

DESIGN OF A LINEAR PARAMETER VARYING CONTROL SYSTEM FOR A

DELIVERY QUADROTOR

A Project

Presented to

The Faculty of the Department of Aerospace Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Hussam Okasha

May 2020

© 2020

Hussam Okasha

ALL RIGHTS RESERVED

The Designated Project Advisor(s) Approves the Project Titled

DESIGN OF A LINEAR PARAMETER VARYING CONTROL SYSTEM FOR A

DELIVERY QUADROTOR

by

Hussam Okasha

APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2020

Dr. Sean Swei NASA Ames Research Center Advisor

ABSTRACT

DESIGN OF A LINEAR PARAMETER VARYING CONTROL SYSTEM FOR A

DELIVERY QUADROTOR

by Hussam Okasha

Developing flight control systems for quadrotors capable of grasping, carrying, and

dropping payloads is an active research area. Applications include package delivery, post-

disaster relief and rescue, and firefighting. The purpose of this project is to propose a suitable

controller for a quadrotor capable of delivery of small packages up to 2.3 kg. The action of

picking up or dropping off payloads can significantly affect the dynamic response of a

quadrotor, possibly preventing the successful completion of a mission. Furthermore, during

flight the battery voltage decreases leading to varying propeller speeds with losses in the control

effectiveness of thrust and torque factors of the propellers. A linear parameter varying (LPV)

control solution is proposed with a focus on the implementation of its adaptive structure and

investigating its stability, performance, and robustness in controlling the quadrotor and

counteracting adverse effects. The quadrotor is modeled as an LPV system and the LPV

controller is designed utilizing an ℋ∞ self-scheduling technique in which the payload mass is

treated as a scheduling parameter. To estimate the mass online, an adaptive estimator based on

the gradient descent method is developed. The controller gains are updated automatically based

on the convex constructions of fixed controllers at the vertices of a parameter box. These

controllers are determined by solving a system of linear matrix inequalities (LMIs) which

synthesize gain-scheduled ℋ∞ controllers that act within a bounded parameter space. A two-

degrees-of-freedom control structure, with reference and error signals fed into the LPV

controller, is developed to counteract system variations while providing tracking control.

Finally, the LPV control system with added modifications is tested against the nonlinear system

to validate the control algorithm meets requirements by picking up an unknown payload and

tracking a reference trajectory subject to actuator dynamics and disturbances.

ACKNOWLEDGEMENTS

I would like to thank Dr. Swei for his guidance on this project and introducing me to the topic

of LPV control during AE 173 and other advanced control methods in AE 246. His teaching of

control theory from a researcher’s point of view with a focus on the fundamentals while

addressing practical issues were so helpful for a student of controls. I also thank Professor Lu

for his excellent teaching of AE 245 which improved my skills in MATLAB/Simulink and

controls design. I kept their lessons in mind when working on the project. I would also like to

thank my brother Samer Okasha for sharing his adaptive control course notes which were

indispensable for developing the mass estimator and for our discussions on how to properly add

modifications to the system for control of the nonlinear system. These modifications resolved

stability issues with the nonlinear simulations. Finally, my gratitude to my family for supporting

my decision to pursue a MS degree after nearly a decade removed from my undergraduate

education.

i

TABLE OF CONTENTS
ABSTRACT .. i

ACKNOWLEDGEMENTS ... i

LIST OF TABLES ... v

LIST OF FIGURES .. vi

NOMENCLATURE ... ix

1. CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Literature Review .. 4

1.2.1 Introduction to LPV Systems ... 7

1.3 Proposal ... 9

1.4 Methodology ... 10

1.5 Chapters Overview .. 12

2. CHAPTER 2 DELIVERY QUADROTOR MODEL ... 14

2.1 Mission Requirements ... 14

2.2 Actuator Model ... 14

2.2.1 Motor Mixing ... 14

2.2.2 Actuator Dynamics ... 16

2.3 Delivery Quadrotor Parameters ... 17

2.4 Rigid Body Dynamics of Delivery Quadrotor... 19

2.5 State Variable Representation of Nonlinear Model ... 21

2.6 Simulink Model and Simulation.. 21

2.6.1 Quadrotor and Actuator Dynamics ... 21

2.6.2 Actuator Responses .. 23

2.6.3 Open-Loop State Responses ... 23

2.7 Linear, Parameter Dependent Model ... 25

2.8 Controllability and Observability .. 27

3. CHAPTER 3 LPV CONTROL THEORY ... 28

3.1 Introduction ... 28

3.2 Linear Matrix Inequalities ... 29

3.3 Assumptions of the LPV Plant .. 29

3.4 Bounded Real Lemma and ℋ∞ Norm ... 30

ii

3.5 LPV Control Using ℋ∞ Self-Scheduling Technique .. 31

4 CHAPTER 4 ONLINE ADAPTIVE PARAMETER ESTIMATION 34

4.1 Introduction ... 34

4.2 Gradient Descent Adaptive Law ... 34

4.3 Application to Quadrotor Mass Estimation ... 36

4.4 Hover State Conditioning .. 39

4.5 Simulation ... 42

4.6 Discussion ... 44

5 CHAPTER 5 LPV SYSTEM REPRESENTATION OF QUADROTOR................... 45

5.1 Introduction ... 45

5.2 Parameter Space .. 45

5.3 Control Input Filter .. 47

5.4 Disturbance Model .. 48

5.5 Augmented Model ... 49

5.6 LPV Model .. 50

5.7 Interconnected LPV System .. 52

6 CHAPTER 6 LPV CONTROL OF QUADROTOR .. 53

6.1 Problem Definition and Control Objectives .. 53

6.2 Weights Selection and ℋ∞ Mixed-Sensitivity Design .. 53

6.3 Synthesis of Gain-Scheduled ℋ∞ Controllers .. 59

6.4 Control Analysis – Assessment of Controller ... 61

6.4.1 Lyapunov Stability Analysis .. 61

6.4.2 Time Domain Analysis ... 63

6.4.3 Frequency Domain Analysis – Singular Values ... 64

6.5 Linear Simulation .. 67

6.5.1 LPV Controller Implementation in Simulink ... 67

6.5.2 Reference Trajectory .. 68

6.5.3 Simulation .. 71

6.5.4 Discussion .. 73

7. CHAPTER 7 ACTUATOR COMPENSTATION .. 74

7.1 Introduction ... 74

7.2 Updated Actuator Dynamics Model .. 74

7.3 2-DOF PI Control Design ... 75

iii

7.4 Simulation ... 77

8. CHAPTER 8 LPV CONTROL OF NONLINEAR SYSTEM 79

8.1 System Modifications .. 79

8.1.1 Control Conditioning .. 80

8.1.2 Model Reference Signal ... 81

8.1.3 Nonlinear Simulation ... 83

8.2 Updated LPV Controller ... 87

8.2.1 Propeller Speed Based LPV Model and Controller .. 87

8.2.2 Nonlinear Simulation with Actuator Dynamics ... 89

8.3 Nonlinear Simulation with Disturbances... 93

8.3.1 Setup ... 93

8.3.2 Results .. 94

8.4 Discussion ... 97

9 CHAPTER 9 CONCLUSION .. 98

9.1 Advantages of LPV Control System ... 98

9.2 Limitations and Possible Solutions ... 98

9.3 Multivariable vs. SISO Approaches .. 99

9.4 Controller Function in an Overall GNC System ... 99

9.5 Future Research ... 100

REFERENCES .. 101

APPENDECIES ... 105

A. MATLAB Codes .. 105

A.1 LPV System Representation and LPV Control of Quadrotor ... 105

A.2 Propeller Speed Based LPV Model and Controller .. 115

A.3 2DOF PI Actuator Control ... 124

A.4 Nonlinear Simulation of LPV Control System ... 126

A.5 Reference Trajectory Build .. 133

A.6 LPV Control Simulink MATLAB Functions ... 135

B. Simulink Structures for Quadrotor Simulation ... 136

B.1 State Variable Representation for Nonlinear System ... 136

B.2 Nonlinear Simulink Subsystems ... 137

B.3 Actuator Controller ... 139

B.4 Mass Estimator and Hover State Conditioning ... 139

iv

B.5 LPV Control Structures .. 140

C. PID Control of Quadrotor ... 142

C.1 Introduction .. 142

C.2 Attitude Control .. 142

C.3 Position Control .. 144

C.4 Successive Loop Closure .. 146

v

LIST OF TABLES

Table 1.1 – Summary of mission requirements for Amazon Prime Air .. 3

Table 2.1 – Summary of design parameters .. 18

Table 2.2 – Summary of variables for rigid body quadrotor dynamics 19

Table 2.3 – Summary of equations of motion for rigid body quadrotor dynamics 20

Table 2.4 – Simulation system parameters .. 22

Table 2.5 – Input parameters ... 22

Table 5.1 – Summary of matrices for LPV model .. 50

Table 6.1 – Summary of trajectory parameters ... 68

Table 6.2 – Summary of reference paths ... 70

Table 8.1 – Simulation Parameters .. 83

Table 8.2 – Simulation Parameters .. 89

Table 8.3 – Disturbance sources in simulation .. 93

vi

LIST OF FIGURES

Figure 1.1 - Propeller speeds in hovering condition [1] .. 1

Figure 1.2 - Basic quadrotor control actions [3] ... 2

Figure 1.3 - Successive loop closure for a quadrotor [10] ... 5

Figure 1.4 - Two-degrees-of-freedom quadrotor control structure [10].. 5

Figure 1.5 - LPV control of an LPV system [16] ... 8

Figure 1.6 - Proposed two-degrees-of-freedom control structure ... 10

Figure 2.1 - Package delivery mission profile ... 14

Figure 2.2 – Schematic for rotor and rigid body rotations .. 15

Figure 2.3 – Motor Mixing and Actuator Dynamics ... 16

Figure 2.4 – Quadrotor schematic for design parameters ... 17

Figure 2.5 – Simulink model of actuator and quadrotor dynamics ... 21

Figure 2.6 – Motor mixing .. 23

Figure 2.7 – Open-loop response of inertial positions .. 23

Figure 2.8 – Body frame velocity open-loop response ... 24

Figure 2.9 – Euler angle open-loop responses .. 24

Figure 2.10 – Euler rate open-loop responses ... 25

Figure 4.1 – Simulink implementation of mass estimator based on gradient descent law 39

Figure 4.2 – Hover trigger enable signal and “persistency of excitation” requirement 40

Figure 4.3 – Hover state conditioning subsystem ... 41

Figure 4.4 – Simulink implementation of hover state conditioning .. 42

Figure 4.5 – Simulink system with mass estimation and hover state conditioning subsystems . 43

Figure 4.6 – Estimation of unknown mass with information from 𝐹𝑧 and w 43

Figure 5.1 – Vertices of parameter box ... 46

Figure 5.2 – Simplified interconnected LPV System with 2DOF controller 52

Figure 6.1 – Expanded 2DOF control structure .. 56

Figure 6.2 – Singular values of performance (sensitivity) weight 𝑊𝑝(𝑠) 58

Figure 6.3 – Singular values of control (robustness) weight 𝑊𝑢(𝑠) ... 58

vii

Figure 6.4 – High-level representation of controller matrices generation 60

 Figure 6.5 – Closed-loop quadratic performance ... 61

Figure 6.6 – Quadratic and robust stability results .. 63

Figure 6.7 – State trajectories of closed-loop system for sample trajectory 64

Figure 6.8 – Output trajectories of closed-loop system for sample trajectory 64

Figure 6.9 – Singular values of polytopic plant 𝐺(𝜌) ... 65

Figure 6.10 – Singular values of augemented ℋ∞ plant P(ρ) ... 65

Figure 6.11 – Singular values of polytopic LPV controller 𝐾(𝜌) ... 66

Figure 6.12 – Singular values of polytopic closed-loop system 𝐹(𝜌) .. 66

Figure 6.13 – Convex decomposition determined online .. 67

Figure 6.14 – Simulink implementation of LPV controller .. 67

Figure 6.15 – Reference trajectory schematic ... 68

Figure 6.16 – Geometry of reference path .. 69

Figure 6.17 – Linear decrease of velocity to 0 at landing position. .. 69

Figure 6.18 – 3D reference trajectory to assess controller .. 71

Figure 6.19 – Simulink setup for linear simulation ... 72

Figure 6.20 – Reference tracking for linear simulation ... 72

Figure 6.21 – Velocity tracking for linear simulation ... 73

Figure 7.1 – Simplified diagram for propeller speed regulation ... 75

Figure 7.2 – 2DOF PI controller ... 75

Figure 7.3 – Simulink setup for PI controller .. 77

Figure 7.4 – Propeller speed response subject to voltage change ... 78

Figure 8.1 – Modifications of LPV controller ... 80

Figure 8.2 – Bode plot of model reference signal 𝐺𝑟(𝑠) with 𝜏𝑟𝑒𝑓 = 0.06 82

Figure 8.3 – System modifications and overall representation ... 82

Figure 8.4 – Nonlinear simulation setup with desired forces and torques as inputs 83

Figure 8.5 – 𝐶𝐾 controller matrix at 𝑚𝑝 = 2 .. 83

Figure 8.6 – Nonlinear simulation of mass estimation .. 84

Figure 8.7 – Nonlinear simulation of position tracking control .. 84

viii

Figure 8.8 – Nonlinear simulation of velocity responses .. 85

Figure 8.9 – Nonlinear simulation of Euler angle responses .. 85

Figure 8.10 – Nonlinear simulation of attitude rate responses .. 86

Figure 8.11 – Control inputs.. 86

Figure 8.12 – Singular values plot of propeller speed based LPV controller 88

Figure 8.13 – Singular values of propeller speed based closed loop system 88

Figure 8.14 – Nonlinear simulation with actuator dynamics .. 89

Figure 8.15 – 𝐶𝐾 controller matrix at 𝑚𝑝 = 2 .. 89

Figure 8.16 – Bode plot for reference signal with 𝜏𝑟𝑒𝑓 = 0.1 .. 90

Figure 8.17 – Mass estimation against nonlinear system with actuator dynamics 90

Figure 8.18 – Trajectory tracking against nonlinear system with actuator dynamics 91

Figure 8.19 – Position state responses of nonlinear system with actuator dynamics 91

Figure 8.20 – Velocity state responses of nonlinear system with actuator dynamics 92

Figure 8.21 – Euler angle state responses of nonlinear system with actuator dynamics 92

Figure 8.22 – Attitude rate state responses of nonlinear system with actuator dynamics 93

Figure 8.23 – Mass estimation against nonlinear system with disturbances 94

Figure 8.24 – Trajectory tracking against nonlinear system with disturbances 94

Figure 8.25 – Position state responses of nonlinear system with disturbances 95

Figure 8.26 – Velocity state responses of nonlinear system with disturbances 95

Figure 8.27 – Euler angle state responses of nonlinear system with disturbances 96

Figure 8.28 – Attitude rate responses of nonlinear system with disturbances 96

Figure 9.1 – Optimizer and controller ... 99

Figure 9.2 – General guidance, navigation, and control system ... 100

ix

NOMENCLATURE

𝐾𝐹 = thrust factor of the propeller

𝐾𝑀 = drag factor of the propeller

𝑔 = acceleration due to gravity

𝐽𝑥 = moment of inertia along the 𝑥 direction

𝐽𝑦 = moment of inertia along the 𝑦 direction

𝐽𝑧 = moment of inertia along the 𝑧 direction

𝑙 = distance from center of quadrotor to center of each propeller

𝑚 = total mass of the quadrotor

𝑚𝑝 = mass of the package payload

𝑝 = roll rate

𝑞 = pitch rate

𝑟 = yaw rate

𝐹𝑧 = lift thrust factor in 𝑧 direction

𝜏𝜃 = pitching torque factor in θ direction

𝜏𝜑 = rolling torque factor in φ direction

𝜏𝜓 = yawing torque factor in ψ direction

𝑢 = velocity in the 𝑥-axis direction

𝑣 = velocity in the 𝑦-axis direction

𝑤 = velocity in the 𝑧-axis direction

𝑋 = 𝑥 inertial coordinate of quadrotor at the center of mass

𝑌 = 𝑦 inertial coordinate of quadrotor at the center of mass

𝑍 = 𝑧 inertial coordinate of quadrotor at the center of mass

θ = pitch angle

φ = roll angle

ψ = yaw angle

𝛺𝑓 = front propeller speed

𝛺𝑟 = right propeller speed

𝛺𝑏 = rear propeller speed

𝛺𝑙 = left propeller speed

𝑐𝑚 = motor constant

𝜏 = motor time constant

x

𝜔𝑛 = natural frequency

𝜁 = damping ratio

𝒖 = control input vector

𝒘𝒅 = disturbance input vector

𝒆 = error between reference set point and real output of plant

𝒓 = reference set point

𝑲 = control gains

𝑹, 𝑺, 𝑿 = LPV synthesis separation parameters

𝑷 = positive definite matrix

𝝆 = scheduling parameter vector

𝒙 = state vector

𝒚 = measurement vector

𝒛 = performance output vector

𝑘𝑟 = reference input scaling factor

𝑘𝑢 = control input scaling factor

𝐺 = plant model

𝑊𝑑 = disturbance weight

𝑊𝑝 = performance or sensitivity weight

𝑊𝑟 = setpoint weight

𝑊𝑢 = control or robustness weight

𝛾 = closed-loop ℋ∞ norm

𝜆 = rate of convergence constant

𝜏𝑟𝑒𝑓 = model reference signal time constant

𝛼 = convex coordinate

Ω = polytope

𝜎 = maximum singular value

𝜎 = minimum singular value

𝐾𝛱 = vertex controller

𝐴𝐾 , 𝐵𝐾 , 𝐶𝐾, 𝐷𝐾 = LPV controller matrices

𝒜,𝔅, 𝒞,𝒟 = closed-loop state space matrices

(∙)𝐵 = expressed in body frame

(∙)𝐸 = expressed in inertial frame

1

1. CHAPTER 1

INTRODUCTION

1.1 Motivation

A quadrotor is an aerospace vehicle with four propellers in a cross configuration. The

front and rear rotors rotate counterclockwise while the left and right rotors rotate clockwise, as

shown in Figure 1.1 with a quadrotor in hovering condition where all four propeller speeds have

the same magnitude. Adjacent propellers counter rotates to remove the need for a tail rotor. The

quadrotor’s motion can be controlled by changing the speed of the rotors [1].

Figure 1.1 - Propeller speeds in hovering condition [1]

Compared to fixed-wing and rotary-wing aircraft, a quadrotor provides engineering

advantages such as energy efficiency, a simple mechanical structure, vertical takeoff and

landing (VTOL) ability, and lower cost and maintenance requirements. However, there are three

main challenges involving quadrotor control: under-actuation, model uncertainty, and actuator

failure [2]. Despite its advantages, the physical consequence of under-actuation means a

quadrotor cannot follow an arbitrary trajectory due to the limits imposed by the number of

system configurations that can be directly controlled [1]. A quadrotor has six degrees of

freedom and four independent control inputs which results in two degrees of under-actuation.

This means the vehicle can reach a desired set-point in four degrees [2]. Therefore, there are

four basic movements that allow a quadrotor to reach a desired altitude and attitude:

• Throttle (𝐹𝑧)

• Pitch (𝜏𝜃)

• Roll (𝜏𝜑)

• Yaw (𝜏𝜓)

2

These control actions are graphically represented in Figure 1.2. Throttle control is

achieved by increasing or decreasing all propeller speeds by the same amount. Roll control

about 𝑥𝐵 is provided by increasing the left propeller speed while decreasing the right one, or the

opposite configuration. Similarly, pitch control about 𝑦𝐵 is achieved by increasing the rear

propeller speed while decreasing the front one. By increasing the paired front-rear propeller

speed while decreasing the paired left-right propeller speed, yaw control is achieved about 𝑧𝐵

[1].

Figure 1.2 - Basic quadrotor control actions [3]

Due to the under-actuation problem, to reach a desired trajectory in all coordinates,

tracking control for a quadrotor requires more modern strategies than classical control

techniques which were developed for fully actuated systems [2]. Quadrotors also experience

uncertainties in the plant and external disturbances during flight. Model uncertainty corresponds

to two types: unmodeled plant dynamics caused by high-frequency or nonlinear behavior and

parametric uncertainty resulting from physical parameters being inaccurately measured or from

variations of these values during operation [4]. Developing flight control systems for

underactuated systems and quadrotors capable of grasping, carrying, and dropping payloads is

an active research area. The action of picking up or dropping off payloads can significantly

affect the dynamic response of the quadrotor [5]. According to [2], a UAV carrying unknown

payloads is a famous example of parametric uncertainty. It requires a “nontraditional control”

strategy to compensate for the varying mass [6].

3

Furthermore, during flight the battery voltage decreases leading to varying propeller

speeds with losses in the control effectiveness of thrust and torque factors of the propellers [5].

Unexpected failure of an actuator can also lead to a complete loss of an independent control

input. This led to research in fault tolerant control (FTC) which combines fault diagnosis

detection and a reconfigurable controller [2]. The goal of FTC is to provide “graceful

degradation” of the system’s performance when a fault is detected, and its adverse effect

accurately estimated and compensated for by the controller [5].

Applications for this research include commercial package delivery, medical supply

delivery, post-disaster relief and rescue, environmental sampling, and firefighting [5]. For

example, in late 2019, Amazon is expected to begin its drone delivery service Prime Air in

select cities. The service utilizes autonomous, hybrid aircrafts to deliver packages less than 5

pounds within a 15-mile radius of a participating fulfillment center [7]. Amazon promises

delivery within 30 minutes of a customer order. Current FAA regulations require drones to fly

no higher than 400 ft with a 100-mph maximum speed constraint [8]. Amazon’s planned

mission requirements are summarized in Table 1.1.

Table 1.1 – Summary of mission requirements for Amazon Prime Air

UPS Flight Forward announced on October 1st, 2019 they were awarded the first drone

airline certificate from the FAA allowing them to fly multiple drones beyond line of sight

during deliveries [9]. In March of 2019, they began using quadcopters to deliver blood and

medical samples to a North Carolina hospital as part of a test program. The quadcopters are

built by California-based Matternet. They fly along predetermined flight paths and have a

maximum range of 12.5 miles before they need to be recharged [9].

A package delivery UAV is subject to disturbances and uncertainties in its plant

dynamics and operating environment that requires an adaptive-robust approach in control [2].

Most quadrotor controllers proposed in the literature focus on a narrow aspect related to

tracking or system stability. Furthermore, control systems designed to handle the three main

Altitude Range Package Weight Flight Speed Flight Radius Flight Time

200 𝑓𝑡 < ℎ < 500 𝑓𝑡 < 5 𝑙𝑏 < 50 𝑚𝑝ℎ < 15 𝑚𝑖 < 30 𝑚𝑖𝑛

4

challenges discussed in this section have not been well investigated in the literature. The

purpose of this project therefore is to develop a suitable control system for a delivery quadrotor

model that can counteract system variations while tracking a desired trajectory and satisfying

stability and performance criteria.

1.2 Literature Review

This section is a survey of the literature describing solutions proposed to tackle the three

main challenges addressed in Section 1.1 as it pertains to control of a delivery quadrotor:

• Tracking control subject to under-actuation constraints

• The mass variation and disturbance problem causing instability and performance

losses

• The battery drainage problem causing losses in control effectiveness

As an underactuated system with nonlinear dynamics, many control strategies have been

proposed in the literature. These include PID control, model reference adaptive control (MRAC),

LQR and LQG control, nonlinear dynamic inversion (NDI), model predictive control (MPC), and

linear parameter varying (LPV) control.

A common approach for tracking control is to divide the overall quadrotor dynamics

into an inner loop and outer loop representing the attitude and position dynamics, respectively

[2]. Utilizing a cascade feedback structure for each loop, the overall closed loop system

provides attitude and position control. Typically, the inner loop runs at a frequency 5-10 times

faster than the outer loop [10]. A sample cascade structure for a quadrotor is shown in Figure 1.3.

5

Figure 1.3 - Successive loop closure for a quadrotor [10]

 A two-degrees-of-freedom controls structure for a quadrotor is shown in Figure 1.4. Here,

the command signals and the feedback signals are independently processed by the controller

[11]. For many tracking problems, a one-degree-of-freedom controller may not be sufficient to

meet time domain specifications set on the output response [11]. The advantage of this structure

is the response to command signals and disturbances are decoupled [10]. This allows the

designer flexibility in meeting multiple control objectives by designing feedback and

feedforward paths to handle disturbance rejection and provide tracking control.

Figure 1.4 - Two-degrees-of-freedom quadrotor control structure [10]

6

Several strategies have been proposed for the mass variation problem. To demonstrate

the inadequacy of a fixed gain PID controller in handling payload changes, the authors in [12]

designed an experiment where a 200g payload was added to a quadrotor frame in level flight.

The PID controller was not able to compensate for the change in the overall weight and dropped

to ground within 3 seconds. The authors then proposed an adaptive control scheme that

estimates the system mass in real time which feeds into the control law to adapt to the new

system weight. The same test was repeated, and the resultant response is greatly improved. The

authors in [13] used gain scheduled PID control and MPC algorithms to control the vertical

position of a quadrotor while carrying or dropping a payload. During an experiment with a

laboratory quadrotor, a fixed-gain PID controller was not able to eliminate unwanted overshoot

at the instant of a payload drop. The control setup was replaced with a gain scheduled PID

controller and then an MPC algorithm. Both controllers produced improved system reaction and

reduced overshoot of the vertical position. The authors conclude that although the two

controllers met some performance criteria, there was no guarantee of stability based on their

control structure and suggested applying LPV theory to address the stability question and to

improve system performance. An adaptive command-filtered backstepping controller for a

quadrotor was developed in [14] to compensate for changes in uncertain parameters of mass,

inertia, actuator efficiency, and thruster misalignment. The controller was able to track

commands subject to physical constraints and parameter uncertainty.

In [15], a nonlinear adaptive-robust controller (ARC) developed with an LMI-based

approach is used to provide attitude and altitude control of a quadrotor subject to disturbances

due to wind gusts and uncertain parameters. The quadrotor’s mass and moments of inertia were

treated as uncertain parameters subject to changes in flight. In an illustrative example to

demonstrate the robustness of the controller, the quadrotor follows a reference trajectory subject

to wind gusts and delivers a package of unknown weight in midflight. The ARC controller was

able to track the desired trajectory in the presence of wind gusts and maintain performance

while subject to abrupt changes in the mass dependent parameters of the dynamics model.

7

1.2.1 Introduction to LPV Systems

Linear parameter varying (LPV) systems are plants that can be described by the state-

space model (1.1) where 𝝆(𝒕) is a vector of time-varying parameters representing the range of

possible plant dynamics and the matrices 𝐴(∙), 𝐵(∙), 𝐶(∙), 𝐷(∙) are fixed functions of those

parameters [4]. LPV systems can be interpreted as a model of a more general linear time

varying (LTV) system or as a result of linearization of a nonlinear system along the variation of

the parameters [16].

�̇�(𝒕) = 𝑨(𝝆(𝒕))𝒙(𝒕) + 𝑩(𝝆(𝒕))𝒖(𝒕)

𝒚(𝒕) = 𝑪(𝝆(𝒕))𝒙(𝒕) + 𝑫(𝝆(𝒕))𝒖(𝒕)

In many linear robust control problems, a single controller is designed for some defined

parametric uncertainty associated with an LPV system. This is considered a conservative

approach and can result in poor performance if the system parameters change rapidly or

abruptly during operation [4]. Furthermore, a single LTI controller might not even be able to

stabilize an LPV system [4]. Another approach to handle model uncertainties is gain scheduling

techniques in the field of adaptive control. In gain scheduling, controllers are designed for

different equilibrium points within a flight envelope and interpolated in between based on the

flight condition using look-up tables. However, stability is not guaranteed in such a setup other

than at the design points [17]. LPV control methodologies were developed as an alternative

approach to resolve shortcomings of fixed-gain robust controllers and classical gain-scheduling.

