systems. 
A simple system will include just one spring (𝑘), one mass (𝑚), and one damper (𝑐), resulting in 
a single degree of freedom system. 

 
Figure 3.1 – Simple spring, damper, mass system. 

 However, many engineering problems possess multiple degree of freedoms and require a 
more complex systems for modeling. A multiple degree of freedom system is used for an initial 
exploration of machine learning algorithms. Equations of motion will obtain the displacement, 
velocity, and acceleration of each mass, which will serve as the training data. Linear regression, 
decision tree, random forest, and neural network algorithms will be trained to compare the 
capability of each algorithm. Each algorithm will be trained using displacement, velocity, or 
acceleration data of all masses for various cases to predict the displacement, velocity, or 
acceleration of a single mass. Various predictions will be analyzed to explore the implications of 
such a complex system and the accuracy of the algorithms. 

3.1 Problem Definition  

 Consider a forced three degree of freedom system, as seen in Fig. 3.2 below. 

 
Figure 3.2 – A three degree of freedom spring mass damper system with forcing functions. 

 The system is characterized by: 

𝑚% = 5	𝑘𝑔  𝑚 = 1	𝑘𝑔  𝑚- = 3	𝑘𝑔 

	𝑐% = 1	𝑁𝑠 𝑚e   𝑐" = 1	𝑁𝑠 𝑚e   𝑐- = 2	𝑁𝑠 𝑚e  

𝑘% = 1	𝑁 𝑚e   𝑘" = 1	𝑁 𝑚e   𝑘- = 2	𝑁 𝑚e  

𝐹% = 0.5	sin	(15𝑡) 𝐹" = 0.7	cos	(15𝑡) 𝐹- = 0.1	sin	(15𝑡) 

3.2 Equations of Motion 

 The stiffness, dampness, and mass matrices for solving the necessary variables are 
derived from the free body diagrams of each mass. 

𝑘		

𝑐		

𝑚		

𝐹%	𝑘%	 𝑘"	 𝑘-	

𝑐%	 𝑐"	 𝑐-	

𝑚%	 𝑚"	 𝑚-	

𝐹"	 𝐹-	
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Newton’s second law (Eq. (3.1)) is applied to each mass to derive the equation of motion 
for each mass. 

 𝛴𝐹 = 𝑚�̈� (3.1) 

The motion of the first mass is related to the spring and damper connected to the fixed 
support as well as the spring and damper connected to the second mass. The free body diagram 
represents the forces acting on the first mass. 

                                                            
Figure 3.3 – Free body diagram for mass 1. 

 From the free body diagram in Fig. 3.3: 

 𝛴𝐹 = −𝑘%𝑥%−𝑐%�̇�% + 𝑘"(𝑥" − 𝑥%) + 𝑐"(�̇�" − �̇�%) + 𝐹% = 𝑚%�̈�% (3.2) 

 𝑚%�̈�% + 𝑘%𝑥%+𝑐%�̇�% − 𝑘"(𝑥" − 𝑥%) − 𝑐"(�̇�" − �̇�%) = 𝐹% (3.3) 

 𝑚%�̈�% + 𝑘%𝑥%+𝑐%�̇�% − 𝑘"𝑥" + 𝑘"𝑥% − 𝑐"�̇�"+𝑐"�̇�% = 𝐹% (3.4) 

 (𝑚%)�̈�% + (𝑐%+𝑐")�̇�% + (−𝑐")�̇�" + (𝑘"+𝑘%)𝑥% + (−𝑘")𝑥" = 𝐹% (3.5) 
 

 The identical approach is used for the second and third masses. 

                                        
Figure 3.4 – Free body diagram for mass 2. 

 From the free body diagram in Fig. 3.4: 

𝛴𝐹 = −𝑘"(𝑥" − 𝑥%) − 𝑐"(�̇�" − �̇�%) 	+ 𝑘-(𝑥- − 𝑥") + 𝑐-(�̇�- − �̇�") + 𝐹" = 𝑚"�̈�" (3.6) 

𝑚"�̈�" + 𝑘"(𝑥" − 𝑥%) + 𝑐"(�̇�" − �̇�%) − 𝑘-(𝑥- − 𝑥") − 𝑐-(�̇�- − �̇�") = 𝐹" (3.7) 

𝑚"�̈�" + 𝑘"𝑥" − 𝑘"𝑥% + 𝑐"�̇�" − 𝑐"�̇�% − 𝑘-𝑥- + 𝑘-𝑥" − 𝑐-�̇�- + 𝑐-�̇�" = 𝐹" (3.8) 

(𝑚!)�̈�! + (−𝑐!)�̇�" + (𝑐! + 𝑐#)�̇�! + (−𝑐#)�̇�# + (−𝑘!)𝑥" + (𝑘! + 𝑘#)𝑥! + (−𝑘#)𝑥# = 𝐹! (3.9) 
                

𝑚%	𝑘%𝑥%	
𝑐%�̇�%	

𝐹%	
𝑘"(𝑥" − 𝑥%)	
𝑐"(�̇�" − �̇�%)	

𝑚"	
𝐹"	
𝑘-(𝑥- − 𝑥")	
𝑐-(�̇�- − �̇�")	

𝑘"(𝑥" − 𝑥%)	
𝑐"(�̇�" − �̇�%)	
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Figure 3.5 – Free body diagram for mass 3. 

 From the free body diagram in Fig. 3.5: 

 𝛴𝐹 = −𝑘-(𝑥- − 𝑥") − 𝑐-(�̇�- − �̇�") + 𝐹- = 𝑚-�̈�- (3.10) 

 𝑚-�̈�- + 𝑘-(𝑥- − 𝑥") + 𝑐-(�̇�- − �̇�") = 𝐹- (3.11) 

 𝑚-�̈�- + 𝑘-𝑥- − 𝑘-𝑥" + 𝑐-�̇�- − 𝑐-�̇�" = 𝐹- (3.12) 

 (𝑚-)�̈�- + (−𝑐-)�̇�" + (𝑐-)�̇�- + (−𝑘-)𝑥" + (𝑘-)𝑥- = 𝐹-            (3.13) 
 

 The system of Eqs. (3.5), (3.9), and (3.13) may be written in matrix form:  

r

𝑚% 0 0
0 𝑚" 0
0 0 𝑚-

s r

�̈�%
�̈�"
�̈�-
s + r

𝑐%+𝑐" −𝑐" 0
−𝑐" 𝑐" + 𝑐- −𝑐-
0 −𝑐- 𝑐-

s r

�̇�%
�̇�"
�̇�-
s + r

𝑘% + 𝑘" −𝑘" 0
−𝑘" 𝑘" + 𝑘- −𝑘-
0 −𝑘- 𝑘-

s r

𝑥%
𝑥"
𝑥-s

= r

𝐹%
𝐹"
𝐹-
s 

(3.13) 

The mass, damper, and spring matrices will be used to solve this system. 

𝑀 = r

𝑚% 0 0
0 𝑚" 0
0 0 𝑚-

s 
(3.14) 

 

𝐶 = r

𝑐%+𝑐" −𝑐" 0
−𝑐" 𝑐" + 𝑐- −𝑐-
0 −𝑐- 𝑐-

s 
(3.15) 

 

𝐾 = r

𝑘% + 𝑘" −𝑘" 0
−𝑘" 𝑘" + 𝑘- −𝑘-
0 −𝑘- 𝑘-

s 
(3.16) 

 

3.3 Mathematical Modeling 

Machine learning models are trained with observational data, which will in this case be 
solved from Eq. (3.13). The second order differential equation is converted to state space form 
resulting in two first order differential equations. New variables are introduced to reduce the 
order of the differential equation. Consider: 

𝑚-	
𝐹-	

𝑘-(𝑥- − 𝑥")	
𝑐-(�̇�- − �̇�")	
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𝑦% = 𝑥%  𝑦< = �̇�% 

𝑦" = 𝑥"  𝑦= = �̇�" 

𝑦- = 𝑥-  𝑦> = �̇�- 

The derivative of these equations will allow for Eq. (3.13) to be rewritten in terms of the 
newly introduced variables. 

�̇�% = �̇�% = 𝑦<  �̇�< = �̈�% 

�̇�" = �̇�" = 𝑦=  �̇�= = �̈�" 

�̇�- = �̇�- = 𝑦>  �̇�> = �̈�- 
 

 From Eq. (3.13): 

𝑀 r

�̈�%
�̈�"
�̈�-
s = r

𝐹%
𝐹"
𝐹-
s − 𝐶 r

�̇�%
�̇�"
�̇�-
s − 𝐾 r

𝑥%
𝑥"
𝑥-s

 (3.17) 

 Which can be rewritten as: 

𝑀 r

�̇�<
�̇�=
�̇�>
s = r

𝐹%
𝐹"
𝐹-
s − 𝐶 r

𝑦<
𝑦=
𝑦>s

− 𝐾 r

𝑦%
𝑦"
𝑦-s

 (3.18) 

ODE45 is used in MATLAB to solve Eq. 3. (see Appendix A), over a span of two 
seconds in 0.001 intervals. All initial conditions were set to zero. The resulting displacement, 
velocity, and acceleration are shown in the figures below for all masses. These data sets will be 
split for each model; 80% used as training data and 20% as testing data. A separate function is 
created in the code for the data splitting. 
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Figure 3.6 – Displacement over time for all masses. 

 
Figure 3.7 – Velocity over time for all masses. 
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Figure 3.8 – Acceleration over time for all masses. 

3.4 Linear Regression Modeling 

3.4.1 Training Model 

The linear regression model was trained in MATLAB using the “fitlm” function. QR 
decomposition is the main fitting algorithm and equations are estimated through M-estimation 
and solved using iteratively reweighted least squares [26]. Once the model is trained, it is 
evaluated using the “feval” function in MATLAB.  

Models were trained with either displacement, velocity, or acceleration of all three 
masses to predict the kinematics of each single mass. Models were not trained with the same 
kinematics it was predicting, for example using displacement to predict displacement of a mass. 
A total of 18 models were trained for every combination of predictor and response variables. 

3.4.2 Results 

 Performance was evaluated for each model using R2 values. 

Table 3.1 – All combinations of predictor and response variables used for training linear 
regression models, along with their respective R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.2467 0.2945 
Acceleration Displacement of M2 0.5418 0.522 
Acceleration Displacement of M3 0.7871 0.7801 
Acceleration Velocity of M1 0.2598 0.3209 
Acceleration Velocity of M2 0.0215 0.0266 
Acceleration Velocity of M3 0.0238 0.0446 
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Velocity Displacement of M1 0.6266 0.6453 
Velocity Displacement of M2 0.1009 0.1179 
Velocity Displacement of M3 0.1933 0.2141 
Velocity Acceleration of M1 0.0172 0.0404 
Velocity Acceleration of M2 0.0601 0.0825 
Velocity Acceleration of M3 0.2963 0.3194 

Displacement Velocity of M1 0.2473 0.2754 
Displacement Velocity of M2 0.4346 0.3835 
Displacement Velocity of M3 0.7441 0.7495 
Displacement Acceleration of M1 0.2356 0.3154 
Displacement Acceleration of M2 0.2741 0.2152 
Displacement Acceleration of M3 0.9981 0.9981 

 
Table 3.2 – All combinations of predictor and response variables used for training linear 
regression models, sorted by ascending trained R2 values. 

Predictor Response Trained R2 Tested R2 
Velocity Acceleration of M1 0.0172 0.0404 

Acceleration Velocity of M2 0.0215 0.0266 
Acceleration Velocity of M3 0.0238 0.0446 

Velocity Acceleration of M2 0.0601 0.0825 
Velocity Displacement of M2 0.1009 0.1179 
Velocity Displacement of M3 0.1933 0.2141 

Displacement Acceleration of M1 0.2356 0.3154 
Acceleration Displacement of M1 0.2467 0.2945 
Displacement Velocity of M1 0.2473 0.2754 
Acceleration Velocity of M1 0.2598 0.3209 
Displacement Acceleration of M2 0.2741 0.2152 

Velocity Acceleration of M3 0.2963 0.3194 
Displacement Velocity of M2 0.4346 0.3835 
Acceleration Displacement of M2 0.5418 0.522 

Velocity Displacement of M1 0.6266 0.6453 
Displacement Velocity of M3 0.7441 0.7495 
Acceleration Displacement of M3 0.7871 0.7801 
Displacement Acceleration of M3 0.9981 0.9981 

 Models with R2 values higher than 0.6 will be considered high performance. It is first 
observed that no one predictor type can accurately model the response kinematics, nor are the 
kinematics of any one mass easily modeled. The models with the lowest R2 values use velocity 
to predict acceleration and vice versa. The models using acceleration to predict the velocity of 
M1 and velocity to predict the acceleration of M3 have slightly higher values of R2. The model 
with the lowest R2 value, using velocity predictors to predict the acceleration of M1, is seen in 
Fig. 3.10. The enlarged view in Fig 3.11 shows that the model can follow the general trend of the 
data but not in the correct amplitude or frequency. The low correlation between the training data 
and the model prediction, seen in Fig. 3.9, confirms the low performance of the model. 
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Figure 3.9 – Training data vs model prediction for linear regression model trained with velocity 

to predict acceleration of M1. 

 
Figure 3.10 – Linear regression model trained with velocity to predict acceleration of M1. 
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Figure 3.11 – Enlarged view of linear regression model trained with velocity to predict 

acceleration of M1. 

  Four models showed high performance and ability to model the data. Three of the 
highest performing models predicted the kinematics of mass 3: 

• Using displacement to predict the velocity of M3 
• Using acceleration to predict the displacement of M3 
• Using displacement to predict the acceleration of M3 

The other predicting displacement of M1 using velocity predictor variables. As R2 increases, the 
observed data and model prediction have a stronger positive correlation, seen as a positive linear 
slope in the following figures.  
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Figure 3.12 – Training data vs model prediction for linear regression model trained with velocity 

to predict displacement of M1. 

 
Figure 3.13 – Training data vs model prediction for linear regression model trained with 

acceleration to predict displacement of M3. 
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Figure 3.14 – Training data vs model prediction for linear regression model trained with 

displacement to predict acceleration of M3. 

 The near perfect linear relationship between the data and model prediction shows the 
high performance of the model. In Fig. 3.15, the training data is close to identical to the data with 
small discrepancies. The discrepancies are shown in an enlarged view in Fig. 3.16.  

