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Abstract 

 
The study varies key parameters and trajectories of a spacecraft mission 

using an electric propulsion (EP) system. For consistent comparison, the space- 

craft is assumed to be on a mission to Mars. The spacecraft is assumed to have 

started at LEO and should be able to travel to Low Mars Orbit and return 

to LEO. This would assume that the spacecraft has been transferred to LEO 

via a chemical propulsion launch vehicle. Optimal trajectories are determined 

and examined based on previous studies of trajectory optimization and optimal 

launch windows. The key independent variables of the EP system are the input 

power, the input current, the mass flow rate, and the exhaust velocity. The key 

parameters observed for variation are thrust, efficiency, total mass, and total 

mission time. The variation is examined to determine the effect those param- 

eters have on the mission time. The purpose for examining these parameters 

is to determine if the issue of mission time can be addressed when using EP. 

EP is an appealing propulsive system in spacecraft because of the significant 

weight reduction, but at the cost of an increased mission time in comparison to 

chemical propulsion. This study is a preliminary determination of the possible 

time optimization for a space mission to Mars. The total mission time is being 

set for a time of 150 days in order to provide a decreased amount in mission 

time. The trajectory optimization is still in progress. 
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Nomenclature 
 

g Acceleration due to gravity, m/s2
 

mB Mass at burnout, kg 

md Mass delivered, kg 

mp Propellant mass, kg 

ṁp Propellant mass flow rate, kg/s 

-r Position Vector, km 

q Electrical Charge, C 

vex Exhaust Velocity, m/s 

-v Velocity Vector, m/s 

B- Magnetic Field, T 

E- Electric Field, N/m 

F- Force Vector, N 
 

Ib Beam current, A 

Isp Specific Impulse, s 

Pdis Power Dissipated, W 

Pin Input Power, W 

Pjet Jet Power, W 

T Thrust, Newtons 

X- State Vector, [m,m,m,m/s,m/s,m/s] 
 

Van Anode Voltage, V 

Vb Beam Voltage, V 

ηe Electrical Efficiency 

ηT Total Efficiency 

µ Standard Gravitational Parameter, m3/s2
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∆v Velocity change requirement, m/s 

∆θ Change in Angle, rad 
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1 Introduction 
 

1.1 Motivation 
 

Electric propulsion (EP) systems are an option in spacecraft. The issue with electric 

propulsion is that it increases the required mission time. It does, however, allow for 

a lower spacecraft mass. It would be ideal to decrease the mission time and mass 

simultaneously. This EP system requires a larger power source. In some cases, the 

idea is to implement nuclear power sources. The issue with nuclear power plants is 

mainly political in nature so there has be minimal advancement in nuclear technologies 

in spacecraft. The main goal is to increase the thrust, the total efficiency, minimize 

mass, and decrease the mission time. 

The reduction in mission time will be used to also observe the type of power 

requirements necessary for a propulsion system of this type. Though not under current 

consideration, the power requirement would determine the size of the spacecraft as 

well. With current technology, the more power the system requires, the bigger the 

power supply tends to be in the spacecraft. 

 

1.2 Literature Review 
 

Robert Hutchings Goddard is one of the earlier mentions who considered EP for use in 

spacecraft. The initial intent was to electrostatically accelerate electrons to provide a 

propulsive thrust. Goddard was knowledgeable about canal rays so it was interesting 

that he had not yet thought of accelerating ions rather than electrons. The idea, 

eventually, arose and one of the first concepts of an ion thruster began to develop. 

Ions can be accelerated and ejected to create the propulsive force needed to provide 

thrust. This means that positively charged particles in equal parts are also ejected. 
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Goddard would use these ideas to patent the idea of an electrostatic ion accelerator. 

Figure 1 shows the schematic of the electrostatic ion accelerator [1]. 

 
Figure 1: The figure shows the third variation of Goddard’s electrostatic ion acceler- 
ator from 1917. 

 
 

The development of EP has been hindered by the high power requirements of the 

system. Because of the high power requirements, Yuri V. Kondratyuk argued against 

focusing on EP due to the relationship between the exhaust velocity and the power 

requirement. The relationship can be seen in Equation 1. 

 

T η 
= 2 

P ve 

 
(1) 

 

Equation 1 shows that the power and the exhaust velocity are directly proportional. 

For this reason, Kondratyuk suggested that the focus for propulsion research should be 

on chemical propulsion rather than electric propulsion. From 1917-1919, the propul- 

sion system of choice was chemical propulsion. 

Hermann Julius Oberth was one of the next major influences on electric propul- 

sion. Oberth came along to suggest that the use of electric propulsion would result 
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in significant mass reduction in spacecraft. Oberth’s schematics included the use of 

Goddard’s idea of the electrostatic ion accelerator that would later be used to develop 

the ion thruster. This was the major breakthrough of this era. 

This era was followed by an era of scientist using the designs and concepts to 

create an electric propulsion system. Up until the 1970s, most EP systems were tested 

experimentally. One of the first ion thrusters was flown in 1994 and since then has 

remained a popular research area. They have become more popular for commercial 

use. With EP, it is typically easier to perform station keeping on satellites. 

In electric propulsion, systems are separated into 3 general categories of propulsion 

which go as follows: electrothermal, electrostatic, and electromagnetic. 

Electrothermal propulsion is the use of an electrical method to heat up a propel- 

lant inducing a thermodynamic expansion in a nozzle. This is the category where 

resistojets and arc jets typically fall into. Electrostatic propulsion is the when ion are 

accelerated through an electric field to create a propulsive force. Hall thrusters and 

ion thruster fall into this category of EP. Electromagnetic propulsion occurs by driv- 

ing a current through a plasma to create a force. The force created in electromagnetic 

propulsion is governed by the Lorentz force found in equation 2 [2]. 

 

F- = qE- + q-v × B- (2) 
 
 

Some examples of electromagnetic propulsion are pulsed plasma thrusters (PPT) and 

magnetoplasmadynamic thrusters (MPDT). 

The long mission times have been reduced through research by developing new 

electric propulsion systems. The development of ion thrusters, hall thrusters, pulsed 

plasma thrusters and magnetoplasmadynamic thrusters are example of EP systems 

that have a significant mass reduction. The magnetoplasmadynamic thruster (MPDT) 
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has been considered by some to be the electric propulsion of the future [3]. The prob- 

lem with this EP system is the high power requirement necessary for most MPDT 

designs. Some of these systems range from the order of MW to GW requirements 

in power. Many of these design are experimental and few have gone through a test 

flight. 

Although the MPDT system is considered the future of EP, it would be of use to 

determine whether or not other forms of EP could also be designed and optimized with 

respect to the mission time and total efficiency. The main issue in either case would 

be the power input and the power requirement to be able to significantly decrease the 

mission time [4]. 

Decreasing mission time with EP is a current research topic due to the smaller 

size of EP powered spacecraft. There are several ways being researched to decrease 

mission time. Several options include trajectory optimization, increasing power levels, 

and increasing the exhaust velocity. One suggestion is to use nuclear energy to provide 

larger amounts of energy. 

The more feasible of the three options at this time is trajectory optimization[5]. 

There are ways to efficiently optimize trajectories and they will be taken into account 

in this analysis[6]. Research on trajectory optimizations has been done for nuclear 

electric propulsion systems[7]. Typical flight times between Earth to Jupiter for 

these systems ranges from 4-6 years [8]. The optimization was also done for various 

destinations between Jupiter and Pluto with a maximum flight time of 14 years from 

Earth to Pluto. 
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Table 1: This table was taken from ”Preliminary Design of Nuclear Electric Propul- 
sion Missions to the Outer Planets” [8]]. It shows the summary, including flight times, 
of traveling to several planets. 