In LPV control, the parameters are used as scheduling variables to develop

automatically gain-scheduled controllers that update based on weighting functions or convex

constructions. The scheduling parameter vector 𝝆(𝒕) is assumed to be measurable and restricted

to a set of admissible trajectories based on operating conditions of the system. In an aerospace

context, the parameter 𝜌 can include variables such as airspeed, altitude, mass, center of gravity,

or angle of attack. There are several approaches to LPV system representation and controls

design. Generally, the state feedback controller may take the form of 𝒖 = 𝑲[𝝆|[𝟎,𝒕]]𝒙(𝒕) where

the feedback gain 𝑲 is a function of the current parameter values or the entire history of

(1.1)

8

parameter measurements [18]. The range of parameter variations is specified by the control

designer, but no other a priori knowledge is necessary [4].

A specific methodology for LPV controls design is LPV ℋ∞ synthesis. It is a robust-

adaptive technique that has found applications in air-breathing hypersonic vehicle control [19],

control of aeroelastic effects for a flexible wing [20], missile autopilot design [16], control of

robotic manipulators [21], and flutter suppression of UAVs [22]. The control law is determined

by solving a system of linear matrix inequalities (LMIs) to synthesize the controllers that would

act within a bounded parameter space. The methodology for this procedure is described in

references [4], [16], and [17]. In such a control strategy, the controller takes advantage of the

available parameter information to adjust to the current dynamics of the plant [16].

Figure 1.5 - LPV control of an LPV system [16]

LPV control of an LPV system is illustrated in Figure 1.5. The plant 𝐺(∙) and the

controller 𝐾(∙) are parameter dependent. The exogenous input 𝑤 includes reference signals and

disturbances into the plant. The input 𝑢 is the control under the designer’s authority. The output

𝑞 is the performance output used to assess the controller and 𝑦 is the measured output available

to the designer to develop the controller 𝐾 which calculates the control signals 𝑢. The LPV

structure provides automatic gain scheduling with respect to the measured parameters and the

closed-loop system guarantees a prescribed quadratic ℋ∞ performance level [16]. Therefore,

LPV theory offers an appealing solution to the stability issues of gain scheduling and the

9

performance issues of a fixed-gain robust controller, but it comes at the cost of the higher

complexity required to produce the controller.

In recent years, the theory has been applied to control quadrotor UAVs. In reference [5],

the authors propose a fault tolerant LPV controller that can compensate for mass variation and

battery drainage. The authors in [23] use LPV ℋ∞ synthesis to develop a hybrid fault tolerant

controller which was robust under fault occurrence. In their approach, the parameter vector was

used to schedule between uncertain linear time invariant (LTI) systems, and a reference model

was used to generate the desired trajectories to track. An LPV control strategy is proposed in

[24] to compensate for a complete actuator loss of a quadrotor by using the yaw rate as a

scheduling parameter to produce a controller to align the thrust axis for safe recovery and

continuation of flight.

1.3 Proposal

Developing robust, adaptive controllers for quadrotors that experience model variations

ensure their safe and efficient operation in the airspace. The goal of this research is to develop a

control system for a quadrotor model capable of delivery of small packages in the range of 0.3

kg and 2.3 kg that can compensate for the adverse effects caused by mass variation, actuator

effectiveness losses, and disturbance rejection while providing attitude and position tracking.

Based on the literature review, it is surmised that LPV control is well suited to provide a

solution to the tracking and uncertainty challenges for a delivery quadrotor. Using LPV theory

in which the payload mass is used as a scheduling parameter, estimated online using an adaptive

estimator, this project proposes a control strategy to achieve the control objectives utilizing a

2DOF LPV controller and a 2DOF PI actuator controller, as shown in Figure 1.6.

10

Figure 1.6 - Proposed two-degrees-of-freedom control structure

The automatic gain scheduling policy and LPV controller is obtained through the ℋ∞

self-scheduling technique. To demonstrate the stability, performance, and robustness of the

proposed LPV control system, nonlinear simulations with actuator dynamics and disturbances

applied to the actuator and quadrotor outputs will be performed. To validate the control

algorithm meets requirements, several payload masses within the design range are tested.

1.4 Methodology

The research project will be organized into two major parts. The goal of Part I is to

develop the control strategy to solve the mass variation problem, disturbance rejection, and

provide tracking control. An adaptive estimator is developed to estimate the mass online. For

Part II, linear and nonlinear simulations are completed to validate the proposed LPV control

strategy meets system requirements A detailed breakdown of the tasks to achieve these goals is

presented below.

11

Part I: LPV Modeling and Control

1.) Specify mission requirements for “last mile” deliveries and design quadrotor’s geometry

and actuator requirements based on desired flight time and mass range.

2.) Develop nonlinear model representing the equations of motion and actuator dynamics.

Linearize about hovering conditions to derive linear, parameter dependent model.

Develop a Simulink model of the quadrotor dynamics for 6DOF simulation.

3.) Literature review of LPV theory and ℋ∞ self-scheduling techniques.

4.) Develop a mass estimation scheme to determine the payload mass online.

5.) In a MATLAB script, develop the LPV representation of the model.

6.) In a MATLAB script, determine the two-degrees-of-freedom control structure using

weighting functions and LMI’s with the aid of MATLAB’s Robust Control Toolbox.

7.) Design PI controller for actuator compensation due to battery drainage and augment to

LPV control system.

Part II: Linear and Nonlinear Simulation

1.) Test the LPV controller against the linear model at a set payload mass value and track a

reference trajectory. Assess its stability, performance, and robustness.

2.) If satisfactory, test the LPV controller against the nonlinear system without actuator

dynamics using the desired forces and torques as the control inputs into the quadrotor

plant. Adjust the weights of LPV controller, iterate as necessary, until the desired

performance is achieved for a given reference trajectory.

3.) If satisfactory, simulate the control system against the nonlinear system with actuator

dynamics using a propeller speed based LPV controller.

4.) Stress the control system by adding disturbance sources on the voltage input, actuator

outputs, and velocity states to test the performance and robustness of the LPV controller

when tracking the reference trajectory.

5.) Validate the control algorithm meets performance requirements by testing multiple

payload masses in the design range.

12

1.5 Chapters Overview

 In Chapter 1, a literature review of the challenges of quadrotor control given its

nonlinear, underactuated dynamics and its operation in an uncertain environment is described.

The review includes a discussion of parameter variations and its adverse effects on the

performance of a control system. Approaches to control a quadrotor with uncertain parameters

are described as well. This chapter also includes an introduction to LPV systems.

 In Chapter 2, the actuator and rigid body dynamics of the delivery quadrotor are

developed with design parameters consistent with mission requirements for a delivery system.

The linear, parameter dependent model is also developed. In Chapter 3, an overview of the

mathematics required for LPV control theory is presented. The process to develop the LPV

controller using the ℋ∞ self-scheduling technique and LMIs is also outlined.

 In Chapter 4, an adaptive estimator based on the gradient descent method is developed

to estimate the payload mass online. The mass estimate is later fed into the LPV controller for

automatic gain scheduling. This chapter also includes a hover state conditioning system to

control the switching operation of the mass estimator and control commands.

 In Chapter 5, the linear parameter dependent model developed in Chapter 2 is extended

to build a generalized ℋ∞ plant that is structured for gain-scheduled ℋ∞ control. In Chapter 6,

the LPV controller is developed including a linear simulation to demonstrate the tracking

quality of the controller. This chapter also includes a description of the process to build the

reference trajectory. In Chapter 7, a 2DOF PI controller is designed to regulate the propeller

speeds subject to changes in the input voltage using a first-order motor model.

 In Chapter 8, the LPV controller is tested against the nonlinear system subject to

actuator dynamics and disturbance sources. A propeller speed based LPV controller is

developed to control the nonlinear system with actuator dynamics. A control conditioning

subsystem is introduced to compensate for the equilibrium point and the hover state

conditioning subsystem is modified to remove control input switching so that the LPV

commands are used for the entire operation.

13

 In Chapter 9, the advantages of the LPV controller and its limitations is discussed.

Possible solutions to address the limitations are proposed. A qualitative comparison between

multivariable and SISO control methods is also discussed. Finally, an assessment of the LPV

controller function in an overall GNC system is presented along with future research to improve

the performance of the controller and expand the system to include optimal guidance.

14

2. CHAPTER 2

DELIVERY QUADROTOR MODEL

2.1 Mission Requirements

A typical flight profile for a package delivery drone is shown in Figure 2.1 [25]. The main

profile consists of two critical segments for the purposes of this study:

• two cruise segments at level flight

• two hover segments, one with a payload and one without a payload

This profile will be simulated as the reference trajectory to test the efficacy of the proposed

controller.

Figure 2.1 - Package delivery mission profile

2.2 Actuator Model

2.2.1 Motor Mixing

The relationship between the thrust and drag factors [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓] and the motor

commands [𝛿𝑓 𝛿𝑟 𝛿𝑏 𝛿𝑙] are determined by (2.1) where 𝑘1 and 𝑘2 are constants that can be

determined experimentally [10] and 𝑙 is the moment arm from the center of mass to the center of

the rotor shown in Figure 2.4.

15

(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

) = (

𝑘1 𝑘1 𝑘1 𝑘1
0 −𝑙𝑘1 0 𝑙𝑘1
𝑙𝑘1 0 −𝑙𝑘1 0
−𝑘2 𝑘2 −𝑘2 𝑘2

)(

𝛿𝑓
𝛿𝑟
𝛿𝑏
𝛿𝑙

)

(2.1)

A rotor with an angular speed Ω produced a vertical force 𝐹𝑖 = 𝑘𝐹Ω𝑖
2
 and a moment

𝑀𝑖 = 𝑘𝑀Ω𝑖
2
, where 𝑘𝐹 and 𝑘𝑀 are the rotor drag and motor thrust factors, respectively [10].

Figure 2.2 illustrates the rotor vertical forces and moment reactions rotations for the front, right,

back, and left rotors of the quadrotor. Note that the reaction moments are opposite to the

direction the propellers are rotating.

Figure 2.2 – Schematic for rotor and rigid body rotations

The net thrust force 𝐹𝑧 and the torque factors 𝜏𝜙, 𝜏𝜃, and 𝜏𝜓 are defined in (2.2).

 𝐹𝑧 = 𝐹𝑓 + 𝐹𝑟 + 𝐹𝑏 + 𝐹𝑙

𝜏𝜙 = 𝑙(𝐹𝑙 − 𝐹𝑟)

𝜏𝜃 = 𝑙(𝐹𝑓 − 𝐹𝑏)

𝜏𝜓 = 𝜏𝑟 + 𝜏𝑙 − 𝜏𝑓 − 𝜏𝑏

(2.2)

The equations in (2.3) combined with the results that the thrust and drag factors are related to the

square of the propeller speeds can be rewritten in matrix form.

16

(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

) = (

𝑘𝐹 𝑘𝐹 𝑘𝐹 𝑘𝐹
0 −𝑙𝑘𝐹 0 𝑙𝑘𝐹
𝑙𝑘𝐹 0 −𝑙𝑘𝐹 0
−𝑘𝑀 𝑘𝑀 −𝑘𝑀 𝑘𝑀

)

(

𝛺𝑓
2

𝛺𝑟
2

𝛺𝑏
2

𝛺𝑙
2
)

(2.3)

Inverting (2.3) results in the determination of the squared propeller speeds.

(

𝛺𝑓
2

𝛺𝑟
2

𝛺𝑏
2

𝛺𝑙
2
)

=

1

4𝑙𝑘𝐹𝑘𝑀
(

𝑙𝑘𝑀 0 2𝑘𝑀 −𝑙𝑘𝐹
𝑙𝐾𝑀 −2𝑘𝑀 0 𝑙𝑘𝐹
𝑙𝑘𝑀 0 −2𝑘𝑀 𝑙𝑘𝐹
𝑙𝑘𝑀 2𝑘𝑀 0 𝑙𝑘𝐹

)(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

)

(2.4)

2.2.2 Actuator Dynamics

Actuator dynamics can be described by a first order model [26]

 �̇�𝑖 = 𝑐𝑚(𝛺𝑖,𝑑 − 𝛺𝑖),

(2.5)

where 𝛺𝑖 are the actual propeller speeds of the four quadrotor motors, 𝛺𝑖,𝑑 are the desired

speeds, and 𝑐𝑚 is the motor gain constant taken from reference [26] to be 20 𝑠−1.

The block diagram representation of the actuator model is shown in Figure 2.3. The

desired thrust and torque factors commanded by the control law are translated to desired

propeller speeds by the motor mixing block. However, the motors will not be able to ramp up to

this desired angular speed instantly, therefore, the time delay to reach the desired levels is

accounted for in the actuator dynamics block. The real speeds 𝛺𝑓 , 𝛺𝑟 , 𝛺𝑏 , 𝛺𝑙 are the inputs to the

quadrotor dynamics and used to control the quadrotor motion.

Figure 2.3 – Motor Mixing and Actuator Dynamics

17

2.3 Delivery Quadrotor Parameters

The quadrotors parameters are selected based on the mission requirements for small package

delivery. Figure 2.4 is a schematic showing the design parameters to be determined for the

delivery quadrotor.

Figure 2.4 – Quadrotor top-view schematic for design parameters

 To estimate the moments of inertia, the (2.6) simplification is used to calculate the

inertial parameters [10]

𝐽𝑥 =

2𝑀𝑅2

5
+ 2𝑙2𝑚𝑚𝑜𝑡𝑜𝑟

𝐽𝑦 =
2𝑀𝑅2

5
+ 2𝑙2𝑚𝑚𝑜𝑡𝑜𝑟

𝐽𝑧 =
2𝑀𝑅2

5
+ 4𝑙2𝑚𝑚𝑜𝑡𝑜𝑟

(2.6)

where 𝑀 is defined by (2.7) and 𝑅 is the estimated radius of the mass center. The parameter

𝑚𝑞𝑢𝑎𝑑 is the mass of the quadrotor not including the payload mass, motor mass, and battery

18

mass. It is a design choice, chosen to be 3.8 𝑘𝑔 based on similarly sized quadrotors for delivery

purposes.

 𝑀 = 𝑚𝑞𝑢𝑎𝑑 +𝑚𝑏𝑎𝑡𝑡 +𝑚𝑝

𝑚𝑏𝑎𝑠𝑒 = 𝑚𝑞𝑢𝑎𝑑 + 4 ∗ 𝑚𝑚𝑜𝑡𝑜𝑟 +𝑚𝑏𝑎𝑡𝑡

𝑚 = 𝑚𝑏𝑎𝑠𝑒 +𝑚𝑝

(2.7)

Since 𝐽𝑥, 𝐽𝑦, 𝐽𝑧 , 𝑚 are functions of the package mass 𝑚𝑝, an abrupt change in the payload

mass results in a change in the total mass 𝑚 = 𝑚𝑏𝑎𝑠𝑒 +𝑚𝑝 which alters these system

parameters during flight when a package is picked up or dropped off. As documented in the

literature review, this can have adverse effects on the performance of a conventional controller

and can lead to instability issues. The design parameters defined in Section 2.2 and Section 2.3

are summarized in Table 2.1. For the purposes of the simulation model, the actuator parameters

𝐾𝐹 and 𝐾𝑀 are taken from a previous design [27].

Table 2.1 – Summary of design parameters

Parameter Description Value Unit

𝑚𝑏𝑎𝑡𝑡 battery mass 3.673 𝑘𝑔

𝑚𝑚𝑜𝑡𝑜𝑟 single motor mass 0.325 𝑘𝑔

𝑚𝑞𝑢𝑎𝑑 base quadrotor mass 3.8 𝑘𝑔

𝑙 length 0.6 𝑚

𝑅 radius of mass center 0.15 𝑚

𝐾𝐹 rotor drag factor 4.5𝑥10−4 𝑘𝑔 ∙ 𝑚2

𝐾𝑀 motor thrust factor 0.45𝑥10−5 𝑘𝑔 ∙ 𝑚

𝑐𝑚 motor gain 0.2𝑥102 1/𝑠

19

2.4 Rigid Body Dynamics of Delivery Quadrotor

The equations of motion for the quadrotor are derived assuming the structure connecting the

four rotors is a rigid body and the body axes coincides with the principal axes of rotation so that

the moment of inertia tensor

𝑱 = (

 𝐽
𝑥

0 0

0 𝐽
𝑦

0

0 0 𝐽
𝑧

)

(2.8)

is diagonal. The origin of the body axes is set to the center of mass. It is assumed the mass is

distributed symmetrically along the 𝑥 and 𝑦 axes so that the moments of inertia 𝐽𝑥 = 𝐽𝑦. The

package mass is assumed to be rigidly attached to the base of the quadrotor. The equations for

the rigid body dynamics of a quadrotor are taken from references [10], [26] and summarized

from (2.9) to (2.12). The equations were developed with the rotation conventions shown in Figure

2.2. A summary of the variables used to describe the motion of the quadrotor is summarized in

Table 2.2.

Table 2.2 – Summary of variables for rigid body quadrotor dynamics

Variable Description

𝑋 inertial north position along 𝐼�̂�

𝑌 inertial east position 𝐽�̂�

𝑍 altitude measured along −𝐾�̂�

𝑢 body frame velocity measured along 𝑖�̂�

𝑣 body frame velocity measured along 𝑗�̂�

𝑤 body frame velocity measured along 𝑘�̂�

ϕ Euler defined roll angle

θ Euler defined pitch angle

ψ Euler defined yaw angle

𝑝 roll rate measured along 𝑖�̂�

𝑞 pitch rate measured along 𝑗�̂�

𝑟 yaw rate measured along 𝑘�̂�

20

Applying the motor dynamics summarized in (2.2) and (2.3) yields the control input equations in

(2.13).

Table 2.3 – Summary of equations of motion for rigid body quadrotor dynamics

 KINEMATIC EQUATIONS – TRANSLATION

�̇� = (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃)𝑢 + (−𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑣 + (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)𝑤

�̇� = (𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃)𝑢 + (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑣 + (−𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)𝑤

�̇� = (𝑠𝑖𝑛𝜃)𝑢 + (−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑣 + (−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)𝑤

(2.9)

 FORCE EQUATIONS

�̇� = (𝑣𝑟 − 𝑤𝑞) − 𝑔𝑠𝑖𝑛𝜃

�̇� = (𝑤𝑝 − 𝑢𝑟) + 𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙

�̇� = (𝑢𝑞 − 𝑣𝑝) + 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −
𝑈𝑧
𝑚

(2.10)

 KINEMATIC EQUATIONS – ROTATION

�̇� = 𝑝 + (𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃)𝑞 + (𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃)𝑟

�̇� = (𝑐𝑜𝑠𝜙)𝑞 + (−𝑠𝑖𝑛𝜙)𝑟

�̇� = (𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃)𝑞 + (𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃)𝑟

(2.11)

 MOMENT EQUATIONS

�̇� =
𝐽𝑦 − 𝐽𝑧

𝐽𝑥
𝑞𝑟 +

𝑈𝜙

𝐽𝑥

�̇� =
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑝𝑟 +
𝑈𝜃
𝐽𝑦

�̇� =
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑝𝑞 +

𝑈𝜓

𝐽𝑧

(2.12)

 CONTROL INPUT EQUATIONS

𝐹𝑧 = 𝐾𝐹(𝛺𝑓
2 +𝛺𝑟

2 + 𝛺𝑏
2 + 𝛺𝑙

2)

𝜏𝜙 = 𝑙𝐾𝐹(−𝛺𝑟
2 + 𝛺𝑙

2)

𝜏𝜃 = 𝑙𝐾𝐹(𝛺𝑓
2 − 𝛺𝑏

2)

𝜏𝜓 = 𝐾𝑀(−𝛺𝑓
2 + 𝛺𝑟

2 − 𝛺𝑏
2 + 𝛺𝑙

2)

(2.13)

21

2.5 State Variable Representation of Nonlinear Model

The equations of motion can be represented in a state variable representation by defining

the state vector 𝒙 as 𝑥 = [𝑋𝑌𝑍𝑢𝑣𝑤𝜙𝜃𝜓𝑝𝑞𝑟]𝑇 = [𝑥1 𝑥2 ∙∙∙ 𝑥12]
𝑇 and the control vector 𝒖 as 𝑢 =

[𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1𝑢2𝑢3𝑢4]

𝑇. The equations from (2.9) to (2.13) can be written compactly as a

system of differential equations �̇� = 𝑓(𝑥 , 𝑢). These equations are summarized in Appendix B.1

and implemented in Simulink in the subsystem structures shown in Appendix B.2 for a

complete nonlinear model of the quadrotor system.

2.6 Simulink Model and Simulation

2.6.1 Quadrotor and Actuator Dynamics

Ultimately, the controller developed in the next chapters must be tested against the

complete nonlinear model of the quadrotor dynamics. Therefore, a 6DOF Simulink model was

developed using the actuator dynamics and the equations of motions summarized in Sections

2.2 through 2.6. The equations were developed using Simulink block structures shown in

Appendix B.2 and condensed into the system shown in Figure 2.5 with subsystems representing

the motor mixing, actuator dynamics, quadrotor dynamics, and data logging. This comprises the

“open-loop system” of the quadrotor.

Figure 2.5 – Simulink model of actuator and quadrotor dynamics

 A test nonlinear simulation is completed using the system parameters in Table 2.4. The

output of the motor mixing and actuator dynamics to the commanded thrust and torque factors

summarized in Table 2.5 are shown in Section 2.7.3. The output of the payload estimator is

22

shown in Section 2.7.2 with a convergence of the estimated payload mass 𝑚�̂� to the real mass

𝑚𝑝. The open-loop, unstable state responses to the propeller speeds listed in Table 2.5 are shown

in Section 2.7.4.

Table 2.4 – Simulation system parameters

Parameter Description Value Unit

𝑚 quadrotor mass without payload 8.733 𝑘𝑔

𝑚𝑝 payload mass 1.0 𝑘𝑔

𝑔 gravitational acceleration 9.81 𝑚/𝑠2

𝐽𝑥 moment of inertia 0.3103 𝑘𝑔 ∙ 𝑚2

𝐽𝑦 moment of inertia 0.3103 𝑘𝑔 ∙ 𝑚2

𝐽𝑧 moment of inertia 0.5443 𝑘𝑔 ∙ 𝑚2

Table 2.5 – Input parameters

Parameter Description Value Unit

𝐹𝑧 net thrust force 95.87 𝑁

𝜏𝜙 rolling torque 0 𝑁 ∙ 𝑚

𝜏𝜃 pitching torque 0 𝑁 ∙ 𝑚

𝜏𝜓 yawing torque 0 𝑁 ∙ 𝑚

𝛺𝑓 front propeller speed 230.79 𝑟𝑎𝑑/𝑠

𝛺𝑟 right propeller speed 461.57 𝑟𝑎𝑑/𝑠

𝛺𝑏 rear propeller speed 230.79 𝑟𝑎𝑑/𝑠

𝛺𝑙 left propeller speed 923.14 𝑟𝑎𝑑/𝑠

23

2.6.2 Actuator Responses

Figure 2.6 – Motor mixing

2.6.3 Open-Loop State Responses

Figure 2.7 – Open-loop response of inertial positions

24

Figure 2.8 – Body frame velocity open-loop response

Figure 2.9 – Euler angle open-loop responses

25

Figure 2.10 – Euler rate open-loop responses

2.7 Linear, Parameter Dependent Model

 To develop a controller using methods from linear systems theory, the nonlinear

equations of motion are linearized using Jacobian linearization at hovering conditions. At this

state, the quadrotor must counteract the downward force of gravity. Therefore, the motor

angular speeds 𝛺𝑖 are equal in magnitude and the vertical forces 𝐹𝑖 from each propeller must

produce a thrust equal to 𝑚𝑔/4 yielding 𝐹𝑧 = 𝑚𝑔. From equation (2.13), the motor speeds at

hover are given by

𝛺ℎ𝑜𝑣 = √

𝑚𝑔

4𝐾𝐹
.

(2.14)

Also, the position 𝑟0 = [𝑋0 𝑌𝑜 𝑍0] and the heading (yaw) angle 𝜓 = 𝜓0 are fixed in a nominal

hover state. Since the roll and pitch angles are assumed to be small in this state, small angle

approximations are applied, 𝑐𝑜𝑠𝜙 ≌ 1, 𝑐𝑜𝑠𝜃 ≌ 1, 𝑠𝑖𝑛𝜙 ≌ 𝜙, 𝑠𝑖𝑛𝜃 ≌ 𝜃.

26

Note that in a hover state, from equation (2.11), the body angular speeds are roughly equal to the

Euler angle rates, [𝑝𝑞𝑟] ≌ [�̇��̇��̇�].

With these assumptions, the nonlinear equations are linearized with an equilibrium point

at 𝑥∗ = [𝑋0 𝑌𝑜 𝑍0 0 0 0 0 0 𝜓0 0 0 0] and an operating point at 𝑢∗ = 𝑚𝑔 ∙

[1 0 0 0]. This is accomplished using the linearization function at the end of the

MALTAB script in Appendix A.1 applied to the nonlinear system derive the linear, parameter

dependent model given by (2.15).

 �̇� = 𝐴𝒙 + 𝐵𝒖

(2.15)

where 𝐴 =

[

03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]

 and 𝐵 =

[

05𝑥1 05𝑥1 05𝑥1 05𝑥1
−1/𝑚 0 0 0
03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 1/𝐽𝑥 0 0
0 0 1/𝐽𝑦 0

0 0 0 1/𝐽𝑧]

. The

smaller matrix entries are defined by (2.16). Recall the moment of inertias are also mass

dependent. Also note that 𝑥∗ and 𝑢∗ satisfy the equilibrium condition 𝑓(𝑥, 𝑢)|𝑥∗,𝑢∗ = 0.

𝑆3𝑥3
1 = (

𝑐𝑜𝑠𝜓0 −𝑠𝑖𝑛𝜓0 0
𝑠𝑖𝑛𝜓0 𝑐𝑜𝑠𝜓0 0
0 0 −1

)

𝑆3𝑥3
2 = (

0 −𝑔 0
𝑔 0 0
0 0 0

)

𝑆3𝑥3
3 = (

1 0 0
0 1 0
0 0 1

)

(2.16)

27

This model is extended in Chapter 5 to derive an LPV model specified for a parameter

space as the parameter ρ varies in a bounded parameter box. The LPV model is then used to

derive the automatically gain scheduled controller.

2.8 Controllability and Observability

A check on the controllability and observability of the state space model at a sample

parameter is completed. Using the MATLAB functions 𝑐𝑡𝑟𝑏 and 𝑜𝑏𝑠𝑣, the rank of both the

controllability and observability matrix is full rank, 𝑛 = 12. Therefore, the system (2.15) is fully

controllable and fully observable. However, for the LPV system, quadratic stabilizability and

quadratic detectability must be satisfied, which is discussed in Chapter 3 and 6.

28

3. CHAPTER 3

LPV CONTROL THEORY

3.1 Introduction

This chapter presents a linear parameter varying control strategy to control the general LPV

system (1.1) based on the LPV ℋ∞ self-scheduling technique introduced in the literature review.

The mathematical tools required to develop this controller are summarized. For the systems

discussed, the closed-loop linear system

 �̇� = 𝐴𝑥 + 𝐵𝑤

𝑦 = 𝐶𝑥 + 𝐷𝑤

(3.1)

and closed loop LPV system with state space matrices

 𝐴(𝜌), 𝐵(𝜌), 𝐶(𝜌), 𝐷(𝜌) ≜ 𝒜,𝔅, 𝒞, 𝒟

(3.2)

are considered in the formulations presented in the next sections. Linear matrix inequalities

(LMIs) are utilized to transform suitable control problems into tractable formats which can be

solved using optimization solvers. The development of numerical methods and availability of

greater computing power has made it possible to efficiently solve LMIs. An important

advantage of LMIs in control theory is they can be formulated as convex optimization problems

that are computationally tractable [28]. In such a formulation, many types of control problems

for which no analytical solution has been found can be solved using LMI methods [28]. LMI

problems can be solved with tools such as the MATLAB Robust Control Toolbox [29] or the

software package CVX, a MATLAB-based modeling system for convex optimization [30].