 
Figure 3.15 – Linear regression model trained with displacement to predict acceleration of M3. 
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Figure 3.16 – Enlarged view of linear regression model trained with displacement to predict 

acceleration of M3. 

3.5 Decision Tree Modeling 

3.5.1 Training Model 

The decision tree models were trained in MATLAB using the “fitrtree” function, with all 
name-value arguments left as default. For standard classification and regression trees, the node 
splitting process follows a set of steps by default. The algorithm first computes with weighted 
MSE (Eq. 3.19) of the response for a given node t [27]. The weight of observation 𝑗 (𝑤. ) is by 
default 1/𝑛	, where 𝑛 is the sample size.  

 
𝜀? =-𝑤.(𝑦. − 𝑦x?)"

	

.∈@

 

  
(3.19) 

 The algorithm then computes the probability that an observation is in each node (Eq. 
(3.20)) [27]. 

 
𝑃(𝑇) =-𝑤.

	

.∈@

 

  
(3.20) 

 Each predictor is a splitting candidate, and the elements of each predictor are sorted in 
ascending order. The best split node is determined by maximizing the reduction of MSE of all 
splitting options and choosing the node with the largest reduction [27].  

 By default, the tree depth is controlled using MSE to merge any leaves whose sum MSE 
is no larger the MSE of their parent node [27]. The maximum number of splits is by default one 
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less than the data sample size, and the default minimum leaf and parent size are one and ten 
respectively [27]. The algorithm prunes the tree if the number of splits exceeds the maximum by 
unsplitting the least successful branches [27]. 

3.5.2 Results 

 The same 18 cases from the previous section were trained using the decision tree method.  

Table 3.3 – All combinations of predictor and response variables used for training decision tree 
models, along with their respective R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.8309 0.3736 
Acceleration Displacement of M2 0.9356 0.5999 
Acceleration Displacement of M3 0.9683 0.8335 
Acceleration Velocity of M1 0.8108 0.2365 
Acceleration Velocity of M2 0.7274 0.0594 
Acceleration Velocity of M3 0.7493 0.1105 

Velocity Displacement of M1 0.9508 0.7714 
Velocity Displacement of M2 0.8711 0.354 
Velocity Displacement of M3 0.8606 0.3889 
Velocity Acceleration of M1 0.8304 0.407 
Velocity Acceleration of M2 0.6965 0.0055 
Velocity Acceleration of M3 0.8686 0.37 

Displacement Velocity of M1 0.9362 0.6556 
Displacement Velocity of M2 0.887 0.4755 
Displacement Velocity of M3 0.9844 0.9268 
Displacement Acceleration of M1 0.9433 0.7641 
Displacement Acceleration of M2 0.9323 0.7199 
Displacement Acceleration of M3 0.9955 0.9781 

 

Table 3.4 – All combinations of predictor and response variables used for training decision tree 
models, sorted by ascending trained R2 values. 

Predictor Response Trained R2 Tested R2 
Velocity Acceleration of M2 0.6965 0.0055 

Acceleration Velocity of M2 0.7274 0.0594 
Acceleration Velocity of M3 0.7493 0.1105 
Acceleration Velocity of M1 0.8108 0.2365 

Velocity Acceleration of M1 0.8304 0.407 
Acceleration Displacement of M1 0.8309 0.3736 

Velocity Displacement of M3 0.8606 0.3889 
Velocity Acceleration of M3 0.8686 0.37 
Velocity Displacement of M2 0.8711 0.354 

Displacement Velocity of M2 0.887 0.4755 
Displacement Acceleration of M2 0.9323 0.7199 



28 
 

Acceleration Displacement of M2 0.9356 0.5999 
Displacement Velocity of M1 0.9362 0.6556 
Displacement Acceleration of M1 0.9433 0.7641 

Velocity Displacement of M1 0.9508 0.7714 
Acceleration Displacement of M3 0.9683 0.8335 
Displacement Velocity of M3 0.9844 0.9268 
Displacement Acceleration of M3 0.9955 0.9781 

The decision tree models produce significantly higher R2 values compared to the linear 
regression models. All the decision tree models are considered high performance based on the 
previously established R2 value of ≥0.6 for high performance models. The four highest 
performing cases are the same as for linear regression: 

• Using displacement to predict the velocity of M3 
• Using acceleration to predict the displacement of M3 
• Using displacement to predict the acceleration of M3 

The lowest performing cases use velocity to predict acceleration and vice versa, as observed 
in the linear regression models. For most cases, the tested R2 values are significantly lower than 
the trained R2 values which is a sign of overfitting. This can be seen in Fig. 3.17 for the lowest 
performance case, using velocity to predict the acceleration of M2, and especially in the enlarged 
view in Fig. 3.18. 

 
Figure 3.17 – Decision tree model trained with velocity to predict acceleration of M2. 
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Figure 3.18 – Enlarged view of decision tree model trained with displacement to predict 

acceleration of M3. 

The decision tree algorithm produces predictions with high noise, seen in Fig. 3.18, due 
to its discrete nature. The discrete nature produces a tendency of the model to overfit the data. 
The model overfits the data but is still able to follow it leading to a fairly strong correlation 
between the data and model prediction, seen in Fig. 3.19. 

 
Figure 3.19 – Training data vs model prediction for linear regression model trained with velocity 

to predict acceleration of M2. 
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The highest performing model is the same as for linear regression method. Overall, the 
model prediction had a strong positive correlation with the data, as seen in Fig. 3.20, but is not as 
strong as in the linear regression model (Fig. 3.14).  

 
Figure 3.20 – Training data vs model prediction for linear regression model trained with 

displacement to predict acceleration of M3. 

During the first second, the model prediction is much noisier than the linear regression 
model and has more discrepancies. The noise reduces with time and the discrepancies lower.  

 
Figure 3.21 – Decision tree model trained with displacement to predict acceleration of M3. 
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 As seen in Fig. 3.22, this decision tree model prediction is not as smooth as the prediction 
from the linear regression model seen in Fig. 3.16. The model is still overfitting the data, though 
not as severely as in Fig. 3.18 for the lowest performing model. 

 
Figure 3.22 – Enlarged view of linear regression model trained with displacement to predict 

acceleration of M3. 

3.6 Random Forest Modeling 

3.6.1 Training Model 

The random forest models were trained in MATLAB using the “fitrensemble” function, 
which returns a trained regression ensemble. Method, number of trees, and learning rate 
parameters were initially optimized using the automatic “OptimizeHyperparameters” option for 
the model using displacement to predict acceleration of M3. The optimized ensemble was 
determined to use the least-squares boosting method, 500 number of trees, and a learning rate of 
0.55246. The least-squares boosting method builds a new tree based on the difference between 
the previously built trees and the response data so that the MSE is minimized [28].  

The trained random forest models were expected to show an increase in performance. 
The initial optimization resulted in majority of the models to significantly overfit. This was later 
corrected with an additional optimization done on the worst performing model, using velocity for 
the prediction of acceleration of M2. The optimized ensemble for this model uses the bagging 
method with 363 trees. 

3.6.2 Results 

 The results from both optimizations were reviewed and compared. 
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Table 3.5 – All combinations of predictor and response variables used for training random forest 
models using boosting method with 500 trees, along with their respective R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.9976 0.3859 
Acceleration Displacement of M2 0.9988 0.6158 
Acceleration Displacement of M3 0.9995 0.8425 
Acceleration Velocity of M1 0.9968 0.2628 
Acceleration Velocity of M2 0.9946 0.0478 
Acceleration Velocity of M3 0.9955 0.1184 

Velocity Displacement of M1 0.9993 0.7874 
Velocity Displacement of M2 0.9979 0.3574 
Velocity Displacement of M3 0.9983 0.4025 
Velocity Acceleration of M1 0.9976 0.3907 
Velocity Acceleration of M2 0.9945 0.0087 
Velocity Acceleration of M3 0.9977 0.4343 

Displacement Velocity of M1 0.9987 0.6447 
Displacement Velocity of M2 0.998 0.4764 
Displacement Velocity of M3 0.9998 0.928 
Displacement Acceleration of M1 0.9996 0.8081 
Displacement Acceleration of M2 0.9996 0.8281 
Displacement Acceleration of M3 1 0.9926 

 
Table 3.6– All combinations of predictor and response variables used for training random forest 
models using boosting method with 500 trees, sorted by ascending trained R2 values. 

Predictor Response Trained R2 Tested R2 
Velocity Acceleration of M2 0.9945 0.0087 

Acceleration Velocity of M2 0.9946 0.0478 
Acceleration Velocity of M3 0.9955 0.1184 
Acceleration Velocity of M1 0.9968 0.2628 
Acceleration Displacement of M1 0.9976 0.3859 

Velocity Acceleration of M1 0.9976 0.3907 
Velocity Acceleration of M3 0.9977 0.4343 
Velocity Displacement of M2 0.9979 0.3574 

Displacement Velocity of M2 0.998 0.4764 
Velocity Displacement of M3 0.9983 0.4025 

Displacement Velocity of M1 0.9987 0.6447 
Acceleration Displacement of M2 0.9988 0.6158 

Velocity Displacement of M1 0.9993 0.7874 
Acceleration Displacement of M3 0.9995 0.8425 
Displacement Acceleration of M1 0.9996 0.8081 
Displacement Acceleration of M2 0.9996 0.8281 
Displacement Velocity of M3 0.9998 0.928 
Displacement Acceleration of M3 1 0.9926 



33 
 

The initial optimization created models such that all the cases resulted in a trained R2 
value of at least 0.99. Though this is ideal, the tested R2 values show that majority of the models 
were overfit. The highest performing model, same as with the previous methods, used 
displacement to predict the acceleration of M3. This was the only model to have resulted in a R2 
value of one and had a near perfect correlation of the data and model prediction. 

 
Figure 3.23 – Training data vs model prediction for linear regression model trained with 

displacement to predict acceleration of M3. 

 The discrepancies for this model are barely seen between 1.06 and 1.08 seconds in Fig. 
3.24. No noticeable noise is seen in this model when compared with the decision tree model (Fig. 
3.22).  The prediction of this model is of higher performance than the linear regression mode in 
Fig. 3.16 but has more misalignment of testing data to the model prediction.  
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Figure 3.24 – Random forest model using the boosting method with 500 trees trained with 

displacement to predict acceleration of M3. 

The lowest performing case used velocity to predict acceleration of M2 and had a strong 
positive correlation between the data and model prediction (seen in Fig. 3.25). 

 
Figure 3.25 – Training data vs model prediction for boosting random forest model trained with 

velocity to predict acceleration of M2. 

 The severe overfitting in this model is seen in the plot in Fig. 3.26.  
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Figure 3.26 – Random forest model using the boosting method with 500 trees trained with 

velocity to predict acceleration of M2. 

 The severity of the overfitting is seen in Fig. 3.27 where most of the testing data is not 
aligned with the model prediction, therefore diminishing the accuracy of the model. This created 
the need to reoptimize the model. 

 
Figure 3.27 – Enlarged view of random forest model using the boosting method with 500 trees 

trained with velocity to predict acceleration of M2. 
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 The worst model from Table 3.6 was optimized to reduce the overfitting. The newly 
optimized model was determined to have a different algorithm for optimization and number of 
trees; bagging with 363 trees. This decreased the trained R2 values, while increased the tested R2 
values.  

Table 3.7 – All combinations of predictor and response variables used for training random forest 
models using bagging method with 363 trees, along with their respective R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.799 0.5403 
Acceleration Displacement of M2 0.8859 0.7107 
Acceleration Displacement of M3 0.944 0.8721 
Acceleration Velocity of M1 0.7552 0.3898 
Acceleration Velocity of M2 0.7049 0.1385 
Acceleration Velocity of M3 0.7339 0.2486 

Velocity Displacement of M1 0.9229 0.8383 
Velocity Displacement of M2 0.8006 0.4778 
Velocity Displacement of M3 0.8177 0.5273 
Velocity Acceleration of M1 0.8068 0.5128 
Velocity Acceleration of M2 0.6382 0.0441 
Velocity Acceleration of M3 0.8097 0.5355 

Displacement Velocity of M1 0.8955 0.7378 
Displacement Velocity of M2 0.8315 0.6186 
Displacement Velocity of M3 0.9729 0.9329 
Displacement Acceleration of M1 0.9186 0.8357 
Displacement Acceleration of M2 0.9035 0.7564 
Displacement Acceleration of M3 0.9866 0.97 

 

Table 3.8 – All combinations of predictor and response variables used for training random forest 
models using bagging method with 363 trees, sorted by ascending trained R2 values. 

Predictor Response Trained R2 Tested R2 
Velocity Acceleration of M2 0.6382 0.0441 

Acceleration Velocity of M2 0.7049 0.1385 
Acceleration Velocity of M3 0.7339 0.2486 
Acceleration Velocity of M1 0.7552 0.3898 
Acceleration Displacement of M1 0.799 0.5403 

Velocity Displacement of M2 0.8006 0.4778 
Velocity Acceleration of M1 0.8068 0.5128 
Velocity Acceleration of M3 0.8097 0.5355 
Velocity Displacement of M3 0.8177 0.5273 

Displacement Velocity of M2 0.8315 0.6186 
Acceleration Displacement of M2 0.8859 0.7107 
Displacement Velocity of M1 0.8955 0.7378 
Displacement Acceleration of M2 0.9035 0.7564 
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Displacement Acceleration of M1 0.9186 0.8357 
Velocity Displacement of M1 0.9229 0.8383 

Acceleration Displacement of M3 0.944 0.8721 
Displacement Velocity of M3 0.9729 0.9329 
Displacement Acceleration of M3 0.9866 0.97 

 Comparing to the boosting method models in Table 3.6, the lowest and highest 
performing models kept their same level of performance compared to the rest. The tested R2 
values increased significantly from the boosting method. An enlarged view of the lowest 
performing model, using velocity to predict the acceleration of M2, showed that overfitting was 
improved from the boosting method (Fig. 3.26). The model prediction did however loss its 
accuracy, especially in the first half of the plot in Fig. 3.28. 

 
Figure 3.28 – Random forest model using the bagging method with 363 trees trained with 

velocity to predict acceleration of M2. 

 The enlarged view of the model prediction also shows the model is has more noise than 
the boosting method but is still able to follow the data. The testing data is also able to follow the 
model prediction more closely than with the boosting method. 
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Figure 3.29 – Enlarged view of random forest model using the bagging method with 363 trees 

trained with velocity to predict acceleration of M2. 