 
 
 

Another method is to increase the exhaust velocity which would have an affect 

on the payload mass fraction[9]. Changing the payload mass fraction, by extension, 

can optimize the parameters of the EP system. The payload mass fraction method 

examines the parameter space to determine viable configurations. This was done 

by examining the space after trying a range of values for the Isp, the power, and 

launch energy (km/s2)[10]. Figure 2 shows an example of the data obtained through 

variations in the payload mass fraction. 
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Figure 2: The figure shows variation of Isp and launch energy with the power sys- 
tems specific mass. The plot is taken from ”Maximizing Payload Mass Fractions of 
Spacecraft for Interplanetary Electric Propulsion Missions [10].” 

 
 
 

To begin the optimization process, there was a set of assumptions made to simplify 

the problem[11]. Because of the inter-dependencies between variables, the list of 

variable to set as independent variable requires though in order to solve a system 

of equations. Since the optimization is highly computational and numerical, the 

set of boundaries and constraints are an important starting point for this process. 

Therefore, only values that are representative of current EP designs will be considered 

regarding the random generation of the independent values. The process is iterative 

and must be done for a different set of values. The set of important dependent 

variables for which the optimization is done must also be defined. This allows the 

analysis of any parameter that are considered crucial. 

It is important to look at the performance parameters and the trajectory [12]. 

Trajectory optimization has been done using electric propulsion by setting some rea- 

sonable values for the performance parameters in an EP system. The key for this 

mission and optimization is to reduce the mass of the system. 
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1.2.1 Monte Carlo Method 

 
The Monte Carlo Method is a statistical computation method used to solve analytical 

problems. An optimization problem can take advantage of statistical information to 

select an optimal set of condition for a problem. This method will allow for the 

statistical optimization of an electric propulsion system. 

The way the Monte Carlo method is initiated is as follows: 
 

1. Decide on a group of values (inputs) to randomly generate 
 

2. Based on those values, calculate a set of observational values 
 

3. Run N number of trials 
 

4. Use statistical methods to measure the observational data 
 

The simulation has to be run in a set number of trials in order to provide for enough 

sampling information. The essence of the N number of trials is to create a large 

enough sample size to work with while also following a random sampling method. 

The mean and standard deviation of the set of information can be determined and 

the observed values can be measured and compared to the rest of the data in the set 

[13]. 

 
1.2.2 Computational Limits and the Call Stack 

 
In most programming languages and implementation, the call stack of the program 

should be a consideration. The call stack occurs every time the program makes a call 

to a function. The reason for considering this is due to the limitations this may put 

onto the processing of the code itself. 

A call stack can be broken down to its individual stack frames. Every call to a 

function would contribute a stack frame to the program as a whole. Each stack frame 
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will contain the inputs and the outputs of said function.  In C++, there is at least  

1 stack frame in the execution of the program. The main function is considered the 

initial stack frame. The call to the function which the program is currently on, is 

considered the innermost stack frame. A backtrace of the program can be found. The 

backtrace provide a summary of the steps or frames the program took to arrive to 

the final product. This will provide for a flow for the user to follow into the order in 

which the program called the functions[14]. Figure blank, contains a visual guide for 

the flow and direction of a calls stack. 

 

 
 

Figure 3: The figure shows the flow and direction of the call stack in programming 
languages such as C++. 

 
 
 

This develops a direction and a flow for the way the program will execute the steps 

to get to a final result. The limitation of the program and the number of iterations 

or executions it may run may be limited by the amount of memory taken by the call 

stack. 
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1.3 Project Proposal 
 

The main objective of this project is to reduce the mission time through key per- 

formance parameters of the EP system(i.e. the specific impulse, thrust, electrical 

efficiency, and total efficiency). These values will be randomly generated to create 

a several EP system configurations. The parameter will be used to determine the 

efficiency and effectiveness of the system. Once that is done, the optimal trajectory 

will be determined. The initial simulation and optimization will be done in MATLab. 

The trajectory optimization will be based on previous trajectory optimization or may 

be calculated in MATLab as well. The systems ∆v requirement will be based on 

the idea that the system does not travel to LEO using electric propulsion. The EP 

system will transfer from LEO to Low Mars Orbit and back to LEO. 

 

1.4 Methodology 
 

The initial MATLab simulations for the main parameter study of the EP system 

will be based on some of the essential EP equations. The rocket equation can be 

applied to an EP system but the parameter are slightly different and the values of 

the exhaust velocity are much higher than chemical propulsion system. Ions will be 

assumed of single charge, rather than a mixture of single and double charged ions [2]. 

This allows for simpler calculations. The trajectory optimization will be determined 

using software or running simulations for optimal orbital transfers [15]. The orbital 

transfers will assume that there are no perturbations. The EP system will operate in 

a regime that is near vacuum conditions. 

The general scheme of the optimization will follow that of the Monte Carlo simu- 

lation scheme. The randomization has been doing using a normal distribution scheme 

in MATLab. With the difficulty of generating a truly random numbers, the random 
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number generator is dependent on the time itself. Different schemes may be used 

dependent on the ideal randomization. The optimization will be slightly statistical to 

select the optimal space system. Based on this, a decision on the type of propulsive 

system can be made that matches the constraint parameters. Further statistical con- 

straints are applied to narrow down the candidate option down to, at most, 5. This 

allows for an easier selection process. 

 
 

2 Approach 
 

2.1 Electric Propulsion System 
 

To perform the parametric study, several assumptions are made regarding the per- 

formance parameters of the system. In some cases, the assumption is that there is 

a power supply large enough to power the propulsive system. The mass being deliv- 

ered in the mission will stay constant throughout the process at 20kg until a better 

spacecraft mass is determined. The other parameters that are assumed to be given 

are ηe, Isp, T, ∆v, ηT , md. These parameters, aside from the delivery mass (md) and 

∆v will be randomized within a reasonable range of values based on preexisting EP 

systems [2]. 

Using the randomized variables, some of the other performance parameters will 

be determined. The first parameter that can be determined is the exhaust velocity, 

vex. The exhaust velocity can be determined through the Equation 1 [2]. 

 
vex = Ispg (3) 

 
 

Since the thrust is being randomly generated, the value of the mass flow rate can be 
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v 

 
determined through Equation 2[2]. 

 

T 
ṁp = 

ex 

 
(4) 

 

The jet power generated by the propulsive force of the system can be determined from 

the value of the propellant flow rate and the exhaust velocities. Equation 3 shows 

the relationship[2]. 

Pjet 
1 

= ṁp  2
 

2 ex (5) 
 

For the initial estimates, the ∆v requirement will be assumed to be a constant value. 

This would suggest that the requirement should stay the same since the mission 

would be staying the same. The requirement can be determined through previous 

missions to Mars. The secondary analysis can be done through calculations of orbital 

determination. The ∆v requirement can be used to determine the mass of propellant 

required for the mission. Equation 4 shows this relationship[2]. 

 
mp = md 

 
 

 ∆v 
vex − 1

, 
(6) 

 
 

This will allow us to determine how large the system will be during deployment. 

The input power can be determined by using the total efficiency of the system, 

ηT . Equation 5 shows the relationship[2]. 
 

 
Pin = 

Pjet 
η 

 
(7) 

T 
 

The power dissipated, once Pin is determined, is found by equation 6[2]. 
 