Many controls problems can be formulated in terms of LMIs [11]. For this study, the ℋ∞

controller design is utilized to develop the proposed LPV controller. It was shown by Apkarian

and Gahinet in [4] this control problem can be solved by posing it as an LMI. Therefore, a brief

overview of the mathematical properties and techniques of LMIs is presented.

29

3.2 Linear Matrix Inequalities

Matrix inequalities that are linear or affine in a set of matrix variables are called linear

matrix inequalities. The basic form of an LMI can be written as

𝐹(𝑥) ≜ 𝐹0 +∑𝑥𝑖𝐹𝑖

𝑚

𝑖=1

> 0,

(3.3)

where 𝑥 ∈ ℛ𝑚 is the variable of interest and 𝐹𝑖, 𝐹0 are constant, symmetric, and real matrices.

The variable 𝑥𝑖 is composed of a single vector composed by stacking column vectors from one

or many matrices [11]. Therefore, the function 𝐹(𝑥) is expanded

𝐹(𝑥) = 𝐹(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝐹0 +∑𝐺𝑖𝑋𝑖𝐻𝑖

𝑚

𝑖=1

> 0,
(3.4)

where 𝑋𝑖 ∈ ℛ
𝑞𝑖𝑥𝑝𝑖 are the matrix variables of interest and 𝐺𝑖 , 𝐻𝑖 are given matrices. Several

types of LMI problems are categorized in the literature. For this study, the LMI feasibility and

linear objective minimization problems are applicable and summarized below [11].

• The feasibility problem seeks to find a solution 𝑋1, 𝑋2, … , 𝑋𝑛 such that the inequality

(3.4) 𝐹(𝑥) > 0 holds with no consideration of the optimality of the solution and no

guarantee of the uniqueness of the solution.

• The goal of the linear objective minimization problem is to minimize or maximize a

linear scalar function 𝛼(𝑋𝑖) subject to satisfying the LMI constraints 𝐹(𝑋𝑖) > 0.

3.3 Assumptions of the LPV Plant

A general LPV plant can be described by the model (3.5), where exogeneous inputs 𝑤 and

control inputs 𝑢 are mapped to controlled outputs 𝑧 and measured outputs 𝑦 [16].

𝛴𝜌 {

�̇�(𝑡) = 𝐴(𝜌)𝑥(𝑡) + 𝐵1(𝜌)𝑤(𝑡) + 𝐵2(𝜌)𝑢(𝑡)

 𝑧(𝑡) = 𝐶1(𝜌)𝑥(𝑡) + 𝐷11(𝜌)𝑤(𝑡) + 𝐷12(𝜌)𝑢(𝑡)

 𝑦(𝑡) = 𝐶2(𝜌)𝑥(𝑡) + 𝐷21(𝜌)𝑤(𝑡) + 𝐷22(𝜌)𝑢(𝑡)

(3.5)

30

The goal is to develop an LPV controller of the form (3.6) that guarantees quadratic ℋ∞

performance for the closed-loop system in Figure 1.5

 �̇�𝐾 = 𝐴𝑘(𝜌)𝑥 + 𝐵𝑘(𝜌)𝑦
𝑢 = 𝐶𝑘(𝜌)𝑥 + 𝐷𝑘(𝜌)𝑦

(3.6)

The methodology for the self-scheduling ℋ∞ technique given by [16] is used to control the

quadrotor. This technique is restricted to LPV plants whose matrix descriptions depend affinely

on the parameter 𝜌 ∈ ℛ𝑘 which varies in a polytope Ω of vertices 2𝑘. Furthermore, the

following assumptions of the plant (3.5) must be satisfied.

 𝐷22(𝜌) = 0 (A1)

 𝐵2(𝜌), 𝐶2(𝜌), 𝐷12(𝜌), 𝐷21(𝜌) are parameter independent (A2)

 The pairs (𝐴(𝜌), 𝐵2) and (𝐴(𝜌), 𝐶2) are quadratically stabilizable and

quadratically detectable over the polytope Ω

(A3)

The assumption (A2) can be alleviated by filtering the control inputs and/or measurement

outputs [16]. This is applied to the control inputs in Chapter 5 to remove the parameter

dependence of the 𝐵 matrix.

3.4 Bounded Real Lemma and 𝓗∞ Norm

To synthesize an LPV controller, the bounded-real lemma (BRL) is used. Following the

description of the BRL in [28], the LMI

where P is positive definite and symmetric is considered. The LMI is feasible if and only the

linear system (3.1) satisfies the “non-expansive” condition

∫ 𝑦𝑇𝑦 𝑑𝑡 ≤ ∫ 𝑢𝑇𝑢 𝑑𝑡

∞

0

∞

0

(3.8)

 (𝐴
𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝐶 𝑃𝐵 + 𝐶𝑇𝐷
𝐵𝑇𝑃 + 𝐷𝑇𝐶 𝐷𝑇𝐷 − 𝐼

) ≤ 0

𝑃 > 0

 (3.7)

31

for all solutions of (3.1) with zero initial conditions. An equivalent form is the bounded-real

condition applied to the transfer function matrix of the linear system (3.1)

 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (3.9)

expressed as ‖𝐺‖∞ ≤ 1 where ‖𝐺‖∞ = 𝑠𝑢𝑝{‖𝐺(𝑠)‖ | 𝑅𝑒(𝑠) > 0}. This is called the ℋ∞ norm

of 𝐺(𝑠).

To calculate the ℋ∞ norm of the transfer function from 𝑤 to 𝑧 for the system (3.1) is

equivalent to solving the optimization problem

 𝑚𝑖𝑛 𝛾

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (
𝐴𝑇 + 𝑃𝐴 𝑃𝐵 𝐶𝑇

𝐵𝑇𝑃 −𝛾𝐼 𝐷𝑇

𝐶 𝐷 −𝛾𝐼
) < 0

(3.10)

in 𝑃 > 0 [11]. The uniqueness of 𝑃 > 0 is not guaranteed, but 𝛾 > 0 is unique.

For a closed-loop LPV system (3.2), the system has quadratic ℋ∞ performance 𝛾 if and

only if there exists a positive definite matrix 𝑃 such that (3.11) holds for the operating range of

the parameter vector 𝜌 [17].

(

𝐴𝑇(𝜌) + 𝑃𝐴(𝜌) 𝑃𝐵(𝜌) 𝐶𝑇(𝜌)

𝐵𝑇(𝜌)𝑃 −𝛾𝐼 𝐷𝑇(𝜌)

𝐶(𝜌) 𝐷(𝜌) −𝛾𝐼

) < 0

(3.11)

3.5 LPV Control Using 𝓗∞ Self-Scheduling Technique

Recall the parameter dependent LPV controller expressed in the form

where 𝐾 represents the controller and 𝑦 represents the measurement vector. After finding the

matrix 𝑃, the existence of a quadratic Lyapunov function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 is required to guarantee

ℋ∞ performance and asymptotic stability for the entire parameter space of ρ [17]. Using the

 �̇�𝐾 = 𝐴𝑘(𝜌)𝑥 + 𝐵𝑘(𝜌)𝑦

𝑢 = 𝐶𝑘(𝜌)𝑥 + 𝐷𝑘(𝜌)𝑦

(3.12)

32

methodology in [31], the parameter dependent controller gains 𝐾(𝜌) are obtained by expressing

LTI vertices of a parameter space in an affine polytopic form and finding the resultant gains

 𝐾(𝜌) = ∑ ∑ 𝜎1,𝑖𝜎2,𝑗
𝑞
𝑗=1 𝐾𝑟

𝑞
𝑖=1 ,

(3.13)

where 𝑞 is the number of LTI vertices, 𝐾𝑟 = (
𝐴𝐾𝑖,𝑗 𝐵𝐾𝑖,𝑗
𝐶𝐾𝑖,𝑗 𝐷𝐾𝑖,𝑗

) , and 𝜎1,𝑖𝜎2,𝑗 are two weighting

functions used in the interpolation of the controller gains. With the ℋ∞ self-scheduling

technique, the LPV system and LPV controller interpolate automatically based on the weighting

functions to produce the gains and update based on the condition of the parameter ρ. The

parameter dependent gains (3.13) and the controller form (3.12) can be computed using the

Robust Control Toolbox’s hinfgs function. A summary for the characteristic LMI system

calculation is provided below.

Characteristic LMI System Calculation

1. LPV controller guarantees some quadratic ℋ∞ performance level 𝛾 for the closed

loop system acting in the polytope Ω if and only if there exist two symmetric matrices

𝑅 and 𝑆 satisfying the following LMI’s:

(
𝑅 𝐼
𝐼 𝑆

) ≥ 0

(
𝒩𝑅 0
0 𝐼

)
𝑇

(

𝐴𝑖𝑅 + 𝑅𝐴𝑖
𝑇 𝑅𝐶1𝑖

𝑇 𝐵1𝑖
𝐶1𝑖𝑅 −𝛾𝐼 𝐷1𝑖
𝐵1𝑖

𝑇 𝐷1𝑖
𝑇 −𝛾𝐼

)(
𝒩𝑆 0
0 𝐼

) < 0

(
𝒩𝑆 0
0 𝐼

)
𝑇

(
𝐴1𝑖

𝑇𝑆 + 𝑆𝐴𝑖 𝑆𝐵1𝑖 𝐶1𝑖
𝑇

𝐵1𝑖
𝑇𝑆 −𝛾𝐼 𝐷1𝑖

𝑇

𝐶1𝑖 𝐷1𝑖 −𝛾𝐼

) (
𝒩𝑆 0
0 𝐼

) < 0

𝑖 = 1…𝑞

where 𝒩𝑅 and 𝒩𝑆 are the bases of the null spaces of (𝐵2
𝑇 , 0) and (𝐶2, 𝐷2).

2. From the R and S matrices found in Step 1:

33

a. Compute full-rank matrices M,N such that MNT = I − RS, where I is the identity

matrix.

b. Compute XCL as the unique solution of the matrix equation Π2 = XCLΠ1,

 where Π2 = (
S I
NT 0

) and Π1 = (
I R
0 MT).

3. With XCL, a possible controller Ωi = (
Aki Bki
Cki Dki

) is any solution of the matrix

inequality

(

ACL(wi)
TXCL + XCLACL(wi) XCLBCL(wi) CCL(wi)

T

BCL(wi)
TXCL −γI DCL(wi)

T

CCL(wi) DCL(wi) −γI

) < 0

This process is internally computed by the hinfgs function. The LMI approach to LPV

controls design can be summarized as follows [32].

1. For a desired closed-loop system property, derive a sufficiency analysis condition.

2. Evaluate this condition on the LPV closed loop system with the generalized structure of

the plant and controller in feedback.

3. Find the control parameters using a convex search with LMIs.

4. If the search is successful, extract the controller parameters.

Note this process is based on a sufficiency condition, meaning if the search is unsuccessful, the

LMI constraints applied to the system can be adjusted in an iterative process until a controller

candidate is found. The LPV representation of the quadrotor using affine and polytopic forms is

described in Chapter 5 and the LPV control is developed in Chapter 6.

34

4 CHAPTER 4

ONLINE ADAPTIVE PARAMETER ESTIMATION

4.1 Introduction

For the control law to be developed, LPV theory depends on the parameters to be measured

or estimated in real-time. Estimation of unknown parameters linear in the equations of motion is

a common problem in robotics and control applications [26]. To estimate the mass, an adaptive

estimator based on the gradient descent method is utilized. The estimate is determined online

and fed into convex constructions which determine the controller gains.

4.2 Gradient Descent Adaptive Law

The adaptive estimator based on the gradient descent method is described in this section. A

process to develop this estimator is taken from [33], a set of adaptive control notes, and

summarized as follows. Define a transfer function 𝐺(𝑠) as

𝐺(𝑠) =

𝑧𝑚𝑠
𝑚 + 𝑧𝑚−1𝑠

𝑚−1+. . . +𝑧0
𝑠𝑛 + 𝑝𝑛−1𝑠𝑛−1+. . . +𝑝0

,

(4.1)

where 𝐺(𝑠) is strictly proper with 𝑚 = 𝑛 + 1 and represents a SISO system. Let 𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)

and rearrange,

 𝑠𝑛𝑌(𝑠) + 𝑝𝑛−1𝑠
𝑛−1𝑌(𝑠) + . . . + 𝑝0𝑌(𝑠) = 𝑧𝑚𝑠

𝑚𝑈(𝑠) + 𝑧𝑚−1𝑠
𝑚−1𝑈(𝑠) + . . . + 𝑧0

(4.2)

To ensure stable parameter convergence, define a Hurwitz characteristic polynomial Λ(𝑠)

 Λ(𝑠) = 𝑠𝑛 + λ𝑛−1𝑠
𝑛−1 + λ𝑛−2𝑠

𝑛−2 +⋯+ λ0.

(4.3)

In a parameter estimation problem, for any 𝐺(𝑠) there is a set of known and unknown

coefficients for 𝑝𝑖 and 𝑧𝑖. The unknown coefficients are the parameters to be estimated.

Rearrange (4.2) so that the known terms are on the left-hand side and the unknown terms are on

the right-hand side. Dividing each side by Λ(𝑠) and rearranging results in the equations (4.4)

35

 �̅�(𝑠) = 𝑌(𝑠) + 𝑌�̅�(𝑠) + 𝑈𝑓̅̅ ̅(𝑠)

�̅�(𝑡) = 𝑦(𝑡) + 𝑦𝑓(𝑡) + 𝑢𝑓(𝑡)

�̅�(𝑠) = 𝛷𝑇(𝑠)𝛩,

(4.4)

where 𝛷(𝑠) and 𝛩 are defined by (4.5).

(4.5)

 Input and output filter generators are defined by (4.6)

ξ̇ = 𝐴ξ + 𝐵𝑢(𝑡)

η̇ = Aη + By(t)

(4.6)

where 𝐴 and 𝐵 are written in control canonical form,

𝐴 =

[

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−𝜆0 −𝜆1 −𝜆2 ⋯ −𝜆𝑛−1]

 and 𝐵 =

[

0
0
⋮
0
1]

.

These state equations guarantee stability of the adaptive process through 𝛬(𝑠). The filtered

input and output defined in (4.7) correspond to the known coefficients in the expressions in (4.4)

for �̅�(𝑠) where 𝐶𝑢 and 𝐶𝑦 are vectors whose entries are the known values based on the order of

𝑠.

 𝑢𝑓(𝑡) = 𝐶𝑢ξ

𝑦𝑓(𝑡) = 𝐶𝑦η

(4.7)

36

Similarly, the state selectors 𝐶𝐼 and 𝐶0 in (4.8) select the transfer functions defined in 𝛷(𝑠)

based on the order of 𝑠.

 𝑅 = 𝐶𝐼ξ

𝑄 = 𝐶0η

ϕ(t) = [
𝑅
𝑄
]

(4.8)

With ϕ(t) and normalizing function 𝑚2, the gradient descent adaptive law is given by (4.9)

The gradient law updates the estimate �̂� based on information of 𝑦(𝑡) and 𝜙(𝑡) [34]. An

important requirement for the adaptive estimator is it must satisfy the “persistency of

excitation” condition to ensure parameter convergence [34]. A bounded signal x(t) is

persistently exciting if there exist 𝛿 > 0 and 𝛼0 > 0 such that

 ∫ x(t)x𝑇(𝑡)𝑑𝑡
𝜎+𝛿

𝜎
≥ 𝛼0𝐼, ∀ 𝜎 ≥ 𝑡0.

(4.10)

This means the control input must have at least an equal number of frequencies and number of

unknown parameters.

4.3 Application to Quadrotor Mass Estimation

The linearized model derived in Section 2.8 is used to derive the transfer function 𝐺(𝑠) for

the estimator design. In pure translation in the 𝐸�̂� direction, only the control input 𝐹𝑧 is of

interest. The first column of 𝐵 is set to 𝐵𝑆𝐼. The transfer function from 𝐹𝑧 to each state are then

found by

 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵𝑆𝐼

𝐶 = 𝐼12𝑥12

𝐵𝑆𝐼 = [01𝑥5 −1/𝑚 01𝑥6]
𝑇.

(4.11)

𝑚2 = 1 + ϕ𝑇ϕ

𝜐 = �̅� − ϕ𝑇�̂�

�̂� = [𝑧0̂ . . . 𝑧�̂� | 𝜆0 − 𝑝0̂ . . . 𝜆𝑛−1 − 𝑝𝑛−1̂]
𝑇

�̇̂� =
ϕ𝜐

𝑚2

𝛩0̂ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.

(4.9)

37

The resultant vector of transfer functions is given by (4.12) with 𝐺𝐹𝑧→𝑍(𝑠) =
1

𝑚𝑠2
 and

𝐺𝐹𝑧→𝑤(𝑠) =
−1

𝑚𝑠
.

𝐺(𝑠) = [0 0

1

𝑚𝑠2
0 0

−1

𝑚𝑠
0 0 0 0 0 0]

𝑇

.

(4.12)

Since only a single parameter is to be estimated and the transfer functions are first and

second order, the gradient descent method procedure is greatly simplified. Also, since there is

only one unknown, the input only needs a single frequency to satisfy the persistency of

excitation condition. Choosing 𝐺𝐹𝑧→𝑤(𝑠) to be the simplest transfer function to implement the

gradient descent algorithm yields the gradient law

�̇� = −10𝜉 + 𝐹𝑧

�̇� = −10𝜂 + 𝑤

�̂� = 1 𝑚⁄̂

�̇̂� = 𝛾
𝜉(𝑤 − 10𝜂 − 𝜉�̂�)

1 + 𝜉2
, 𝛩0̂ = 𝛩(0), 𝛾 > 0

(4.13)

Derivation

Let 𝛬(𝑠) = 𝑠 + 𝜆0 be a stable characteristic polynomial and define
𝑌(𝑠)

𝑈(𝑠)
=

−1

𝑚𝑠
.

Then 𝑠 = 𝛬(𝑠) − 𝜆0 and −𝑠𝑌(𝑠) =
1

𝑚
𝑈(𝑠). To avoid a zero crossing of the parameter, define

𝑧0 = 1/𝑚.

The negative sign is neglected in the subsequent derivation, but it is noted that the sign on the

transfer function is accounted for by negating the time domain output in implementation.

Dividing 𝛬(𝑠) on both sides,

𝑠𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)
 →

(𝛬(𝑠)−𝜆0)𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)
 → Y(s) − 𝜆0

𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)

Define �̅�(𝑠) = 𝑌(𝑠) − 𝜆0
𝑌(𝑠)

𝛬(𝑠)
 → �̅�(𝑡) = 𝑦(𝑡) − 𝑦𝑓(𝑡)

38

For the right-hand side, set 𝛷(𝑠) =
𝑈(𝑠)

𝛬(𝑠)
 and 𝛩 = 𝑧0 → �̅�(𝑠) = 𝛷(𝑠)𝛩

➢ Input Filter Generator

�̇� = −𝜆0𝜉 + 𝑢 and 𝑅 = 1 ∙ 𝜉

➢ Output Filter Generator

�̇� = −𝜆0𝜂 + 𝑦 and 𝑦𝑓(𝑡) = 𝜆0𝜂

Set ϕ(t) = R and choose −10 as a stable pole: 𝛬(𝑠) = 𝑠 + 10

➢ Gradient Law

�̇� = −10𝜉 + 𝐹𝑧

�̇� = −10𝜂 + −𝑤

𝑚2 = 1 + ϕ2 = 1 + 𝜉2

�̂� = 𝑧0̂ = 1/�̂�

�̅� = 𝑤 − 10𝜂

𝜐 = �̅� − ϕ𝑇�̂� = 𝑤 − 10𝜂 − 𝜉�̂�

�̇̂� =
ϕ𝜐

𝑚2
 → �̇̂� =

𝜉(𝑤−10𝜂−𝜉�̂�)

1+𝜉2

Adding a rate of convergence gain 𝛾, 𝛾 > 0, to be tuned in simulation, results in the final

equations

�̇� = −10𝜉 + 𝐹𝑧

�̇� = −10𝜂 + 𝑤

�̂� = 1 𝑚⁄̂

�̇̂� = 𝛾
𝜉(𝑤 − 10𝜂 − 𝜉�̂�)

1 + 𝜉2
, �̂� = 𝛩(0), 𝛾 > 0

If necessary, 𝜆0 can be treated as a design variable along with 𝛾. There is a tradeoff

between convergence time and estimation error. The gain 𝛾 is tuned so that a desired

convergence time is achieved without causing the parameter trajectory to diverge. In general,

allowing more energy into the system can result in fast convergence and reduced error, but with

the consequence of increased computational demands.

The above gradient law is applicable to the linear system (2.16). Applying the estimator

against the nonlinear system requires a further modification. Recall the equilibrium point of the

control input used to linearize the plant is 𝑢𝑒 = [𝑚𝑔 0 0 0]. Neglecting the rise time due

39

to the actuator dynamics, the linear input 𝑈𝐿 = 𝐶 is a constant signal. Therefore, with respect to

the input 𝐹𝑧 into the nonlinear system,

 𝑈𝐿 = 𝐹𝑧 − 𝑢𝑒 = 𝐹𝑧 −𝑚𝑔

𝐹𝑧 = 𝑈𝐿 +𝑚𝑔

(4.14)

This shows applying 𝐹𝑧 directly would require knowledge of the unknown mass to be

estimated, defeating the purpose of the estimator. The following modification is made.

Modification

Let
𝑌𝐿(𝑠)

𝑈𝐿(𝑠)
=

1

𝑚𝑠
 and 𝐹𝑧 = 𝑈𝐿 +𝑚𝑔.

It follows 𝑌(𝑠) = (
𝑌𝐿

𝑈𝐿
) 𝐹𝑧 → 𝑌(𝑠) = (

1

𝑚𝑠
) (𝐶 + 𝑚𝑔)

𝑌(𝑠) =
𝐶

𝑚𝑠
+
𝑚𝑔

𝑚𝑠
 →𝑌(𝑠) =

𝐶

𝑚𝑠
+
𝑔

𝑠

Note the mass in the additional term in 𝑌(𝑠) cancels out for this formulation. Therefore, the

output 𝑦(𝑡) is adjusted by adding in the time domain ∫𝑔𝑑𝑡 to the state -𝑤.

The implementation of the mass estimator in Simulink is shown in Figure 4.1. Note that

𝑤 is negated in an outside subsystem and the ∫𝑔𝑑𝑡 is added to account for the operating point

used to linearize the nonlinear system. The estimate �̂� is inverted at the output of the estimator

to obtain the estimate total mass �̂�. Subtracting 𝑚𝑏𝑎𝑠𝑒 from �̂� yields the estimate package mass

𝑚�̂�.

Figure 4.1 – Simulink implementation of mass estimator based on gradient descent law

4.4 Hover State Conditioning

The mass estimation is engaged only when the quadrotor is in a hover state at the point of

payload pickup or drop off, typically done at launch. In a hover state, the mass cannot be

40

estimated using the estimator as this will not satisfy the persistency of excitation condition.

Therefore, a “hover up” control input needs to be applied with enough force to translate the

quadrotor in vertical flight. This action allows the estimator to function as the persistency of

excitation condition is satisfied. A hover trigger signal is introduced to control when this control

input is activated. An enable signal is defined by 𝐻𝑂𝑉_𝐸𝑁 in (4.15) and the trigger action is

illustrated in Figure 4.2.

 𝐻𝑂𝑉_𝐸𝑁 = {
1, 0 < 𝑡 < 𝜏
0, 𝑡 > 𝜏

(4.15)

Figure 4.2 – Hover trigger enable signal and “persistency of excitation” requirement

 When 𝐻𝑂𝑉_𝐸𝑁 is true, the control commands switch to the lifting input and the

estimator produces a new mass estimate. It is assumed this signal is triggered by a latching,

gripping mechanism when a package is attached or dropped off. The quadrotor needs to be able

to carry the unknown weight and fly vertically to estimate the mass. Therefore, an additional

mass of 0.1 𝑘𝑔 and gain of 1.05 is included to 𝑈𝑝 to provide a factor of safety and the requisite

force needed to transition from hover to vertical flight. This input also satisfies the persistency

of excitation condition. The input 𝑈𝑝 is applied when the hover trigger is enabled.

41

 𝑚𝑎𝑥(𝑚) = 𝑚𝑏𝑎𝑠𝑒 +𝑚𝑎𝑥(𝑚𝑝) + 0.1

= 11.173 𝑘𝑔

𝐹𝑧𝑝 = 1.05 ∗ 𝑚𝑎𝑥(𝑚) ∗ 𝑔

(4.16)

The remaining three torque inputs 𝜏𝜙, 𝜏𝜃, 𝜏𝜓 are zeroed out. Therefore, the control signal

when the quadrotor is in the hover state for package pick up or drop-off is 𝑈𝑝 =

[𝐹𝑧𝑝 0 0 0]
𝑇
. Applying this input guarantees that the quadrotor will be able to pick up and

lift any payload within its design specifications.

The subsystem for hover state conditioning is detailed in Figure 4.3. Its implementation

in Simulink is shown in Figure 4.4. As shown, the mass estimation gives a new estimate of the

mass when the hover trigger is enabled. Otherwise, it uses the previous mass estimate.

Additionally, the control signal is switched from the LPV commands to the input 𝑈𝑝.

Figure 4.3 – Hover state conditioning subsystem

42

Figure 4.4 – Simulink implementation of hover state conditioning

4.5 Simulation

The mass estimator and hover state conditioning subsystems are added to the nonlinear

system in Simulink as shown in Figure 4.5. A simulation was run for an initial estimate 𝛩0̂ =

1/𝑚𝑏𝑎𝑠𝑒, a convergence rate gain 𝛾 = 10, and the true package mass is set to 𝑚𝑝 = 2 𝑘𝑔. The

hover trigger signal (4.15) is modeled in Simulink by a pulse generator with an amplitude of 1,

pulse width of 50%, and 𝜏 = 10 𝑠. The input 𝑈𝑝 is applied to the system. Simulated against the

nonlinear system, the estimator converges to the true system mass 𝑚 = 10.773 𝑘𝑔 as seen in

Figure 4.6.

43

Figure 4.5 – Simulink system with mass estimation and hover state conditioning subsystems

Figure 4.6 – Estimation of unknown mass with information from 𝐹𝑧 and w

44

4.6 Discussion

Several methods exist in the literature for mass estimation. Therefore, justification for

choosing an adaptive approach is necessary. As an example, consider an equilibrium search

algorithm which enables the mass to be calculated directly when the acceleration �̇� = 0 is

sensed after a sequence of quadrotor maneuvers. Such an approach might cause instability

issues as the quadrotor can move towards the ground as it is searching for this point. The

gradient law allows the mass estimation to be completed safely in the air and safeguards the

estimation process, guaranteeing �̂� is bounded by estimating over a time period rather than

computing at a single point in time. It also provides flexibility in the mission operations; the

quadrotor can fly up while the mass estimation takes place and continues its planned course

without having to run through a separate mass determination phase. It should also be noted that

the hover state conditioning subsystem for a new mass estimate can be applied during midflight,

providing a measure of security during mission operations in case the trigger mechanism is

suddenly enabled. The mass can be verified or re-estimated if the package was lost.

The convergence rate gain γ was tuned in simulation to a desired convergence time with

zero error. The time to convergence shown in Figure 4.6 is around 0.5 𝑠. This is a reasonable

time since the quadrotor will be in the hover state for a longer time period and represents a

worst-case scenario since an upper bound package mass was used as the test mass. Convergence

time and error can be decreased by adjusting the parameters of the gradient law, thereby

allowing more energy into the system, but that offers no performance advantages in the hover

state. The estimator also has robustness qualities. If a disturbance occurred on the input, such as

from a wind gust, resulting in a perturbed input 𝑈 = 𝐹𝑧 + 𝑢𝛥, the mass can still be estimated

accurately because the estimator is designed to adapt to changes in the input. The mass �̂�𝑝 is

fed into convex constructions which give the parameter dependent gains determined online for

the LPV controller. This is the subject of Chapter 5 and 6.