The R2 values of the highest performing model were reduced with the second 
optimization, resulting in a cloudier correlation of data and model prediction.  

 
Figure 3.30 – Training data vs model prediction for bagging random forest model trained with 

displacement to predict acceleration of M3. 
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The decision tree model (Fig. 3.22) is much noisier and overfit compared to the bagging 
random forest model in Fig. 3.31. This model is similar to the linear regression model (Fig. 3.16) 
having slightly more discrepancies and overfitting, and much less overfitting when compared to 
the boosting method (Fig. 3.24). 

 
Figure 3.31 – Enlarged view of bagging random forest model trained with displacement to 

predict acceleration of M3. 

3.7 Neural Network Modeling 

3.7.1 Training Model 

The neural network models were trained in MATLAB using the “fitnet” and “train” 
functions. Given the hidden layer size, the “fitnet” function returns a function fitting neural 
network that forms a generalization of the predictor response relationship [29]. Due to limited 
computational power, the hidden layer size was constrained to two layers with between 0-50 
neurons. The optimal hidden layer size was determined, by the maximum average trained R2 
values for all 18 cases, to be one layer with 19 neurons and another with 40. The model is then 
trained using the “train” function until the maximum number of epochs or the performance goal 
is met [30].  

 
Figure 3.32 – Diagram of neural network model created in MATLAB. 
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3.7.2 Results 

 The same 18 cases from the previous section were trained using the decision tree model.  

Table 3.9 – All combinations of predictor and response variables used for training neural 
network models, along with their respective R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.0014 0.004 
Acceleration Displacement of M2 0.4582 0.4355 
Acceleration Displacement of M3 0.4505 0.4091 
Acceleration Velocity of M1 0.0159 0.0309 
Acceleration Velocity of M2 0.1697 0.0725 
Acceleration Velocity of M3 0.3125 0.2753 

Velocity Displacement of M1 0.2274 0.2706 
Velocity Displacement of M2 0.1208 0.1443 
Velocity Displacement of M3 0.0082 0.0058 
Velocity Acceleration of M1 0.5402 0.5172 
Velocity Acceleration of M2 0.1504 0.0376 
Velocity Acceleration of M3 0.6268 0.4552 

Displacement Velocity of M1 0.1114 0.1324 
Displacement Velocity of M2 0.6573 0.6071 
Displacement Velocity of M3 0.9571 0.9409 
Displacement Acceleration of M1 0.8705 0.8494 
Displacement Acceleration of M2 0.9669 0.9141 
Displacement Acceleration of M3 0.9995 0.9993 

 
Table 3.10 – All combinations of predictor and response variables used for training neural 
network models, sorted by ascending trained R2 values. 

Predictor Response Trained R2 Tested R2 
Acceleration Displacement of M1 0.0014 0.004 
Acceleration Displacement of M2 0.0082 0.0058 

Velocity Acceleration of M1 0.0159 0.0309 
Acceleration Displacement of M3 0.1114 0.1324 

Velocity Displacement of M2 0.1208 0.1443 
Acceleration Velocity of M3 0.1504 0.0376 
Acceleration Velocity of M2 0.1697 0.0725 

Velocity Displacement of M1 0.2274 0.2706 
Velocity Displacement of M3 0.3125 0.2753 
Velocity Acceleration of M3 0.4505 0.4091 
Velocity Acceleration of M2 0.4582 0.4355 

Displacement Velocity of M1 0.5402 0.5172 
Acceleration Velocity of M1 0.6268 0.4552 
Displacement Velocity of M2 0.6573 0.6071 
Displacement Velocity of M3 0.8705 0.8494 
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Displacement Acceleration of M1 0.9571 0.9409 
Displacement Acceleration of M2 0.9669 0.9141 
Displacement Acceleration of M3 0.9995 0.9993 

 In other methods, models using velocity to predict acceleration and vice versa performed 
poorly. Interestingly, the neural networks method performed poorly for models using 
acceleration to predict displacement. The highest performing models also differed from previous 
methods. This was the only method whose highest performing models all used the same 
predictor to predict one kinematic property of all three masses. The performance of the models is 
more extremely distributed when compared to linear regression model. The lowest performing 
neural network models had the lowest trained R2 values compared to Table 3.2. The overall 
performance of neural network models does not compare to decision tree and random forest 
methods, whose R2 values were all high performance.  

 Another interesting observation with neural networks is the correlation between data and 
model predictions. In previous methods, models with low R2 values tended to have the 
correlation disbursed horizontally, whereas for neural networks the correlation is more vertical. 

 
Figure 3.33 – Training data vs model prediction for neural network model trained with 

acceleration to predict displacement of M1. 

The low performing models had issues with following the data, as well as overfitting. 
Other methods were at least able to follow the general trend of the data. The model using 
acceleration to predict displacement was the lowest performing neural network model and was 
only able to follow the concavity.  
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Figure 3.34 – Enlarged view of neural network model trained with acceleration to predict 

displacement of M1. 

 The difference between trained and tested R2 values signify that the models are 
overfitting the data. This can be seen in Fig. 3.35 for the model using displacement to predict 
acceleration of M2, the second-best performing model. The model is also much noisier than 
decision tree and random forest models are similar values of R2. 

 
Figure 3.35 – Enlarged view of neural network model trained with displacement to predict 

acceleration of M1. 
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 The model with the highest R2 value, using displacement to predict acceleration of M3, 
showed little overfitting and discrepancies. 

 
Figure 3.36 – Enlarged view of neural network model trained with displacement to predict 

acceleration of M3. 

 This model performed better when compared to the linear regression (Fig. 3.16), decision 
tree (Fig. 3.22), and bagging random forest (Fig. 3.31) models. The neural network model shows 
a few discrepancies compared to the boosting random forest model (Fig. 3.24) but has much less 
overfitting which may be more desirable in cases. More complex hidden layers may relieve the 
noise and overfitting in all other models. 
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4. Static Analysis of Channel Beam 
Structural behavior in engineering is commonly modeled with beams due to simplicity 

and establishment in the field. Initial analysis of using machine learning stress predictions is 
conducted with channel beam geometry. Training data is collected as stress and deformation of 
the beam under various loading cases through Ansys simulations.  

4.1 Problem Definition 

 Performance of machine learning to predict stress is further explored through analysis of 
a channel beam. The length of the beam is 1m, and all other dimensions of the cross section are 
seen in Fig. 4.1.  

 
Figure 4.1 – Dimensions of channel beam. 

 The beam is fixed at z=0 m and will be analyzed through several cases with various loads 
as seen in the following figures. 

  
Figure 4.2 – Case 1: 100 N point load in the -y direction at free end, constant along x axis. 
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Figure 4.3 – Case 2: 100 N point load in the -y direction at three quarters length, constant along x 

axis. 

 

 
Figure 4.4 – Case 3: 100 N point load in the -y direction at half-length, constant along x axis. 

 

 
Figure 4.5 – Case 4: 100 N point load in the -y direction at quarter length, constant along x axis. 
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Figure 4.6 – Case 5: Constant distributed load in the -y direction of 100 N/m from fixed end to 

free end, constant along x axis. 

 

 
Figure 4.7 – Case 6: Linear pressure in the -y direction varying along z axis from 100 Pa at fixed 

end to 0 Pa at free end, constant along x axis. 

 

 
Figure 4.8 – Case 7: Constant pressure in the -y direction of 100 Pa from fixed end to half-length 
and linear pressure in the -y direction varying along z axis from 100 Pa at half-length to 0 Pa at 

free end, constant along x axis. 
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Figure 4. 9 – Case 8: Parabolic pressure varying along z axis of 100 Pa at fixed end to 0 Pa at 

free end, constant along x axis. 

4.2 Mathematical Modeling 

 Simulations in Ansys are verified through analytical computations of stress. Stress is 
calculated with the maximum moment (𝑀), distance from the neutral surface (𝑦), and moment of 
inertia (𝐼). 

 𝜎 = −
𝑀𝑦
𝐼  (4.1) 

 

 Moment of the inertia is calculated with respect to the centroidal axis that is 
perpendicular to the plane of the moment, in this case the x’ axis. The centroid of the beam is 
seen in Fig. 4.2. 

 
Figure 4.10 – Centroid and central axes of channel beam cross section. 
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 Moment of inertia is calculated as the sum of moment of inertias of all three sections 
within the cross section. Eq. 4.2 is the equation for the moment of inertia of a rectangle along 
with the parallel axis theorem, where 𝑑 is the perpendicular distance from the centroidal axis to 
the centroid of the section. 

 𝐼4 =
1
12𝑏ℎ

- + 𝐴𝑑" (4.2) 

 𝐼4 = 2�
1
12 (4.45)(0.424)

- + (1.886)(3.598)"� +
1
12 (0.386)(6.772)

- (4.3) 

𝐼4 = 58.88	𝑐𝑚< = 5.888 × 10AB𝑚< 

 For each case, the maximum stress is calculated with Eq. 1 where the distance to the 
neutral surface is 3.81 cm. 

Table 4.1 – Maximum analytical stress for each case simulated in Ansys. 

Load on Beam Maximum Analytical Stress 

Point load at full length 6.480 × 10>	𝑃𝑎 
Point load at ¾ length 4.860 × 10>	𝑃𝑎 
Point load at ½ length 3.240 × 10>	𝑃𝑎 
Point load at ¼ length 1.620 × 10>	𝑃𝑎 

Constant distributed load 3.240 × 10>	𝑃𝑎 
Linear distributed pressure 4.806 × 10<	𝑃𝑎 

Constant and linear distributed pressure 8.410 × 10<	𝑃𝑎 
Parabolic distributed pressure 7.205 × 10<	𝑃𝑎 

 

4.3 Ansys Simulations 

 The coordinate system was set at the outer bottom left corner, as shown in Fig. 4.10, with 
the length of the beam along the z axis. The top face was split into four sections for application 
of point loads along the beam. The top and bottom inner corners along the z axis were rounded 
with a curvature of 0.1 cm to avoid stress singularities during the meshing process.  
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Figure 4.11 – Geometry of beam in Ansys with coordinate system. 

The material was left at default as structural steel, properties provided in Table 4.2 below. 

Table 4.2 – Material properties for structural steel from Ansys. 

Density 7850	𝑘𝑔/𝑚- 
Young’s Modulus 2 × 10%%	𝑃𝑎 
Thermal Conductivity 60.5	𝑊/𝑚 ∙ ℃ 
Specific Heat 434	𝐽/𝑘𝑔 ∙ ℃ 
Tensile Yield Strength 2.5 × 10C	𝑃𝑎 
Tensile Ultimate Strength 4.6 × 10C	𝑃𝑎 

Each case is simulated in Ansys for deformation and stress analysis and the solution data 
is exported for machine learning in MATLAB. The training data for MATLAB consists of the x, 
y, and z coordinate of each node along with the respective deformation and stress at each node, 
as seen in Table 4.3. The deformation analyzed is directional deformation in the plane 
perpendicular to the axis on which the loading occurs on.  

Table 4.3 – Example of training data taken from Ansys for machine learning in MATLAB. 

x Coordinate (m) y Coordinate (m) z Coordinate (m) Deformation (m) Stress (Pa) 
0.0039819 0.0026226 0.057236 -2.6784e-06 7880500 

… … … … … 

Mesh convergence is conducted using the convergence tool for each case based on the 
maximum equivalent von Mises stress of the beam, with an allowable change of 1%. Final mesh 
produced from the convergence is compared to the analytical calculations of maximum stress to 
validate the refinement of the mesh. Analytically the maximum moment is located at the fixed 
support, therefore the analytical stresses will be compared to the stresses at the top of the beam at 
the fixed support in Ansys. 

Commented [NG5]: Expand and explain databases used for 
matlab 
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4.3.1 Point Load at Full Length 

Table 4.4 – Convergence history for case with point load at full length. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 1.4606e+07  6333 2874 
2 1.6056e+07 9.4554 12259 6233 
3 1.9223e+07 17.957 43178 24524 
4 2.5679e+07 29.89 97701 58949 
5 2.9842e+07 13.843 216374 136252 
6 3.2128e+07 7.3763 364411 234203 
7 3.2027e+07 -0.31347 521234 340204 

 

 
Figure 4.12 – Convergence history plot for beam with point load at full length. 
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The maximum analytical stress calculated for this case is about	6.480 × 10>	𝑃𝑎, which is 
about a 8% increase to the value shown in the Ansys model below. Values within a 10% change 
will be considered acceptable. 

 
Figure 4.13 – Stress (Pa) at fixed support of beam with point load at full length in Ansys. 

4.3.2 Point Load at ¾ Length 

Table 4.5 – Convergence history for case with point load at ¾ length. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 1.0194e+07  6333 2874 
2 1.0698e+07 4.822 32369 17721 
3 1.2908e+07 18.727 105365 63532 
4 1.5347e+07 17.265 148040 91425 
5 1.9578e+07 24.225 293636 187569 
6 2.6277e+07 29.218 442978 287304 
7 3.3878e+07 25.272 862482 574720 
8 4.4944 e+07 28.078 1537527 1044119 
9 4.495 e+07 1.4455e-002 1642679 1117769 
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Figure 4.14 – Convergence history plot for beam with point load at ¾ length. 

Maximum calculated stress is 4.860 × 10>	𝑃𝑎,  less than a 1% increase compared to the 
value from the Ansys simulation. 

 
Figure 4.15 – Stress (Pa) at fixed support of beam with point load at ¾ length in Ansys. 

4.3.3 Point Load at ½ Length 

Table 4.6 – Convergence history for case with point load at ½ length. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 8.0161e+06  6333 2874 
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2 8.251e+06 3.2501 15372 8068 
3 9.9848e+06 18.655 54661 31995 
4 1.2981e+07 26.092 109242 67015 
5 1.5368e+07 16.844 226712 144501 
6 1.9562e+07 24.01 299049 192242 
7 2.5042e+07 24.572 556050 366173 
8 3.5341e+07 34.114 865798 578657 
9 3.5359e+07 5.0679e-002 1193052 805813 

 

 
Figure 4.16 – Convergence history plot for beam with point load at ½ length. 

 The maximum analytical stress of 3.240 × 10>	𝑃𝑎 for this case is within 1% of the value 
seen in the Ansys simulation below. 
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Figure 4.17 – Stress (Pa) at fixed support of beam with point load at ½ length in Ansys. 