 

Pdissipated = Pin (1 − ηe) (8) 

v 

(  −
e
 



12  

 
These set of equation will be used to determine the effect that the change in parameter 

has on the mission. 

 

2.2 Requirements 
 

Although the set of equations are known, the requirements will determine which 

design configurations will move on in the selection process and which design con- 

figurations fail the initial constraints. A set of tests are initialized to narrow down 

possible EP system configurations. 

The following initial parameter requirements are as follows: 1)The mass of the 

propellant should be equal to or less than the delivered mass 2) The electrical efficiency 

should be above 75 percent 3) The total efficiency of the electric propulsion system 

should be above 50 percent 4) The total efficiency shall not exceed the electrical 

efficiency. The last requirement allows for a realistic configuration. Total efficiency 

is dependent on the efficiency of the components of the system. 

To further narrow the options, the average of each of the parameters will be 

determined along with the standard deviation. The attempt will be to choose the 

systems above or below two standard deviations depending on the intent of the design. 

That is, two standard deviation will be chosen if the parameter is supposed to be 

minimized and two standard deviation above will be chosen if the goal is to maximize 

the parameter. This is done to determine the optimal configuration. Based on the 

number or resulting configurations, the requirement may change. Neither of the 

efficiencies should exceed 100 percent and the total efficiency should not exceed the 

value of the electrical efficiency. 

The trajectory still needs to be determined. Whether doing a gravity-assist trans- 

fer or a powered transfer would prove more efficient still needs to be determined. The 
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window of opportunity for orbit transfer was done based on NASA’s InSight Lander’s 

launch windows. For the first iterations, a previous orbit window will be used along 

with the optimal ∆v requirement to get to Mars[16]. The optimization of the orbit 

itself was more difficult to approach due to the number of factor and the number 

of factors and methods considered in finding an initial orbit and in the Monte-Carlo 

method. The requirement is driven through a Lambert Method approach of calculat- 

ing the propellant requirements. 

Once an initial set of the requirements are used to eliminate electric propulsion 

configurations, the next criteria used is elimination through the use of the mean of 

the data. The initial intent was to use the standard deviation as well but there was 

too much conflict in the parameter to try to maximize parameters using this method. 

The requirements are as follows: 

1. The propellant mass is less than the average propellant mass 
 
 
 

2. The electrical efficiency is greater than the average electrical efficiency 
 
 
 

3. The total efficiency is greater than the average total efficiency 
 
 

2.3 Monte Carlo Method 
 

Following the steps of the Monte Carlo Method, the thrust, specific impulse, and the 

electrical efficiency are the input parameters that are randomly generated. Though 

more values were included, the observational parameter of interest are the propellant 

mass and the input power needed for the system. The input power will suggest the 

feasibility of an EP system considering the amounts of power one of these systems 
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requires and the existing technology to provide for the power requirement. The 

propellant mass is, ideally, minimum while still performing the mission in the require 

amount of time. The number of trials designated for this simulation is not set, but 

will be above 10000 trials. Once the preliminary designs have been discarded using 

the requirements mentioned earlier, the standard deviations of the data sets will be 

used to further eliminate any other designs. 

The design and all the pertinent information will be stored in data structure 

within MATLab. The information for all the designs will be stored in that structure 

and a new data structure will be created will all the designs that have passed the 

initial and final requirements. The set of configurations are eliminated until the data 

structure is left with less than 10 EP designs to ease the decision-making of the ideal 

configuration. 

 

2.4 Orbit Determination and ∆v Requirement 
 

To determine the ∆v requirement, the orbit transfer and orbit determinations analysis 

must be performed. To do so, I chose a launch date, that was current with the analysis 

of this project. The launch from Earth to Mars would begin on June 8, 2018 with a 

return date of October 8, 2018. This is the proposed launch window for this project. 

The position of the planets will be taken at these dates in order to determine the 

velocity vectors using Lambert’s method. The velocity vectors will dictate the ∆v 

requirement for this mission as well as the proposed 4 month duration. 

Lambert’s method states that the orbit of a particle can be determined through 

the use of two position vectors as well as the time between the two points. The first 

step is to find the magnitudes of the position vectors and define the trajectory of the 
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I 

− 

2 

2    

µ∆t (15) 

 
flight as either prograde or retrograde to find ∆θ. 

 
 

r1 =   
   

r-1  · r-1 (9) 

r2 = r-2   · r-2 (10) 

∆θ = arccos 
r-1  · r-2 (11) 
r1r2 

 

The spatial ambiguity is determined by the the z component of the cross product of 

the first position vector crossed with the second position vector. Once the value of 

∆θ is found, the value for A can be determined. 
 
 

 

A = sin(∆θ) 
  r1r2 

 

1 − cos(∆θ) 

 
(12) 

 

The Stumpff functions C(z) and S(z) are used to determine the value of z to be used 

for orbit determination. The equations used are as follows: 

 

y(z) = r1 + r2 + A 
 

 

zS(z) 1 
 

C(z) 
(13) 

√    
( 

y(z) 
\3   

 

µ∆t = 

( 
y(z) 

\3
 

 

 

C(z) 
S(z) + A 

 
  

y(z) (14) 
 
√   

 

 
 

The idea at this point is to find the value of z by iterating through given values of z 

to find the point where F (z) is about 0. Once the value of z is found, it is plugged 

into equation 27 to get a value for y. This value will be used to find the Lagrange 

C(z) 
C(z) 

F (z) = S(z) + A y(z) − 
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values in the following equations: 

 

 
f = 1 − 

y(z) 
r1 

 

 
(16) 

g = A y(z) 
µ (17) 

 
 

ḟ  =  
√µ 
  

y(z)  
(zS(z) − 1) (18) 

r1r2 C(z) 
 

ġ  = 1 − 
1 

 
y(z) 
r2 

 
(19) 

v-1 =  g (r-2 − fr-1) (20) 

1 
v-2 =  g (ġr-2 − r-1) (21) 

 
With this information, the ∆v requirement can be determined by comparing the orbit 

velocity with the required velocity of the spacecraft[17]. 

 
2.4.1 Numerical Solution Method for F(z) 

 
There are several methods to determine the 0 of the function of F(z). In this analysis, 

the solution to F(z) will be found using the bisection method. The bisection method 

is typically used for finding roots of a nonlinear function. The bisection method works 

by searching for a change of sign between two points. If there is no such change in 

sign, the root of the function in that interval is inconclusive and either a new interval 

is tested or the search may also be concluded. The purpose of the bisection method 

is to hone in on two points opposite in sign to determine the possibility of a root in 

the function. The ideal case is that the function has 1 root and the sign change is 

found. This would be the case in Figure 3. 
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Figure 4: The figure shows the ideal case when running the bisection method to find 
a root of the function. 

 
 

In the case of Figure 3, the bisection method would work to find the zero of the 

function. Typically a tolerance can be set in order to get a pretty accurate value of 

the root while decreasing the number of iterations the program may need to find the 

root. When the initial interval is found the next interval is shrunk to begin honing 

in on the root of the function. 

There are cases where the bisection method has its downfall when trying to find 

the root of the function. There are cases when the sign is different and there exists no 

root. One example is the case of rational functions. The graph of 1/x has a change 

in signs if you pick a point less than 0 and a point greater than 0, but there is no 

root to that function. 

The next case is when you do have a root but there is no interval in the domain 

where the values of the function have different signs. If the function is of the form 

(x − a))2, where a is a constant, then there the bisection method of root finding would 
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fail even though there exists a root to the function[18]. 

The last case to mention is when there is more than one root to the function. 