45

5 CHAPTER 5

LPV SYSTEM REPRESENTATION OF QUADROTOR

5.1 Introduction

 The purpose of this chapter is to extend the linear, parameter dependent model described

in Chapter 2 to develop a general LPV system that is structured for gain-scheduled ℋ∞ control.

Functions from the MATLAB Robust Toolbox are utilized to facilitate this process. The

generalized LPV system is parametrized by a parameter vector that varies within a bounded

parameter box. The reader can refer to Appendix A.1 for the code developed using the functions

referenced in this chapter.

5.2 Parameter Space

 Substituting the inertia equations (2.6) into the quadrotor equations of motion and

applying the same linearization process in Section 2.7 results in a linear, parameter dependent

model (5.1) in terms of the payload mass 𝑚𝑝.

 �̇� = 𝐴(𝜌)𝒙 + 𝐵(𝜌)𝒖,

𝐴 =

[

03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]

 and 𝐵 =

[

05𝑥1 05𝑥1 05𝑥1 05𝑥1
𝜌
1

0 0 0

03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 𝜌

2
0 0

0 0 𝜌
2

0

0 0 0 𝜌
3]

(5.1)

 The parameters 𝜌1, 𝜌2, 𝜌3 are fixed functions of 𝑚𝑝, defined by (5.2). From the design

specifications, 𝑚𝑝 can vary according to 0 ≤ 𝑚𝑝 ≤ 2.3. The parameter vector 𝝆 is then defined as

𝝆 = [𝜌1 𝜌2 𝜌3]𝑇.

46

𝜌1 =

−1

𝑚𝑝 +𝑚𝑏𝑎𝑠𝑒

𝜌2 =
1

0.009 ∗ 𝑚𝑝 + 0.3013

𝜌3 =
1

0.009 ∗ 𝑚𝑝 + 0.5353

(5.2)

To specify a parameter-dependent system, a parameter box is defined by finding the

lower and upper bounds for each parameter function in 𝝆. These parameters are defined in (5.3)

and collected in matrix 𝑃.

 𝑝𝐿1 = 𝜌
1
(𝑚𝑝)|𝑚𝑝=0

 , 𝑝𝑈1 = 𝜌1(𝑚𝑝)|𝑚𝑝=2.3

𝑝𝐿2 = 𝜌
2
(𝑚𝑝)|𝑚𝑝=2.3

 , 𝑝𝑈2 = 𝜌2(𝑚𝑝)|𝑚𝑝=0

𝑝𝐿3 = 𝜌
3
(𝑚𝑝)|𝑚𝑝=2.3

 , 𝑝𝑈3 = 𝜌3(𝑚𝑝)|𝑚𝑝=0

𝛲 = (

𝑝𝐿1 𝑝𝑈1
𝑝𝐿2 𝑝𝑈2
𝑝𝐿3 𝑝𝑈3

)

(5.3)

The parameter box takes on values in a hyperrectangle of ℛ𝑘 defined by 2𝑘 vertices.

Using the Robust Control Toolbox function pvec with input 𝛲, the parameter box for this

system is shown in Figure 5.1. The columns give the coordinates of the 8 corners of the box. The

parameter vector 𝝆 ranges within the box and is bounded by the vertices.

Figure 5.1 – Vertices of parameter box

Let 𝛱𝑖 denote the column vector of the 𝑖𝑡ℎ vertex of the parameter box and 𝝆
∗
 the

measurement of the parameter vector online. The measured parameter is then expressed as a

convex decomposition over the set of vertices of the parameter box [29].

47

[

𝜌1
𝜌2
𝜌3
]

∗

= 𝛼1𝛱1+. . . +𝛼8𝛱8, 𝛼𝑖 ≥ 0,∑𝛼𝑖

8

𝑖=1

= 1

(5.4)

This is generated by the polydec function. The parameter box vertices are stored offline

while the convex coordinates 𝛼𝑖 are calculated online as 𝝆
∗
 is measured at time 𝑡. Note that if

the parameter vector matched a vertex’s coordinates, representing a bound on the measurement,

the convex set {𝛼1. . . 𝛼8} would have entry 1 corresponding to the vertex column with all other

entries equal to 0. This function is used to compute the controller state-space matrices as the

convex combination of controllers at the vertices, as discussed in Chapter 3 and implemented in

Chapter 6.

5.3 Control Input Filter

The LPV control theory outlined in Chapter 3 assumes the control and measurement

matrices are parameter independent (A2). Therefore, the control inputs are filtered to transform

(5.1) and remove the parameter dependence of the matrix 𝐵, offloading the parameter functions

to the transformed 𝐴 matrix. The input filter (5.5) is proposed by [16] with �̃� defined as the new

control input, 𝐴𝑢 is Hurwitz with fast poles compared to the quadrotor poles, and 𝐵𝑢 = 𝐶𝑢 =

𝐼4𝑥4.

 �̇�𝑢(𝑡) = 𝐴𝑢𝑥𝑢(𝑡) + 𝐵𝑢�̃�(𝑡)

𝑢(𝑡) = 𝐶𝑢𝑥𝑢(𝑡)

(5.5)

With entries 𝐴(𝜌) ∈ ℛ12𝑥12, 𝐵(𝜌) ∈ ℛ12𝑥4, 𝐴𝑢 ∈ ℛ
4𝑥4, and 𝐵𝑢 ∈ ℛ

4𝑥4, the transformed

system is given by (5.6).

(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (

012𝑥4
𝐵𝑢

) �̃�

𝐴𝑢 = −100 ∗ 𝐼4𝑥4

(5.6)

48

The system can be written compactly as (5.7) with 𝐴𝑝(𝜌) ∈ ℛ
16𝑥16 and 𝐵𝑝(𝜌) ∈ ℛ

16𝑥4.

 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐵𝑝(𝜌)�̃�(𝑡)

(5.7)

Note the dimension of the transformed system has increased from the original system due to the

applied filter and �̃�(𝑡) are still the control forces defined as [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1𝑢2𝑢3𝑢4]

𝑇. The

controlled outputs 𝑧(𝑡) is given by (5.8) where 𝐶1(𝜌) = 𝐼12𝑥12 and 𝐷12(𝜌) = 012𝑥4.

 𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
)

(5.8)

5.4 Disturbance Model

Matched disturbances are added to the model by assuming they occur on each state equation

containing 𝐹𝑧 , 𝜏𝜑 , 𝜏𝜃, 𝜏𝜓. This can be due to wind gusts or disturbances in a dynamic

environment. Estimation of the actual disturbance is not utilized, instead the uncertainty

associated with the disturbance inputs is modeled into the LPV model and the controller

synthesis takes this information into account.

𝐵1 =

[

05𝑥1 05𝑥1 05𝑥1 05𝑥1
1 0 0 0
03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 1 0 0
0 0 1 0
0 0 0 1]

(5.9)

The addition of the disturbance matrix 𝐵1 ∈ ℛ
12𝑥4 to the system (5.6) yields (5.10) where

𝐷11(𝜌) = 𝐷12 = 012𝑥4.

(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (

012𝑥4
𝐵𝑢

) �̃� + (
𝐵1
04𝑥4

)𝑤𝑑

𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
) + 𝐷11(𝜌)𝑤𝑑 + 𝐷12�̃�

(5.10)

49

5.5 Augmented Model

The general parameter dependent model (3.5) is written as (5.11) for consistency with the

LPV assumptions (A2).

𝛴𝜌 {

�̇�(𝑡) = 𝐴(𝜌)𝑥(𝑡) + 𝐵1(𝜌)𝑤(𝑡) + 𝐵2𝑢(𝑡)

 𝑧(𝑡) = 𝐶1(𝜌)𝑥(𝑡) + 𝐷11(𝜌)𝑤(𝑡) + 𝐷12𝑢(𝑡)

𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡)

(5.11)

The system can also be written as the structured system matrix 𝑆(𝜌).

𝑆(𝜌) = [

𝐴(𝜌)

𝐶1(𝜌)
𝐶2

|

𝐵1(𝜌) 𝐵2

𝐷11(𝜌) 𝐷12
𝐷21 𝐷22

]

(5.12)

These forms are useful to visualize the model, but for implementation in MATLAB, they must

be modified so that the system is in the basic state space form, �̇� = 𝐴𝑥 + 𝐵𝑢 and 𝑦 = 𝐶𝑥 + 𝐷𝑢.

Define a new matrix 𝐻𝑝 and input �̃�.

 𝐻𝑝 = [𝐵𝑝(𝜌) 𝐵1(𝜌)]

�̃� = [
�̃�
𝑤𝑑
]

(5.13)

Applying the definitions (5.13) to the system (5.10) results in the equations

(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (𝐵𝑝(𝜌) 𝐵1(𝜌)) (

�̃�
𝑤𝑑
)

𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
) + (𝐷12 𝐷11(𝜌))�̃�,

(5.14)

where 𝐵𝑝(𝜌) = [012𝑥4 𝐵𝑢]
𝑇 and 𝐵1(𝜌) = [𝐵1 04𝑥4]

𝑇. Note the dimensions 𝐻𝑝 ∈ ℛ
16𝑥8 and

�̃� ∈ ℛ8 are consistent with the overall system dimensions. For the controlled outputs 𝑧(𝑡), let

𝐶𝑝(𝜌) = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) and 𝐷𝑝(𝜌) = [𝐷12 𝐷11(𝜌)]. The resultant system is written

compactly as,

50

 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐻𝑝(𝜌)�̃�(𝑡)

𝑧𝑝(𝑡) = 𝐶𝑝(𝜌)𝑥𝑝(𝑡) + 𝐷𝑝(𝜌)�̃�(𝑡)

(5.15)

To keep the notation easier for the rest of the report, the parameter dependence is dropped on all

matrices except for 𝐴𝑝(𝜌). Let 𝐻𝑝(𝜌) = 𝐵𝑝 and 𝐷𝑝(𝜌) = 𝐷𝑝. For this study, all states are

assumed to be measurable, therefore 𝑦(𝑡) = 𝑧𝑝(𝑡). The LPV controller needs the 𝑥 states vector

only, the 𝑥𝑢 states constitute a 4 − 𝑝𝑜𝑙𝑒 pre-filter before the LPV controller. Therefore, the

measurement matrix 𝐶𝑝(𝜌) is redefined to 𝐶𝑝 = (𝐼12𝑥12|012𝑥4) to extract only the 𝑥 states.

Redefining �̃� = 𝑢, the final system is described by (5.16).

 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐵𝑝�̃�(𝑡)

𝑦(𝑡) = 𝐶𝑝𝑥𝑝(𝑡) + 𝐷𝑝�̃�(𝑡)

𝑥𝑝 = [
𝑥
𝑥𝑢
] , �̃� = [

𝑢
𝑤𝑑
]

(5.16)

5.6 LPV Model

 To obtain the overall LPV system, the parameter dependent model (5.16) is parametrized

by the vector 𝝆 to produce an affine model. The system matrices 𝐴(𝜌), 𝐵(𝜌), 𝐶(𝜌), 𝐷(𝜌) can be

rewritten as an affine combination of 𝝆 and parameter independent system matrices. The

number of matrices necessary is 𝑘 + 1. These equations are summarized in Table 5.1. Note that

matrix 𝐴 of (2.15) is evaluated at 𝜓0 = 0
°.

Table 5.1 – Summary of matrices for LPV model

 𝐴𝑝(𝜌) = 𝐴0 + 𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3

𝐴0 =

(

03𝑥3 𝑀1 03𝑥3 03𝑥3 03𝑥4
03𝑥3 03𝑥3 𝑀2 03𝑥3 03𝑥4
03𝑥3 03𝑥3 03𝑥3 𝑀3 03𝑥4
03𝑥3 03𝑥3 03𝑥3 06𝑥3 03𝑥4
04𝑥3 04𝑥3 04𝑥3 01𝑥3 𝐴𝑢)

𝐴1 = (
012𝑥12 05𝑥1 012𝑥3
02𝑥12 1 02𝑥3
02𝑥12 010𝑥1 02𝑥3

)

𝐴2 = (
012𝑥13 09𝑥3
02𝑥13 𝑀4
02𝑥13 04𝑥3

)

51

𝐴3 = (
012𝑥15 011𝑥1
02𝑥15 1
02𝑥15 04𝑥1

)

𝑀1 = (
1 0 0
0 1 0
0 0 −1

), 𝑀2 = (
0 −𝑔 0
𝑔 0 0
0 0 0

),

𝑀3 = (
1 0 0
0 1 0
0 0 1

), 𝑀4 = (
1 0 0
0 1 0
0 0 0

)

 𝐵𝑝(𝜌) = 𝐵0 + 𝜌1𝐵1 + 𝜌2𝐵2 + 𝜌3𝐵3

𝐵0 = 𝐵𝑝

𝐵1 = 𝐵2 = 𝐵3 = 016𝑥8

 𝐶𝑝(𝜌) = 𝐶0 + 𝜌1𝐶1 + 𝜌2𝐶2 + 𝜌3𝐶3

𝐶0 = 𝐶𝑝

𝐶1 = 𝐶2 = 𝐶3 = 012𝑥16

 𝐷𝑝(𝜌) = 𝐷0 + 𝜌1𝐷1 + 𝜌2𝐷2 + 𝜌3𝐷3

𝐷0 = 𝐷𝑝

𝐷1 = 𝐷2 = 𝐷3 = 012𝑥8

 The matrices (∙)𝑖, 𝑖 = 0, . . . ,3, summarized in Table 5.1 can be interpreted as “frozen”

LTI system matrices whose affine combination translate into 𝐴(∙), 𝐵(∙), 𝐶(∙), 𝐷(∙) which are

fixed functions of the uncertain parameter vector 𝝆. Now, each system {𝐴𝑖 , 𝐵𝑖, 𝐶𝑖, 𝐷𝑖} has a state

space representation 𝑆𝑖 defined by a structured matrix using the MATLAB function ltisys. The

overall LPV system is represented by 𝑆(𝜌) defined by (5.17).

[
𝐴𝑝(𝜌) 𝐵𝑝(𝜌)

𝐶𝑝(𝜌) 𝐷𝑝(𝜌)
]

⏟
𝑆(𝜌)

= [
𝐴0 𝐵0
𝐶0 𝐷0

]
⏟

𝑆0

+ 𝜌1 [
𝐴1 𝐵1
𝐶1 𝐷1

]
⏟

𝑆1

+ 𝜌2 [
𝐴2 𝐵2
𝐶2 𝐷2

]
⏟

𝑆2

+ 𝜌3 [
𝐴3 𝐵3
𝐶3 𝐷3

]
⏟

𝑆3

(5.17)

 With the parameter box and the 𝑆(𝜌) representation, the MATLAB function psys

specifies an affine parameter-dependent system with 4 systems and 3 parameters as a structured

matrix of dimension 29𝑥110. Each system has 16 states, 8 inputs, and 12 outputs. The

MATLAB code in Appendix A.1 was used to produce this LPV system representation. To

52

obtain the polytopic representation of the affine parameter-dependent system, the function

aff2pol is used to build the vertex system. In this case, the polytopic model has 8 vertex systems

of dimension 29𝑥214 representing the instances of the LPV system at the corners of the box

defined previously by pvec. Let these vertex systems be 𝑆(𝛱𝑖). Therefore, 𝑆(𝜌) over the corners

𝛱𝑖 can be expressed by

𝑆(𝜌) = 𝛼1𝑆(𝛱1)+. . . +𝛼8(𝛱8), 𝛼𝑖 ≥ 0,∑𝛼𝑖

8

𝑖=1

= 1

(5.18)

5.7 Interconnected LPV System

 The design of the gain-scheduled ℋ∞ controller is developed according to Figure 5.2,

modified from reference [35]. The open-loop plant 𝐺(𝑠) is defined by the system matrix 𝑆(𝜌).

This structure utilizes a two-degrees-of-freedom controller 𝐶(𝑠) to achieve better performance.

The blocks 𝑊𝑟(𝑠) and 𝑊𝑑(𝑠) are weighting functions applied to the reference input 𝑟 and

disturbance inputs 𝑤𝑑, respectively, used to properly scale the magnitudes. The weights 𝑊𝑢(𝑠)

and 𝑊𝑝(𝑠) are applied to the control input 𝑢 and the system error 𝑒 to penalize control effort

while achieving the desired performance in terms of transient response and stability margins.

Figure 5.2 – Simplified interconnected LPV System with 2DOF controller

53

6 CHAPTER 6

LPV CONTROL OF QUADROTOR

6.1 Problem Definition and Control Objectives

The goal of the delivery quadrotor is to track a given reference trajectory and deliver a

package of unknown mass. Due to the quadrotor’s uncertain environment and unmodeled

dynamics, the controller is to handle tracking, disturbance rejection, and to compensate for

uncertainty due to modeling errors and parameter variations. Therefore, the following objectives

must be achieved by the stabilizing controller,

• The closed-loop system is quadratically stable over the polytope Ω.

• Minimize closed-loop quadratic ℋ∞ norm, ‖𝐹(𝑃, 𝐶)‖∞ < 𝛾𝑚𝑖𝑛, where 𝑃 is the

generalized plant containing the LPV plant 𝐺, 𝐶 is the LPV controller, and 𝐹(𝑃, 𝐶) is

the closed-loop system, subject to actuator dynamics and disturbances.

The ℋ∞ norm can be interpreted as the peak gain of the plant across all frequencies and input

directions [36]. Therefore, the objective of the gain-scheduled ℋ∞ controller is to “push down”

the peaks of the frequency response of 𝐹(𝑃, 𝐶). The performance level 𝛾𝑚𝑖𝑛 is set to 1,

however, this is a design goal rather than a requirement. As long the controller achieves

adequate performance [37], a 𝛾 > 1 is acceptable, but the result is a more conservative

controller. Once the controller is synthesized with minimum norm, analysis of whether the

controller met the objectives is completed in Section 6.4. The reader can refer to Appendix A.1

for the LPV code developed using the functions referenced in this chapter.

6.2 Weights Selection and 𝓗∞ Mixed-Sensitivity Design

The purpose of the tracking, disturbance, performance, and control weights selection is to

meet specifications over the plant operating domain. Weights selection is not an exact science,

but an LTI closed-loop analysis can be performed at sample parameters of 𝑚𝑝 to give starting

weights for controls synthesis. The weights can then be tuned in simulation until the desired

performance and robustness is achieved. A guide to weights selection for ℋ∞ control is

54

provided by the helicopter control case study in reference [11] and design examples in reference

[32]. The filters chosen were taken from these examples.

The setpoint weight, 𝑊𝑟(𝑠), is used to scale the reference states. These will be static gains

on a diagonal matrix. The purpose of this is to normalize the magnitudes of the reference states

based on the units of the measured states. Similarly, a common scaling factor is applied to the

disturbance inputs through 𝑊𝑑(𝑠). For the purposes of simulation to demonstrate the

disturbance rejection, a scalar value 𝛽 ≥ 1, is applied on each entry of the diagonal matrix.

The performance weight, also called the sensitivity weight, is applied to the error of the

closed-loop system. The entries 𝑊𝑝𝑥𝑖
(𝑠) are applied to each state in the controlled output which

can be a mix of low-pass filters and static gains. The weight is expressed as a diagonal matrix of

transfer functions or static gains. Similarly, the control or robustness weight, is applied to the

control input. Typically, it is a high-pass filter applied to each input. The main idea of the

performance and robustness weights is to shape the response so that the gain of the loop transfer

function 𝐿 = 𝐺𝐾 is high at a lower frequency range and low at a higher frequency range. The

resultant system operates within this space. The frequency ranges are set by disturbance

rejection, command following at the lower frequencies and set by noise and plant uncertainty at

the higher frequencies [38]. The goal of the weight selection is then to properly identify the

cutoff frequencies for these two ranges as it pertains to the quadrotor’s dynamics and operating

environment. This analysis is done in the frequency domain. One approach is to first determine

the 𝑊𝑝(𝑠) that achieves the best performance with no robustness weight applied, then adjust

𝑊𝑢(𝑠) and iterate until a suitable 𝛾𝑚𝑖𝑛 is achieved.

The weights are summarized by (6.1) and (6.2).

𝑊𝑟(𝑠) =

(

𝑊𝑟𝑥1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑟𝑥12(𝑠))

𝑊𝑝(𝑠) =

(

𝑊𝑝𝑥1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑝𝑥12(𝑠))

(6.1)

55

𝑊𝑑(𝑠) =

(

𝑊𝑑𝑤1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑑𝑤4(𝑠))

𝑊𝑢(𝑠) =

(

𝑊𝑢𝑢1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑢𝑢4(𝑠))

(6.2)

The performance weights (6.3) are applied to the system

𝑊𝑝𝑗(𝑠) =

2.01

𝑠 + 0.201

𝑊𝑝𝑟𝑎𝑡𝑒𝑠(𝑠) =
2𝑠

𝑠2 + 8.5𝑠 + 18

(6.3)

where 𝑊𝑝𝑗(𝑠) is a low-pass filter applied to the position, velocity, and Euler angle states with

cutoff frequency 𝜔𝑐 = 20 𝑟𝑎𝑑/𝑠. The filter 𝑊𝑝𝑟𝑎𝑡𝑒𝑠(𝑠) is applied to the attitude rates. The high-

pass filter with a cutoff frequency of 𝜔𝑐 = 1000 𝑟𝑎𝑑/𝑠 was selected for the control weight and

applied for each control input.

𝑊𝑢𝑖(𝑠) =

9.678 𝑠3 + 0.029 𝑠2

𝑠3 + 1.206𝑒4 𝑠2 + 1.136𝑒7 𝑠 + 1.066𝑒10

(6.4)

𝑊𝑟, 𝑊𝑑, 𝑊𝑝, and 𝑊𝑢 are specified as LTI systems using the function ltisys. Their respective

singular values plot are shown in Figure 6.2 and Figure 6.3. The weights are inputs to the function

sconnect which constructs the ℋ∞ plant 𝑃(𝑠) associated with the control structure shown in

Figure 5.2. The control structure is expanded in Figure 6.1 to reflect the feedback and feedforward

control as well as the disturbance inputs into the plant. Recall the augmented input �̃� from

Chapter 5. The output of the unweighted plant 𝐺(𝑠) can be rewritten in terms of 𝐺1(𝑠) and

𝐺2(𝑠) and the inputs 𝑢(𝑠), 𝑤(𝑠).

 𝑌(𝑠) = 𝐺(𝑠)�̃�(𝑠)

𝑌(𝑠) = [𝐺1(𝑠) 𝐺2(𝑠)] [
𝑢(𝑠)
𝑤(𝑠)

]

(6.5)

56

Figure 6.1 – Expanded 2DOF control structure

The weights are then formulated as an ℋ∞ mixed sensitivity problem. The advantage of

mixed sensitivity is it allows the designer to simultaneously shape the frequency responses for

tracking and disturbance rejection, noise reduction and robustness, and controller effort [39].

The objective is to minimize the cost function,

[
𝑧1
𝑧2
] = [

𝐻11 𝐻12
𝐻21 𝐻22

] [
𝑟
𝑤𝑑
]

𝐻 = [
𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1 −𝑊𝑑𝑊𝑝𝐺2𝑆1

𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1 −𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1
]

‖𝐻‖∞ < 𝛾𝑚𝑖𝑛,

(6.6)

where ‖𝐻‖∞ is the ℋ∞ norm of the MIMO transfer function 𝐻 from [
𝑟
𝑤𝑑
] to [

𝑧1
𝑧2
].

Derivation of (6.6) Transfer Function 𝐻

From Figure 6.1, the following equations are written from the block diagram relationships. The

𝑠 notation is dropped for convenience.

𝑦 = 𝐺1𝑢 +𝑊𝑑𝐺2𝑤𝑑

𝑒 = 𝑊𝑟𝑟 − 𝑦

𝑢 = 𝑊𝑟𝐶2𝑟 + 𝐶1𝑒

57

Substituting the error 𝑒 and output 𝑦 into the control equation 𝑢,

𝑢 = 𝑊𝑟𝐶2𝑟 + 𝐶1(𝑊𝑟𝑟 − 𝑦) →

(1 + 𝐺1𝐶1)𝑦 = (𝑊𝑟𝐶2𝐺1 +𝑊𝑟𝐶1𝐺1)𝑟 + (𝑊𝑑𝐺2)𝑤𝑑

Let 𝑆1 = (1 + 𝐶1𝐺1)
−1 be the sensitivity function. Then,

𝑦 = [𝑊𝑟(𝐶1 + 𝐶2)𝐺1𝑆1]𝑟 + (𝑊𝑑𝐺2𝑆1)𝑤𝑑

Also, from Figure 6.1,

𝑧1 = 𝑊𝑝𝑒

𝑧2 = 𝑊𝑢𝑢

Substituting the results from above into 𝑧1, 𝑧2 and rearranging until 𝑧1 and 𝑧2 are expressed in

terms of only the inputs 𝑟 and 𝑤𝑑 yields,

𝑧1 = [𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1]𝑟 − (𝑊𝑑𝑊𝑝𝐺2𝑆1)𝑤𝑑

𝑧2 = [𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1]𝑟 − (𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1)𝑤𝑑

Written in matrix form,

[
𝑧1
𝑧2
] = [

𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1 −𝑊𝑑𝑊𝑝𝐺2𝑆1
𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1 −𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1

] [
𝑟
𝑤𝑑
]

With respect to the closed-loop system, the interpretation of ℋ∞ norm minimization is

interpreted as minimizing the effects of the reference demands and disturbances on the system

error and control effort in the mapping from [
𝑟
𝑤𝑑
] to [

𝑧1
𝑧2
].

58

Figure 6.2 – Singular values of performance (sensitivity) weight 𝑊𝑝(𝑠)

Figure 6.3 – Singular values of control (robustness) weight 𝑊𝑢(𝑠)

With the weights selected, the augmented plant 𝑃(𝑠) is expressed in polytopic form with

eight vertex systems. Each system has 43 states, 20 inputs, and 56 outputs.

59

6.3 Synthesis of Gain-Scheduled 𝓗∞ Controllers

The general procedure to produce the gain-scheduled controller using the MATLAB Robust

Control Toolbox is provided by references [35] and [32]. The function sconnect is first used to

construct the ℋ∞ plant 𝑃(𝑠). Then two-degrees-of-freedom LPV controller C(s) consisting of

feedback and feedforward gains acting on the closed-loop error and reference.

 𝐾(𝜌) = [𝐾1(𝜌) 𝐾2(𝜌)]

𝑧 = [
𝑒
𝑟
]

(6.7)

The reference states 𝒓 and error 𝒆 = 𝒓 − 𝒚 are each of dimension 12𝑥1 and the control inputs 𝒖

are of dimension 4𝑥1. Therefore, the gains 𝐾1, 𝐾1 are dimension 4𝑥12. The control 𝒖 is

expressed as (6.8) or written compactly as 𝒖 = 𝐾(𝜌)𝒛, 𝐾 ∈ ℛ4𝑥24, 𝑧 ∈ ℛ24.

 𝒖 = [𝐾1(𝜌) 𝐾2(𝜌)] [
𝑒
𝑟
] = 𝐾1(𝜌)𝒆 + 𝐾2(𝜌)𝒓

(6.8)

As described in Chapter 3, the control commands 𝑢 are generated from the controller state space

system (6.9).

𝐾𝜌 {

𝜁̇ = 𝐴𝐾(𝜌)𝜁 + 𝐵𝐾(𝜌)𝑧

𝑢 = 𝐶𝐾(𝜌)𝜁 + 𝐷𝐾(𝜌)𝑧

(6.9)

The vertex controllers 𝐾𝛱𝑖 given by (6.10) in terms of the controller matrices are determined

offline with the functions hinfgs and psinfo.