4.3.4 Point Load at ¼ Length 

Table 4.7 – Convergence history for case with point load at ¼ length. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 6.359e+06  6333 2874 
2 6.4602e+06 1.579 12207 6255 
3 9.4802e+06 37.891 29239 16896 
4 1.2041e+07 23.799 64733 39514 
5 1.2954e+07 7.3023 153989 97698 
6 1.3297e+07 2.6162 314370 205296 
7 1.3172e+07 -0.94815 658551 441613 
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Figure 4.18 – Convergence history plot for beam with point load at ¼ length. 

The stress from the Ansys simulation has about a 5% increase from the calculated 
analytical values of 1.620 × 10>	𝑃𝑎. 

 
Figure 4.19 – Stress (Pa) at fixed support of beam with point load at ¼ length in Ansys. 

4.3.5 Constant Distributed Load  

Table 4.8 – Convergence history for case with constant distributed load. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 7.2348e+06  6333 2874 
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2 7.6097e+06 5.051 18709 9904 
3 9.363e+06 20.66 52317 30019 
4 1.1777e+07 22.84 143415 88419 
5 1.4702e+07 22.091 267338 170176 
6 1.8885e+07 24.91 424649 274344 
7 2.6933e+07 35.128 761828 505071 
8 2.6977e+07 0.16576 1429300 968170 

 

 
Figure 4.20 – Convergence history plot for beam with with constant distributed load. 

The computed analytical stress of 3.240 × 10>	𝑃𝑎 for this case has less than a 1% 
increase to the value observed in Ansys. 
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Figure 4.21 – Stress (Pa) at fixed support of beam with constant distributed load in Ansys. 

4.3.6 Linear Distributed Pressure  

Table 4.9 – Convergence history for case with linear distributed pressure. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 1.1699e+05  6333 2874 
2 1.2392e+05 5.7558 9279 4522 
3 1.616e+05 26.288 37755 21124 
4 2.0608e+05 24.199 98029 58831 
5 2.64e+05 24.639 192373 120319 
6 3.3886e+05 24.835 318304 20307 
7 4.4019e+05 26.015 670888 442683 
8 4.4049e+05 6.796e-002 905717 603205 
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Figure 4.22 – Convergence history plot for beam with linear distributed pressure. 

The observed stress in Ansys has less than a 2% increase from the analytical stress for 
this case of 4.806 × 10<	𝑃𝑎. 

 
Figure 4.23 – Stress (Pa) at fixed support of beam with linear distributed pressure in Ansys. 

4.3.7 Constant and Linear Distributed Pressure  

Table 4.10 – Convergence history for case with constant and linear distributed pressure. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 2.0111e+05  6333 2874 
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2 2.1234e+05 5.4357 10762 5357 
3 2.7192e+05 24.606 43254 24361 
4 3.5369e+05 26.139 122080 74187 
5 4.4466e+05 22.79 252942 160065 
6 5.668e+05 24.151 438898 283482 
7 7.3293e+05 25.564 607594 398201 
8 9.5329e+05 26.137 1020141 681358 
9 1.2357e+06 25.6 1723286 1172367 

10 1.6034e+06 25.905 2831432 1956309 
11 2.0778e+06 25.777 3432829 2382161 
12 2.0778e+06 -7.92e-005 3441851 2388617 

 

 
Figure 4.24 – Convergence history plot for beam with constant and linear distributed pressure. 

The analytical stress of 8.410 × 10<	𝑃𝑎 has less than 1% increase of the value 
overserved in the Ansys simulation. 
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Figure 4.25 – Stress (Pa) at fixed support of beam with constant and linear distributed pressure in 

Ansys. 

4.3.8 Parabolic Distributed Pressure  

Table 4.11 – Convergence history for case with parabolic distributed pressure. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 1.7257e+05  6333 2874 
2 1.8236e+05 5.5161 10762 5357 
3 2.345e+05 25.015 43785 24679 
4 3.0651e+05 26.619 121374 73724 
5 3.8939e+05 23.82 237627 149771 
6 4.9354e+05 23.593 450737 290928 
7 6.4e+05 25.841 858779 570575 
8 6.4029e+05 4.5861e-002 1098320 734479 

 Commented [NG6]: Redo plot  
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Figure 4.26 – Convergence history plot for beam with parabolic distributed pressure. 

The analytical stress for this case of 7.205 × 10<	𝑃𝑎 compared to the value observed in 
Ansys is about a 1% increase. 

 
Figure 4.27 – Stress (Pa) at fixed support of beam with parabolic distributed pressure in Ansys. 

4.2 Linear Regression Modeling 

4.2.1 Training Model 

The linear regression model was trained in MATLAB, as discussed in the previous 
chapter, using the “fitlm” function.  
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Models are trained with directional deformation and the respective node locations to 
predict equivalent stress. The performance of the model is plotted along each axis from the 
coordinate system. Due to the small dimensions of the cross-section geometry, the x and y axis 
plots have significantly less data than the z axis plots. The main plots used for analysis are for 
the stress along z axes. 

4.2.2 Results 

 The R2 values are calculated for each model and the model prediction is plotted against 
the Ansys data to evaluate the model’s performance for each case. 

Table 4.12  – All cases simulated in Ansys for a beam geometry using linear regression models, 
along with their respective R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.125633 0.126600 
Point load at ¾ length 0.474600 0.474918 
Point load at ½ length 0.463041 0.462181 
Point load at ¼ length 0.247969 0.248528 

Constant distributed load 0.519044 0.518328 
Linear pressure 0.566604 0.568387 

Constant and linear pressure 0.530843 0.534847 
Parabolic pressure 0.561950 0.562508 

 
Table 4.13 – All cases simulated in Ansys for a beam geometry using linear regression models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.125633 0.126600 
Point load at ¼ length 0.247969 0.248528 
Point load at ½ length 0.463041 0.462181 
Point load at ¾ length 0.474600 0.474918 

Constant distributed load 0.519044 0.518328 
Constant and linear pressure 0.530843 0.534847 

Parabolic pressure 0.561950 0.562508 
Linear pressure 0.566604 0.568387 

 Based on the previously established high performance threshold of a R2 value of 0.6, the 
linear regression model does not show high performance for the prediction of stress for a beam 
geometry. This is expected based on the observations of the performance of linear regression 
models from the previous chapter. The point load cases show the lowest performance with low 
R2 values, while the more complex distributed loads and pressure have higher performance.  

 The lowest performing case with a point load at the full length fails to predict the stress. 
Higher data values are underestimated through the model prediction resulting in the low 
performance. Fig. 4.28 shows some accuracy in predicting values of between 0.4 and 0.6, which 
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corresponds with the lower residuals for those values in Fig. 4.29 as compared to the outer 
residuals. The model does not overfit as the test data coincides with the training data. 

 
Figure 4.28 – Training data vs model prediction for linear regression model trained with 

directional deformation to predict equivalent stress for beam with point load at full length. 

 
Figure 4.29 – Linear regression model trained with directional deformation to predict equivalent 

stress for beam with point load at full length. 

 Linear pressure loading shares similar difficulty in predicting stress as the point load at 
full length, though having the highest R2 value of all loading cases. Fig. 4.30 exhibits 
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comparable behavior as seen in Fig. 4.28 in the underestimation of higher value data points. 
Outliers in this plot are much scarcer and the model follows the general trend of the stress.  

 
Figure 4. 30– Training data vs model prediction for linear regression model trained with 

directional deformation to predict equivalent stress for beam with linear pressure. 

 As seen in the worst performing loading case, the linear regression model in general has 
limited ability to follow the complexity of these cases due to its linear nature. Prediction for the 
linear pressure loading displays lower residuals throughout the entirety of the plot as opposed to 
the high residuals at the outer ends of the plot seen in the lowest performing case. The prediction 
tracks the negative slope of the stress but lacks the ability to predict more than that. 
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Figure 4.31 – Linear regression model trained with directional deformation to predict equivalent 

stress for beam with constant and linear pressure. 

 Stress in the beam exhibits more noise and the linear regression model is unable to 
properly predict the stress. The complexity of the problem is not well represented in these 
models as they tend to underfit the data. It should be noted that all linear regression models, even 
those that show low performance, do not overfit as the testing data aligns with the trained data. 

4.3 Decision Tree Modeling 

4.3.1 Training Model 

The decision tree model was trained in MATLAB using the “fitrtree” function. All 
specifications of the function are discussed in the previous chapter. 

4.3.2 Results 

 All decision tree models have a R2 value over 0.99, therefore all models are of high 
performance. 

Table 4.14– All cases simulated in Ansys for a beam geometry using decision tree models, along 
with their respective R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.996104 0.993641 
Point load at ¾ length 0.994382 0.992902 
Point load at ½ length 0.994931 0.993112 
Point load at ¼ length 0.997460 0.996582 

Constant distributed load 0.995256 0.993770 
Linear pressure 0.995905 0.994308 
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Constant and linear pressure 0.995597 0.994776 
Parabolic pressure 0.995748 0.994190 

 

Table 4.15 – All cases simulated in Ansys for a beam geometry using decision tree models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at ¾ length 0.994382 0.992902 
Point load at ½ length 0.994931 0.993112 

Constant distributed load 0.995256 0.993770 
Constant and linear pressure 0.995597 0.994776 

Parabolic pressure 0.995748 0.994190 
Linear pressure 0.995905 0.994308 

Point load at full length 0.996104 0.993641 
Point load at ¼ length 0.997460 0.996582 

 Compared to the linear regression models, the order of lowest to highest performing 
models varies. Correlation between the data and model prediction seen in Fig. 4.32 for the 
highest performing case with a point load at quarter length. The data set for this geometry is 
much larger that from the previous section therefore the plot below has more outliers for such a 
high R2 value. The distribution of the data points along the perfect model is constant and shows 
no correlation to data value. 

 
Figure 4.32 – Training data vs model prediction for decision tree model trained with directional 

deformation to predict equivalent stress for beam with a point load at ¼ length. 

 As expected, with the high R2 values for the decision tree models, the model can predict 
the data with significantly higher accuracy than linear regression models. Though, in a magnified 
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view of the plot in Fig. 4.34, the piecewise nature of the model is seen to be unsuitable for the 
scattered data. Overfitting is not seen in the model as the testing data falls in line with the trained 
data.  

 
Figure 4.33 – Decision tree model trained with directional deformation to predict equivalent 

stress for beam with a point load at ¼ length. 

 
Figure 4.34 – Enlarged view of decision tree model trained with directional deformation to 

predict equivalent stress for beam with a point load at ¼ length. 
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 The case with the lowest performance has a high R2 value of 0.994, which is seen through 
the adequate correlation between data and prediction seen in Fig. 4.35 below. As with the 
previously discussed case, the inaccuracy increases as the data values increases.  

 
Figure 4.35 – Training data vs model prediction for decision tree model trained with directional 

deformation to predict equivalent stress for beam with point load at ¾ length. 

The lower performance for this case, compared to others, is likely due to the higher noise 
in the data. A closer view shows some overfitting in the regions where the models prediction 
branches, but all other testing data follows the model. 
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Figure 4.36 – Decision tree model trained with directional deformation to predict equivalent 
stress for beam with point load at ¾ length. 

 
Figure 4.37 – Enlarged view of decision tree model trained with directional deformation to 

predict equivalent stress for beam with point load at ¾ length. 

 While the decision tree models produce higher R2 values, the binary nature of the model 
does not fit best with the data used for training as it is not able to predict the intricacy of the data. 

4.4 Random Forest Modeling 

4.4.1 Training Model 

The random forest models are trained in MATLAB using the “fitrensemble” function. 
Due to sizable computational time and limited computational power, optimization was conducted 
only on the first case. The model is optimized using the automatic “OptimizeHyperparameters” 
option for the case with a point load at full length. The resulting optimized ensemble used the 
bag method with 493 trees. 

4.4.2 Results 

 Random forest models perform significantly well comparable to the decision tree models, 
as expected based on the results from the previous chapter. The highest and lowest performing 
models are identical to those in the decision tree models. 

Table 4.16 – All cases simulated in Ansys for a beam geometry using random forest models, 
along with their respective R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.998012 0.996754 
Point load at ¾ length 0.997757 0.996963 
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Point load at ½ length 0.998049 0.997052 
Point load at ¼ length 0.999201 0.998882 

Constant distributed load 0.997891 0.997053 
Linear pressure 0.998092 0.997291 

Constant and linear pressure 0.998128 0.997762 
Parabolic pressure 0.998077 0.997234 

 
Table 4.17 – All cases simulated in Ansys for a beam geometry using random forest models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at ¾ length 0.997757 0.996963 

Constant distributed load 0.997891 0.997053 
Point load at full length 0.998012 0.996754 
Point load at ½ length 0.998049 0.997052 

Parabolic pressure 0.998077 0.997234 
Linear pressure 0.998092 0.997291 

Constant and linear pressure 0.998128 0.997762 
Point load at ¼ length 0.999201 0.998882 

 As with decision tree models, the lowest performing models show sufficient correlation 
between data and prediction. Major outliers in the plot below hold less significance than those 
seen in the previous chapter where the data size was much smaller. This model loses accuracy as 
the data value increases. 

 
Figure 4.38 – Training data vs model prediction for random forest model trained with directional 

deformation to predict equivalent stress for beam with point load at ¾ length. 



71 
 

 Of all machine learning models for the static beam, the highest R2 value was found for 
the random forest model for a beam with a constant and linear distributed pressure. The model 
prediction falls closely along the perfect model line with a standard deviation, seen in Fig. 4.39.  

 
Figure 4.39 – Training data vs model prediction for random forest model trained with directional 

deformation to predict equivalent stress for beam with a point load at ¼ length. 

 Compared to previous machine learning models, random forest is most suitable for the 
data set used for training. Additional optimization, as in the previous chapter, was not necessary 
as the initial optimization for this geometry did not overfit the data. Inaccuracies are seen in the 
first half in the plot, but the model follows the data more competently than previous models. 
Closer view of the plot shows the model does not overfit and the error in the model prediction. 
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Figure 4.40 – Decision tree model trained with directional deformation to predict equivalent 

stress for beam with a point load at ¼ length. 

 
Figure 4.41 – Enlarged view of decision tree model trained with directional deformation to 

predict equivalent stress for beam with point load at ¼ length. 

4.5 Neural Network Modeling 

4.5.1 Training Model 

The neural network model was trained in MATLAB using the “fitnet” and “train” 
functions. Due to limited computational power, the hidden layer size was constrained to two 

Commented [NG7]: Typo in figure 
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layers with between 0-50 neurons and optimization was conducted only on the first case. The 
optimal hidden layer size was determined to be 50 neurons in the first layer and the other with 
12. The “train” function trains the model until the maximum number of epochs or the 
performance goal is met [30].  