This would cause the bisection method run into the issue of having no change in sign 

even though there is a root within such interval. This scenario would result into the 

inspection of a different interval or, possibly, ending the search for the root. The issue 

is in this case is, also, determining which root to use to satisfy the function if a new 

interval is examined to determine the roots in this case. 

 
2.4.2 Propagator for Orbit Visualization 

 
To generate visualization for the spacecraft mission, a propagator was developed to 

plot the points in the trajectory. The Runge-Kutta (i.e. RK4) method was  used  

for the propagator. The method would be implemented to develop a function in 

MATLab taking in the initial state vector as an input. The initial state vector would 

be read as follows:  [-x : -v] where -x =[x,y,z] and -v =[vx, vy, vz].  For the purpose of this 

propagator, 6 coefficients need to be determined. 

 
b(1) = vx (22) 

 
b(2) = vy (23) 

 
b(3) = vz (24) 

µx 
b(4) = − | -x |3 

(25) 
µy 

b(5) = − | -x |3 
(26) 

µz 
b(6) = − | -x |3 

(27) 

These values, let’s call it -b, are used to determine the value of the position and velocity 

in the next time step, ∆t.  The value for -b   is a function of µ and the state vector 
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X- .  The calculations for the next values in the position and velocity are calculated as 

follows: 

 
k1 = b(Xn, µ)∆t (28) 

k2 = b(Xn 

k3 = b(Xn 

+ 
k1 , µ)∆t (29) 
2 

+ 
k2 , µ)∆t (30) 
2 

k4 = b(Xn + k3, µ)∆t (31) 
1 

Xn+1 = Xn + 6 (k1 + 2k2 + 2k3 + k4) (32) 

 
This method runs under the assumption that there are no perturbations in the system. 

The orbit is running under ideal conditions. The name of this numerical scheme 

suggest a 4th order accurate numerical scheme. For the purpose of a visualization 

and mission trajectory, this numerical scheme is sufficient. 

 

2.5 Design of Experiments 
 

To further test some of the values that were determined in the optimization process, a 

design of experiments can be done. In this case, based on the variable and parameter 

that were randomized, three of those value are examined and a response surface will 

be generated for each scenario. The 3 values in question are the thrust, specific 

impulse, and electrical efficiency. One of the 3 parameter is varied while the other 

time are kept constant in order to test the sensitivity of each input parameter. One 

the data is gather, a response surface is generated to aid in visualizing the sensitivity 

of the system. 

The data, at this point, should be fairly optimized so the response surface plots 

should not need to have a wide range of values but it serves to help visualize how 



2
 

 

 
much more optimal the system can get and the sensitivity of the system after the 

optimization. This could be used later on to generate more trials and can serve to 

further optimize the design configurations. 

 

2.6 C++ Implementation of the Code 
 

The C++ code can be generated by mimicking the MATLab script and following the 

same set of instruction using the C++ syntax. Since MATLab has some of the built-in 

math function already defined, these function may need to be designed in C++. Such 

functions include the function to perform dot products and cross products. The arrays 

and the structure for the EP systems have to be designed to develop the functions to 

calculate for the required velocity using Lambert’s Problem. 

The purpose of the implementation of this code is to create a comparison between 

the run-time of the MATLab script and the C++ code. To provide for a fair com- 

parison, the plots and the figures generated in MATLab will not be generated for the 

comparison. The initial development of the C++ code will not include the graphics 

created using MATLab. If time permits, the entirety of the C++ code will be written. 

Otherwise, the sections of the code can be compared. 

 
 

3 Results 
 

3.1 Parametric Optimization 
 

To arrive to the optimal electric propulsive system, the values are randomly gener- 

ated through the use of a normal distribution via the Monte Carlo simulation. The 

randomly generated values are used to determine the remaining parameters of the 

propulsive system. The requirements mentioned before are implemented in a MAT- 
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Lab script in order to organize the EP systems. To provide for a fair amount of 

options, 100000 iterations were run to find propulsion system parameters matching 

the minimum scope. By doing so, there were approximately 3000 options left to 

choose from once the simulation was run. From those results, the next criteria needs 

to be implemented. The ∆v requirements and the delivered mass were kept constant 

for the first step in this process. The following step, the orbit determination, is to 

determine the most efficient ∆v trajectory for the mission. This will still need to be 

determined. 

The current trajectory is based on the launch windows that were provided for 

NASA’s InSight Lander. There may be a better way to optimize the trajectory of the 

flight. The methods of trajectory optimization still need to be examined to provide 

for a more efficient spacecraft flight. 

From those 100000 iterations, the EP system configurations have been narrowed 

down to 5 systems. The following table gives a table of the 2 configurations found in 

MATLab. 

 
Table 2: The table shows the initials set of optimized EP configurations. 

 
 
 

The MATLab code is set to have a maximum of 5 EP configurations so the code 

eliminated values until it had 2 EP configurations left. Based on the table of values 

the same Monte Carlo process can be followed to further optimize the system. This 

provides for a baseline of values to use for the sensitivity analysis done in the DOE 

portion. 
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3.2 Orbital Mechanics 
 

The launch window for this flight was chosen to start on June 8, 2018 and the mission 

was to last until November 15, 2018. From these values, the ∆v requirement can be 

determined. The assumption was made that the time it took from June 8th to July 

18 to get from Earth to Mars. The spacecraft stayed in Mars orbit from July 18 to 

August 27. Then it goes from August 27 to November 5 on its return trip to Earth 

from Mars. The problem was solved using Lambert’s Problem. The mapping seen in 

the following figure was found using the propagator. 

 
 

 
Figure 5: The figure shows a plot of the trajectory of the mission where the sun in 
considered the origin of the plot. 

 
 
 

Lambert’s Problem is used when the spacecraft is going from Earth orbit into 

Mars orbit. This helped provide the parameters needed as input for the propagator 

to provide the visual of the orbit transfer. The ∆v requirement based on this analysis 

was found to be 34.64 km/s. The goal is to minimize the cost of the mission, but this 

comes at the cost of increasing the ∆v requirement of the mission. 
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3.2.1 Challenges with Lambert’s Problem and Propagator 

 
The initial issue with the propagator occurred with the bisection method when solving 

for the root of the function F(z). Originally, there were issue with determining a root 

of the function and MATLab script would throw and error stopping the code at 

Lambert’s Problem. After inspection of the value of the function, there were complex 

root to consider in this solution set. To adjust for this scenario, only the real portion 

of each solution was considered. This allowed for the correct trajectory visualization. 

The trajectory was compared to the existing Lambert code shared on an open 

source website. Once the prior code was debugged for this issue, the two trajectories 

were compared to ensure that the solutions were similar. 
 
 

3.3 Electric Propulsion Parameters 
 

The requirements are used to narrow down the possible options for an electric propul- 

sion system. The systems that are left can be used to determine an ideal electric 

propulsion system to launch. The system will determine the mission time needed to 

achieve the goal of orbiting to Mars and back to Earth. With the script finished for 

the initial step in the optimization, there are around 3000 viable configurations for 

the EP system after the initial requirements were applied. 

The drawback is the power requirement for a system to fulfill this mission. The 

initial input power requirement distribution can be seen in Figure 5. 
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Figure 6: The figure shows the distribution in power requirements for the remaining 
configuration after the initial constraints. 

 
 
 

Based on the mission requirements, the amount of power required for this system 

is in the range of tens to hundreds of kW for a delivery mass of 20 kilograms. It 

has not been determined yet whether solar panels would provide enough energy for 

any of the EP configurations found. For a larger payload mass, the required power 

would increase. It is typical for larger spacecraft to require power on the order of 

MW if they are using an EP system. Some of the EP parameters were refined due to 

the occurrence of negative values. A further process of elimination will be invoked to 

check for these extraneous solutions. 