𝐾𝛱𝑖 = (

𝐴𝐾(𝛱𝑖) 𝐵𝐾(𝛱𝑖)
𝐶𝐾(𝛱𝑖) 𝐷𝐾(𝛱𝑖)

)

(6.10)

Recall the parameter vector measurement 𝝆∗ at time 𝑡 is expressed as a convex combination

with 𝛼𝑖. The controller state space matrices are then computed as the convex interpolation of the

vertex controllers 𝐾𝛱𝑖 as shown in (6.11). Note the gain-scheduled ℋ∞ controller (6.11) is

specified in polytopic form.

∑𝛼𝑖𝐾𝛱𝑖

𝑞

𝑖=1

= (
𝐴𝐾(𝜌) 𝐵𝐾(𝜌)

𝐶𝐾(𝜌) 𝐷𝐾(𝜌)
)

(6.11)

60

Now, the controller matrices 𝐴𝐾 ∈ ℛ
43𝑥43, 𝐵𝐾 ∈ ℛ

43𝑥24, 𝐶𝐾 ∈ ℛ
4𝑥43, 𝐷𝐾 ∈ ℛ

4𝑥24 of

(6.11) can be updated with the new controller as 𝝆∗ is calculated from the estimate 𝑚�̂�. Stated

another way, the vertex controllers 𝐾𝛱𝑖 are stored offline. As the convex decomposition

coefficients 𝛼𝑖 are calculated online, the combination of 𝛼𝑖 and 𝐾𝛱𝑖 give the current controller

matrices at 𝝆∗. These matrices update the controller equations (6.9). With the state error and

reference fed into the control law, the control commands 𝒖 are generated. The process to obtain

the controller matrices is shown in Figure 6.4 to visualize the process more clearly.

Figure 6.4 – High-level representation of controller matrices generation

After several iterations adjusting the weights and testing the controller against the LPV

system using the functions pdsimul and sigma, the final LPV control system with eight vertex

controllers is chosen, reflected in the code provided in Appendix A.1 and shown in the

subsequent analysis plots in Section 6.4. The linear objective minimization feasibility problem

under LMI constraints, discussed in Chapter 3, is completed using the function hinfgs, returning

the quadratic performance 𝛾 = 10.068 for the closed-loop system.

61

Figure 6.5 – Closed-loop quadratic performance

 A check on the location of the eigenvalues of the 𝐴𝐾 controller matrix of each vertex

controller to demonstrate the stability of the LPV controller is confirmed using the code

provided in Appendix A.1. Note the LPV controller is a dynamic controller with a mix of

shaping filters and ℋ∞ controllers.

6.4 Control Analysis – Assessment of Controller

6.4.1 Lyapunov Stability Analysis

 For the closed-loop system determined from the generalized plant and the LPV

controller, a Lyapunov matrix 𝑄 is sought such that

 𝐴𝑐𝑙(𝜌)𝑄 + 𝑄𝐴𝑐𝑙(𝜌)
𝑇 < 0

(6.12)

62

for all values of the parameter vector ρ within the parameter box. If 𝑄 is found through an LMI

optimization, the existence of a Lyapunov function 𝑉(𝑥),

 𝑉(𝑥) = 𝑥𝑇𝑃𝑥

𝑃 = 𝑄−1

�̇�(𝑥(𝑡)) < 0

(6.13)

establishes quadratic stability over the entire parameter range and for arbitrarily fast parameter

variations [29]. This process is computed by the function quadstab with the result

demonstrating quadratic stability for the closed system.

An additional stability check assesses robust stability of the closed-loop system via

Lyapunov matrices 𝑄𝑖 at the vertices of the parameter box such that the Lyapunov function is of

the form,

 𝑉(𝑥, 𝛼) = 𝑥𝑇(𝑄(𝛼))−1𝑥
𝑄(𝛼) = 𝛼1𝑄1 +⋯+ 𝛼𝑞𝑄𝑞

(6.14)

This establishes stability for the entire polytope of systems [29]. The results from quadstab and

pdlstab shown in Figure 6.6 demonstrates robust stability for the closed-loop system.

63

Figure 6.6 – Quadratic and robust stability results

6.4.2 Time Domain Analysis

To assess the controller, a random set of polytopic coordinates are generated to evaluate

controller and closed-loop system. The function pdsimul is used to generate output and state

trajectories for the specified parameter trajectory shown in Appendix A.1.

64

Figure 6.7 – State trajectories of closed-loop system for sample trajectory

Figure 6.8 – Output trajectories of closed-loop system for sample trajectory

6.4.3 Frequency Domain Analysis – Singular Values

 The function sigma plots of the maximum and minimum singular values, 𝜎(𝑗𝜔) and

𝜎(𝑗𝜔), at the specified frequency range. These plots show the MIMO frequency responses in

65

terms of singular values and the function returns these values as a vector. Singular values give a

measure of how a system acts on an input at a particular frequency. Therefore, 𝜎 and 𝜎 can be

analyzed to determine amplification and attenuation of input signals acting on the system [37].

Figure 6.9 – Singular values of polytopic plant 𝐺(𝜌)

Figure 6.10 – Singular values of augemented ℋ∞ plant P(ρ)

66

Figure 6.11 – Singular values of polytopic LPV controller 𝐾(𝜌)

Figure 6.12 – Singular values of polytopic closed-loop system 𝐹(𝜌)

67

6.5 Linear Simulation

6.5.1 LPV Controller Implementation in Simulink

The Simulink implementation of the gain-scheduled controller is shown in Figure 6.13 and

Figure 6.14. The convex decomposition and the computation of controller matrices {𝐴𝐾(𝜌),

𝐵𝐾(𝜌), 𝐶𝐾(𝜌), 𝐷𝐾(𝜌)} are determined online by the functions polydec, psinfo, and ltiss through

the Simulink MATLAB functions ConvexDecomp and VertexControl whose code is provided in

Appendix A.6.

Figure 6.13 – Convex decomposition determined online

Figure 6.14 – Simulink implementation of LPV controller

With the gain-scheduled Simulink implementation, the LPV controller is tested against the

linear system and the complete nonlinear system with disturbance sources added. The latter is

the subject of Chapter 8.

68

6.5.2 Reference Trajectory

 For the purpose of testing the tracking quality of the LPV controller, a reference trajectory is

designed. A sample mission scenario where the quadrotor takes off at initial point [0 0 0],

picking up a payload of an unknown mass, and delivers to final position [1000 1000 40] is

considered. This scenario is illustrated in Figure 6.15 where the final position can be visualized

as the top of an office or residential building.

Figure 6.15 – Reference trajectory schematic

The parameters shown in the schematic are summarized in Table 6.1. The time to estimate the

mass 𝑡�̂� is designed such that it is less than the time it takes the quadrotor to reach ℎ. The

geometry between point 𝐴 and point 𝐵 is setup as shown Figure 6.16. This is used to determine

the horizontal and vertical components of the velocity.

Table 6.1 – Summary of trajectory parameters

Parameter Description Value

ℎ Height of building 40 𝑚

𝛥 Height of quadrotor above ℎ 10 𝑚

𝑣𝑝 Lifting velocity 10 𝑚/𝑠

𝑣𝑚 Cruise velocity 40 𝑚/𝑠
𝑣ℎ Landing velocity 5 𝑚/𝑠

69

Figure 6.16 – Geometry of reference path

To ensure a safe transition from cruise into the landing at the final position, a linear decrease in

the cruise velocity to w at the final position is setup according to Figure 6.17, where 𝑡𝑏 is the

desired time from ℎ + 𝛥 to the final position from time 𝑡2.

Figure 6.17 – Linear decrease of velocity to 0 at landing position

The state trajectory 𝒛(𝒕) is split up into paths 𝒛𝒐(𝒕), 𝒛𝟏(𝒕), 𝒛𝟐(𝒕), 𝒛𝟑(𝒕), 𝒛𝟒(𝒕) as piecewise

linear functions. The reference states for the Euler angles and attitude rates are taken to be 𝟎.

For each path, the reference trajectory 𝑧𝑟(𝑡) is defined. The derivation for each path is detailed in

Table 6.2.

 𝑧𝑟(𝑡) = [𝑋𝑟 𝑌𝑟 𝑍𝑟 𝑢𝑟 𝑣𝑟 𝑤𝑟 𝜑𝑟 𝜃𝑟 𝜓𝑟 𝑝𝑟 𝑞𝑟 𝑟𝑟]
𝑇

(6.15)

70

Table 6.2 – Summary of reference paths

 𝒛𝒐(𝒕) path – initial position

Parameters: ℎ = 40 𝑚, 𝛥 = 10 𝑚
State Equations:

𝑋 = 𝑌 = 𝑍 = 0
𝑢 = 𝑣 = 𝑤 = 0

 𝒛𝟏(𝒕) path

Parameters: 𝑉𝑝 = 10 𝑚/𝑠, 𝑡1 =
ℎ+ 𝛥

𝑉𝑝
= 5 𝑠, 𝑡ℎ =

ℎ

𝑉𝑝
= 4 𝑠

State Equations:
𝑢 = 𝑣 = 0
𝑤 = 𝑉𝑝

𝑋 = 𝑌 = 0
𝑍 = 𝑉𝑝𝑡

 𝒛𝟐(𝒕) path

Parameters: 𝑉𝑚 = 40 𝑚/𝑠, 𝜃 = 45°, 𝑡2 = 𝑡1 +
1000√2

𝑉𝑚
= 40.4 𝑠

State Equations:
𝑍 = ℎ + 𝛥 → 𝑤 = 0

𝑢 = 𝑉𝑚𝑐𝑜𝑠𝜃 = 𝑉𝑚 √2⁄

𝑣 = 𝑉𝑚𝑠𝑖𝑛𝜃 = 𝑉𝑚 √2⁄

𝑋 = 𝑌 = ∫ 𝑉𝑚(𝑡)𝑑𝑡
𝑡

𝑡1

➔ 𝑋 = 𝑌 =
𝑉𝑚

√2
(𝑡 − 𝑡1)

 𝒛𝟑(𝒕) path

Parameters: 𝑡𝑏 = 4 𝑠

−𝛥 = ∫ (−𝑣ℎ +
𝑣ℎ

𝑡𝑏
𝑡)

𝑡𝑏
𝑡𝑎=0

𝑑𝑡 → 𝑣ℎ =
2𝛥

𝑡𝑏
= 5 𝑚/𝑠

State Equations:
𝑋 = 𝑌 = 1000 → 𝑢 = 𝑣 = 0

𝑤 = −𝑣ℎ +
𝑣ℎ
𝑡𝑏
(𝑡 − 𝑡2)

➔ 𝑍 = ∫ [(−𝑣ℎ +
𝑣ℎ

𝑡𝑏
(𝑡 − 𝑡2)] 𝑑𝑡

𝑡

𝑡2
, 𝑍(𝑡2) = ℎ + 𝛥

𝑍 = −𝑣ℎ(𝑡 − 𝑡2) +
𝑣ℎ
2𝑡𝑏

(𝑡 − 𝑡2)
2 + (ℎ + 𝛥)

71

 𝒛𝟒(𝒕) path – final position

Parameters: 𝑡𝑓 = 𝑡2 + 𝑡𝑏 = 45.4 𝑠

State Equations:
𝑋 = 𝑌 = 1000

𝑍 = 40
𝑢 = 𝑣 = 𝑤 = 0

The implementation of the reference trajectory is generated by the Simulink MATLAB function

RefTraj provided in Appendix A.5 and shown in Figure 6.18.

Figure 6.18 – 3D reference trajectory to assess controller

6.5.3 Simulation

For an initial test, the simplest setup is considered where the mass is known and fed

directly into the LPV system and simulated against the linear system given by (2.15) evaluated

at 𝑚𝑝 = 2. Details on how to integrate the hover state conditioning and mass estimator

subsystems, with modifications from the Chapter 4 design, to control the complete nonlinear

system is detailed in Chapter 8.

72

Figure 6.19 – Simulink setup for linear simulation

Figure 6.20 – Reference tracking for linear simulation

73

Figure 6.21 – Velocity tracking for linear simulation

6.5.4 Discussion

The LPV controller was able to track the position and velocity including the reference states

for the attitude. In simulation, it was found the output of the reference trajectory and LPV

commands needed to be scaled by two gains for good tracking performance. After testing

several LPV controllers with different control weights, there were no significant changes in the

tracking quality of the LPV controller in the linear simulation. The controller was able to handle

higher demanded accelerations when tested against the linear system. However, this was an

issue for control of the nonlinear system, as seen in Chapter 8, limitations are imposed on the

controller and proper selection of the weights is necessary to achieve good performance.

74

7. CHAPTER 7

ACTUATOR COMPENSTATION

7.1 Introduction

As discussed in the literature review, battery drainage affects the control effectiveness of the

propeller speeds which drive the quadrotor dynamics. It is possible to apply the LPV

methodology and schedule gains based on the propeller speeds, but with added complexity and

expansion of the parameter space. However, for the purpose of regulation, without considering

fault tolerant control, it is found that a 2DOF PI controller will be able to regulate the propeller

speeds subject to changes to the input voltage due to battery drainage. Many modeling,

estimation, and control challenges are involved with battery power management, motor

dynamics, and control beyond the scope of the project, therefore only the design aspect of

regulation assuming a simple motor model is considered so that actuator compensation is

integrated into the control system.

7.2 Updated Actuator Dynamics Model

Each motor is modeled as a system with an input voltage and propeller speed output, with a

proportional gain and time constant representative of the gain and time delay effects of the

actuator expressed as the transfer function (7.1). Physical modeling of motors is far more

complex, but this study considers design of a linear controller for the simplest model to

demonstrate the function of the compensator and to provide completeness of the control system.

 𝛺(𝑠)

𝑉𝑖𝑛(𝑠)
= 𝐺(𝑠) =

𝑐𝑚
𝜏𝑠 + 1

(7.1)

From previous designs, a mechanical time constant of 𝜏 = 1.28 𝑚𝑠 and motor constant 𝑐𝑚 =

20 𝑠−1 are chosen.

75

7.3 2-DOF PI Control Design

The objective of the controller is to maintain 𝛺𝑐 = 𝛺 subject to changes in the input voltage

𝑉𝑖𝑛 with the fastest response possible without overshoot, i.e. critically damped with damping

ratio 𝜁 = 1. Recall Figure 2.3 where the commanded propeller speeds are produced by a motor

mixing block whose inputs are the desired forces and torques from the main control law. The PI

controller is taken from reference [40], a set of notes on adaptive control of a DC motor.

Figure 7.1 – Simplified diagram for propeller speed regulation

A simplified diagram is shown in Figure 7.1 where 𝑉𝑑 models an additive change in the input

voltage due to battery drainage.

Figure 7.2 – 2DOF PI controller

The closed-loop transfer function of Figure 7.2 from the commanded propeller speed 𝛺𝑐 to the

real propeller speed 𝛺 is given by (7.2).

76

𝑇(𝑠) =

𝑐𝑚(𝐾𝑃𝑁𝑠 + 𝐾𝐼)

𝜏𝑠2 + (1 + 𝑐𝑚𝐾𝑃)𝑠 + 𝑐𝑚𝐾𝐼

(7.2)

Derivation of Closed-Loop Transfer Function

Let 𝑟 = 𝛺𝑐 and 𝑦 = 𝛺

From the block diagram relationships,

𝑃1(𝑠) =
𝐾𝐼
𝑠
(𝛺𝑐(𝑠) − 𝛺(𝑠))

𝑃2(𝑠) = 𝐾𝑝(𝑁𝛺𝑐(𝑠) − 𝛺(𝑠))

Adding the two results,

𝑉𝑖𝑛(𝑠) = 𝑃1(𝑠) + 𝑃2(𝑠)

Let 𝑈(𝑠) = 𝑉𝑖𝑛(𝑠) and 𝑌(𝑠) = 𝛺(𝑠)
𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠)

𝛺(𝑠) = 𝐺(𝑠) (𝐾𝑃𝑁𝛺𝑐(𝑠) − 𝐾𝑃𝛺(𝑠) +
𝐾𝐼
𝑠
𝛺𝑐(𝑠) −

𝐾𝐼
𝑠
𝛺(𝑠))

Rearranging so that 𝛺(𝑠) and 𝛺𝑐(𝑠) are on the left- and right-hand sides of the equation,

𝛺(𝑠)[𝑠 + 𝐺(𝑠)𝐾𝑃𝑠 + 𝐺(𝑠)𝐾𝐼] = 𝛺𝑐(𝑠)[𝐺(𝑠)𝐾𝑝𝑁𝑠 + 𝐺(𝑠)𝐾𝐼]

The closed-loop transfer function from 𝛺𝑐 to 𝛺 is then,

𝑇(𝑠) =
𝛺(𝑠)

𝛺𝑐(𝑠)
=

𝐺(𝑠)𝐾𝑝𝑁𝑠 + 𝐺(𝑠)𝐾𝐼

𝑠 + 𝐺(𝑠)𝐾𝑃𝑠 + 𝐺(𝑠)𝐾𝐼

Substituting 𝐺(𝑠) =
𝑐𝑚

𝜏𝑠+1
 and simplifying yields the transfer function (7.2) ,

𝑇(𝑠) =
𝑐𝑚(𝐾𝑃𝑁𝑠 + 𝐾𝐼)

𝜏𝑠2 + (1 + 𝑐𝑚𝐾𝑃)𝑠 + 𝑐𝑚𝐾𝐼

Comparing 𝑇(𝑠) to a general second-order system,

𝑇(𝑠) =

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2

(7.3)

and choosing poles at −20,−25 to determine the natural frequency 𝜔𝑛 results in the gains (7.4)

77

𝐾𝑃 =

2𝜁𝜔𝑛𝜏

𝑐𝑚

𝐾𝐼 =
𝜔𝑛

2𝜏

𝑐𝑚

(7.4)

The gains 𝐾𝑃, 𝐾𝐼 are starting gains to be tuned in simulation along with the feedforward gain 𝑁.

7.4 Simulation

 The PI controller is implemented in Simulink, shown in Figure 7.3, to determine the

tuned gains that achieve fast response while tracking the reference 𝛺𝑐 subject to changes in 𝑉𝑖𝑛.

Figure 7.3 – Simulink setup for PI controller

A reference 𝛺𝑐 = 200 𝑟𝑎𝑑/𝑠 and voltage parameters of 𝑉𝑑 = 0 𝑉 and 𝑉𝑑 = −5 𝑉 were set for

the simulation to test the controller with and without a voltage change. The controller gains

were adjusted until the propeller speed response shown in Figure 7.4 was achieved. This is

reflected in the Appendix A.3 code. The controller was able to track the reference propeller

speed. Note with no change in the voltage input, the rise time of the response is small with a

slight overshoot and no steady state error. Adding the voltage change causes a longer rise time,

but the controller still tracks the reference.

78

Figure 7.4 – Propeller speed response subject to voltage change

The PI controller shown in Figure 7.3 is applied to each of the four commanded propeller speeds

and augmented to the LPV control system. These are part of the nonlinear simulations described

in Chapter 9.

79

8. CHAPTER 8

LPV CONTROL OF NONLINEAR SYSTEM

8.1 System Modifications

LPV control against the nonlinear system expressed by Table 2.3 and the actuator dynamics

system described in Chapter 7 was not a straightforward process. Although the LPV controller

developed in Chapter 6 had no issues controlling the linear system, in nonlinear simulation, it

was found the controller developed could not stabilize the nonlinear system without introducing

modifications. Therefore, this chapter describes the modifications added to the control system

and their efficacy in controlling the nonlinear system. These modifications are a modification of

the LPV commands to account for the equilibrium point, a reference model signal to filter the

reference trajectory, and a modification of the hover state conditioning system so that only the

LPV commands are used for the control in contrast to the design in Chapter 4 where the

commands were switched to a direct input to estimate the mass.

With modifications applied, the LPV controller had issues controlling the system using the

desired forces and torques as inputs into the motor mixing and actuator dynamics blocks shown

in Figure 2.5. However, applying these inputs directly into the quadrotor dynamics block,

neglecting the actuator dynamics, resulted in stabilization and control of the nonlinear system.

A propeller speed based LPV controller is developed to control the complete system with

actuator dynamics. Therefore, the nonlinear simulations were completed in three steps:

• Nonlinear simulation with the control inputs as the desired forces and torques, not

including actuator dynamics.

• Nonlinear simulation with actuator dynamics using an updated LPV controller derived

using an LPV model with the propeller speeds as the control inputs.

• Nonlinear simulation with disturbances added to the actuator system and velocity states.

The objective of the control system is to estimate the unknown mass online, determine the

controller gains automatically, and track the reference trajectory developed from Chapter 6

subject to disturbances.

80

8.1.1 Control Conditioning

 Since the system was linearized with respect to 𝒖𝒆, the control commands 𝒖𝒅 from the LPV

controller can be applied directly to control linear system. However, to control the linear

system, these commands are conditioned to account for the offset caused by the equilibrium

point. The new control input 𝒖 is found by scaling the LPV commands by k𝑢 and adding the

equilibrium point used in the linearization.

 𝒖 = 𝒖𝒆 + 𝒌𝒖𝒖𝒅

𝑢𝑒 = [(�̂�𝑝 + 𝑚𝑏𝑎𝑠𝑒)𝑔 0 0 0]
𝑇

𝑢𝑑 = [𝐹𝑧 𝜏𝜑 𝜏𝜃 𝜏𝜓]𝑑𝑒𝑠
𝑇

(8.1)

Note �̂�𝑝 is taken from the mass estimator and k𝑢 was determined in simulation. The hover

enable signal is applied for the first second of flight. Within this time, the mass estimator is

active producing an estimate at every sample, the LPV commands adjust accordingly until the

estimate converges to the actual 𝑚𝑝.

 The hover state conditioning system is also modified so that only the LPV commands are

used for control. Note the hover enable signal can be modified to enable the estimation during

multiple points in the flight path. But for the purposes of simulation, the hover enable signal is

applied only at launch to demonstrate the efficacy of the control system. These modifications

are shown in Figure 8.1 and implemented in the Simulink structures in Appendix B.4 and B.5.

Figure 8.1 – Modifications of LPV controller

81

8.1.2 Model Reference Signal

 In addition to conditioning the control, the reference trajectory is scaled and filtered before

being fed into the LPV controller. The filter gradually ramps up the velocity demands from the

reference trajectory to prevent instabilities from occurring in the system response due to inputs

exceeding a stable limit. This modification was not necessary to control the linear system. The

model reference signal (8.2) is proposed for the filter, applied after the scaling gain 𝑘𝑟.

 �̇�𝒓𝒆𝒇 = 𝐴𝑟𝑒𝑓𝒙𝒓𝒆𝒇 + 𝐵𝑟𝑒𝑓𝒖𝒓𝒆𝒇

𝒚𝒓𝒆𝒇 = 𝐶𝑟𝑒𝑓𝒙𝒓𝒆𝒇 + 𝐷𝑟𝑒𝑓𝒖𝒓𝒆𝒇

𝐴𝑟𝑒𝑓 = −𝜏𝑟𝑒𝑓 ∗ 𝐼12𝑥12

𝐵𝑟𝑒𝑓 = 𝐼12𝑥12

𝐶𝑟𝑒𝑓 = 𝜏𝑟𝑒𝑓 ∗ 𝐼12𝑥12

𝐷𝑟𝑒𝑓 = 012𝑥12

(8.2)

A time constant 𝜏𝑟𝑒𝑓 is used to control the speed of response to each reference input. For the

simulation in 8.1.3, 𝜏𝑟𝑒𝑓 = 0.06 is chosen after several simulations. The model can be

expressed as a diagonal matrix of transfer function with 𝐺𝑟(𝑠) =
3

50𝑠+3
 applied to each reference

input. Its frequency response is shown in the Bode plot in Figure 8.2. The model reference limits

the inputs from the LPV controller, so they do not exceed force demands that cause instability.

82

Figure 8.2 – Bode plot of model reference signal 𝐺𝑟(𝑠) with 𝜏𝑟𝑒𝑓 = 0.06

The modifications for the control and reference can be summarized by the simplified block

diagram shown in Figure 8.3 with the mass estimator, LPV controller, scaling gain 𝐾𝑢, control

conditioning subsystem, and hover state conditioning subsystem contained within the LPV

control system block.

Figure 8.3 – System modifications and overall representation

83

8.1.3 Nonlinear Simulation

Figure 8.4 – Nonlinear simulation setup with desired forces and torques as inputs

Table 8.1 – Simulation Parameters

Parameters Description Value

𝑘𝑢 Control scaling gain 0.1
𝑘𝑟 Reference scaling gain 1.325

𝛾 Rate of convergence gain 15

𝜏𝑟𝑒𝑓 Model reference time constant 0.06 𝑠

𝑡 Simulation time 300 𝑠

Figure 8.5 – 𝐶𝐾 controller matrix at �̂�𝑝 = 2

84

Figure 8.6 – Nonlinear simulation of mass estimation

Figure 8.7 – Nonlinear simulation of position tracking control

85

Figure 8.8 – Nonlinear simulation of velocity responses

Figure 8.9 – Nonlinear simulation of Euler angle responses

86

Figure 8.10 – Nonlinear simulation of attitude rate responses

Figure 8.11 – Control inputs

87

8.2 Updated LPV Controller

8.2.1 Propeller Speed Based LPV Model and Controller

 To derive the propeller speed based LPV controller, the linear, parameter dependent model

from Chapter 2 is rewritten with the control inputs as functions of the propeller speeds. The

model is summarized by (8.3).

 �̇� = 𝐴(𝜌)𝒙 + 𝐵(𝜌)𝒖

𝑥 = [𝑋 𝑌 𝑍 𝑢 𝑣 𝑤 𝜑 𝜃 𝜓 𝑝 𝑞 𝑟]𝑇

𝑢 = [𝛺𝑓 𝛺𝑟 𝛺𝑏 𝛺𝑙]𝑇

(8.3)

where the matrices 𝐴(𝜌) and 𝐵(𝜌) are given by (8.4)

𝐴(𝜌) =

[

03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]

 and 𝐵(𝜌) =

[

05𝑥1 05𝑥1 05𝑥1 05𝑥1
𝜌
1

𝜌
1

𝜌
1

𝜌
1

03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 −𝜌

2
0 𝜌

2

𝜌
2

0 −𝜌
2

0
−𝜌

3
𝜌
3

−𝜌
3

𝜌
3]

(8.4)

and the matrices 𝑆3𝑥3
1 , 𝑆3𝑥3

2 , 𝑆3𝑥3
3 and the parameter functions 𝜌1, 𝜌2, 𝜌3 are defined by (2.16) and

(8.5), respectively. The equilibrium operating point at hover is 𝑢𝑒 = √
𝑚𝑔

4𝐾𝐹
[1 1 1 1].

𝜌1 =

−1.222 ∗ 10−7√4.014𝑒7 ∗ 𝑚𝑝 + 3.521 ∗ 10
8

𝑚𝑝 +𝑚𝑏𝑎𝑠𝑒

𝜌2 =

7.332 ∗ 10−8√4.014𝑒7 ∗ 𝑚𝑝 + 3.521 ∗ 10
8

0.009 ∗ 𝑚𝑝 + 0.3013

𝜌3 =

3.0 ∗ 10−9√4.014𝑒7 ∗ 𝑚𝑝 + 3.521 ∗ 10
8

0.009 ∗ 𝑚𝑝 + 0.5353

(8.5)

The same LPV modeling and controls process described in Chapters 5 and 6 is applied to derive

the controller, but with a different affine parameter dependent system. The MATLAB code for

the propeller based LPV controller is provided in Appendix A.2 with the singular values plots

for the controller and closed-loop system shown in Figure 8.12 and Figure 8.13.