4.5.2 Results 

 The performance of the neural network model more closely represents a normal 
distribution among the cases when compared to previous models. Neural network modeling 
produced the lowest performing model out of all previous cases, while the highest performing 
case was no more accurate than any of the random forest models. 

Table 4.18 – All cases simulated in Ansys for a beam geometry using neural network models, 
along with their respective R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.074201 0.075263 
Point load at ¾ length 0.659651 0.658877 
Point load at ½ length 0.676182 0.675880 
Point load at ¼ length 0.092502 0.094163 

Constant distributed load 0.594866 0.594193 
Linear pressure 0.978398 0.978428 

Constant and linear pressure 0.891488 0.894147 
Parabolic pressure 0.996953 0.996810 

 
Table 4.19 – All cases simulated in Ansys for a beam geometry using neural network models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Beam Trained R2 Tested R2 
Point load at full length 0.074201 0.075263 
Point load at ¼ length 0.092502 0.094163 

Constant distributed load 0.594866 0.594193 
Point load at ¾ length 0.659651 0.658877 
Point load at ½ length 0.676182 0.675880 

Constant and linear pressure 0.891488 0.894147 
Linear pressure 0.978398 0.978428 

Parabolic pressure 0.996953 0.996810 

 No clear pattern is apparent for the performance of the cases, with majority being 
considered high performance. Two models for point load cases produced the lowest R2 values, 
less than 0.01, out of all models for this geometry. Fig. 4.42 shows zero correlation in the 
distribution of the model prediction and data as smaller values are mostly overestimated and 
larger values are underestimated. The model is not able to create any relation to the data as seen 
in Figure 4.43 but does share a general negative slope with the data. As previously seen, the 
testing data falls well along the neural network model and does not overfit. 
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Figure 4.42 – Training data vs model prediction for neural network model trained with 

directional deformation to predict equivalent stress for beam with point load at full length. 

 
Figure 4.43 – Neural network model trained with directional deformation to predict equivalent 

stress for beam with point load at full length. 

 The second lowest performing case with a point load at quarter length shared similar 
characteristics in the relationship between the training data and model prediction. Smaller data 
values are seen to be overpredicted, while the larger data values are underpredicted as seen in 
Fig. 4.44 below. The prediction, as in the previous case does not follow the data in any capacity 
and is therefore inadequate. 



75 
 

 
Figure 4.44 – Training data vs model prediction for neural network model trained with 

directional deformation to predict equivalent stress for beam with point load at ¼ length. 

 
Figure 4.45 – Neural network model trained with directional deformation to predict equivalent 

stress for beam with point load at ¼ length. 

 Neural network best predicted stress from a parabolic pressure, though with less accuracy 
than any of the random forest models. The relationship between training data and model 
prediction shows direct correlation between increase of data values and increase in prediction 
error. The model tracks the training data and does not overfit, as seen in the enlarged view of the 
plot in Fig. 4.48 where the model fits well between the peaks in the data training data. 
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Figure 4.46 – Training data vs model prediction for neural network model trained with 
directional deformation to predict equivalent stress for beam with parabolic pressure. 

 
Figure 4.47 – Neural network model trained with directional deformation to predict equivalent 

stress for beam with parabolic pressure. 
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Figure 4.48 – Enlarged view of random forest model trained with directional deformation to 

predict equivalent stress for beam with parabolic pressure. 

 The model for the second-best performing case with linear pressure is less accurate but 
mimics the trend of the training data. 

 
Figure 4.49 – Neural network model trained with directional deformation to predict equivalent 

stress for beam with linear pressure. 

 Though the neural network models are smoother and show fewer testing data outliners 
within the model prediction, it is the most unreliable due to the polarity of performance among 
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the cases. Significantly more computational time was taken for the training of neural network 
models, which devalues this model as well. 
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5. Static Analysis of Wing Structure 
 Understanding structural behavior of wings is crucial for maintenance during an aircraft’s 
lifetime. Applicability of machine learning for aerospace applications to predict stress can be 
analyzed through wing geometries. Single wing geometry is analyzed through Ansys to collect 
training data of stress and deformation for machine learning models in MATLAB. 

5.1 Problem Definition 

 Geometry is constructed in SOLIDWORKS to include an internal wing structure and 
airfoil skin based on the NACA 2412 airfoil. The internal wing structure consists of ribs, I beam 
spar, and two circular spars. The coordinate system is set at the leading edge of the root rib with 
the z axis along the length of the wing. The rib chord at the root is linearly decreased along the 
ribs till the tip rib is 30% of the initial chord. 

Table 5.1 – Specifications of ribs in wing structure geometry. 

Total number of ribs 15 
Distance between ribs 0.08 m 

Thickness of ribs 0.005 m 
Total length of wing 1.195 m 

Chord at root rib 0.2 m 
Chord at tip rib 0.06 m 

 

 
Figure 5.1 – Inner wing structure with two circular spars and a central I beam spar. 
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Figure 5.2 – Internal wing structure in xz plane. 

The airfoil skin is created by lofting two splines that are 105% of the root and tip ribs. 
Outer dimensions of the chord are seen in Fig. 5.2. The airfoil is combined with the internal wing 
structure in SOLIDWORKS to create a single part. 

 
Figure 5.3 – Wing structure geometry in xy plane with root and tip chords.  

Placement of the spars are determined by percent chord of the root and tip rib, seen in 
Fig. 5.4 below. Spars are created using the boundary feature in SOLIDWORKS with the cross-
sectional sketches of the spars on the root and tip ribs, merging with all other ribs in between. 
Both circular spars are uniform diameter of 0.004 m for all ribs. 

 
Figure 5.4 – Positions of spars along the ribs with respect to chord, shown on root rib. 

 Dimensions for the I-beam are shown in Fig. 5.5 for the root rib and are scaled with the 
ribs, where the dimensions at the tip are 30% of those on the root rib. 

z 

x 

1.195 m 

6.3 cm 

21 cm 

x 

y 

.125c 

x 

y 

.125c .25c 



81 
 

 
Figure 5.5 – Dimensions of I beam on the root rib. 

 The wing is fixed at the root (z=0 m) and will be analyzed with various loads as seen in 
the following figures. 

 
Figure 5.6 – Case 1: 10 N point load in the -y direction at tip (z=1.195 m), constant along x axis. 

 

 
Figure 5.7 – Case 2: Constant distributed load in the -y direction of 10 N/m from root (z=0 m) to 

tip (z=1.195 m), constant along x axis. 

 

 
Figure 5.8 – Case 3: Linear pressure in the -y direction varying along z axis from 10 Pa at root 

(z=0 m) to 0 Pa at tip (z=1.195 m), constant along x axis. 

 

 

2.26 cm 

0.18 cm 

1.2 cm 

0.2 cm 

x 

y 

z 

y 

x 

y 

z 

y 

x 

y 

z 

y 



82 
 

 
Figure 5.9 – Case 4: Constant pressure in the -y direction of 10 Pa from root (z=0 m) to half-

length and linear pressure in the -y direction varying along z axis from 10 Pa at half-length to 0 
Pa at tip (z=1.195 m), constant along x axis. 

 

 
Figure 5.10 – Case 5: Parabolic pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at 

tip (z=1.195 m), constant along x axis. 

 

 
Figure 5.11 – Case 6: Elliptical pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at 

tip (z= 1.195 m), constant along x axis. 

5.2 Ansys Simulations 

 Simulations for each case in Ansys are identical to those done in the previous chapter, but 
with the new wing geometry. Material is kept as structural steel; properties can be found in Table 
4.2. Training data is collected from Ansys as outlined in Table 4.3 including x, y, and z 
coordinates along with the corresponding deformation and stress. Additionally, as the geometry 
is more complex and the data size is significantly larger, a path is added on the geometry for the 
plots produced to visualize the performance of the machine learning model. In Ansys, a path is 
inserted in the construction geometry along the upper chamber at x=0.25c from the root rib to the 
tip rib (seen in Fig. 5.12 below). Linearized deformation and stress data along the path is 
combined with the general data collected for machine learning in MATLAB. Data is plotted 
against the z coordinates along the path. 
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Figure 5.12 – Path on construction geometry from quarter chord on x axis of root rib (1) to 

quarter chord on x axis of tip rib (2) along upper chamber on airfoil skin. 

To save computational time, mesh convergence is conducted for once case with a point 
load at full load. Due to the complexity of the geometry, convergence was manually done 
through altering element size, resolution, and span angle center. The final mesh is used for all 
cases simulated in Ansys. 

Table 5.2 – Convergence history for wing with point load at full length. 

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements 
1 1.24707E+07  76,681 38,609 
2 1.31202E+07 5.21 86,515 44,295 
3 1.34239E+07 2.31 95,411 49,646 
4 1.38056E+07 2.84 107,471 56,923 
5 1.42516E+07 3.23 1,642,218 842,074 
6 1.45611E+07 2.17 2,091,375 1,083,733 
7 1.47407E+07 1.23 2,517,086 1,318,629 
8 1.48408E+07 0.68 3,296,724 1,712,350 
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Figure 5.13 – Convergence history plot for wing with point load at full length. 

5.3 Linear Regression Modeling 

5.3.1 Training Model 

The “fitlm” function in MATLAB is used for training linear regression models with 
directional deformation to predict equivalent stress along the wing. The MATLAB function is 
described in section 3.4.1. 

5.3.2 Results 

 Performance of linear regression models is similar to that seen with the beam geometry, 
ranging in lower R2 values, and not meeting the high performance criteria. Model for point load 
at full length and for linear pressure shows the lowest and highest R2 values respectively, as in 
the previous chapter. 

Table 5.3 – All cases simulated in Ansys for a wing geometry using linear regression models, 
along with their respective R2 values. 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.228413 0.228095 

Constant distributed load 0.323227 0.322534 
Linear pressure 0.576809 0.579178 

Constant and linear pressure 0.557836 0.558601 
Parabolic pressure 0.530406 0.530207 
Elliptical pressure 0.420232 0.422938 

 
Table 5.4 – All cases simulated in Ansys for a wing geometry using linear regression models, 
along with their respective R2 values, sorted by ascending trained R2 values. 



85 
 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.228413 0.228095 

Constant distributed load 0.323227 0.322534 
Elliptical pressure 0.420232 0.422938 
Parabolic pressure 0.530406 0.530207 

Constant and linear pressure 0.557836 0.558601 
Linear pressure 0.576809 0.579178 

 As seen in the previous chapter, the linear regression models have difficulty with 
correctly estimating the data. Fig. 5.14 shows the lack of correlation between the training data 
and the model prediction, as well as the overestimation of smaller data values and 
underestimation of higher data values. 

 
Figure 5.14 – Training data vs model prediction for linear regression model trained with 

directional deformation to predict equivalent stress for wing with point load at full length. 

 This lack of correlation is translated to a poor model that is only able to follow the trend 
of the data. Fig. 5.15 shows the model peaks at about the same point on the wing but is overall 
underestimating the stress in the wing. The ribs in the wing are seen in the plot where the stress 
suddenly decreases, which the model is not able to predict. The model is trained well enough to 
not overfit, as the testing data falls along the model prediction.  



86 
 

 
Figure 5.15 – Linear regression model trained with directional deformation to predict equivalent 

stress for wing with point load at full length. 

 As performance increases, the underestimation of data values decreases as seen in Fig. 
5.16 below. The highest performing case, for a linear pressure on the wing, shows a smaller error 
in the amplitude of the model prediction. The nature of linear regression is not fit for the 
complexity of the data as it is not able to follow the variation of stress along the wing.  

 
Figure 5.16 – Training data vs model prediction for linear regression model trained with 

directional deformation to predict equivalent stress for wing with linear pressure. 
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Figure 5.17 – Linear regression model trained with directional deformation to predict equivalent 

stress for wing with linear pressure. 

5.4 Decision Tree Modeling 

5.4.1 Training Model 

The function “fitrtree” is used in MATLAB for training decision tree models and is discussed 
in section 3.5.1. 

5.4.2 Results 

 Decision tree models for the wing geometry are all high performance models as all R2 
values are greater than 0.99, as observed with the beam geometry as well.  

Table 5.5 – All cases simulated in Ansys for a wing geometry using decision tree models, along 
with their respective R2 values. 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.993965 0.991747 

Constant distributed load 0.993717 0.991372 
Linear pressure 0.995208 0.993246 

Constant and linear pressure 0.995249 0.993561 
Parabolic pressure 0.994954 0.993083 
Elliptical pressure 0.994243 0.992218 

 
Table 5.6 – All cases simulated in Ansys for a wing geometry using decision tree models, along 
with their respective R2 values, sorted by ascending trained R2 values. 
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Load on Wing Trained R2 Tested R2 
Constant distributed load 0.993717 0.991372 
Point load at full length 0.993965 0.991747 

Elliptical pressure 0.994243 0.992218 
Parabolic pressure 0.994954 0.993083 

Linear pressure 0.995208 0.993246 
Constant and linear pressure 0.995249 0.993561 

Compared to the linear regression models, the order of performance is comparable 
considering the difference between the two lowest trained R2 values and two highest R2 values. 
The case with the lowest trained R2 value is with a constant distributed load and is considered 
high performance. Correlation between data and model prediction is much more consistent than 
seen in linear regression models. The large size of the data allows for the outliers seen in Fig. 
5.18 while also having a R2 value higher than 0.99. 

 
Figure 5.18 – Training data vs model prediction for decision tree model trained with directional 

deformation to predict equivalent stress for wing with constant distributed load. 

 Decision tree models predict stress along the wing with significantly higher accuracy than 
linear regression models, especially stress at the location of the ribs. The model is overall less 
smooth than linear regression models, but accurately predicts the behavior of the data. 
Discrepancies are more visibly present at the root of the wing, which is also where testing data 
tends to fall out of the model prediction. Testing data outliers throughout the model prediction 
suggest overfitting within the model. In an enlarged view of the plot, the rough behavior of the 
prediction is seen as well as the testing data outliers. 
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Figure 5.19 – Decision tree model trained with directional deformation to predict equivalent 

stress for wing with constant distributed load. 

 
Figure 5.20 – Enlarged view of decision tree model trained with directional deformation to 

predict equivalent stress for wing with constant distributed load. 