The initial distribution for the other parameter of interest can be found in figures 

7, 8, and 9. The MATLab script is designed to check for negative values in the thrust 

and in the input power, as this was a previous issue. 
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Figure 7: The figure shows the distribution in thrust for the remaining configuration 
after the initial constraints. 

 
 
 
 

 

Figure 8: The figure shows the distribution fulfilling the initial total efficiency re- 
quirements. 
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Figure 9: The figure shows the distribution of initial propellant masses fulfilling the 
requirements. 

 
 
 

3.4 Design of Experiments Results 
 

The response surfaces generated do not supply a wide range of values and this would, 

in part, be a result of optimizing the system before the sensitivity check. In effect, it 

seems the least variable combination of parameter was the interaction space between 

the power, thrust and electrical efficiency, but this would require further analysis. 

The outlier in the data must first be examined and fixed to reach this conclusion. 
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Figure 10: The figure shows the response surface of the interaction between the 
electrical efficiency and the Isp and their implication on the propellant mass. 

 
 
 
 
 

 

Figure 11: The figure shows the response surface of the interaction between the 
electrical efficiency and the thrust and their implication on the propellant mass. 
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Figure 12: The figure shows the response surface of the interaction between the Isp 
and the thrust and their implication on the propellant mass. 

 
 
 
 
 

 

Figure 13: The figure shows the response surface of the interaction between the Isp 
and the electrical efficiency and their implication on the input power. 
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Figure 14: The figure shows the response surface of the interaction between the thrust 
and the electrical efficiency and their implication on the input power. 

 
 
 
 
 

 

Figure 15: The figure shows the response surface of the interaction between the Isp 
and the thrust and their implication on the input power. 

 
 
 

The response surface found in Figure 10 makes complete sense, the higher the 
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value of the Isp and the electrical efficiency the lower the mass of the propellant 

required. The value of Isp is known to be indicative of the amount of propellant 

required regardless of it being a chemical, solid, or electric propulsion system. In this 

case the darker the blue the more optimal the system. 

Figure 11 needs further analysis. There is an outlier in the response surface that 

should be determined and omitted from the response surface. The response surface 

with this scheme would suggest that propellant mass will not change drastically with 

the change in the propulsive thrust. 

Figure 12 suggest that there is an optimal range or value for the thrust that would 

result in the decrease of the propellant mass. The value is between 1.5 and 1.6 based 

on the response surface. This visual would allow us to run another set of simulations 

based on these values to further optimize the system. 

In contrast to Figure 10, Figure 13 shows that the lower the Isp the lower the input 

requirement. The higher the value of the Isp the more energy that is required for the 

EP system. This would imply an need for compromise between the input power and 

the propellant mass because of conflicting influence of the Isp on both of those values. 

Figure 14 shows that the lower the thrust of the EP system, the lower the required 

input power. Because of the direct correlation, the higher the electrical efficiency, the 

lower the required input power. 

Figure 15 shows that the higher the Isp, the higher the input power requirement 

and the higher the electrical efficiency, the lower the input power requirement. The EP 

configuration will have to balance the Isp in order to compromise a decrease in both the 

input power and the propellant mass. Running more possibilities and configurations 

will increase the run time for the MATLab script but testing the difference in the 

result can prove useful. 

The current run time for the MATLab script is nearly 110 seconds. This is due to 
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the process of the Monte Carlo Method along with the generation of 100000 different 

configurations. It would be useful to compare the results to determine whether it is 

efficient to generate this number of configurations. This could also help determine 

whether or not the number of configurations should be increased. This test of con- 

vergence is limited by the amount of processing power needed and the amount of 

processing power available. The following table shows the current distribution of the 

run time for the simulations done with 100000 generated configurations. 

 

 
Table 3: The figure shows the major components of the run time of the Monte Carlo 
simulation. The total time is roughly 110 seconds. 

 
 
 

Based on this result, it would be interesting to attempt to examine the difference 

in run-time if the simulation were done in a programming language. This resulted in 

an attempt to begin writing the coded in C++ but under the time given the C++ 

code is incomplete. This will be turned into future work, but it would be interesting 

to begin and observe some of the differences between MATLab and C++ as well as 

any differences in writing the functions needed to run the simulation. 

 

3.5 Implementation of C++ Code/MATLab Script 
 

The development of the code is still in progress. So far, the functions for the cross 

product, the dot product, and the magnitude have been developed. The random 

generator has been tested so that the numbers are randomized based on the run-time 
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of the code execution. It is desired that the code develop a random number between 

0 and 1 so the cstdlib library is being used to create a function to do this task.   

The random generator, as mentioned earlier, takes the time-based random number 

and divides it by the library defined RAND MAX. Upon testing the random number 

generation, the issue of the hardware limitations became apparent. This along with 

the large call stack may have caused the program to compile the code but prevent 

the code from generating the required output. The program was asked to generate 

300000 random numbers and this resulted in the lack of an output. Once the desired 

array size of the randomly generated numbers was brought down to 200000 random 

numbers, the program worked fluidly through the execution. 

This would lead to the testing of the MATLab script to examine if the program 

would run under the desired conditions of increasing the number of elements in the 

array. Upon testing an array of this magnitude, the MATLab script began to take too 

long or even cause MATLab to stop responding. To work around this there is either 

a need for better hardware to generate a larger number of random EP configurations 

or continue to iterate through the same number of configurations more than one 

time around. Multiple iterations of the same process could cause the solution set to 

converge towards a certain set of EP parameters. Generating more configurations 

than 200000 would cause the program to fail to execute properly. 

The call stack takes up a place in the computers memory so adding more function 

calls could result in the inability of a program to complete the task. The number of 

configurations will be kept under 200000 to conform to the hardware limitations at 

hand. 

The first challenge in creating the C++ code thus far was creating a function to 

allow for an array of values as the output. There are many solutions to this problem 

but both manipulate and use pointers to solve this issue. The following pseudocode 
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shows the approach taken to achieve the solution to this issue. 

 

This would force the use of pointer to this problem in order to access the value of the 

desired array. 

The next step in this process would be to work on the Lambert Solver function as 

well as the necessary function to complete the Lambert Solver. The initial plan was to 

create a structure for the Lambert Solver, but a similar solution to the one mentioned 

above can be used. A pointer to the array can be used to extract all the values needed. 

The array would contain the initial velocity needed, the final velocity needed, and 

the solution to the set of Stumpff functions. The current state of the C++ code can 

be found in the Appendix but it has not been completed. There was not enough 

time to turn the MATLab script into C++ code and that portion of the project is 

considered to be possible future work. There were several issues when beginning the 

C++ implementation, such as the understanding of returning the pointer to an array, 

that may have come up and taken even longer for the implementation of the C++ 

code. As it stands, the functions work correctly and the main script was simply used 

to debug or test some of the functions. 

To serve as a point of comparison in C++, the ∆v requirement was considered 

constant and the number of configurations developed was set to 10000. The visual 

plots were also taken out of the MATLab script and this would allow for a fair com- 

outputType * myFunction(inputType varName1, inputType varName2...){ 

static double returnVariable; 

some lines of code here 

... 

return returnVariable; 

} 
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parison between the script and the C++ code. Using the clock functions C++ and 

using the ”Run and Time” debugger in MATLab, the times of the two implemen- 

tations could be determined. The following figure shows the output given from the 

C++ script: 

 
Figure 16: The figure shows the output of the C++ code with the time the code took 
in the process. 