88

Figure 8.12 – Singular values plot of propeller speed based LPV controller

Figure 8.13 – Singular values of propeller speed based closed loop system

89

8.2.2 Nonlinear Simulation with Actuator Dynamics

Figure 8.14 – Nonlinear simulation with actuator dynamics

Table 8.2 – Simulation Parameters

Parameters Description Value

𝐾𝑢 Control scaling gain 0.1
𝐾𝑟 Reference scaling gain [1.685 1.685 1.99 𝐼1𝑥9]

𝑇

𝛾 Rate of convergence gain 15

𝜏𝑟𝑒𝑓 Model reference time constant 0.1 𝑠

𝑡 Simulation time 300 𝑠

Figure 8.15 – 𝐶𝐾 controller matrix at �̂�𝑝 = 2

90

Figure 8.16 – Bode plot for reference signal with 𝜏𝑟𝑒𝑓 = 0.1

Figure 8.17 – Mass estimation against nonlinear system with actuator dynamics

91

Figure 8.18 – Trajectory tracking against nonlinear system with actuator dynamics

Figure 8.19 – Position state responses of nonlinear system with actuator dynamics

92

Figure 8.20 – Velocity state responses of nonlinear system with actuator dynamics

Figure 8.21 – Euler angle state responses of nonlinear system with actuator dynamics

93

Figure 8.22 – Attitude rate state responses of nonlinear system with actuator dynamics

8.3 Nonlinear Simulation with Disturbances

8.3.1 Setup

 To stress the controller, the disturbances sources shown in Figure 8.14 are switched at the

times given by Table 8.3. The same simulation parameters of Table 8.2 are used.

Table 8.3 – Disturbance sources in simulation

Disturbance Time Applied

Pulse on Control Inputs 𝑡 = 30 𝑠
Pulse on Velocity States 𝑡 = 50 𝑠

Step on Actuator Input Voltage 𝑡 = 100 𝑠

94

8.3.2 Results

Figure 8.23 – Mass estimation against nonlinear system with disturbances

Figure 8.24 – Trajectory tracking against nonlinear system with disturbances

95

Figure 8.25 – Position state responses of nonlinear system with disturbances

Figure 8.26 – Velocity state responses of nonlinear system with disturbances

96

Figure 8.27 – Euler angle state responses of nonlinear system with disturbances

Figure 8.28 – Attitude rate responses of nonlinear system with disturbances

97

8.4 Discussion

Without the modifications, the LPV controller could not directly stabilize the nonlinear

system. Modifying the reference and control was not necessary for the linear simulation in

Chapter 6, where with scaling the control commands could control the system directly. The

model reference signal filters the reference trajectory to gradually ramp up the velocities to

prevent the demanded accelerations from causing instability, however the cruise velocity 𝑣𝑚

had to be decreased to 10 𝑚/𝑠 with a limit of 20 𝑚/𝑠. The simulations show the modifications

resolved stability issues and the controller was able to track the reference.

 The switching design from Chapter 4 where the direct input 𝑈𝑝 is used to lift the mass

resulted in stability issues when switching to the LPV commands after the hover signal was

disabled. There was significant “wiggle” in the quadrotor motion that produced unstable

behavior. Therefore, all control was switched over to be automatically handled by the LPV

controller from 𝑡 = 0. The rate of convergence gain for the mass estimator was increased to 𝛾 =

15 to accommodate the system modifications. During the estimation time from 𝑡 = 0 to 𝑡 =

𝑡�̂�𝑝 < 1𝑠, the LPV controller is continually adjusting its gains to the mass estimate until the

hover enable signal is disabled at 𝑡 = 1 𝑠. It was found the LPV control commands could

handle fast variations in the mass estimate and the max payload weight, without having to apply

the direct input 𝑈𝑝. The filter time constant had to be increased to 0.1 to control the nonlinear

system with actuator dynamics. The time 𝑡𝑏 had to be increased to 20 𝑠 from 4 𝑠 in the linear

simulation to decrease the velocity demands.

 The main takeaway from the simulations is the nonlinear system imposes physical

limitations on the control the linear system did not need to consider. This is also due to the

hover assumptions of the LPV model. The quadratic and robust stability results discussed in

Chapter 6 only guarantee stability for the LPV system, not the nonlinear system. Small steady

state errors are still present in the state responses, but these can be resolve by further tuning the

feedforward gains. Finally, multiple payload masses within the design range were tested to

validate the control systems meets the requirements.

98

9 CHAPTER 9

CONCLUSION

9.1 Advantages of LPV Control System

 The LPV controller based on the self-scheduling ℋ∞ technique was able to track a desired

trajectory subject to an unknown mass and disturbance sources, with some performance issues.

The modifications enabled LPV control system compatibility for the nonlinear system. Since

the parameter box and vertex controllers are determined offline, only the convex coordinates are

necessary to determine the online LPV controller matrices. Additionally, the mass estimator

proved to be robust when tested against the nonlinear system including actuator dynamics by

still converging to the true mass in different scenarios. However, a rigorous proof is necessary

to prove parameter convergence for all trajectories as 𝑡 → ∞. The design of the range of the

payload mass can easily be increased to produce a new controller without increasing controller

dimensions or changing its structure, adding flexibility to the design requirements for the

control system. For instance, the parameter space for the LPV controller could be adjusted to

control a larger aerospace delivery vehicle making multiple payload pickups or drop-offs along

a flight path. Additionally, the hover state conditioning system switches off the mass estimation

when the hover signal is disabled. This saves computational resources online as the LPV

controller will use the converged mass estimate until it is necessary to estimate the payload

again. By feeding in the payload mass directly, the controller gains adjust automatically to the

mass estimates without requiring a switching to a worst-case lifting force input.

9.2 Limitations and Possible Solutions

As demonstrated in Chapter 8, controlling the nonlinear system is not a trivial task. The

nonlinear system imposes physical limitations on what can be achieved by the control. For

example, the controller could not stabilize the plant when the demanded velocities exceeded

more than 20 𝑚/𝑠. Relaxing the hover state conditions by expanding the parameter space to

include the velocity states and then developing the LPV controller to gain schedule based on

both payload mass and velocity could result in a more reactive controller so that the quadrotor

99

that can translate faster while maintaining stability. Furthermore, incorporating actuator

constraints for the propeller speed limits into the LMI formulation would allow for a control

solution that is physically realizable within the hardware capability of a delivery quadrotor.

9.3 Multivariable vs. SISO Approaches

 The main advantage of multivariable control is much of the controls design can be handled

in “one shot”. By feeding the reference and error from the state measurements into the

controller, the LPV controller generates the four control inputs necessary to affect the motion of

the quadrotor. In multivariable control, each controlled output can be dependent on several

variables and/or inputs. In contrast to SISO control, as outlined in Appendix C using PID

control of a quadrotor as an example, each controlled output is controlled by one input in a

successive loop closure structure.

9.4 Controller Function in an Overall GNC System

 The function of any feedback controller is to first stabilize the plant and then improve system

performance for some tracking quality criteria and to provide robustness in meeting control

objectives even in the presence of system variations, unmodeled dynamics, disturbances, or

noise. A complete guidance, navigation, and control system could also include state estimation

and an optimizer which minimizes or maximizes an objective to produce a reference for the

controller to track according to Figure 9.1

Figure 9.1 – Optimizer and controller

A further breakdown of the optimizer and controller, but still at a high-level representation, is

shown in Figure 9.2, based on reference notes [41]. The trajectory can be altered as necessary

100

online based on the control law and state estimation blocks. This project did not consider

trajectory generation based on generating an optimal 𝑢𝑟𝑒𝑓 and 𝑥𝑟𝑒𝑓, as shown in Figure 9.2, for

the feedback controller to then track. For example, a model predictive controller (MPC) could

generate the optimal trajectory in the outer loop, the LPV controller tracks and rejects any

disturbances that occur along the path in the inner loop.

Figure 9.2 – General guidance, navigation, and control system

To narrow down the scope of the study, the project assumed all states were available for

measurement, therefore the state estimation block is not considered. In practice, all states are not

available for direct feedback due to design limitations and sensor dynamics. The project

considered estimation for an unknown system parameter, but not an inaccessible or undesired

state measurement. Generally, a controller and state observer can be designed separately and

integrated together for an observer-controller system. This separation principle applies to LPV

systems.

9.5 Future Research

Future research involves investigating the performance advantages gained by the LPV

controller by refining the weights selection used in the ℋ∞ mixed sensitivity design and

relaxing the hover state assumptions by expanding the parameter space to include velocity

states. To add guidance capability, research on integrating a guidance law to produce optimal

reference trajectories automatically is considered to complete a guidance and control system for

the delivery quadrotor.

101

REFERENCES

[1] T. Bresciani, "Modelling, Identification and Control of Quadrotor Helicopter," Lund University,

Lund, Sweden, 2008.

[2] B. J. Emran and H. Najjaran, "A review of quadrotor: An underactuated mechanical system,"

Annual Reviews in Control, vol. 46, pp. 165-180, 2018.

[3] A. T. Larroya, "LPV Control of a Quadrotor," Universitat Politecnica, Catalonia, Spain, 2015.

[4] P. Apkarian and P. Gahinet, "A Convex Characterization of Gain-Scheduled Hinf Controllers," IEEE

Transaction on Automatic Control, Vols. AC-40, pp. 853-854, 1995.

[5] Z. Liu, C. Yuan and Y. Zhang, "Active Fault-Tolerant Control of Unmanned Quadrotor Helicopter

Using Linear Parameter Varying Technique," Journal of Intelligent and Robotic Systems, 2017.

[6] B. J. Emran and H. Najjaran, "Switching Control of Quadrotor with Adaptation Mechanism," in

2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 2016.

[7] J. Vincent and C. Gartenberg, "Here's Amazon's new transforming Prime Air delivery drone," The

Verge, 5 June 2019. [Online]. Available:

https://www.theverge.com/2019/6/5/18654044/amazon-prime-air-delivery-drone-new-design-

safety-transforming-flight-video.

[8] Federal Aviation Administration, "Fact Sheet - Small Unmanned Aircraft Regulations (Part 107),"

23 July 2018. [Online]. Available:

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22615.

[9] T. Risen, "FAA grants first drone airline approval for UPS," FlightGlobal, [Online]. Available:

https://www.flightglobal.com/news/articles/faa-grants-first-drone-airline-approval-for-ups-

461206/. [Accessed 2019].

[10] S. Swei, Quadrotor Flight Controls, San Jose, CA: Department of Aerospace Engineering, San Jose

State University, Fall 2018.

[11] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd ed.,

Wiley, 2005.

[12] C. Wang, M. Nahon and M. Trentini, "Controller Development and Validation for a Small

Quadrotor with Compensation for Model Variation," in 2014 International Conference on

Unmanned Aircraft Systems, Orlando, FL, 2014.

102

[13] I. Sadeghzadeh, M. Abdolhosseini and Y. M. Zhang, "Payload Drop Application of Unmanned

Quadrotor Helicopter Using Gain-Scheduled PID and Model Predictive Control Techniques,"

Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC,

Canada.

[14] I.-H. Choi and H.-C. Bang, "Adaptive command filtered backsteeping tracking controller design for

quadrotor unmanned aerial vehicle," Proceedings of the Institution of Mechanical Engineers, Part

G: Journal of Aerospace Engineering, vol. 226, no. 5, 2012.

[15] D. W. Kun and I. Hwang, "Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control of

Quadrotor," Journal of Guidance, Control, and Dynamics, vol. 39, no. 5, pp. 996-1008, 2016.

[16] P. Apkarian, P. Gahinet and G. Becker, "Self-scheduled Hinf Control of Linear Parameter-Varying

Systems: a Design Example," Automatica, vol. 31, no. 9, pp. 1251-1261, 1995.

[17] I. Sadeghzadeh, A. Chamseddine, D. Theilliol and Y. Zhang, "Linear Parameter Varying Control

Synthesis: State Feedback versus Hinf Technique with Application to Quadrotor UAV," in 2014

International Conference on Unmanned Aircraft Systems, Orlando, FL, 2014.

[18] J. S. Shamma, "An Overview of LPV Systems," in Control of Linear Parameter Varying Systems with

Applications, Springer Science+Business Media, 2012.

[19] H. D. Hughes and F. Wu, "Chapter 16: LPV Hinf Control for Flexible Hypersonic Vehicle," in Control

of Linear Parameter Varying Systems with Applications, Springer Science+Business Media, 2012.

[20] P. Seiler, G. J. Balas and A. Packard, "Chapter 19: Linear Parameter-Varying Control for the X-53

Active Aeroelastic Wing," in Control of Linear Parameter Varying Systems with Applications,

Springer Science+Business Media, 2012.

[21] Z. Yu, H. Chen and P.-y. Woo, "Gain Scheduled LPV Hinf Control Based on LMI Approach for a

Robotic Manipulator," Journal of Robotic Systems, 2002.

[22] H. Pfifer, C. P. Moreno, J. Theis, A. Kotikapuldi, A. Gupta, B. Takarics and P. Seiler, "Linear

Parameter Varying Techniques Applied to Aeroservoelastic Aircraft: In Memory of Gary Balas,"

IFAC-PapersOnLine, vol. 48, no. 26, pp. 103-108, 2015.

[23] D. Rotondo, F. Nejjari and V. Puig, "Robust Quasi-LPV Model Reference FTC of a Quadrotor UAV

Subject to Actuator Faults," International Journal of Applied Mathematics and Computer Science,

vol. 25, no. 1, pp. 7-22, 2015.

[24] J. Stephan, L. Schmitt and W. Fichter, "Linear Parameter-Varying Control for Quadrotors in Case of

Complete Actuator Loss," Journal of Guidance, Control, and Dynamics, vol. 41, no. 10, 2018.

103

[25] J. Xu, "Design Perspectives on Delivery Drones," RAND Corporation, Santa Monica, CA, 2017.

[26] D. W. Mellinger, "Trajectory Generation and Control for Quadrotors," Publicly Accessible Penn

Dissertations, 2012.

[27] K. K. Nermisky and K. Turkoglu, "Simulated Annealing-Based Optimal Control PID Controller

Design: A Case Study on Nonlinear Quadrotor Dynamics," in Proceedings of the ASME 2017

Dynamic Systems and Control Conference, Tysons, Virginia, 2017.

[28] S. Boyd, L. El Ghaoui, E. Feron and V. Bakakrishnan, Linear Matrix Inequalities in System and

Control Theory, Philadelphia: Society for Industrial and Applied Mathematics, 1994.

[29] MathWorks, Robust Control Toolbox, 2019.

[30] CVX Research, Inc., CVX: Matlab Software for Disciplined Convex Programming.

[31] S. L. Rangajeeva and J. F. Whidborne, "Linear Parameter Varying Control of a Quadrotor," in 6th

International Conference on Industrial and Information Systems, Sri Lanka, 2011.

[32] M. Fujita, LPV System and Gain Scheduling, University of Tokyo, Spring 2015.

[33] ECE 792, Adaptive Control, Raleigh, NC: North Carolina State University.

[34] G. Tao, Adaptive Control Design and Analysis, Hoboken, NJ: Wiley-Interscience, 2003.

[35] D.-W. Gu, P. H. Petkov and P. H. Konstantinov, Robust Control Design with MATLAB, vol.

Advanced Textbooks in Control and Signal Processing, Glasgow, UK: Springer, 2nd Edition.

[36] G. Balas, R. Chiang, A. Packard and M. Safonov, Robust Control Toolbox: Getting Started Guide,

MathWorks R2020a.

[37] J. How, 16.323 Principles of Optimal Control, Massachusetts Institute of Technology: MIT

OpenCourseWare, Spring 2008.

[38] S. Swei, Control System Overview, San Jose , CA: San Jose State University, Fall 2019.

[39] MathWorks, Mixed-Sensitivity Loop Shaping.

[40] M. Balas and B. Udrea, Direct Model-Reference Adaptive Control of a DC Motor, Daytona Beach,

FL : Embry Riddle Aeronautical University, May 2015.

[41] A. Rao, Lecture 30, Optimal Control Theory, EML 6934, Gainesville, FL: University of Florida, Spring

2012.

104

[42] P. Apkarian and H. D. Tuan, "Parametrized LMIs in Control Theory," SIAM Journal on Control and

Optimization, vol. 38, no. 4, pp. 1241-1264, 2000.

[43] S. Shahruz and S. Behtash, "Design of Controllers for Linear Parameter-Varying Systems by the

Gain Scheduling Technique," Journal of Mathematical Analysis and Applications, vol. 168, pp. 195-

217, 1992.

[44] G. Becker and A. Packard, "Robust performance of linear parametrically varying systems using

parametrically-dependent linear feedback," Systems and Control Letters, vol. 23, pp. 205-215,

1994.

[45] F. Wu, X. H. Yang, A. Packard and G. Becker, "Induced L2-Norm Control for LPV Systems with

Bounded Parameter Variation Rates," International Journal of Robust and Nonlinear Control, vol.

6, pp. 983-998, 1996.

[46] P. Apkarian and R. J. Adams, "Advanced Gain-Scheduling Techniques for Uncertain Systems," IEEE

Transactions on Control Systems Technology, vol. 6, no. 1, 1998.

[47] C. Scherer, P. Gahinet and M. Chilali, "Multiobjective Output-Feedback Control via LMI

Optimization," IEEE Transactions on Automatic Control, vol. 42, no. 7, 1997.

[48] C. W. Scherer, "Structured finite-dimensional controller design by convex optimization," Linear

Algebra and its Applications, Vols. 351-352, pp. 639-669, 2002.

[49] A. Abdullah and M. Zribi, "Model reference control of LPV systems," Journal of the Franklin

Institute, vol. 346, pp. 854-871, 2009.

[50] K. P. B. Chandra, H. Alwi and C. Edwards, "Fault Reconstruction for a Quadrotor Using an LPV

Sliding Mode Observer," International Federation of Automatic Control, vol. 48, no. 21, pp. 374-

379, 2015.

[51] H. Alwi and C. Edwards, "Robust fault reconstruction for linear parameter varying systems using

sliding mode observers," International Journal of Robust and Nonlinear Control, vol. 24, pp. 1947-

1968, 2013.

105

APPENDECIES

A. MATLAB Codes

A.1 LPV System Representation and LPV Control of Quadrotor

% MS Project (AE 295B)
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor
% Description: Script develops the LPV model and LPV controller for the
% delivery quadrotor
% Author: Hussam Okasha

%% Parameters
g = 9.81;
l = 0.6; %m
R = 0.15; %m
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and

payload
m_motor = 0.325;
m_battery = 3.673;
m_motors = 4*m_motor;
mp = 2;
m_base = m_quadrotor + m_motors + m_battery;

KF = 6.11e-8;
KM = 1.5e-9;

k = sqrt(g*(m_base+mp)/(4*KF));
hov_in = (m_base+mp)*g*[1 0 0 0];
omega_direct = k*[1 1 1 1];

psi0 = 0;

%% Linear, Parameter Dependent Model
syms mp psi0
%State Variable Selection
%[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]' = [X Y Z u v w phi theta psi p

q r]'
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 u1 u2 u3 u4
x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12];
%Control Input Selection
%[u1 u2 u3 u4]' = [U_z U_roll U_pitch U_yaw]'
u = [u1 u2 u3 u4];

M = m_quadrotor + m_battery + mp;
Jx = ((2*M*R^2)/5) + 2*(l^2)*m_motor;
Jy = ((2*M*R^2)/5) + 2*(l^2)*m_motor;
Jz = ((2*M*R^2)/5) + 4*(l^2)*m_motor;
[Al, Bl] = Qrotor_Linearization(x,u,m_base,mp,psi0,Jx,Jy,Jz);
C = eye(12);
D = zeros(12,4);

106

%Controllability and Observability
A = subs(Al,psi0,0);
A = double(A);
Bcc = subs(Bl,mp,0);
Co = ctrb(A,Bcc);
rankCo = rank(Co)
Ob = obsv(A,C);
rankOb = rank(Ob)

%% LPV Model
%Control Input Filter
Au = -100*eye(4);
Bu = eye(4);
Cu = eye(4);
Ap = [A, Bl*Cu;
 zeros(4,12), Au];
Ap = vpa(Ap,4);
Bp = [zeros(12,4);Bu];

%disturbance matrix
B1 = [zeros(5,4);
 1 0 0 0;
 zeros(3,4);
 zeros(3,1), eye(3)];

B1p = [B1; zeros(4,4)];

%define H
%input defn: w' = [u' w]'
Bpp = [Bp, B1p]; %dim 16x8

%Parameter functions
p1 = -1/(mp+8.773);
p2 = 1/(0.009*mp+0.3013);
p3 = 1/(0.009*mp+0.5353);

%Upper and lower bounds
p1_l = double(subs(p1,mp,0));
p1_u = double(subs(p1,mp,2.3));
p2_l = double(subs(p2,mp,0));
p2_u = double(subs(p2,mp,2.3));
p3_l = double(subs(p3,mp,0));
p3_u = double(subs(p3,mp,2.3));

P = [p1_l p1_u;
 p2_u p2_l;
 p3_u p3_l];

%Parameter Box
pv = pvec('box',P);
VERTX = polydec(pv); %vertex coordinates
pvinfo(pv)
%Vector of 3 parameters ranging in a box

%example of polydec function

107

[V_C,VERTX_C] = polydec(pv,[p1_u, p2_u, p3_u]);

%Augmented Model Intermediate Matrices
M1 = [1 0 0;
 0 1 0;
 0 0 -1];

M2 = [0 -g 0;
 g 0 0;
 0 0 0];

M3 = eye(3);

M4 = [1 0 0;
 0 1 0;
 0 0 0];

A0 = [zeros(16,3),[M1;zeros(13,3)],[zeros(3);M2;zeros(10,3)],[zeros(6,3);

M3;zeros(7,3)],[zeros(12,4);Au]];
A1 = [zeros(16,12),[zeros(5,1);1;zeros(10,1)],zeros(16,3)]; %1 corresponds to

rho1
A2 = [zeros(16,13),[zeros(9,3);M4;zeros(4,3)]]; %move over one column in B,

M4 corresponds to rho2
A3 = [zeros(16,15),[zeros(11,1);1;zeros(4,1)]]; %1 corresponds to rho3

B0 = Bpp;
B1 = zeros(16,8);
B2 = zeros(16,8);
B3 = zeros(16,8);

Cp = [eye(12),zeros(12,4)];
C0 = Cp;
C1 = zeros(12,16);
C2 = zeros(12,16);
C3 = zeros(12,16);

Dp = [zeros(12,4),zeros(12,4)];
D0 = Dp;
D1 = zeros(12,8);
D2 = zeros(12,8);
D3 = zeros(12,8);

S0 = ltisys(A0,B0,C0,D0);
S1 = ltisys(A1,B1,C1,D1,0);
S2 = ltisys(A2,B2,C2,D2,0);
S3 = ltisys(A3,B3,C3,D3,0);

pdsys = psys(pv,[S0,S1,S2,S3]); %affine parameter dependent system
psinfo(pdsys)
%Affine parameter-dependent model with 3 parameters (4 systems)
%Each system has 16 state(s), 8 input(s), and 12 output(s)

polysys = aff2pol(pdsys); %polytopic model - instances of pdsys (affine) at

the vertices of the box
psinfo(polysys)

108

%Polytopic model with 8 vertex systems
%Each system has 16 state(s), 8 input(s), and 12 output(s)
% [tau,P] = quadstab(polysys)
% open-loop unstable

%% LPV Controls Design
%% Weights Selection
%static gains and filters in TF form
sys_Wr1 = ltisys('tf',[1],[1]);
sys_Wr2 = ltisys('tf',[1],[1]);
sys_Wr3 = ltisys('tf',[1],[1]);
sys_Wr4 = ltisys('tf',[1],[1]);
sys_Wr5 = ltisys('tf',[1],[1]);
sys_Wr6 = ltisys('tf',[1],[1]);
sys_Wr7 = ltisys('tf',[1],[1]);
sys_Wr8 = ltisys('tf',[1],[1]);
sys_Wr9 = ltisys('tf',[1],[1]);
sys_Wr10 = ltisys('tf',[1],[1]);
sys_Wr11 = ltisys('tf',[1],[1]);
sys_Wr12 = ltisys('tf',[1],[1]);

sys_Wd1 = ltisys('tf',[1],[1]);
sys_Wd2 = ltisys('tf',[1],[1]);
sys_Wd3 = ltisys('tf',[1],[1]);
sys_Wd4 = ltisys('tf',[1],[1]);

cWp1 = 2.01;
cWp2 = 0.201;
% cWp1 = 20.1;
% cWp2 = 2.01;
% cWp1 = 0.201;
% cWp2 = 0.0201;
sys_Wp1 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp2 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp3 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp4 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp5 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp6 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp7 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp8 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp9 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp10 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp11 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp12 = ltisys('tf',[cWp1],[1, cWp2]);

sys_Wp10 = ltisys('tf',[2 0],[1, 8.5, 18]);
sys_Wp11 = ltisys('tf',[2 0],[1, 8.5, 18]);
sys_Wp12 = ltisys('tf',[2 0],[1, 8.5, 18]);

% numWu = [10 0];
% denWu = [1 100];
numWu =[9.678, 0.029, 0, 0];
denWu = [1, 1.206e4, 1.136e7, 1.066e10];
sys_Wu1 = ltisys('tf',numWu,denWu);
sys_Wu2 = ltisys('tf',numWu,denWu);
sys_Wu3 = ltisys('tf',numWu,denWu);

109

sys_Wu4 = ltisys('tf',numWu,denWu);

%MIMO TF matrices
sysWrg1 = sdiag(sys_Wr1,sys_Wr2,sys_Wr3,sys_Wr4,sys_Wr5,sys_Wr6);
sysWrg2 = sdiag(sys_Wr7,sys_Wr8,sys_Wr9,sys_Wr10,sys_Wr11,sys_Wr12);
Wr = sdiag(sysWrg1,sysWrg2);
Wd = sdiag(sys_Wd1,sys_Wd2,sys_Wd3,sys_Wd4);
sysWpg1 = sdiag(sys_Wp1,sys_Wp2,sys_Wp3,sys_Wp4,sys_Wp5,sys_Wp6);
sysWpg2 = sdiag(sys_Wp7,sys_Wp8,sys_Wp9,sys_Wp10,sys_Wp11,sys_Wp12);
Wp = sdiag(sysWpg1,sysWpg2);
Wu = sdiag(sys_Wu1,sys_Wu2,sys_Wu3,sys_Wu4);

figure,
splot(Wu,'sv')
grid on;
title('Singular Values - Control (Robustness) Weight W_u')
xlabel('Frequency')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',24);

figure,
splot(Wp,'sv')
grid on;
title('Singular Values - Performance (Sensitivity) Weight W_p')
xlabel('Frequency')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',24);
%% Generalized LPV Plant
% inputs = 'r(12);w(4)';
% outputs = 'Wr;Wd;Wp;Wu';
% K_in = 'K:[e=Wr:r-G;Wr:r]'; %controller K with its inputs
% %G:K means the input of G is the output of K
% G1_in = 'G:[K;Wd:w]'; %g1 = pdsys
% G2_in = 'Wr:r'; %g2 = Wr
% G3_in = 'Wd:w'; %g3 = Wd
% G4_in = 'Wp:e'; %g4 = Wp
% G5_in = 'Wu:K'; %g5 = Wu
%
% [P_aug,N_MC] =

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;

inputs = 'r(12);w(4)';
outputs = 'Wr;Wd;Wp;Wu;';
K_in = 'K:e=Wr-G;Wr'; %controller K with its inputs
%G:K means the input of G is the output of K
G1_in = 'G:K;Wd'; %g1 = pdsys
G2_in = 'Wr:r'; %g2 = Wr
G3_in = 'Wd:w'; %g3 = Wd
G4_in = 'Wp:e'; %g4 = Wp
G5_in = 'Wu:K'; %g5 = Wu