 Since the difference between the decision tree model R2 values has higher significant 
figures, the difference between correlation of data and model prediction is minute. The 
correlation for the highest performing model with constant and linear pressure in Fig. 5.21 
compared to Fig. 5.18 is much denser but has similar outliers. 
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Figure 5.21– Training data vs model prediction for decision tree model trained with directional 

deformation to predict equivalent stress for wing with constant and linear pressure. 

 The highest performing model is smoother and is less overfit than the lowest performing 
model, as the testing data falls more in line with the model prediction. The roughness of the 
model is fairly similar to the data itself as seen in Fig. 5.23. 

 
Figure 5.22 – Decision tree model trained with directional deformation to predict equivalent 

stress for wing with constant and linear pressure. 
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Figure 5.23 – Enlarged view of decision tree model trained with directional deformation to 

predict equivalent stress for wing with constant and linear pressure. 

 The nature of the model is seen in the plots as the model prediction is rough. Compared 
to linear regression models, the decision tree method is more prone to overfit. Decision tree 
models are overall well equipt as observed with the high R2 values for all cases and the ability to 
predict the complex nature of the data.  

5.5 Random Forest Modeling 

5.5.1 Training Model 

 The function “fitrensemble” is used in MATLAB to train random forest models, along 
with the automatic optimization of hyperparameters. Optimization is done with the point load at 
full length of the wing case to reduction computational time, resulting in an ensemble using the 
bag method with 309 trees. 

5.5.2 Results 

 Random forest performance is observed to be the highest out of all other machine 
learning methods explored. Compared to the decision tree method, random forest models have 
larger R2 values and are more accurate.  

Table 5.7 – All cases simulated in Ansys for a wing geometry using random forest models, along 
with their respective R2 values. 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.996682 0.995510 

Constant distributed load 0.996605 0.995452 
Linear pressure 0.997404 0.996351 
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Constant and linear pressure 0.997412 0.996505 
Parabolic pressure 0.997290 0.996350 
Elliptical pressure 0.996901 0.995857 

 
Table 5.8  – All cases simulated in Ansys for a wing geometry using random forest models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Wing Trained R2 Tested R2 
Constant distributed load 0.996605 0.995452 
Point load at full length 0.996682 0.995510 

Elliptical pressure 0.996901 0.995857 
Parabolic pressure 0.997290 0.996350 

Linear pressure 0.997404 0.996351 
Constant and linear pressure 0.997412 0.996505 

 Considering the small difference between the R2 values for random forest cases, 
negligible differences are seen in the correlations of data and model predictions between cases. 
The correlation is denser than decision tree models and shows fewer major outliers. The 
correlation for the lowest performing case with a constant distributed load (Fig. 5.24) shows 
similarity to the correlation for the highest performing case with a constant and linear pressure 
(Fig. 5.25).  

 
Figure 5.24– Training data vs model prediction for random forest model trained with directional 

deformation to predict equivalent stress for wing with constant distributed load. 
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Figure 5.25 – Training data vs model prediction for decision tree model trained with directional 

deformation to predict equivalent stress for wing with constant and linear pressure. 

 The lowest performing model prediction for constant distributed load is seen in Fig. 5.26 
below. Random forest models are overall smoother and follows the data with higher accuracy. 
An enlarged view of the prediction shows the minor difference between the data and prediction.  

 
Figure 5.26 – Random forest model trained with directional deformation to predict equivalent 

stress for wing with constant distributed load. 
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Figure 5.27 – Enlarged view of random forest model trained with directional deformation to 

predict equivalent stress for wing with constant distributed load. 

 Testing data aligns more closely with the model prediction as the R2 value of the model 
increases. The highest performing model with a constant and linear pressure is less overfit, as 
trained and testing data discrepancies are only seen around z=0.5m in Fig. 5.28 below. 

 
Figure 5.28 – Random forest model trained with directional deformation to predict equivalent 

stress for wing with constant and linear pressure. 
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 In an enlarged view of the model with constant and linear pressure, the model prediction 
and testing data are seen to be more closely aligned with the data.  

 
Figure 5.29 – Enlarged view of random forest model trained with directional deformation to 

predict equivalent stress for wing with constant and linear pressure. 

 Random forest models are most consistent with performance, being able to accurately 
model any data presented so far. Some overfitting is observed, but no more than seen in decision 
tree models. 

5.6 Neural Network Modeling 

5.6.1 Training Model 

 Functions “fitnet” and “train” are used in MATLAB to train the neural network models, 
as in previous chapters. First case with point load at full length was used for optimization of 
hidden layer size of two layers with 0-25 neurons due to the large size of training data. Optimal 
hidden layer size was determined to be 23 neurons in the first layer and 22 in the second layer 

5.6.2 Results 

 In previous chapters, neural networks models vary in performance among the cases 
whereas for the wing geometry the performance is much more consistent. All R2 values are 
greater than 0.9, allowing neural network models to be more comparable to decision tree models 
than previously observed. 

Table 5.9 – All cases simulated in Ansys for a wing geometry using neural network models, 
along with their respective R2 values. 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.905259 0.904510 
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Constant distributed load 0.962638 0.962641 
Linear pressure 0.977113 0.977310 

Constant and linear pressure 0.973369 0.973347 
Parabolic pressure 0.969541 0.969912 
Elliptical pressure 0.959893 0.959767 

 
Table 5.10  – All cases simulated in Ansys for a wing geometry using neural network models, 
along with their respective R2 values, sorted by ascending trained R2 values. 

Load on Wing Trained R2 Tested R2 
Point load at full length 0.905259 0.904510 

Elliptical pressure 0.959893 0.959767 
Constant distributed load 0.962638 0.962641 

Parabolic pressure 0.969541 0.969912 
Constant and linear pressure 0.973369 0.973347 

Linear pressure 0.977113 0.977310 

 The order of performance is similar to the performance of linear regression models, 
difference being the order of elliptical pressure and constant distributed load. Neural network 
models tend to overestimate data values more than any other model type, as seen in Fig. 5.30 for 
the lowest performing case, though still has a large R2 value.  

 
Figure 5.30 – Training data vs model prediction for neural network model trained with 

directional deformation to predict equivalent stress for wing with point load at full length. 

 The model prediction for stress in the wing with a point load at full length shows 
resemblance to linear regression models. Though the accuracy of the model following the 
amplitude of the stress is higher, it is still unable to estimate the intricacies of the data at the rib 
locations. The model shows little to no overfitting, as the testing data aligns with the trained data. 



97 
 

 
Figure 5.31 – Neural network model trained with directional deformation to predict equivalent 

stress for wing with point load at full length. 

 Correlation of data and model prediction is still irregular for the highest performing case 
with linear pressure but is much denser along the perfect model line. Much less overestimation is 
seen in Fig. 5.32, but outliers show no clear pattern. Outliers are more underestimated for larger 
data values when compared to Fig. 5.30.  

 
Figure 5.32 – Training data vs model prediction for neural network model trained with 

directional deformation to predict equivalent stress for wing with linear pressure. 
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 Though with a higher R2 value the model is able to estimate the changes of stress where 
the ribs are located, the accuracy does not compare to decision tree or random forest models. An 
error in the model prediction is also evident for the stress values between the ribs, where the 
behavior of the data is incorrectly predicted. The higher R2 value also increases the error in the 
alignment of trained and testing data, as seen in an enlarged view of the plot in Fig. 5.34. 

 
Figure 5.33 – Neural network model trained with directional deformation to predict equivalent 

stress for wing with linear pressure. 

 
Figure 5. 34 – Enlarged view of neural network model trained with directional deformation to 

predict equivalent stress for wing with linear pressure. 
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All neural network models show the same prediction error of stress between ribs. The 
case with R2 value closest to the average R2 of the cases for the wing geometry is that with 
elliptical pressure. The model for this case highlights the positive correlation between an increase 
in R2 and inaccuracy of predicting the specific behavior of the data. 

 

Figure 5.35 – Neural network model trained with directional deformation to predict equivalent 
stress for wing with elliptical pressure. 

 Accuracy of neural network models bear a resemblance to linear regression models, 
though having consistent R2 values closer to decision tree and random forest models. Though the 
prediction shows close similarity to the data, the error within the prediction greatly diminishes 
the suitability of the model for this type of data. 
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6. Conclusion 
Machine learning applications explored within this project show fairly consistent results 

regarding performance of linear regression, decision tree, random forest, and neural network 
algorithms. Data is collected from discretized equations of motion, for a three degree of freedom 
system, and FEA in Ansys, for a beam and wing geometry, for supervised regression learning. 
Decision tree and random forest models prove to be adequate for the training data collected, 
while linear regression and neural network models show poor performance.  

The linear regression algorithm produced the most trained R2 values below the high 
performance threshold of 0.6. In rare cases was the algorithm able to properly predict the data in 
the spring mass damper system models. The data vs. model prediction plots for linear regression 
show a tendency to overestimate and underestimate data values. Though the model does not 
track the training data, the testing data is seen to perfectly align with the model prediction, as 
expected based on the nature of the linear regression algorithm. All decision tree models fit 
within the high performance threshold and was able to adequately track training data. The lowest 
performing decision tree model showcase the noisy nature of the algorithm, as well as the 
tendency to overfit as the testing data did not align with the model prediction. Cases for the beam 
and wing geometry all have trained R2 values larger than 0.99 and show little overfitting in the 
model plots. Random forest models are very similar to decision tree models, though have higher 
performance and less noise in the model prediction. Overfitting is seen to decrease as R2 
increases in the spring mass damper models, whereas little overfitting is seen in the beam and 
wing geometry models. Of all algorithms, random forest is optimal for prediction of engineering 
data presented in this project. Performance of neural networks models is comparable to linear 
regression, as well as the behavior of the prediction. The tendency to overestimate and 
underestimate data is overserved in neural network models and the testing data rarely misaligns 
with the model prediction. The algorithm was not able to properly predict the full complexity of 
stress in a wing.  

 Capabilities of random forest and decision tree models to predict engineering data is 
promising for further applications of machine learning in the aerospace industry. Neural network 
models likely did not perform to the best extent due to the high computational power and time 
necessary for training models. Further optimization and exploration of neural network models 
may demonstrate similar capabilities as random forest models.   
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Appendix A – MATLAB Code for Three Degree Spring Mass Damper System 

3DOF Mass Spring Damper System 

% masses (kg) 

m1 = 5; m2 = 1; m3 = 3; 

 

% dampers (Ns/m) 

c1 = 1; c2 = 1; c3 = 2; 

 

% springs (N/m) 

k1 = 700000; k2 = 10000; k3 = 50000; 

 

% F(1) = sine @15 Hz, amplitude of 0.5 

f1_a = 0.5; f1_hz = 15; 

 

% F(2) = cosin @15 Hz, amplitude of 0.7 

f2_a = 0.7; f2_hz = 15; 

 

% F(3) = sine @15 Hz, amplitude of 0.1 

f3_a = 0.1; f3_hz = 15; 

 

 

% Matrices of ODE 

M = diag([m1,m2,m3]); 

 

C = ([c1+c2  -c2     0; 

      -c2   c2+c3  -c3; 

       0     -c3    c3]); 

 

K = ([k1+k2  -k2     0; 

      -k2   k2+k3  -k3; 

       0     -k3    k3]); 

 

% ode45 setup 

tspan = 0:0.001:2; 

x0 = [0; 0; 0; 0; 0; 0]; 

 

[t,x] = ode45(@(t,x) integration(t,x, M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz), tspan, 

x0); 

 

for i=1:length(tspan) 

    dxdt_tr(:,i) = integration(t(i),x(i,:).', M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz); 

end 

 

dxdt = dxdt_tr.'; 

 

% data processing 

p_m1 = x(:,1); p_m2 = x(:,2); p_m3 = x(:,3); 

v_m1 = x(:,4); v_m2 = x(:,5); v_m3 = x(:,6); 

a_m1 = dxdt(:,4); a_m2 = dxdt(:,5); a_m3 = dxdt(:,6); 

 

data = [p_m1, p_m2, p_m3, v_m1, v_m2, v_m3, a_m1, a_m2, a_m3,]; 
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% percent of data used for training 

p = 0.8; 

[xtrain, xval, ttrain, tval] = partition(p, t, data); 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(t, p_m1, 'Linewidth', 3) 

hold on 

plot(t,p_m2, 'g', 'Linewidth', 3) 

hold on 

plot(t,p_m3,'r', 'Linewidth', 3) 

title('Displacement') 

xlabel('Time (s)') 

legend('m1','m2','m3') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(t,v_m1, 'Linewidth', 3) 

hold on 

plot(t,v_m2, 'g', 'Linewidth', 3) 

hold on 

plot(t,v_m3,'r', 'Linewidth', 3) 

title('Velocity') 

xlabel('Time (s)') 

legend('m1','m2','m3') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(t,a_m1, 'Linewidth', 3) 

hold on 

plot(t,a_m2, 'g', 'Linewidth', 3) 

hold on 

plot(t,a_m3,'r', 'Linewidth', 3) 

title('Acceleration') 

xlabel('Time (s)') 

legend('m1','m2','m3') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

Decision Tree 

%Acceleration to Solve for Displacement 

%using Acceleration to solve for Displacement of M1 

dectre(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval,  'Acceleration', 
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'Displacement', 'M1') 

%using Acceleration to solve for Displacement of M2 

dectre(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval,  'Acceleration', 

'Displacement', 'M2') 

%using Acceleration to solve for Displacement of M3 

dectre(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3), ttrain, tval,  'Acceleration', 

'Displacement', 'M3') 

 

%Acceleration to Solve for Velocity 

%using Acceleration to solve for Velocity of M1 

dectre(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Acceleration to solve for Velocity of M2 

dectre(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Acceleration to solve for Velocity of M3 

dectre(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Velocity to Solve for Displacement 

%using Velocity to solve for Displacement of M1 

dectre(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval,  'Velocity', 

'Displacement', 'M1') 

%using Velocity to solve for Displacement of M2 

dectre(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval,  'Velocity', 

'Displacement', 'M2') 

%using Velocity to solve for Displacement of M3 

dectre(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval,  'Velocity', 

'Displacement', 'M3') 

 

%Velocity to Solve for Acceleration 

%using Velocity to solve for Acceleration of M1 

dectre(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval,  'Velocity', 

'Acceleration', 'M1') 

%using Velocity to solve for Acceleration of M2 

dectre(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval,  'Velocity', 

'Acceleration', 'M2') 

%using Velocity to solve for Acceleration of M3 

dectre(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval,  'Velocity', 

'Acceleration', 'M3') 