 
 
 

As can be seen in the figure, the time it took for the C++ code to run was about 



35  

 
half as much as the time it took for the MATLab script to run. MATLab took 0.346 

seconds where as the C++ code took 0.156 seconds. This is minimal in this case but 

this could make a bigger difference if the inclusion of visuals was also done in C++. 

 
 

4 Conclusion 
 

4.1 Discussion of Results 
 

The input power required is in the magnitude of 100’s of kW. The value for this would 

make sense given the designed mission time. There is a need for a greater ∆v in this 

mission. The next step in this process would be to determine a power source capable 

of providing the amount of power needed for this spacecraft. It would be interesting 

to examine the number of existing viable EP systems for this mission, assuming a 

power source is within the feasible spacecraft weight limits. 

After an observation of some of the available power supplies that can produce 

200kW of power, the size of the spacecraft desired, in this case, would not be feasible. 

It would need to undergo a revision in order to make the sizing of the system more 

realistic. The purpose of this study was to examine the amount of power needed to 

run a mission to Mars under the assumption that the power supply was not much of 

a concern. This would suggest that the amount of power needed is the largest factor 

in the weight of the spacecraft. It would be useful to perform future work and run 

another iteration of simulations under the assumption that the weight of the power 

supply is known within a certain margin. 

An initial set of design parameters has been established and a set number of 

configurations has been determined based on the use of the initial requirements and 

the use of statistics to narrow down the results to desirable parameters. The intent 



36  

writetable(struct2table(structVar),’fileName.xlsx’); 

 
is to determine a method to optimize the orbital trajectory, as well, to decrease the 

∆V requirement for this mission. 

The result show that the propellant mass and the specific impulse are indirectly 

proportional while the input power and the specific impulse are directly proportional. 

This would direct the system to a compromise between the two values and the use of 

statistics can attempt to quantify a system that is better suited for the mission. This 

information is confirmed in the response surface shown earlier in this report. This 

relationship can also be seen in the equations used to determine the EP parameters. 

The following list shows the final list of optimal configurations. Many of the 

configurations would revolve around these values because of the inverse relationship 

between the power required and the specific impulse. 
 

 
Table 4: The table shows a list of the configurations developed where each row 
represents a configuration. 

 
 
 

The table was generated by using the workspace and using the following line of 

code in MATLab: 

 
 
 

The major point made here is the need for higher electrical and total efficiencies for 

an electric propulsion system. The values for the thrust, specific impulse and the 

propellant mass revolve around a certain range of values. This would suggest that 

in, most cases, there is an optimal range for the design on an EP system based on 

minimizing the weight of the system as a whole. As a future work, it would be 

interesting to possibly develop a cost function in order to more accurately optimize 
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the problem. 

At this point in time, the number of configurations that can be generated by the 

code is limited by the hardware in use. If more configurations are desired, then the 

code can run multiple iterations of the Monte Carlo in order to increase the sample 

space. Each time, it should only save the optimal configurations and at the end of 

N configurations, compile each of the optimal configurations into one structure. This 

would allow for a larger design space. As far as the simulation goes, doing further 

research into increasing the processing power or improving the hardware at hand 

would be useful if less iterations are desired. The goal of this project was to examine 

the effects of attempting to shorten the mission time on the design parameters of an 

EP system. The end goal after the completion of this project is to attempt to design 

a software that could generate some possible EP configurations that may be within 

reason. The current constraint to current EP technology is the size and amount of 

a powering system needed for some of these systems. The MPDT would be a great 

example of high power requirements. The typical power system needed for a system 

such as this is typically large in size. The end goal after this project is to develop 

some software or GUI that allows the user to input specific mission requirements and 

the program would select some EP system options. 

 

4.2 Future Remarks 
 

Before continuing to optimize the trajectory, a method should be proposed to continue 

cycling through the optimization. To get a better set of results, the optimal values can 

be reused to run another iteration of Monte Carlo simulations. This time, the value 

can be based off of one of the final designs. The comparison process can continue to 

find even better options. The randomization can be done within a given percentage 
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of said values. The trouble is going to be the balance between Isp and its effect on 

the input power and propellant mass. 

The calculations are currently done for a specified ∆v. The value has not yet 

been optimized and would be the next step in the process of designing the mission 

using an EP system. A separate set of calculations will be done to determine the 

most efficient orbit transfers. The ∆v requirement may decrease because it will be 

assumed that the EP system was transferred to LEO via a chemical rocket. The orbit 

determination remains a work in progress. This will be further explored to provide 

for better optimization. The time window would ideally be planned and optimized 

based on previous trajectory optimization algorithms. 

In terms of the coding, it would be ideal to keep track of the run-time for the 

MATLab script. If time permits, the code will be moved over to C++. This would 

allow for a comparison in run-time in an attempt to optimize the code as well. Each 

configuration could be defined as a class of its own in C++ so that it would store all 

the necessary parameter of the system. 

Based on some of the results, there may need to be a more strict criteria for the 

configurations. There have been cases where the total efficiency has exceeded 100 

percent. The total efficiency should also be lower than or equal to the electrical 

efficiency. This method may decrease the number of steps required to narrow down 

the option for EP configurations. Reducing the number of required steps may also 

decrease the run-time of the MATLab script because each step would require less 

data to store. 

The next step would be to determine if there are any existing EP systems to satisfy 

the optimal conditions. This would force us to examine all types of EP systems. The 

biggest concern is the power source for the system. If there exists a power source for 

this system that can provide enough energy, the size of that system would, ideally, 
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have to fall within the weight constraint enforced in the optimization. It would be 

interesting to design the physical system and try to run simulations. Trying to utilize 

the physics behind electromagnetism or plasma physics, though, would require more 

research and time to provide for such a simulation. 

The C++ code is currently under development before the trajectory optimization. 

Ideally, the comparison of the run-time of the code can be performed. The current 

C++ code needs more work and some of the function still need to be generated. If 

there are workarounds for the call stack limitation, that would be interesting as it 

would enable for a higher number of iterations to be executed in the program. This 

would be done before the trajectory optimization is done. 

The MATLab script could also be altered in order to run more than the 100000 

configurations being generated. By dumping and filling up the data structure, the 

simulations can be done for a larger amount of different electric propulsion parameters. 

This would, then, allow for a better optimization of the EP system. 

It would be ideal to use this information to begin designing and running simula- 

tions an a system that can match the final parameters. It would be interesting to try 

to run simulations either through development of the plasma physics in MATLab or 

through the use of ANSYS. This would allow for a more accurate efficiency analysis 

and this would allow for the observation of the exhaust flume effects on the system. 
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5 Appendix 
 

Orbit Determination Script: 
 

clc; close all; clear all; 
 

 

%% Orbit Determination 

% Assume a start date or launch from LEO to Mars on June 8, 2018 at 

'→ 7:30AM UTC 

% Mission should last between 120 to 150 days, this will determine 

'→ the 

% delta v requirements 

% 1 au = 149,598,000 kilometers 

%% Initial launch from Earth to Mars (all values in km or km/s) 
 

earthInitPos=[-2.244542935534042E-1,-9.898623255903916E 

'→ -1,4.560701155303384E-5]*149598000; 

earthInitVel=[1.649999873155679E-2,-3.875737397365565E 

'→ -3,4.005872971272586E-7]*149598000/86400; 

marsInsPos=[4.000337515036055E-1,-1.366767680356064,-3.845438967555528 

'→ E-2]*149598000; 

marsInsVel=[1.395777605470139E-2,5.132183704069709E 

'→ -3,-2.349802301687601E-4]*149598000/86400; 