110

[P_aug,N_MC] =

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;

psinfo(P_aug)
%N_MC = [nbr of measurements (C(s) inputs), nbr of controls (C(s) outputs))
%expectation: [24 4] --> gain K [4 24]
%pdP = Hinf plant P(s) associated with the control structure
%Polytopic model with 8 vertex systems
%Each system has 43 state(s), 20 input(s), and 56 output(s)

%% Gain-Scheduled Hinf Controller
[gopt,pdK,R,S] = hinfgs(P_aug,N_MC,0,1e-2);
psinfo(pdK)
%Polytopic model with 8 vertex systems
%Each system has 43 state(s), 24 input(s), and 4 output(s)

pCL = slft(P_aug,pdK); %closed-loop system
psinfo(pCL)
%Polytopic model with 8 vertex systems
%Each system has 86 state(s), 16 input(s), and 32 output(s)

%Performance Analysis
% [PERF, LP] = quadperf(pCL)

%Stability Analysis
% [TAU, LyP] = quadstab(pCL)
% pdlstab(pCL)
%NOTE: very long computation time for pdlstab, comment out when not needed

%Vertex Controllers
VK1 = psinfo(pdK,'sys',1); VK2 = psinfo(pdK,'sys',2);
VK3 = psinfo(pdK,'sys',3); VK4 = psinfo(pdK,'sys',4);
VK5 = psinfo(pdK,'sys',5); VK6 = psinfo(pdK,'sys',6);
VK7 = psinfo(pdK,'sys',7); VK8 = psinfo(pdK,'sys',8);

%Evaluate the eigenvalues of the Ak matrices of the vertex controllers
VK = {VK1,VK2,VK3,VK4,VK5,VK6,VK7,VK8};
Vertex_Eig = cell(8,1);
for i = 1:8
 VKe = VK{i};
 [Ak, Bk, Ck, Dk] = ltiss(VKe);
 Vertex_Eig{i} = eig(Ak);
end

%check eigenvalues are less than 0
Vertex_Stable = cell(8,1);
for i = 1:8
 Vertex_Eig1 = Vertex_Eig{i};
 Vertex_Stable{i} = Vertex_Eig1 < 0;
end

111

[Ak, Bk, Ck, Dk] = ltiss(VK1);
size(Ak); %43x43
size(Bk); %43x24
size(Ck); %4x43
size(Dk); %4x24

%example of psinfo function - to be implemented in Simulink
SKsys = psinfo(pdK,'eval',V_C); %instantiates the polytopic system for the

vertex controllers
[Ak, Bk, Ck, Dk] = ltiss(SKsys);

%% Frequency Domain Analysis - Singular Values Plots
%random polytopic coordinates for control analysis
pNum = 100; polyc = [];
for j = 1:pNum
 poly = rand(1,8);
 poly = poly/sum(poly);
 polyc = [polyc; poly];
end
%singular values plot for polytopic plant
figure,
omega = logspace(-2,2,200);
for j = 1:pNum
 PolySys = psinfo(polysys,'eval',polyc(j,:)); %evaluate at convex

coordinates
 [adp,bdp,cdp,ddp] = ltiss(PolySys);
 sysp = ss(adp,bdp,cdp,ddp);
 [sv] = sigma(sysp, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Plant G(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for Hinf plant
figure,
omega = logspace(-2,2,200);
for j = 1:pNum
 Pdg = psinfo(P_aug,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adg,bdg,cdg,ddg] = ltiss(Pdg);
 sysg = ss(adg,bdg,cdg,ddg);
 [sv] = sigma(sysg, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Augmented Plant P(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for polytopic controller
figure,

112

omega = logspace(-4,4,300);
for j = 1:pNum
 Pdk = psinfo(pdK,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adk,bdk,cdk,ddk] = ltiss(Pdk);
 sysk = ss(adk,bdk,cdk,ddk);
 [sv] = sigma(sysk, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Controller K(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for closed loop transfer system
figure,
omega = logspace(-4,4,300);
for j = 1:pNum
 Pcl = psinfo(pCL,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adcl,bdcl,cdcl,ddcl] = ltiss(Pcl);
 syscl = ss(adcl,bdcl,cdcl,ddcl);
 [sv] = sigma(syscl, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Closed Loop System F(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%% Time Domain Analysis
%Plots output trajectory of closed-loop system along parameter trajectories
[T,X,Y] = pdsimul(pCL,'Mass_Traj',2,'Input_Traj');
figure,
plot(T,X)
title('State Trajectories')
grid on;
xlabel('Time [s]')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',14);
figure,
plot(T,Y)
title('Output Trajectories')
grid on;
xlabel('Time [s]')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',24);

Mass = cell(length(T),1);
Pa1 = zeros(length(T),1); Pa2 = zeros(length(T),1); Pa3 = zeros(length(T),1);
for i = 1:length(T)
Mass{i} = Mass_Traj(T(i));

113

Mass1 = Mass{i};
Pa1(i) = Mass1(1);
Pa2(i) = Mass1(2);
Pa3(i) = Mass1(3);
end

figure,
plot(T,Pa1)
hold on
plot(T,Pa2)
hold on
plot(T,Pa3)
title('Parameter Function Trajectories')
grid on;
xlabel('Time [s]')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',14);
size(X); %131x86
size(Y); %131x32
%Comment: further iterations might be necessary when testing against
%nonlinear system

%% Functions
%% Jacobian Linearization
function [Al, Bl] = Qrotor_Linearization(x,u,m_base,mp,psi0,Jx,Jy,Jz)
g = 9.81;
syms x0 y0 z0

xdot = sym(zeros(12,1));
xdot(1) = (cos(x(9))*cos(x(8)))*x(4) + (-

sin(x(9))*cos(x(7))+cos(x(9))*sin(x(8))*sin(x(7)))*x(5) +

(sin(x(9))*sin(x(7))+cos(x(9))*sin(x(8))*cos(x(7)))*x(6);
xdot(2) = (sin(x(9))*cos(x(8)))*x(4) +

(cos(x(9))*cos(x(7))+sin(x(9))*sin(x(8))*sin(x(7)))*x(5) + (-

cos(x(9))*sin(x(7))+sin(x(9))*sin(x(8))*cos(x(7)))*x(6);
xdot(3) = (sin(x(8)))*x(4) + (-cos(x(8))*sin(x(7)))*x(5) + (-

cos(x(8))*cos(x(7)))*x(6);
xdot(4) = (x(5)*x(12)-x(6)*x(11)) - g*sin(x(8));
xdot(5) = (x(6)*x(10)-x(4)*x(12)) + g*cos(x(8))*sin(x(7));
xdot(6) = (x(4)*x(11)-x(5)*x(10)) + g*cos(x(8))*cos(x(7)) -

(1/(m_base+mp))*u(1);
xdot(7) = x(10) + (sin(x(7))*tan(x(8)))*x(11) + (cos(x(7))*tan(x(8)))*x(12);
xdot(8) = cos(x(7))*x(11) + -sin(x(7))*x(12);
xdot(9) = (sin(x(7))/cos(x(8)))*x(11) + (cos(x(7))/cos(x(8)))*x(12);
xdot(10) = ((Jy-Jz)/Jx)*x(11)*x(12) + (1/Jx)*u(2);
xdot(11) = ((Jz-Jx)/Jy)*x(10)*x(12) + (1/Jy)*u(3);
xdot(12) = ((Jx-Jy)/Jz)*x(10)*x(11) + (1/Jz)*u(4);

Ax = jacobian(xdot,x);
Bu = jacobian(xdot,u);
xe =[x0,y0,z0,0,0,0,0,0,psi0,0,0,0]; %operating point at hover condition
ue = (m_base+mp)*g*[1 0 0 0];
Al = subs(Ax,x,xe);
Al = subs(Al,u,ue); %propeller speeds at hover conditions
Al = vpa(Al,4); %linearized A

114

Bl = subs(Bu,x,xe);
Bl = subs(Bl,u,ue);
Bl = vpa(Bl,4); %linearized B
end

%% Parameter trajectory for pdsimul function
%sample parameter trajectory
function mass = Mass_Traj(t)
mass = zeros(3,1);
mass(1) = -1/(t+8.773);
mass(2) = 1/(0.009*t+0.3013);
mass(3) = 1/(0.009*t+0.5353);
end

%% Input trajectory for pdsimul function
%Step inputs applied to each input
function UT = Input_Traj(t)
UT = ones(16,1);
end

115

A.2 Propeller Speed Based LPV Model and Controller

% MS Project (AE 295B)
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor
% Description: Script develops the LPV model and LPV controller for the
% delivery quadrotor with the propeller speeds as control inputs
% Author: Hussam Okasha

%% Parameters
g = 9.81;
l = 0.6; %m
R = 0.15; %m
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and

payload
m_motor = 0.325;
m_battery = 3.673;
m_motors = 4*m_motor;
mp = 2;
m_base = m_quadrotor + m_motors + m_battery;
psi0 = 0;
hov_in = (m_base+mp)*g*[1 0 0 0]; %test input
KF = 6.11e-8;
KM = 1.5e-9;
k = sqrt(g*(m_base+mp)/(4*KF));
omega_direct = k*[1 1 1 1];

%% Linear, Parameter Dependent Model
syms mp psi0
%State Variable Selection
%[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]' = [X Y Z u v w phi theta psi p

q r]'
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 u1 u2 u3 u4
x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12];
%Control Input Selection
%[u1 u2 u3 u4]' = [Omega_f Omega_r Omega_b Omega_l]'
u = [u1 u2 u3 u4];

M = m_quadrotor + m_battery + mp;
Jx = ((2*M*R^2)/5) + 2*(l^2)*m_motor;
Jy = ((2*M*R^2)/5) + 2*(l^2)*m_motor;
Jz = ((2*M*R^2)/5) + 4*(l^2)*m_motor;
[Al, Bl] = Qrotor_Linearization(x,u,l,m_base,mp,psi0,Jx,Jy,Jz);
C = eye(12);
D = zeros(12,4);

%Controllability and Observability
A = subs(Al,psi0,0);
A = double(A);
Bcc = subs(Bl,mp,0);
Co = ctrb(A,Bcc);
rankCo = rank(Co)
Ob = obsv(A,C);
rankOb = rank(Ob)

116

%% LPV Model
%Control Input Filter
Au = -100*eye(4);
Bu = eye(4);
Cu = eye(4);
Ap = [A, Bl*Cu;
 zeros(4,12), Au];
Ap = vpa(Ap,4);
Bp = [zeros(12,4);Bu];

%disturbance matrix
B1 = [zeros(5,4);
 1 0 0 0;
 zeros(3,4);
 zeros(3,1), eye(3)];

B1p = [B1; zeros(4,4)];

%define H
%input defn: w' = [u' w]'
Bpp = [Bp, B1p]; %dim 16x8

%Parameter functions
p1 = -(1.222e-7*(4.014e+7*mp + 3.521e+8)^(1/2))/(mp + 8.773);
p2 = (7.332e-8*(4.014e+7*mp + 3.521e+8)^(1/2))/(0.009*mp + 0.3013);
p3 = (3.0e-9*(4.014e+7*mp + 3.521e+8)^(1/2))/(0.009*mp + 0.5353);

%Upper and lower bounds
p1_l = double(subs(p1,mp,0));
p1_u = double(subs(p1,mp,2.3));
p2_l = double(subs(p2,mp,0));
p2_u = double(subs(p2,mp,2.3));
p3_l = double(subs(p3,mp,0));
p3_u = double(subs(p3,mp,2.3));

P = [p1_l p1_u;
 p2_l p2_u;
 p3_l p3_u];

%Parameter Box
pv = pvec('box',P);
VERTX = polydec(pv); %vertex coordinates
pvinfo(pv)
%Vector of 3 parameters ranging in a box

%example of polydec function
[V_C,VERTX_C] = polydec(pv,[p1_u, p2_u, p3_u]);

%Augmented Model Intermediate Matrices
M1 = [1 0 0;
 0 1 0;
 0 0 -1];

M2 = [0 -g 0;
 g 0 0;

117

 0 0 0];

M3 = eye(3);

M4 = [0 -1 0 1;
 1 0 -1 0];

A0 = [zeros(16,3),[M1;zeros(13,3)],[zeros(3);M2;zeros(10,3)],[zeros(6,3);

M3;zeros(7,3)],[zeros(12,4);Au]];
A1 = [zeros(16,12),[zeros(5,4); [1 1 1 1]; zeros(10,4)]]; %corresponds to

rho1
A2 = [zeros(16,12),[zeros(9,4);M4;zeros(5,4)]]; %M4 corresponds to rho2
A3 = [zeros(16,12),[zeros(11,4);[-1 1 -1 1];zeros(4,4)]]; %corresponds to

rho3

B0 = Bpp;
B1 = zeros(16,8);
B2 = zeros(16,8);
B3 = zeros(16,8);

Cp = [eye(12),zeros(12,4)];
C0 = Cp;
C1 = zeros(12,16);
C2 = zeros(12,16);
C3 = zeros(12,16);

Dp = [zeros(12,4),zeros(12,4)];
D0 = Dp;
D1 = zeros(12,8);
D2 = zeros(12,8);
D3 = zeros(12,8);

S0 = ltisys(A0,B0,C0,D0);
S1 = ltisys(A1,B1,C1,D1,0);
S2 = ltisys(A2,B2,C2,D2,0);
S3 = ltisys(A3,B3,C3,D3,0);

pdsys = psys(pv,[S0,S1,S2,S3]); %affine parameter dependent system
psinfo(pdsys)
%Affine parameter-dependent model with 3 parameters (4 systems)
%Each system has 16 state(s), 8 input(s), and 12 output(s)

polysys = aff2pol(pdsys); %polytopic model - instances of pdsys (affine) at

the vertices of the box
psinfo(polysys)
%Polytopic model with 8 vertex systems
%Each system has 16 state(s), 8 input(s), and 12 output(s)
% [tau,P] = quadstab(polysys)
% open-loop unstable

%% LPV Controls Design
%% Weights Selection
%static gains and filters in TF form
sys_Wr1 = ltisys('tf',[1],[1]);
sys_Wr2 = ltisys('tf',[1],[1]);

118

sys_Wr3 = ltisys('tf',[1],[1]);
sys_Wr4 = ltisys('tf',[1],[1]);
sys_Wr5 = ltisys('tf',[1],[1]);
sys_Wr6 = ltisys('tf',[1],[1]);
sys_Wr7 = ltisys('tf',[1],[1]);
sys_Wr8 = ltisys('tf',[1],[1]);
sys_Wr9 = ltisys('tf',[1],[1]);
sys_Wr10 = ltisys('tf',[1],[1]);
sys_Wr11 = ltisys('tf',[1],[1]);
sys_Wr12 = ltisys('tf',[1],[1]);

sys_Wd1 = ltisys('tf',[1],[1]);
sys_Wd2 = ltisys('tf',[1],[1]);
sys_Wd3 = ltisys('tf',[1],[1]);
sys_Wd4 = ltisys('tf',[1],[1]);

cWp1 = 2.01;
cWp2 = 0.201;
% cWp1 = 20.1;
% cWp2 = 2.01;
% cWp1 = 0.201;
% cWp2 = 0.0201;
sys_Wp1 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp2 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp3 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp4 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp5 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp6 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp7 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp8 = ltisys('tf',[cWp1],[1, cWp2]);
sys_Wp9 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp10 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp11 = ltisys('tf',[cWp1],[1, cWp2]);
% sys_Wp12 = ltisys('tf',[cWp1],[1, cWp2]);

sys_Wp10 = ltisys('tf',[2 0],[1, 8.5, 18]);
sys_Wp11 = ltisys('tf',[2 0],[1, 8.5, 18]);
sys_Wp12 = ltisys('tf',[2 0],[1, 8.5, 18]);

% numWu = [10 0];
% denWu = [1 100];
numWu =[9.678, 0.029, 0, 0];
denWu = [1, 1.206e4, 1.136e7, 1.066e10];
% numWu = [0.5, 0.5*0.0001];
% denWu = [1 10];
sys_Wu1 = ltisys('tf',numWu,denWu);
sys_Wu2 = ltisys('tf',numWu,denWu);
sys_Wu3 = ltisys('tf',numWu,denWu);
sys_Wu4 = ltisys('tf',numWu,denWu);

%MIMO TF matrices
sysWrg1 = sdiag(sys_Wr1,sys_Wr2,sys_Wr3,sys_Wr4,sys_Wr5,sys_Wr6);
sysWrg2 = sdiag(sys_Wr7,sys_Wr8,sys_Wr9,sys_Wr10,sys_Wr11,sys_Wr12);
Wr = sdiag(sysWrg1,sysWrg2);
Wd = sdiag(sys_Wd1,sys_Wd2,sys_Wd3,sys_Wd4);
sysWpg1 = sdiag(sys_Wp1,sys_Wp2,sys_Wp3,sys_Wp4,sys_Wp5,sys_Wp6);

119

sysWpg2 = sdiag(sys_Wp7,sys_Wp8,sys_Wp9,sys_Wp10,sys_Wp11,sys_Wp12);
Wp = sdiag(sysWpg1,sysWpg2);
Wu = sdiag(sys_Wu1,sys_Wu2,sys_Wu3,sys_Wu4);

figure,
splot(Wu,'sv')
grid on;
title('Singular Values - Control (Robustness) Weight W_u')
xlabel('Frequency')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',24);

figure,
splot(Wp,'sv')
grid on;
title('Singular Values - Performance (Sensitivity) Weight W_p')
xlabel('Frequency')
ylabel('Magnitude')
set(findall(gcf,'type','line'),'linewidth',1);
set(gca,'fontsize',24);
%% Generalized LPV Plant
% inputs = 'r(12);w(4)';
% outputs = 'Wr;Wd;Wp;Wu';
% K_in = 'K:[e=Wr:r-G;Wr:r]'; %controller K with its inputs
% %G:K means the input of G is the output of K
% G1_in = 'G:[K;Wd:w]'; %g1 = pdsys
% G2_in = 'Wr:r'; %g2 = Wr
% G3_in = 'Wd:w'; %g3 = Wd
% G4_in = 'Wp:e'; %g4 = Wp
% G5_in = 'Wu:K'; %g5 = Wu
%
% [P_aug,N_MC] =

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;

inputs = 'r(12);w(4)';
outputs = 'Wr;Wd;Wp;Wu;';
K_in = 'K:e=Wr-G;Wr'; %controller K with its inputs
%G:K means the input of G is the output of K
G1_in = 'G:K;Wd'; %g1 = pdsys
G2_in = 'Wr:r'; %g2 = Wr
G3_in = 'Wd:w'; %g3 = Wd
G4_in = 'Wp:e'; %g4 = Wp
G5_in = 'Wu:K'; %g5 = Wu

[P_aug,N_MC] =

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;

psinfo(P_aug)
%N_MC = [nbr of measurements (C(s) inputs), nbr of controls (C(s) outputs))
%expectation: [24 4] --> gain K [4 24]
%pdP = Hinf plant P(s) associated with the control structure
%Polytopic model with 8 vertex systems
%Each system has 40 state(s), 20 input(s), and 56 output(s)

120

%% Gain-Scheduled Hinf Controller
[gopt,pdK,R,S] = hinfgs(P_aug,N_MC,0,1e-2);
psinfo(pdK)
%Polytopic model with 8 vertex systems
%Each system has 43 state(s), 24 input(s), and 4 output(s)

pCL = slft(P_aug,pdK); %closed-loop system
psinfo(pCL)
%Polytopic model with 8 vertex systems
%Each system has 86 state(s), 16 input(s), and 32 output(s)

%Performance Analysis
% [PERF, LP] = quadperf(pCL)

%Stability Analysis
% [TAU, LyP] = quadstab(pCL)
% pdlstab(pCL)
%NOTE: very long computation time for pdlstab, comment out when not needed

%Vertex Controllers
VK1 = psinfo(pdK,'sys',1); VK2 = psinfo(pdK,'sys',2);
VK3 = psinfo(pdK,'sys',3); VK4 = psinfo(pdK,'sys',4);
VK5 = psinfo(pdK,'sys',5); VK6 = psinfo(pdK,'sys',6);
VK7 = psinfo(pdK,'sys',7); VK8 = psinfo(pdK,'sys',8);

%Evaluate the eigenvalues of the Ak matrices of the vertex controllers
VK = {VK1,VK2,VK3,VK4,VK5,VK6,VK7,VK8};
Vertex_Eig = cell(8,1);
for i = 1:8
 VKe = VK{i};
 [Ak, Bk, Ck, Dk] = ltiss(VKe);
 Vertex_Eig{i} = eig(Ak);
end

%check eigenvalues are less than 0
Vertex_Stable = cell(8,1);
for i = 1:8
 Vertex_Eig1 = Vertex_Eig{i};
 Vertex_Stable{i} = Vertex_Eig1 < 0;
end

[Ak, Bk, Ck, Dk] = ltiss(VK1);
size(Ak); %43x43
size(Bk); %43x24
size(Ck); %4x43
size(Dk); %4x24

%example of psinfo function - to be implemented in Simulink
SKsys = psinfo(pdK,'eval',V_C); %instantiates the polytopic system for the

vertex controllers
[Ak, Bk, Ck, Dk] = ltiss(SKsys);

%% Frequency Domain Analysis - Singular Values Plots

121

%random polytopic coordinates for control analysis
pNum = 100; polyc = [];
for j = 1:pNum
 poly = rand(1,8);
 poly = poly/sum(poly);
 polyc = [polyc; poly];
end

%singular values plot for polytopic plant
figure,
omega = logspace(-2,2,200);
for j = 1:pNum
 PolySys = psinfo(polysys,'eval',polyc(j,:)); %evaluate at convex

coordinates
 [adp,bdp,cdp,ddp] = ltiss(PolySys);
 sysp = ss(adp,bdp,cdp,ddp);
 [sv] = sigma(sysp, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Plant G(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for Hinf plant
figure,
omega = logspace(-2,2,200);
for j = 1:pNum
 Pdg = psinfo(P_aug,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adg,bdg,cdg,ddg] = ltiss(Pdg);
 sysg = ss(adg,bdg,cdg,ddg);
 [sv] = sigma(sysg, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Augmented Plant P(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for polytopic controller
figure,
omega = logspace(-4,4,300);
for j = 1:pNum
 Pdk = psinfo(pdK,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adk,bdk,cdk,ddk] = ltiss(Pdk);
 sysk = ss(adk,bdk,cdk,ddk);
 [sv] = sigma(sysk, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Controller K(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')

122

 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%singular values plot for closed loop transfer system
figure,
omega = logspace(-4,4,300);
for j = 1:pNum
 Pcl = psinfo(pCL,'eval',polyc(j,:)); %evaluate at convex coordinates
 [adcl,bdcl,cdcl,ddcl] = ltiss(Pcl);
 syscl = ss(adcl,bdcl,cdcl,ddcl);
 [sv] = sigma(syscl, omega);
 semilogx(omega, mag2db(sv));
 hold on; grid on;
 title('Singular Values - Closed Loop System F(\rho)')
 xlabel('Frequency [rad/s]')
 ylabel('Magnitude [dB]')
 set(findall(gcf,'type','line'),'linewidth',1);
 set(gca,'fontsize',24);
end

%% Functions
%% Jacobian Linearization
function [Al, Bl] = Qrotor_Linearization(x,u,l,m_base,mp,psi0,Jx,Jy,Jz)
g = 9.81;
KF = 6.11e-8;
KM = 1.5e-9;
k = sqrt(g*(m_base+mp)/(4*KF));

syms x0 y0 z0

U_z = KF*(u(1)^2 +u(2)^2 + u(3)^2 + u(4)^2);
U_roll = l*KF*(-u(2)^2 + u(4)^2);
U_pitch = l*KF*(-u(3)^2 + u(1)^2);
U_yaw = KM*(-u(1)^2 + u(2)^2 - u(3)^2 + u(4)^2);

xdot = sym(zeros(12,1));
xdot(1) = (cos(x(9))*cos(x(8)))*x(4) + (-

sin(x(9))*cos(x(7))+cos(x(9))*sin(x(8))*sin(x(7)))*x(5) +

(sin(x(9))*sin(x(7))+cos(x(9))*sin(x(8))*cos(x(7)))*x(6);
xdot(2) = (sin(x(9))*cos(x(8)))*x(4) +

(cos(x(9))*cos(x(7))+sin(x(9))*sin(x(8))*sin(x(7)))*x(5) + (-

cos(x(9))*sin(x(7))+sin(x(9))*sin(x(8))*cos(x(7)))*x(6);
xdot(3) = (sin(x(8)))*x(4) + (-cos(x(8))*sin(x(7)))*x(5) + (-

cos(x(8))*cos(x(7)))*x(6);
xdot(4) = (x(5)*x(12)-x(6)*x(11)) - g*sin(x(8));
xdot(5) = (x(6)*x(10)-x(4)*x(12)) + g*cos(x(8))*sin(x(7));
xdot(6) = (x(4)*x(11)-x(5)*x(10)) + g*cos(x(8))*cos(x(7)) -

(1/(m_base+mp))*U_z;
xdot(7) = x(10) + (sin(x(7))*tan(x(8)))*x(11) + (cos(x(7))*tan(x(8)))*x(12);
xdot(8) = cos(x(7))*x(11) + -sin(x(7))*x(12);
xdot(9) = (sin(x(7))/cos(x(8)))*x(11) + (cos(x(7))/cos(x(8)))*x(12);
xdot(10) = ((Jy-Jz)/Jx)*x(11)*x(12) + (1/Jx)*U_roll;
xdot(11) = ((Jz-Jx)/Jy)*x(10)*x(12) + (1/Jy)*U_pitch;
xdot(12) = ((Jx-Jy)/Jz)*x(10)*x(11) + (1/Jz)*U_yaw;

123

Ax = jacobian(xdot,x);
Bu = jacobian(xdot,u);
xe =[x0,y0,z0,0,0,0,0,0,psi0,0,0,0]; %operating point at hover condition
ue = k*[1 1 1 1];
Al = subs(Ax,x,xe);
Al = subs(Al,u,ue); %propeller speeds at hover conditions
Al = vpa(Al,4); %linearized A
Bl = subs(Bu,x,xe);
Bl = subs(Bl,u,ue);
Bl = vpa(Bl,4); %linearized B
end

124

A.3 2DOF PI Actuator Control
% MS Project (AE 295B)
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor
% Description: MATLAB script for 2DOF PI Actuator Controller

% Author: Hussam Okasha

wref = 200;
tau = 0.00128;
cm = 20;

numa = cm;
dena = [tau 1];

zeta = 1;
wn = 100;

N = 4.58;
Kpi = (wn^2)*tau/cm;
Kpa = 2*wn*zeta*tau/cm;
Kpa = 1.15*Kpa;

Vd = [0, -5];
t = zeros(1519,2); u = zeros(1519,2); Vin = zeros(1519,2); wp =

zeros(1519,2);
outwr = zeros(1519,2);

open_system('PI_Control_Act.slx')

for i = 1:2
 Vdist = Vd(i);
 sim('PI_Control_Act.slx')
 t(:,i) = out.t;
 u(:,i) = out.uVin;
 Vin(:,i) = out.tVin;
 r(:,i) = out.wref;
 wp(:,i) = out.wp;
end

purple = [0.4940 0.1840 0.5560];
gold = [0.9290 0.6940 0.1250];

figure,
subplot(2,1,1)
 plot(t1{1},outu{1})
 hold on
 plot(t1{2},outv{2})
 title('Input Voltage')
 legend('Control Input',...
 'Control Input with V_d = -5V','location','best')
 xlabel('Time [s]');
 ylabel('Voltage [V]');
 set(findall(gcf,'type','line'),'linewidth',3);
 set(gca,'fontsize',24);
subplot(2,1,2)
 plot(t(:,1),r(:,1),'k')

125

 hold on
 plot(t(:,1),wp(:,1),'color',purple)
 hold on
 plot(t(:,2),wp(:,2),'color',gold,'LineStyle','--')
 title('Propeller Speed')
 legend('Reference \Omega_r',...
 '\Omega with V_d = 0V',...
 '\Omega with V_d = -5V','location','best')
 xlabel('Time [s]');
 ylabel('Propeller Speed [rad/s]');
 set(findall(gcf,'type','line'),'linewidth',3);
 set(gca,'fontsize',24);