 

%Displacement to Solve for Velocity 

%using Displacement to solve for Velocity of M1 

dectre(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Displacement to solve for Velocity of M2 

dectre(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Displacement to solve for Velocity of M3 

dectre(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Displacement to Solve for Acceleration 

%using Displacement to solve for Acceleration of M1 
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dectre(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval,  'Displacement', 

'Acceleration', 'M1') 

%using Displacement to solve for Acceleration of M2 

dectre(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval,  'Displacement', 

'Acceleration', 'M2') 

%using Displacement to solve for Acceleration of M3 

dectre(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval,  'Displacement', 

'Acceleration', 'M3') 

Random Forest (LSBoost) 

%Acceleration to Solve for Displacement 

%using Acceleration to solve for Displacement of M1 

ranforlsb(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval,  'Acceleration', 

'Displacement', 'M1') 

%using Acceleration to solve for Displacement of M2 

ranforlsb(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval,  'Acceleration', 

'Displacement', 'M2') 

%using Acceleration to solve for Displacement of M3 

ranforlsb(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3),ttrain, tval,  'Acceleration', 

'Displacement', 'M3') 

 

%Acceleration to Solve for Velocity 

%using Acceleration to solve for Velocity of M1 

ranforlsb(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Acceleration to solve for Velocity of M2 

ranforlsb(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Acceleration to solve for Velocity of M3 

ranforlsb(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Velocity to Solve for Displacement 

%using Velocity to solve for Displacement of M1 

ranforlsb(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval,  'Velocity', 

'Displacement', 'M1') 

%using Velocity to solve for Displacement of M2 

ranforlsb(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval,  'Velocity', 

'Displacement', 'M2') 

%using Velocity to solve for Displacement of M3 

ranforlsb(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval,  'Velocity', 

'Displacement', 'M3') 

 

%Velocity to Solve for Acceleration 

%using Velocity to solve for Acceleration of M1 

ranforlsb(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval,  'Velocity', 

'Acceleration', 'M1') 

%using Velocity to solve for Acceleration of M2 

ranforlsb(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval,  'Velocity', 

'Acceleration', 'M2') 

%using Velocity to solve for Acceleration of M3 
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ranforlsb(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval,  'Velocity', 

'Acceleration', 'M3') 

 

%Displacement to Solve for Velocity 

%using Displacement to solve for Velocity of M1 

ranforlsb(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Displacement to solve for Velocity of M2 

ranforlsb(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Displacement to solve for Velocity of M3 

ranforlsb(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Displacement to Solve for Acceleration 

%using Displacement to solve for Acceleration of M1 

ranforlsb(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval,  'Displacement', 

'Acceleration', 'M1') 

%using Displacement to solve for Acceleration of M2 

ranforlsb(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval,  'Displacement', 

'Acceleration', 'M2') 

%using Displacement to solve for Acceleration of M3 

ranforlsb(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval,  'Displacement', 

'Acceleration', 'M3') 

Random Forest (Bag Method) 

%Acceleration to Solve for Displacement 

%using Acceleration to solve for Displacement of M1 

ranforbag(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval,  'Acceleration', 

'Displacement', 'M1') 

%using Acceleration to solve for Displacement of M2 

ranforbag(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval,  'Acceleration', 

'Displacement', 'M2') 

%using Acceleration to solve for Displacement of M3 

ranforbag(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3),ttrain, tval,  'Acceleration', 

'Displacement', 'M3') 

 

%Acceleration to Solve for Velocity 

%using Acceleration to solve for Velocity of M1 

ranforbag(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Acceleration to solve for Velocity of M2 

ranforbag(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Acceleration to solve for Velocity of M3 

ranforbag(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Velocity to Solve for Displacement 

%using Velocity to solve for Displacement of M1 

ranforbag(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval,  'Velocity', 
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'Displacement', 'M1') 

%using Velocity to solve for Displacement of M2 

ranforbag(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval,  'Velocity', 

'Displacement', 'M2') 

%using Velocity to solve for Displacement of M3 

ranforbag(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval,  'Velocity', 

'Displacement', 'M3') 

 

%Velocity to Solve for Acceleration 

%using Velocity to solve for Acceleration of M1 

ranforbag(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval,  'Velocity', 

'Acceleration', 'M1') 

%using Velocity to solve for Acceleration of M2 

ranforbag(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval,  'Velocity', 

'Acceleration', 'M2') 

%using Velocity to solve for Acceleration of M3 

ranforbag(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval,  'Velocity', 

'Acceleration', 'M3') 

 

%Displacement to Solve for Velocity 

%using Displacement to solve for Velocity of M1 

ranforbag(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Displacement to solve for Velocity of M2 

ranforbag(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Displacement to solve for Velocity of M3 

ranforbag(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Displacement to Solve for Acceleration 

%using Displacement to solve for Acceleration of M1 

ranforbag(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval,  'Displacement', 

'Acceleration', 'M1') 

%using Displacement to solve for Acceleration of M2 

ranforbag(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval,  'Displacement', 

'Acceleration', 'M2') 

%using Displacement to solve for Acceleration of M3 

ranforbag(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval,  'Displacement', 

'Acceleration', 'M3') 

Neural Network 

% hidden layers 

hl = [19 40]; 

 

%Acceleration to Solve for Displacement 

%using Acceleration to solve for Displacement of M1 

neunet(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), hl, ttrain, tval,  'Acceleration', 

'Displacement', 'M1') 

%using Acceleration to solve for Displacement of M2 

neunet(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), hl, ttrain, tval,  'Acceleration', 
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'Displacement', 'M2') 

%using Acceleration to solve for Displacement of M3 

neunet(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3), hl, ttrain, tval,  'Acceleration', 

'Displacement', 'M3') 

 

%Acceleration to Solve for Velocity 

%using Acceleration to solve for Velocity of M1 

neunet(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Acceleration to solve for Velocity of M2 

neunet(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Acceleration to solve for Velocity of M3 

neunet(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Velocity to Solve for Displacement 

%using Velocity to solve for Displacement of M1 

neunet(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), hl, ttrain, tval,  'Velocity', 

'Displacement', 'M1') 

%using Velocity to solve for Displacement of M2 

neunet(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), hl, ttrain, tval,  'Velocity', 

'Displacement', 'M2') 

%using Velocity to solve for Displacement of M3 

neunet(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), hl, ttrain, tval,  'Velocity', 

'Displacement', 'M3') 

 

%Velocity to Solve for Acceleration 

%using Velocity to solve for Acceleration of M1 

neunet(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), hl, ttrain, tval,  'Velocity', 

'Acceleration', 'M1') 

%using Velocity to solve for Acceleration of M2 

neunet(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), hl, ttrain, tval,  'Velocity', 

'Acceleration', 'M2') 

%using Velocity to solve for Acceleration of M3 

neunet(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), hl, ttrain, tval,  'Velocity', 

'Acceleration', 'M3') 

 

%Displacement to Solve for Velocity 

%using Displacement to solve for Velocity of M1 

neunet(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M1') 

%using Displacement to solve for Velocity of M2 

neunet(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M2') 

%using Displacement to solve for Velocity of M3 

neunet(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), hl, ttrain, tval,  'Acceleration', 

'Velocity', 'M3') 

 

%Displacement to Solve for Acceleration 

%using Displacement to solve for Acceleration of M1 

neunet(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), hl, ttrain, tval,  'Displacement', 

'Acceleration', 'M1') 

%using Displacement to solve for Acceleration of M2 
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neunet(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), hl, ttrain, tval,  'Displacement', 

'Acceleration', 'M2') 

%using Displacement to solve for Acceleration of M3 

neunet(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), hl, ttrain, tval,  'Displacement', 

'Acceleration', 'M3') 

 
function [xtrain, xval, ttrain, tval] = partition(p, t, x) 

k = length(t); 

idx = randperm(k); 

ttrain = t(idx(1:round(p*k)),:); 

tval = t(idx(round(p*k)+1:end),:); 

xtrain = x(idx(1:round(p*k)),:); 

xval = x(idx(round(p*k)+1:end),:); 

end 

 

function solvelr = linreg(a, d, b, c, ttrain, tval, training, predicting, mass) 

% linear regression model 

% a - train data | d - predictor variable | b - test data 

 

data = sortrows([ttrain,d]); 

 

mdl = fitlm(a, d); 

Y = feval(mdl,a); 

trained = sortrows([ttrain, Y]); 

 

yfit = feval(mdl,b); 

tested = sortrows([tval, yfit]); 

 

RMSE = sqrt(mean((Y - d).^2)); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25) 

hold on 

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

title('Linear Regression') 

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 
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figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data'); 

xlabel('Time (s)') 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title('Linear Regression') 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% PLOT FOR ENLARGED VIEW 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data') 

xlabel('Time (s)') 

xlim([1 1.2]) 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title('Linear Regression') 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

snapnow 

close all 

end 

 

function solvedt = dectre(a, d, b, c, ttrain, tval, training, predicting, mass) 
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% decision tree model 

% a - train data | d - predictor variable | b - test data 

 

data = sortrows([ttrain,d]); 

 

mdl = fitrtree(a, d); 

 

Y = predict(mdl,a); 

trained = sortrows([ttrain, Y]); 

 

yfit = predict(mdl,b); 

tested = sortrows([tval, yfit]); 

 

RMSE = sqrt(mean((Y - d).^2)); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25) 

hold on 

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

title('Decision Tree') 

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data'); 

xlabel('Time (s)') 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title('Decision Tree') 
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subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% PLOT FOR ENLARGED VIEW 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data') 

xlabel('Time (s)') 

xlim([1 1.2]) 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title('Decision Tree') 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

snapnow 

close all 

end 

 

function solverflsb = ranforlsb(a, d, b, c, ttrain, tval, training, predicting, mass) 

% random forest model (lsboost method) 

% a - train data | d - predictor variable | b - test data 

 

data = sortrows([ttrain,d]); 

 

mdl = fitrensemble(a, d, 'NumLearningCycles', 500, 'LearnRate',0.55246); 

 

Y = predict(mdl,a); 

trained = sortrows([ttrain, Y]); 

 

yfit = predict(mdl,b); 

tested = sortrows([tval, yfit]); 

 

RMSE = sqrt(mean((Y - d).^2)); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 
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figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25) 

hold on 

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

title({'Random Forest','LSBoost Method'}) 

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data'); 

xlabel('Time (s)') 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title({'Random Forest','LSBoost Method'}) 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% PLOT FOR ENLARGED VIEW 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  "k.", 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data') 

xlabel('Time (s)') 

xlim([1 1.2]) 

if strcmp(predicting,'Displacement') 
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    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title({'Random Forest','LSBoost Method'}) 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

snapnow 

close all 

end 

 

function solverfbag = ranforbag(a, d, b, c, ttrain, tval, training, predicting, mass) 

% random forest model (bag method) 

% a - train data | d - predictor variable | b - test data 

 

data = sortrows([ttrain,d]); 

 

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 363); 

 

Y = predict(mdl,a); 

trained = sortrows([ttrain, Y]); 

 

yfit = predict(mdl,b); 

tested = sortrows([tval, yfit]); 

 

RMSE = sqrt(mean((Y - d).^2)); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25) 

hold on 

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

title({'Random Forest','Bag Method'}) 

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 
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figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data'); 

xlabel('Time (s)') 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title({'Random Forest','Bag Method'}) 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% PLOT FOR ENLARGED VIEW 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  "k.", 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data') 

xlabel('Time (s)') 

xlim([1 1.2]) 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title({'Random Forest','Bag Method'}) 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

snapnow 

close all 

end 

 

function solvenn = neunet(a, d, b, c, hl, ttrain, tval, training, predicting, mass) 
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% neural network model 

% a - training data | d - predictor variable | b - test data 

 

data = sortrows([ttrain,d]); 

 

net = fitnet(hl); 

net = train(net, a', d'); 

 

Y = net(a'); 

trained = sortrows([ttrain, Y']); 

 

yfit = net(b'); 

tested = sortrows([tval, yfit']); 

 

RMSE = sqrt(mean((Y' - d).^2)); 

 

R2_trained = corr(Y', d).^2; 

R2_tested = corr(yfit', c).^2; 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25) 

hold on 

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

title('Neural Network') 

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data'); 

xlabel('Time (s)') 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 
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title('Neural Network') 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% PLOT FOR ENLARGED VIEW 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(data(:,1), data(:,2),'b', 'Linewidth', 3) 

hold on 

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3) 

hold on 

plot(tested(:,1), tested(:,2),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

legend('data', 'training data', 'testing data') 

xlabel('Time (s)') 

xlim([1 1.2]) 

if strcmp(predicting,'Displacement') 

    y = 'Displacement (m)'; 

elseif strcmp(predicting,'Velocity') 

    y = 'Velocity (m/s)'; 

elseif strcmp(predicting, 'Acceleration') 

    y = 'Acceleration (m/s^2)'; 

end 

ylabel(""+y+"") 

title('Neural Network') 

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,'']) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

snapnow 

close all 

end 

 

function dxdt = integration(t,x, M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz) 

F = [f1_a*sin(f1_hz*2*pi*t); 

     f2_a*cos(f2_hz*2*pi*t); 

     f3_a*sin(f3_hz*2*pi*t)]; 

 

dxdt = zeros(size(x)); 

dxdt(1:3) = x(4:6); 

dxdt(4:6) = M\( F - C*x(4:6) - K*x(1:3)); 

end 
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Appendix B – MATLAB Code for Static Channel Beam 

% percent of data used for training 

p = 0.8; 

% hidden layers for neural network 

hl = [50 12]; 

 

% point load of 100 N at 1 m 

ml('SBpl100DD.txt', 'SBpl100ES.txt', p, 'Point Load at Full Length', hl) 

 

% point load of 100 N at 0.75 m 

ml('SBpl75DD.txt', 'SBpl75ES.txt', p, 'Point Load at 3/4 Length', hl) 

 

% point load of 100 N at 0.5 m 

ml('SBpl50DD.txt', 'SBpl50ES.txt', p, 'Point Load at 1/2 Length', hl) 

 

% point load of 100 N at 0.25 m 

ml('SBpl25DD.txt', 'SBpl25ES.txt', p, 'Point Load at 1/4 Length', hl) 

 

% constant distributed load of 100 N/m 

ml('SBcdlDD.txt', 'SBcdlES.txt', p, 'Constant Distributed Load', hl) 

 