% deltaV1=norm(marsInsVel)-norm(earthInitVel); 
 
 
 

%% Return trip from Mars to Earth (all value in km or km/s) 
 

marsDepPos=[1.192813351251525,-6.969502737632471E-1,-4.387304975491351 

'→ E-2]*149598000; 
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marsDepVel=[7.591205446206280E-3,1.327897806399470E  

'→ -2,9.197681741173623E-5]*149598000/86400; 

earthRetPos=[9.751904220415768E-1,2.205338163864697E 

'→ -1,-1.485898354345033E-5]*149598000; 

earthRetVel=[-4.072134829623000E-3,1.672285385762414E 

'→ -2,-1.282508017134359E-6]*149598000/86400; 

% deltaV2=norm(marsDepVel)-norm(earthRetVel); 
 
 
 

%% Visual Aid for Mission 
 

mu=1.32712440042E11; 

mSun=1.989E30; 

radiusSun=695508; 

deltaT1 = 24*(3600*(JulianDay(2018,7,18,7.5)-JulianDay(2018,6,8,7.5))) 

'→ ; 

deltaT2 = 24*(3600*(JulianDay(2018,9,28,7.5)-JulianDay(2018,7,18,7.5)) 

'→ ); 

[velFromEarth,velAtMars,f,yOfZ, zVal]=lambertSolver2(earthInitPos, 

'→ marsInsPos,deltaT1,’prograde’, 1.989E30); 

[posEarthToMars,velEarthToMars] = propagator(earthInitPos(1), 

'→ earthInitPos(2),earthInitPos(3),velFromEarth(1),velFromEarth(2) 

'→ ,velFromEarth(3),60,deltaT1,mSun); 

[posMarsMissionOrbit,velMarsMissionOrbit]   =   propagator(marsInsPos(1), 

'→ marsInsPos(2),marsInsPos(3),marsInsVel(1),marsInsVel(2), 

'→ marsInsVel(3),60,deltaT2,mSun); 

[earthOrbit,velEarthOrbit] = propagator(earthInitPos(1),earthInitPos 



42  

 

'→ (2),earthInitPos(3),earthInitVel(1),earthInitVel(2), 

'→   earthInitVel(3),50,366*24*3600,mSun); 

[marsOrbit,velMarsOrbit] = propagator(marsInsPos(1),marsInsPos(2), 

'→ marsInsPos(3),marsInsVel(1),marsInsVel(2),marsInsVel(3) 

'→ ,50,80000000,mSun); 

[velFromMars,velAtEarth]=lambertSolver2(marsDepPos,earthRetPos,deltaT1 

'→ ,’prograde’, 1.989E30); 

[posMarsToEarth,velMarsToEarth]=propagator(marsDepPos(1),marsDepPos(2) 

'→ ,marsDepPos(3),velFromMars(1),velFromMars(2),velFromMars(3),60, 

'→ deltaT1,mSun); 

figure(1) 

hold on 

[x,y,z]=sphere; 

x=radiusSun*x; 

y=radiusSun*y; 

z=radiusSun*z; 

surf(x,y,z,’DisplayName’, ’Sun’) 

plot3(earthOrbit(1,:),earthOrbit(2,:),earthOrbit(3,:), ’DisplayName’, 

'→    ’EarthuOrbit’) 

plot3(marsOrbit(1,:),marsOrbit(2,:),marsOrbit(3,:),    ’DisplayName’,    ’ 

'→ MarsuOrbit’) 

plot3(posEarthToMars(1,:),posEarthToMars(2,:),posEarthToMars(3,:),          ’ 

'→ DisplayName’, ’TouMars’) 

plot3(posMarsMissionOrbit(1,:),posMarsMissionOrbit(2,:), 

'→ posMarsMissionOrbit(3,:), ’DisplayName’, ’OnuMars’) 
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plot3(posMarsToEarth(1,:),posMarsToEarth(2,:),posMarsToEarth(3,:), ’ 

'→ DisplayName’, ’TouEarth’) 

xlabel(’Distanceu(km)’);ylabel(’Distanceu(km)’);zlabel(’Distanceu(km)’ 

'→ ); 

legend 

hold off; 

 
 

%% Calculating Delta V 
 

deltaV=abs(norm(earthInitVel)-norm(velFromEarth))+abs(norm(marsInsVel) 

'→ -norm(velAtMars))... 

+abs(norm(marsDepVel)-norm(velFromMars))+abs(norm(earthRetVel)- 

'→ norm(velAtEarth)); 

deltaV=deltaV*1000; 

 

n=100000; % number of iterations 

%% Developing the Basic Random Generation of EP Systems 
 

rng(’shuffle’); 

electricPropulsionParameters.electricalEfficiency=zeros(n,1); 

electricPropulsionParameters.isp=zeros(n,1); 

electricPropulsionParameters.thrust=zeros(n,1); 

electricPropulsionParameters.totalEfficiency=zeros(n,1); 

electricPropulsionParameters.velocityExhaust=zeros(n,1); 

electricPropulsionParameters.massFlowPropellant=zeros(n,1); 

electricPropulsionParameters.powerJet=zeros(n,1); 

electricPropulsionParameters.propellantMass=zeros(n,1); 
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electricPropulsionParameters.inputPower=zeros(n,1); 

electricPropulsionParameters.powerDissipated=zeros(n,1); 

electricPropulsionParameters.deltaV=deltaV; 

electricPropulsionParameters.massDelivered=20; 

 

for ii=1:length(electricPropulsionParameters.isp) 

g=9.8; 

electricPropulsionParameters.electricalEfficiency(ii)=(randn/3+1) 

'→ /2; 

electricPropulsionParameters.isp(ii)=100000*((randn/3+1)/2)+11000; 

electricPropulsionParameters.thrust(ii)=(randn/3+1)/2+1; %Newtons 

electricPropulsionParameters.totalEfficiency(ii)=(randn/3+1)/2; 

electricPropulsionParameters.velocityExhaust(ii)= 

'→ electricPropulsionParameters.isp(ii)*g; 

electricPropulsionParameters.massFlowPropellant(ii)= 

'→  electricPropulsionParameters.thrust(ii)/ 

'→ electricPropulsionParameters.velocityExhaust(ii); 

electricPropulsionParameters.powerJet(ii)=0.5* 

'→ electricPropulsionParameters.massFlowPropellant(ii)* 

'→ electricPropulsionParameters.velocityExhaust(ii)^2; 

electricPropulsionParameters.propellantMass(ii)= 

'→ electricPropulsionParameters.massDelivered*(exp( 

'→ electricPropulsionParameters.deltaV/ 

'→ electricPropulsionParameters.velocityExhaust(ii))-1); 

electricPropulsionParameters.inputPower(ii)= 
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end 

'→ electricPropulsionParameters.powerJet(ii)/ 

'→ electricPropulsionParameters.totalEfficiency(ii); 

electricPropulsionParameters.powerDissipated(ii)= 

'→ electricPropulsionParameters.inputPower(ii)*(1- 

'→ electricPropulsionParameters.electricalEfficiency(ii)); 

 

counter=1; 

for jj=1:length(electricPropulsionParameters.isp) 

if((electricPropulsionParameters.propellantMass(jj)<= 

'→ electricPropulsionParameters.massDelivered)&&( 

'→ electricPropulsionParameters.electricalEfficiency(jj)>=0.75) 