126

A.4 Nonlinear Simulation of LPV Control System

% MS Project (AE 295B)
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor
% Description: Nonlinear simulations of LPV control systems
% Author: Hussam Okasha

%% Parameters

% Quadrotor Parameters
g = 9.81;
l = 0.6; %m
R = 0.15; %m
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and

payload
m_motor = 0.325;
m_battery = 3.673;
m_motors = 4*m_motor;
mp = 2; %actual payload mass for simulation purposes
m_base = m_quadrotor + m_motors + m_battery;
psi0 = 0;

% Actuator Parameters
KF = 6.11e-8;
KM = 1.5e-9;
cm = 20; %s^-1
tau = 0.00128;
% Vdist = 0;
% Vdist = -5;
[numa, dena, N, Kpi, Kpa] = ActuatorPI(cm,tau);

% Mass Estimator Parameters
Lambda_0 = 10;
Gamma = 15;
Est_IC = 1/m_base;

%System Parameters for propeller based model
% LinModel = load('sysmodels.mat');
% Alin = LinModel.Al;
% Blin = LinModel.Bl;

% LPV Controller Parameters
%lpvDFT.mat - Forces and Torques
%lpvPropeller.mat - Propeller Speeds
LPVcontrol = load('lpvPropeller.mat');
pv = LPVcontrol.pv; %parameter box
pdK = LPVcontrol.pdK; %polytopic vertex controllers

% Test Inputs
k = sqrt(g*(m_base+mp)/(4*KF));
hov_in = (m_base+mp)*g*[1 0 0 0];
omega_direct = k*[1 1 1 1];

127

% Linearized A and B for linear simulation
% run LPV_Control_Quadrotor.m or LPV_Control_Quadrotor_2.m first
syms psi0 mp
Alin = subs(Al,psi0,0);
Blin = subs(Bl,mp,2);
Alin = double(Alin);
Blin = double(Blin);
psi = 0;
mp = 2;

% Trajectory gain for linear simulation
Cr = [1.321, zeros(1,11);
 0, 1.321 zeros(1,10);
 0, 0, 1.361, zeros(1,9);
 zeros(9,3), eye(9)];

% Reference Model (Trajectory Filter)
tau_f = 0.1;
% tau_f = 0.06;
Aref = -tau_f*eye(12);
Bref = eye(12);
Cref = tau_f*eye(12);
Dref = zeros(12);
x0ref = zeros(1,12);

syms s
Gr = Cref*inv(s*eye(12)-Aref)*Bref+Dref;
Gr_sys = ltisys('tf',[3],[50 3]);
Gr_sysA = ltisys('tf',[1],[10 1]);
figure,
splot(Gr_sys,'bode')
grid on;
title('Bode Plot for Model Reference Signal')
set(findall(gcf,'type','line'),'linewidth',2);

figure,
splot(Gr_sysA,'bode')
grid on;
title('Bode Plot for Model Reference Signal')
set(findall(gcf,'type','line'),'linewidth',2);

%% Plots
% open_system('PayloadQuadrotor_Nonlinear2019b2.slx')
% sim('PayloadQuadrotor_Nonlinear2019b2.slx')

% open_system('PayloadQuadrotor_Nonlinear.slx')
% sim('PayloadQuadrotor_Nonlinear.slx')

%Mass Estimator Plot
massp = [(m_base+mp)*ones(length(out.t),1), mp*ones(length(out.t),1),

out.m_est, out.mp_est];
QrotorMassEstPlot(out.t,massp);
% print(gcf,'dist_massest.png','-dpng','-r600')

128

%Position Plot
QrotorPosPlot(out.t,out.r_out,out.qstates);
% print(gcf,'dist_3Dtraj.png','-dpng','-r600')
% print(gcf,'dist_poststates.png','-dpng','-r600')

%State Plots
QrotorPlotStates(out.t,out.r_out,out.qstates);
% print(gcf,'dist_vel.png','-dpng','-r600')
% print(gcf,'dist_Eul.png','-dpng','-r600')
% print(gcf,'dist_attr.png','-dpng','-r600')

%Control Plots
QrotorPlotControl(out.t,out.ctrl,out.lpvcmd,out.lpvcmds);
% print(gcf,'dist_LPV.png','-dpng','-r600')
% print(gcf,'dist_scaledLPV.png','-dpng','-r600')
% print(gcf,'dist_actinputs.png','-dpng','-r600')

%to save high res images, with the figure of interest open, type in command
%prompt: print(gcf,'filename.png','-dpng','-r600') %600 = dots per inch

%% Functions

function [] = QrotorPosPlot(t,r,states)
r1 = r(:,1);
r2 = r(:,2);
r3 = r(:,3);
X = states(:,1);
Y = states(:,2);
Z = states(:,3);

figure('Position', get(0, 'Screensize'));
plot3(r1,r2,r3,'k');
hold on
plot3(X,Y,Z,'r--')
grid on
xlabel('North Position [m]');
ylabel('East Position [m]');
zlabel('Altitude [m]');
title('Reference Tracking');
legend('desired trajectory',...
 'position response','location','best')
set(findall(gcf,'type','line'),'linewidth',3);
set(gca,'fontsize',24);

figure('Position', get(0, 'Screensize'));
plot(t,X,t,Y,':',t,Z);
hold on
plot(t,r1,'--',t,r2,':',t,r3,'--')
grid on
xlabel('Time [s]');
ylabel('Position [m]');
title('Reference Tracking');
legend('X',...
 'Y',...
 'Z',...

129

 'desired X',...
 'desired Y',...
 'desired Z','location','best')
set(findall(gcf,'type','line'),'linewidth',3);
set(gca,'fontsize',24);
end

function [] = QrotorPlotStates(t,r,states)
udes = r(:,4);
vdes = r(:,5);
wdes = r(:,6);
Edes = r(:,7); %common to phi, theta, psi
pdes = r(:,10); %common to p q r

u = states(:,4);
v = states(:,5);
w = states(:,6);
phi = states(:,7)*180/pi;
theta = states(:,8)*180/pi;
psi = states(:,9)*180/pi;
p = states(:,10)*180/pi;
q = states(:,11)*180/pi;
r = states(:,12)*180/pi;

figure('Position', get(0, 'Screensize'));
plot(t,u,t,v,':',t,w)
hold on
plot(t,udes,'--',t,vdes,':',t,wdes,'--')
title('Velocity Responses')
legend('u',...
 'v',...
 'w',...
 'desired u',...
 'desired v',...
 'desired w','location','best')
xlabel('Time [s]')
ylabel('Velocity [m/s]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);

figure('Position', get(0, 'Screensize'));
plot(t,phi,t,theta,t,psi)
hold on
plot(t,Edes,'k--')
title('Euler Angle Responses')
legend('\psi',...
 '\phi',...
 '\theta',...
 'desired Euler angle','location','best')
xlabel('Time [s]')
ylabel('Euler Angle [deg]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);

figure('Position', get(0, 'Screensize'));
plot(t,p,t,q,t,r)

130

hold on
plot(t,pdes,'k--')
title('Attitude Rate Responses')
legend('p',...
 'q',...
 'r',...
 'desired attitude rate','location','best')
xlabel('Time [s]')
ylabel('Attitude Rate [deg/s]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);
end

function [] = QrotorMassEstPlot(t,y)
y1 = y(:,1);
y2 = y(:,2);
y3 = y(:,3);
y4 = y(:,4);

figure('Position', get(0, 'Screensize'));
plot(t,y1,'k')
hold on
plot(t,y3,'r--')
hold on
plot(t,y2,'b')
hold on
plot(t,y4,'g--')
title('Gradient Descent Based Mass Estimator')
legend('actual m',...
 'estimated m',....
 'actual m_p',...
 'estimated m_p','location','best')
xlabel('Time [s]')
ylabel('Mass [kg]')
set(findall(gcf,'type','line'),'linewidth',3);
set(gca,'fontsize',24);
xlim([0, 1])
end

function [] = QrotorPlotControl(t,control,lpv,cmd)
u1 = control(:,1);
u2 = control(:,2);
u3 = control(:,3);
u4 = control(:,4);

lpv1 = lpv(:,1);
lpv2 = lpv(:,2);
lpv3 = lpv(:,3);
lpv4 = lpv(:,4);

cmd1 = cmd(:,1);
cmd2 = cmd(:,2);
cmd3 = cmd(:,3);
cmd4 = cmd(:,4);

figure('Position', get(0, 'Screensize'));

131

plot(t,u1,t,u2,t,u3,t,u4)
title('Control Inputs')
% legend('F_z [N]',...
% '\tau_\phi [Nm]',...
% '\tau_\theta [Nm]',...
% '\tau_\psi [Nm]','location','best')
legend('\Omega_f',...
 '\Omega_r',...
 '\Omega_b',...
 '\Omega_l','location','best')
xlabel('Time [s]')
% ylabel('Magnitude')
ylabel('Angular Speed [rad/s]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);

figure('Position', get(0, 'Screensize'));
plot(t,lpv1,t,lpv2,t,lpv3,t,lpv4)
title('LPV Commands')
% legend('F_z [N]',...
% '\tau_\phi [Nm]',...
% '\tau_\theta [Nm]',...
% '\tau_\psi [Nm]','location','best')
legend('\Omega_f',...
 '\Omega_r',...
 '\Omega_b',...
 '\Omega_l','location','best')
xlabel('Time [s]')
% ylabel('Magnitude')
ylabel('Angular Speed [rad/s]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);

figure('Position', get(0, 'Screensize'));
plot(t,cmd1,t,cmd2,t,cmd3,t,cmd4)
title('Scaled LPV Commands')
% legend('F_z [N]',...
% '\tau_\phi [Nm]',...
% '\tau_\theta [Nm]',...
% '\tau_\psi [Nm]','location','best')
legend('\Omega_f',...
 '\Omega_r',...
 '\Omega_b',...
 '\Omega_l','location','best')
xlabel('Time [s]')
% ylabel('Magnitude')
ylabel('Angular Speed [rad/s]')
set(findall(gcf,'type','line'),'linewidth',2);
set(gca,'fontsize',24);
end

% Actuator PI Controller Parameters
function [numa, dena, N, Kpi, Kpa] = ActuatorPI(cm,tau)
numa = cm;
dena = [tau 1];
zeta = 1;

132

wn = 100;
N = 4.58;
Kpi = (wn^2)*tau/cm;
Kpa = 2*wn*zeta*tau/cm;
Kpa = 1.15*Kpa;
end

133

A.5 Reference Trajectory Build

%MATLAB Simulink function builds the reference trajectory
function traj = RefTraj(t)
%Parameters
h = 40; %heigh of the building [m]
delta = 10; %height of quadrotor above h [m]
Vp = 10; %lifting velocity [m/s]
Vm = 10; %cruise velocity [m/s]
t1 = (h+delta)/Vp; %time at waypoint 1 [s]
t2 = t1 + (1000*sqrt(2)/Vm); %time at waypoint 2 [s]
theta = 45; %angle between point AB and ground [deg]
tb = 20; %desired time to deliver payload from z=h+delta to z=40
Vh = 2*delta/tb; %see derivation

%r0 path
if t <= 0
 X = 0; Y = 0; Z = 0;
 r0 = [X, Y, Z];
 u = 0; v = 0; w =0;
 v0 = [u, v, w];
 Eul0 = [0, 0, 0];
 rates0 = [0, 0, 0];
 traj = [r0, v0, Eul0, rates0]';

%r1 path
elseif t > 0 && t <= t1
 X = 0; Y = 0;
 Z = Vp*t+0;
 r1 = [X, Y, Z];
 u = 0; v = 0;
 w = Vp;
 v1 = [u, v, w];
 Eul1 = [0, 0, 0];
 rates1 = [0, 0, 0];
 traj = [r1, v1, Eul1, rates1]';

%r2 path
elseif t > t1 && t <= t2
 X = (Vm/sqrt(2))*(t - t1);
 Y = (Vm/sqrt(2))*(t - t1);
 Z = h + delta;
 r2 = [X, Y, Z];
 u = Vm*cosd(theta);
 v = Vm*sind(theta);
 w = 0;
 v2 = [u, v, w];
 Eul2 = [0, 0, 0];
 rates2 = [0, 0, 0];
 traj = [r2, v2, Eul2, rates2]';

%r3 path
elseif t > t2 && t <= (t2 + tb)
 X = 1000; Y = 1000;
 Z = -Vh*(t - t2) + (Vh/(2*tb))*(t - t2)^2 + (h + delta);

134

 r3 = [X, Y, Z];
 u = 0; v = 0;
 w = -Vh + (Vh/tb)*(t - t2);
 v3 = [u, v, w];
 Eul3 = [0, 0, 0];
 rates3 = [0, 0, 0];
 traj = [r3, v3, Eul3, rates3]';

%r4 path
else % t == (t2 + tb)
 X = 1000; Y = 1000;
 Z = h;
 r4 = [X, Y, Z];
 u = 0 ; v = 0; w = 0;
 v4 = [u, v, w];
 Eul4 = [0, 0, 0];
 rates4 = [0, 0, 0];
 traj = [r4, v4, Eul4, rates4]';
end
traj(6) = -traj(6);
end

135

A.6 LPV Control Simulink MATLAB Functions

%Function for ConvexDecomp
%Workaround to avoid the code generation feature of the Simulink MATLAB

function
function alphas = myWrapper(pv,rho_m)
alphas = polydec(pv,[rho_m(1), rho_m(2), rho_m(3)]); %vertex coordinates
end

function alphas = ConvexDecomp(pv,rho_m)
alphas = zeros(1,8);
coder.extrinsic('myWrapper')
alphas = myWrapper(pv,rho_m);
end

%Function for VertexControl
%Workaround to avoid the code generation feature of the Simulink MATLAB

function
function [Ak,Bk,Ck,Dk] = myWrapper2(pdK,alphas)
SKsys = psinfo(pdK,'eval',alphas); %instantiates the polytopic system for

the vertex controllers
[Ak, Bk, Ck, Dk] = ltiss(SKsys);
end

function [Ak,Bk,Ck,Dk] = VertexControl(pdK,alphas)
Ak = zeros(43,43);
Bk = zeros(43,24);
Ck = zeros(4,43);
Dk = zeros(4,24);
coder.extrinsic('myWrapper2')
[Ak,Bk,Ck,Dk] = myWrapper2(pdK,alphas);
end

136

B. Simulink Structures for Quadrotor Simulation

B.1 State Variable Representation for Nonlinear System

 STATE VARIABLE DEFINITIONS

𝑥 = [𝑋 𝑌 𝑍 𝑢 𝑣 𝑤 𝜙 𝜃 𝜓 𝑝 𝑞 𝑟]𝑇 = [𝑥1 𝑥2 ∙∙∙ 𝑥12]
𝑇

𝑢 = [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1 𝑢2 𝑢3 𝑢4]

𝑇

 KINEMATIC EQUATIONS – TRANSLATION

𝑥1̇ = (𝑐𝑜𝑠𝑥9𝑐𝑜𝑠𝑥8)𝑥4 + (−𝑠𝑖𝑛𝑥9𝑐𝑜𝑠𝑥7 + 𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥7 + 𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥8𝑐𝑜𝑠𝑥7)𝑥6

𝑥2̇ = (𝑠𝑖𝑛𝑥9𝑐𝑜𝑠𝑥8)𝑥4 + (𝑐𝑜𝑠𝑥9𝑐𝑜𝑠𝑥7 + 𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (−𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥7 + 𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥8𝑐𝑜𝑠𝑥7)𝑥6

𝑥3̇ = (−𝑠𝑖𝑛𝑥8)𝑥4 + (𝑐𝑜𝑠𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (𝑐𝑜𝑠𝑥8𝑐𝑜𝑠𝑥7)𝑥6

 FORCE EQUATIONS

𝑥4̇ = (𝑥5𝑥12 − 𝑥6𝑥11) − 𝑔𝑠𝑖𝑛𝑥8

𝑥5̇ = (𝑥6𝑥10 − 𝑥4𝑥12) + 𝑔𝑐𝑜𝑠𝑥8𝑠𝑖𝑛𝑥7

𝑥6̇ = (𝑥4𝑥11 − 𝑥5𝑥10) + 𝑔𝑐𝑜𝑠𝑥8𝑐𝑜𝑠𝑥7 −
𝑢1
𝑚

 KINEMATIC EQUATIONS – ROTATION

𝑥7̇ = 𝑥10 + (𝑠𝑖𝑛𝑥7𝑡𝑎𝑛𝑥8)𝑥11 + (𝑐𝑜𝑠𝑥7𝑡𝑎𝑛𝑥8)𝑥12

𝑥8̇ = (𝑐𝑜𝑠𝑥7)𝑥10 + (−𝑠𝑖𝑛𝑥7)𝑥12

𝑥9̇ = (𝑠𝑖𝑛𝑥7/𝑐𝑜𝑠𝑥8)𝑥11 + (𝑐𝑜𝑠𝑥7/𝑐𝑜𝑠𝑥8)𝑥12

 MOMENT EQUATIONS

𝑥10̇ =
𝐽𝑦 − 𝐽𝑧

𝐽𝑥
𝑥11𝑥12 +

𝑢2
𝐽𝑥

𝑥11̇ =
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑥10𝑥12 +
𝑢3
𝐽𝑦

𝑥12̇ =
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑥10𝑥11 +

𝑢4
𝐽𝑧

 CONTROL INPUT EQUATIONS

𝑢1 = 𝐾𝐹(𝛺𝑓
2 + 𝛺𝑟

2 + 𝛺𝑏
2 + 𝛺𝑙

2)

𝑢2 = 𝑙𝐾𝐹(−𝛺𝑟
2 + 𝛺𝑙

2)

𝑢3 = 𝑙𝐾𝐹(𝛺𝑓
2 − 𝛺𝑏

2)

𝑢4 = 𝐾𝑀(−𝛺𝑓
2 + 𝛺𝑟

2 − 𝛺𝑏
2 + 𝛺𝑙

2)

137

B.2 Nonlinear Simulink Subsystems

Figure B.1 – Motor mixing and actuator dynamics

Figure B.2 – Mass characteristics and control inputs

Figure B.3 – Position and Euler angles EOM

138

Figure B.4 – Velocity and attitude rates EOM

Figure B.5 – Model outputs and data logging

139

B.3 Actuator Controller

Figure B.6 – 2DOF PI Actuator Controller

B.4 Mass Estimator and Hover State Conditioning

Figure B.7 – Adaptive mass estimator based on gradient descent law

140

Figure B.8 – Hover state conditioning subsystem

B.5 LPV Control Structures

Figure B.9 – Control conditioning for LPV controller

141

Figure B.10 – Control conditioning for propeller based LPV controller

Figure B.11 – Convex decomposition function

Figure B.12 – LPV controller

142

C. PID Control of Quadrotor

C.1 Introduction

 PID control of quadrotors is a common method and its design methodology is outlined

by references [10] and [26]. The methodologies described for attitude and position control in a

successive loop closure structure can be used to develop the controller. In principle, the online

adaptive mass estimator from Chapter 4 can be integrated into the PID control system. Here the

total mass estimate �̂� is fed directly into the PID position control equations where applicable.

Since PID control relies on SISO relationships and a control strategy utilizing successive loop

closure, it will be informative to compare the implementation process to the multivariable

approach of LPV control.

C.2 Attitude Control

The linearized model (2.15) is used to design the attitude and position controllers.

Considering only small deviations from the nominal hover state, the attitude controller tracks

trajectories in 3DOF. The linear accelerations given by (C.1) are derived from the state equations

of the linearized model.

 �̈� = −𝑔(𝜃 cos(𝜓0) + 𝜑𝑠𝑖𝑛(𝜓0))

�̈� = −𝑔(𝜃 sin(𝜓0) − 𝜑𝑐𝑜𝑠(𝜓0))

�̈� =
𝑈𝑧
𝑚
=
𝑈𝐿
𝑚
+ 𝑔

(C.1)

Derivation of (C.1)

From the linear model (2.15),

�̇� = cos (𝜓0)𝑢 − 𝑠𝑖𝑛(𝜓0)𝑣

�̇� = 𝑠𝑖 𝑛(𝜓0) 𝑢 + 𝑐𝑜𝑠(𝜓0)𝑣

�̇� = −w

and

�̇� = −𝑔𝜃

�̇� = 𝑔𝜑

�̇� =
−𝑈𝑧
𝑚

Differentiating �̇� yields,

143

�̈� = cos (𝜓0)�̇� − 𝑠𝑖𝑛(𝜓0)�̇�

Substituting �̇� and �̇�,

�̈� = −𝑔𝜃cos (𝜓0) − 𝑔𝜑𝑠𝑖𝑛(𝜓0) → �̈� = −𝑔(𝜃 cos(𝜓0) + 𝜑𝑠𝑖𝑛(𝜓0))

The same process is applied to the �̇� and �̇� equations. For the �̈� equation, recall the

equilibrium control input used for linearization is 𝑢𝑒 = [𝑚𝑔 0 0 0]. For the vertical

direction near hover, 𝑈𝐿 = 𝑈𝑧 −𝑚𝑔 → 𝑈𝑧 = 𝑈𝐿 +𝑚𝑔. Therefore, the linear acceleration �̈�

can also be written as �̈� =
𝑈𝐿

𝑚
+ 𝑔 with respect to 𝑈𝑧.

The angular accelerations given by are derived from the state equations for �̇�, �̇�, �̇� and the

force and torque equations (2.2). Based on the assumptions in Section 2.4 for the derivation of

the equations of motion, the products of inertia are zero, and 𝐽𝑥 = 𝐽𝑦 due to symmetry.

 �̇� =
𝑈𝜑

𝐽𝑥
=

𝑙

𝐽𝑥
(𝐹𝑙 − 𝐹𝑟)

 �̇� =
𝑈𝜃

𝐽𝑦
=

𝑙

𝐽𝑦
(𝐹𝑓 − 𝐹𝑏)

�̇� =
𝑈𝜓

𝐽𝑧
=

1

𝐽𝑧
(𝜏𝑟 + 𝜏𝑙 − 𝜏𝑓 − 𝜏𝑏)

(C.2)

The errors are defined by (C.3).

 𝑒𝜑 = 𝜑𝑑𝑒𝑠 − 𝜑

𝑒𝜃 = 𝜃𝑑𝑒𝑠 − 𝜃

𝑒𝜓 = 𝜓𝑑𝑒𝑠 − 𝜓

𝑒𝑝 = 𝑝𝑑𝑒𝑠 − 𝑝

𝑒𝑞 = 𝑞𝑑𝑒𝑠 − 𝑞

𝑒𝑟 = 𝑟𝑑𝑒𝑠 − 𝑟

(C.3)

The desired torques are expressed of the form shown in (C.4), with proportional and derivative

gains.

 𝑈𝜑𝑑𝑒𝑠 = 𝐾𝑃
𝜑
𝑒𝜑 + 𝐾𝐷

𝜑
𝑒𝑝

𝑈𝜃𝑑𝑒𝑠 = 𝐾𝑃
𝜃𝑒𝜃 + 𝐾𝐷

𝜃𝑒𝑞

𝑈𝜓𝑑𝑒𝑠 = 𝐾𝑃
𝜓
𝑒𝜓 +𝐾𝐷

𝜓
𝑒𝑟

(C.4)

144

Since PID control is a SISO method, the attitude controller is developed according to the

structure shown in Figure C.1, with outer-loop proportional gains and inner-loop rate gains for

each controlled variable.

Figure C.1 – PD control structure for attitude control

Note [𝑝𝑑𝑒𝑠 𝑞𝑑𝑒𝑠 𝑟𝑑𝑒𝑠]𝑇 is taken to be 𝟎 and each gain block consists of three gains

corresponding to the errors (C.3).

C.3 Position Control

The goal of the position controller is to determine the desired roll and pitch angles, 𝜑𝑑𝑒𝑠 and

𝜃𝑑𝑒𝑠, which are fed into the attitude controller, and to maintain a desired position at r. The idea

is to drive the position of the quadrotor using the roll and pitch angles as inputs [10]. By

adjusting these angles, the position can be controlled in three dimensions. The design objective

is to track a desired trajectory 𝑧𝑑𝑒𝑠(𝑡). The time varying desired position 𝑟𝑇(𝑡) and heading

𝜓𝑇(𝑡) are specified independently. In the hover state, the position and heading trajectories are

fixed, 𝑟𝑇(𝑡) = 𝑟0 and 𝜓𝑇(𝑡) = 𝜓0, respectively.

𝑧𝑑𝑒𝑠(𝑡) = [

𝑟𝑇(𝑡)
𝜓𝑇(𝑡)

]

(C.5)

The desired accelerations �̈�𝒊
𝒅𝒆𝒔 are computed from a PID controller. Let 𝑒𝑝 be the position error

 𝑒𝑝 = 𝑟𝑇 − 𝑟

(C.6)

The desired attitude for the attitude controller is then computed according to (C.7).

145

 �̈�𝑖
𝑑𝑒𝑠(𝑡) = �̈�𝑖,𝑇(𝑡) + 𝐾𝑃,𝑖(𝑟𝑖,𝑇(𝑡) − 𝑟𝑖(𝑡)) + 𝐾𝐷,𝑖(�̇�𝑖,𝑇(𝑡) − �̇�𝑖(𝑡))

+ 𝐾𝐼,𝑖∫(𝑟𝑖,𝑇(𝑡) − 𝑟𝑖(𝑡)) 𝑑𝑡

(C.7)

Note at hover, �̇�𝑇(𝑡) = �̈�𝑇(𝑡) = 0.

From the linear accelerations (C.1),

 �̈�𝑋
𝑑𝑒𝑠 = −𝑔(𝜃𝑑𝑒𝑠 cos(𝜓𝑇) + 𝜑𝑑𝑒𝑠 sin(𝜓𝑇))

�̈�𝑌
𝑑𝑒𝑠 = −𝑔(𝜃𝑑𝑒𝑠 sin(𝜓𝑇) − 𝜑𝑑𝑒𝑠 cos(𝜓𝑇))

�̈�𝑍
𝑑𝑒𝑠 = (

𝑈𝐿
𝑚
+ 𝑔)

(C.8)

Therefore, the desired force is given by (C.9).

 𝑈𝐿 ≜ 𝑈𝑧𝑑𝑒𝑠 = 𝑚�̈�𝑍
𝑑𝑒𝑠 −𝑚𝑔

(C.9)

Inverting the (C.8) result and replacing 𝑚 with the mass estimate �̂� produced by the estimator

developed in Chapter 4 yields the desired roll and pitch angles and desired force.

𝜑𝑑𝑒𝑠 =

−1

𝑔
(�̈�𝑋
𝑑𝑒𝑠 sin(𝜓𝑇) − �̈�𝑌

𝑑𝑒𝑠 cos(𝜓𝑇))

𝜃𝑑𝑒𝑠 =
−1

𝑔
(�̈�𝑋
𝑑𝑒𝑠 cos(𝜓𝑇) + �̈�𝑌

𝑑𝑒𝑠 sin(𝜓𝑇))

𝜓𝑑𝑒𝑠 = 𝜓𝑇

𝑈𝑧𝑑𝑒𝑠 = �̂�(�̈�𝑍
𝑑𝑒𝑠 − 𝑔)

(C.10)

146

The function of the position controller within the overall control system is shown in Figure C.2.

Figure C.2 – Position control integrated into the control system

C.4 Successive Loop Closure

The overall PID control system is shown in Figure C.3, including the actuator PI controller

developed in Chapter 8. The same hover state conditioning system from Chapter 4 or 8 can be

applied to the PID control system. The control system utilizes single loop designs for each

controlled variable in a successive closure structure, a contrast to the multivariable approach of

LPV control.

Figure C.3 – Successive loop closure with mass estimator for quadrotor control