% linear distributed load of 100 Pa at 0 m to 0 Pa at 1 m 

ml('SBldlDD.txt', 'SBldlES.txt', p, 'Linear Distributed Load ', hl) 

 

% constant distributed load of 100 Pa at 0-0.5 m + linear distributed load of 

% 100 Pa at 0.5 m to 0 Pa at 1 m 

ml('SBcldlDD.txt', 'SBcldlES.txt', p, 'Constant and Linear Distributed Load', hl) 

 

% parabolic distributed load 100 Pa at 0 m to 0 Pa at 1 m 

ml('SBpdlDD.txt', 'SBpdlES.txt', p, 'Parabolic Distributed Load', hl) 

 

 

function [dtrain, dval] = partition(p, x) 

k = length(x); 

idx = randperm(k); 

dtrain = x(idx(1:round(p*k)),:); 

dval = x(idx(round(p*k)+1:end),:); 

end 

 

function solvelr = linreg(a, d, b, c, load) 

% linear regression model 

% a - train data | d - predictor variable | b - test data 

 

size(a,1) 

mdl = fitlm(a, d); 

Y = feval(mdl,a); 

 

yfit = feval(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('LR TRAINED %s for : %f\n', load, R2_trained) 
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fprintf('LR TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Linear Regression', 'none', load) 

plt(a, d, Y, b, c, yfit, 'X', 'Linear Regression', 'none', load) 

plt(a, d, Y, b, c, yfit, 'Y', 'Linear Regression', 'none', load) 

plt(a, d, Y, b, c, yfit, 'Z', 'Linear Regression', 'none', load) 

 

end 

 

function solvedt = dectre(a, d, b, c, load) 

% decision tree model 

% a - train data | d - predictor variable | b - test data 

 

mdl = fitrtree(a, d); 

 

Y = predict(mdl,a); 

yfit = predict(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('DT TRAINED %s for : %f\n', load, R2_trained) 

fprintf('DT TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Decision Tree', 'none', load) 

plt(a, d, Y, b, c, yfit, 'X', 'Decision Tree', 'none', load) 

plt(a, d, Y, b, c, yfit, 'Y', 'Decision Tree', 'none', load) 

plt(a, d, Y, b, c, yfit, 'Z', 'Decision Tree', 'none', load) 

 

end 

 

function solverf = ranfor(a, d, b, c, load) 

% random forest model (bag method) 

% a - train data | d - predictor variable | b - test data 

 

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 493); 

 

Y = predict(mdl,a); 

 

yfit = predict(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('RF TRAINED %s for : %f\n', load, R2_trained) 

fprintf('RF TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Random Forest', 'Bag Method', load) 

plt(a, d, Y, b, c, yfit, 'X', 'Random Forest', 'Bag Method', load) 

plt(a, d, Y, b, c, yfit, 'Y', 'Random Forest', 'Bag Method', load) 

plt(a, d, Y, b, c, yfit, 'Z', 'Random Forest', 'Bag Method', load) 

 

end 

 

function solvenn = neunet(a, d, b, c, load, hl) 

% neural network model 
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% a - training data | d - predictor variable | b - test data 

 

net = fitnet(hl); 

net = train(net, a', d'); 

 

Y = net(a'); 

 

yfit = net(b'); 

 

R2_trained = corr(Y', d).^2; 

R2_tested = corr(yfit', c).^2; 

fprintf('NN TRAINED %s for : %f\n', load, R2_trained) 

fprintf('NN TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y', 'Neural Network', 'none', load) 

plt(a, d, Y', b, c, yfit', 'X', 'Neural Network', 'none', load) 

plt(a, d, Y', b, c, yfit', 'Y', 'Neural Network', 'none', load) 

plt(a, d, Y', b, c, yfit', 'Z', 'Neural Network', 'none', load) 

 

end 

 

function pltm = pltm(d, Y, model, method, load) 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(d, Y,'.b', 'MarkerSize',25) 

hold on 

plot(d, d, 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

if strcmp(method,'none') 

    title([model]) 

else 

    title({model,method}) 

end 

subtitle([load]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

snapnow 

close all 

end 

 

function plt = plt(a, d, Y, b, c, yfit, saxis, model, method, load) 

 

if strcmp(saxis,'X') 

    i = 1; 

    j = 2; 

    k = 3; 
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elseif strcmp(saxis,'Y') 

    i = 2; 

    j = 1; 

    k = 3; 

elseif strcmp(saxis,'Z') 

    i = 3; 

    j = 1; 

    k = 2; 

end 

 

pltdata = [a,d,Y]; 

 

plta = pltdata(pltdata(:,j)==0,:); 

pltb = plta(plta(:,k)==0,:); 

pltfinal = sortrows(pltb,i); 

 

 

testeddata = [b,c,yfit]; 

 

tplta = testeddata(testeddata(:,j)==0,:); 

tpltb = tplta(tplta(:,k)==0,:); 

tpltfinal = sortrows(tpltb,i); 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(pltfinal(:,i), pltfinal(:,5), 'b', 'LineWidth', 3) 

hold on 

plot(pltfinal(:,i), pltfinal(:,6), 'r', 'LineWidth', 3) 

hold on 

plot(tpltfinal(:,i), tpltfinal(:,6),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

if strcmp(method,'none') 

    title([model]) 

else 

    title({model,method}) 

end 

subtitle(['Stress Along ',saxis,' Axis with ',load,'']) 

xlabel(['',axis,' Axis (m)']) 

ylabel('Stress (Pa)') 

legend('data','trained data', 'testing data') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

if strcmp(saxis,'Z') 

    figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

    plot(pltfinal(:,i), pltfinal(:,5), 'b', 'LineWidth', 3) 

    hold on 

    plot(pltfinal(:,i), pltfinal(:,6), 'r', 'LineWidth', 3) 

    hold on 

    plot(tpltfinal(:,i), tpltfinal(:,6),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

    set(gca,'FontSize',22) 

    if strcmp(method,'none') 

        title([model]) 
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    else 

        title({model,method}) 

    end 

    subtitle(['Stress Along ',saxis,' Axis with ',load,'']) 

    xlim([0.5 0.6]) 

    xlabel(['',axis,' Axis (m)']) 

    ylabel('Stress (Pa)') 

    legend('data','trained data', 'testing data') 

    hold on 

    set(gca,'FontSize',35) 

    set(gca,'fontname','times') 

    set(gca,'linewidth',2) 

    set(gca,'LooseInset',get(gca,'TightInset')) 

end 

 

snapnow 

close all 

end 

 

function learn = ml(deformation, stress, p, load, hl) 

A = importdata(deformation); 

B = importdata(stress); 

 

%   x | y | z | deformation | stress 

data = [A.data(:,2:5), B.data(:,5)]; 

assignin('base','data',data) 

 

% percentage of data to be used for training 

[dtrain, dval] = partition(p, data); 

 

a = dtrain(:,1:4); 

d = dtrain(:,5); 

b = dval(:,1:4); 

c = dval(:,5); 

 

linreg(a, d, b, c, load) 

dectre(a, d, b, c, load) 

ranfor(a, d, b, c, load) 

neunet(a, d, b, c, load, hl) 

end 
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Appendix C – MATLAB Code for Static Wing 

% percent of data used for training 

p = 0.8; 

% hidden layers for neural network 

hl = [23 22]; 

 

% point load of 10 N at Full Length 

ml('Wpl10DD.txt','Wpl10ES.txt','Wpl10DDpath.txt','Wpl10ESpath.txt', p, 'Point Load at Full 

Length', hl) 

 

% constant distributed load of 10 N/m 

ml('WcdlDD.txt','WcdlES.txt','WcdlDDpath.txt','WcdlESpath.txt', p, 'Constant Distributed Load', 

hl) 

 

% linear pressure of 10 Pa at 0 m to 0 Pa at full length 

ml('WlpDD.txt','WlpES.txt','WlpDDpath.txt','WlpESpath.txt', p, 'Linear Pressure', hl) 

 

% constant pressure of 10 Pa at 0-0.5 m + linear pressure of 

% 10 Pa at 0.5 m to 0 Pa at full length 

ml('WclpDD.txt','WclpES.txt','WclpDDpath.txt','WclpESpath.txt', p, 'Constant and Linear 

Pressure', hl) 

 

% parabolic pressure 10 Pa at 0 m to 0 Pa at full length 

ml('WppDD.txt','WppES.txt','WppDDpath.txt','WppESpath.txt', p, 'Parabolic Pressure', hl) 

 

% elliptical pressure 10 Pa at 0 m to 0 Pa at full length 

ml('WepDD.txt','WepES.txt','WepDDpath.txt','WepESpath.txt', p, 'Elliptical Pressure', hl) 

 

function [dtrain, dval] = partition(p, x) 

k = length(x); 

idx = randperm(k); 

dtrain = x(idx(1:round(p*k)),:); 

dval = x(idx(round(p*k)+1:end),:); 

end 

 

function solvelr = linreg(a, d, b, c, pdata, load) 

% linear regression model 

% a - train data | d - predictor variable | b - test data 

 

mdl = fitlm(a, d); 

Y = feval(mdl,a); 

 

yfit = feval(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('LR TRAINED %s for : %f\n', load, R2_trained) 

fprintf('LR TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Linear Regression', 'none', load) 

plt(a, d, Y, b, c, pdata, yfit, 'Linear Regression', 'none', load) 
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end 

 

function solvedt = dectre(a, d, b, c, pdata, load) 

% decision tree model 

% a - train data | d - predictor variable | b - test data 

 

mdl = fitrtree(a, d); 

 

Y = predict(mdl,a); 

yfit = predict(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('DT TRAINED %s for : %f\n', load, R2_trained) 

fprintf('DT TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Decision Tree', 'none', load) 

plt(a, d, Y, b, c, pdata, yfit, 'Decision Tree', 'none', load) 

 

end 

 

function solverf = ranfor(a, d, b, c, pdata, load) 

% random forest model (bag method) 

% a - train data | d - predictor variable | b - test data 

 

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 309); 

 

Y = predict(mdl,a); 

 

yfit = predict(mdl,b); 

 

R2_trained = corr(Y, d).^2; 

R2_tested = corr(yfit, c).^2; 

fprintf('RF TRAINED %s for : %f\n', load, R2_trained) 

fprintf('RF TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y, 'Random Forest', 'Bag Method', load) 

plt(a, d, Y, b, c, pdata, yfit, 'Random Forest', 'Bag Method', load) 

 

end 

 

function solvenn = neunet(a, d, b, c, pdata, load, hl) 

% neural network model 

% a - training data | d - predictor variable | b - test data 

 

net = fitnet(hl); 

net = train(net, a', d'); 

 

Y = net(a'); 

 

yfit = net(b'); 

 

R2_trained = corr(Y', d).^2; 

R2_tested = corr(yfit', c).^2; 
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fprintf('NN TRAINED %s for : %f\n', load, R2_trained) 

fprintf('NN TESTED %s for : %f\n', load, R2_tested) 

 

pltm(d, Y', 'Neural Network', 'none', load) 

plt(a, d, Y', b, c, pdata, yfit', 'Neural Network', 'none', load) 

end 

 

function pltm = pltm(d, Y, model, method, load) 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(d, Y,'.b', 'MarkerSize',25) 

hold on 

plot(d, d, 'k', 'Linewidth', 3) 

axis equal 

daspect([1 1 1]) 

grid on 

set(gca,'FontSize',22) 

legend('','perfect model') 

xlabel('Data') 

ylabel('Model Prediction') 

if strcmp(method,'none') 

    title([model]) 

else 

    title({model,method}) 

end 

subtitle([load]) 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

snapnow 

close all 

end 

 

function plt = plt(a, d, Y, b, c, pdata, yfit, model, method, load) 

 

ploted = [a,d,Y]; 

idx = find(ismember(ploted(:,1:3),pdata(:,1:3),'rows')); 

pltdata = sortrows(ploted(idx,:),3); 

 

tested = [b,c,yfit]; 

idx = find(ismember(tested(:,1:3),pdata(:,1:3),'rows')); 

testeddata = sortrows(tested(idx,:),3); 

 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(pltdata(:,3), pltdata(:,5), 'b', 'LineWidth', 3) 

hold on 

plot(pltdata(:,3), pltdata(:,6), 'r', 'LineWidth', 3) 

hold on 

plot(testeddata(:,3), testeddata(:,6),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

if strcmp(method,'none') 

    title([model]) 

else 
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    title({model,method}) 

end 

subtitle(['Stress Along Path on Wing with ',load,'']) 

xlabel(['Z Coordiante (m)']) 

ylabel('Stress (Pa)') 

legend('data','trained data', 'testing data') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

% enlarged view 

figure('Units', 'pixels', 'Position', [0 0 1920 1080]); 

plot(pltdata(:,3), pltdata(:,5), 'b', 'LineWidth', 3) 

hold on 

plot(pltdata(:,3), pltdata(:,6), 'r', 'LineWidth', 3) 

hold on 

plot(testeddata(:,3), testeddata(:,6),  'k.', 'MarkerSize',25, 'Linewidth', 3) 

set(gca,'FontSize',22) 

if strcmp(method,'none') 

    title([model]) 

else 

    title({model,method}) 

end 

subtitle(['Stress Along Path on Wing with ',load,'']) 

xlim([0.5 0.7]) 

xlabel(['Z Coordinate (m)']) 

ylabel('Stress (Pa)') 

legend('data','trained data', 'testing data') 

set(gca,'FontSize',35) 

set(gca,'fontname','times') 

set(gca,'linewidth',2) 

set(gca,'LooseInset',get(gca,'TightInset')) 

 

snapnow 

close all 

end 

 

function learn = ml(deformation, stress, pd, ps, p, load, hl) 

 

fA = importdata(deformation); 

fB = importdata(stress); 

 

pA = importdata(pd); 

pB = importdata(ps); 

 

%   x | y | z | deformation | stress 

fdata = [fA.data(:,2:5), fB.data(:,5)]; 

pdata = [pA.data(:,2:5), pB.data(:,5)]; 

data = [fdata;pdata]; 

 

% percentage of data to be used for training 

[dtrain, dval] = partition(p, data); 
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a = dtrain(:,1:4); 

d = dtrain(:,5); 

b = dval(:,1:4); 

c = dval(:,5); 

 

linreg(a, d, b, c, pdata, load) 

dectre(a, d, b, c, pdata, load) 

ranfor(a, d, b, c, pdata, load) 

neunet(a, d, b, c, pdata, load, hl) 

end 

 