'→ &&(electricPropulsionParameters.totalEfficiency(jj)>=0.50) 

'→ &&(electricPropulsionParameters.totalEfficiency(jj)<= 

'→  electricPropulsionParameters.electricalEfficiency(jj))&&( 

'→ electricPropulsionParameters.propellantMass(jj)>0)) 

electricPropulsionParameters2.electricalEfficiency(counter,1)= 

'→ electricPropulsionParameters.electricalEfficiency(jj); 

electricPropulsionParameters2.isp(counter,1)= 

'→ electricPropulsionParameters.isp(jj); 

electricPropulsionParameters2.thrust(counter,1)= 

'→ electricPropulsionParameters.thrust(jj); 

electricPropulsionParameters2.totalEfficiency(counter,1)= 

'→ electricPropulsionParameters.totalEfficiency(jj); 

electricPropulsionParameters2.velocityExhaust(counter,1)= 

'→ electricPropulsionParameters.velocityExhaust(jj); 
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end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

end 

electricPropulsionParameters2.massFlowPropellant(counter,1)= 

'→ electricPropulsionParameters.massFlowPropellant(jj); 

electricPropulsionParameters2.powerJet(counter,1)= 

'→ electricPropulsionParameters.powerJet(jj); 

electricPropulsionParameters2.propellantMass(counter,1)= 

'→ electricPropulsionParameters.propellantMass(jj); 

electricPropulsionParameters2.inputPower(counter,1)= 

'→ electricPropulsionParameters.inputPower(jj); 

electricPropulsionParameters2.powerDissipated(counter,1)= 

'→ electricPropulsionParameters.powerDissipated(jj); 

counter=counter+1; 

 

 

figure(2) 

histogram(electricPropulsionParameters2.inputPower) 

xlabel(’InputuPoweru(W)’) 

title(’DistributionuofuInputuPower’) 

figure(3) 

histogram(electricPropulsionParameters2.propellantMass) 

xlabel(’PropellantuMassu(kg)’) 

title(’DistributionuofuPropellantuMass’) 

figure(4) 

histogram(electricPropulsionParameters2.totalEfficiency) 

xlabel(’TotaluEfficiency’) 
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title(’DistributionuofuTotaluEfficiency’) 

figure(5) 

histogram(electricPropulsionParameters2.thrust) 

xlabel(’Thrustu(N)’) 

title(’DistributionuofuThrust’) 

numberOfConfig=length(electricPropulsionParameters2.isp); 
 

 

while(numberOfConfig>=10 && numberOfConfig~=0) 

counter=1;   

temp=electricPropulsionParameters2; 

avgPropMass=mean(temp.propellantMass); 

stdPropMass=std(temp.propellantMass); 

avgElectricalEfficiency=mean(temp.electricalEfficiency); 

stdElectricalEfficiency=std(temp.electricalEfficiency); 

avgTotEfficiency=mean(temp.totalEfficiency); 

stdTotEfficiency=std(temp.totalEfficiency); 

electricPropulsionParameters3= struct(’isp’, [], ’thrust’, [], ’ 

'→ electricalEfficiency’, [], ’totalEfficiency’, [], ’ 

'→ velocityExhaust’, []... 

, ’massFlowPropellant’, [], ’powerJet’, [], ’propellantMass’, 

'→ [], ’inputPower’, [], ’powerDissipated’, []); 

for kk=1:length(temp.isp) 

if(temp.electricalEfficiency(kk)>0 && temp.isp(kk)>0 && temp. 

'→ totalEfficiency(kk)>0 && temp.thrust(kk)>0 && temp. 

'→ velocityExhaust(kk)>0 && temp.massFlowPropellant(kk)>0 && 



4
 

 

 

'→ temp.powerJet(kk)>0 && temp.inputPower(kk)>0 && temp. 

'→ powerDissipated(kk)>0 && temp.propellantMass(kk) < ( 

'→ avgPropMass)&& temp.electricalEfficiency(kk) > ( 

'→ avgElectricalEfficiency) &&... 

temp.totalEfficiency(kk) > (avgTotEfficiency)) 

electricPropulsionParameters3.electricalEfficiency(counter,1)= 

'→ temp.electricalEfficiency(kk); 

electricPropulsionParameters3.isp(counter,1)=temp.isp(kk); 

electricPropulsionParameters3.thrust(counter,1)=temp.thrust(kk) 

'→ ; 

electricPropulsionParameters3.totalEfficiency(counter,1)=temp. 

'→ totalEfficiency(kk); 

electricPropulsionParameters3.velocityExhaust(counter,1)=temp. 

'→ velocityExhaust(kk); 

electricPropulsionParameters3.massFlowPropellant(counter,1)= 

'→ temp.massFlowPropellant(kk); 

electricPropulsionParameters3.powerJet(counter,1)=temp.powerJet 

'→ (kk); 

electricPropulsionParameters3.propellantMass(counter,1)=temp. 

'→ propellantMass(kk); 

electricPropulsionParameters3.inputPower(counter,1)=temp. 

'→ inputPower(kk); 

electricPropulsionParameters3.powerDissipated(counter,1)=temp. 

'→ powerDissipated(kk); 

counter=counter+1; 
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end 

numberOfConfig=length(electricPropulsionParameters3.isp); 

end 

end 

electricPropulsionParameters2=electricPropulsionParameters3; 

 

 

%% The one at a time parametric study of the optimal values 
 
 
 

% change one of the value that was being randomized by a small 

'→ amount to 

%  determine the significance of each parameter will be observing the 

% propellant mass, the input power and mass flow propellant and will 

'→ be 

% varying the thrust and the isp 
 
 

THRUST_VAR=0.001; 

INITIAL_THRUST_PERCENT=0.8; 

initialThrust=mean(electricPropulsionParameters2.thrust); 

initialIsp=mean(electricPropulsionParameters2.isp); 

initTotEff=mean(electricPropulsionParameters2.totalEfficiency); 

initEleEff=mean(electricPropulsionParameters2.electricalEfficiency); 

newThrust=initialThrust*INITIAL_THRUST_PERCENT; 

newIsp=initialIsp*INITIAL_THRUST_PERCENT; 

newEleEff=initEleEff*INITIAL_THRUST_PERCENT; 

ii=1; 
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while(newThrust <= 1.2*initialThrust) 

g=9.8; 

elePropThrusSens.electricalEfficiency(ii)=initEleEff; 

elePropThrusSens.isp(ii)=initialIsp; 

elePropThrusSens.thrust(ii)=newThrust; %Newtons 

elePropThrusSens.totalEfficiency(ii)=initTotEff; 

elePropThrusSens.velocityExhaust(ii)=elePropThrusSens.isp(ii)*g; 

elePropThrusSens.massFlowPropellant(ii)=newThrust/elePropThrusSens 

'→ .velocityExhaust(ii); 

elePropThrusSens.powerJet(ii)=0.5*elePropThrusSens. 

'→   massFlowPropellant(ii)*elePropThrusSens.velocityExhaust(ii) 

'→ ^2; 

elePropThrusSens.propellantMass(ii)=electricPropulsionParameters. 

'→     massDelivered*(exp(deltaV/elePropThrusSens.velocityExhaust( 

'→ ii))-1); 

elePropThrusSens.inputPower(ii)=elePropThrusSens.powerJet(ii)/ 

'→ elePropThrusSens.totalEfficiency(ii); 

elePropThrusSens.powerDissipated(ii)=elePropThrusSens.inputPower( 

'→ ii)*(1-elePropThrusSens.electricalEfficiency(ii)); 

newThrust=newThrust+THRUST_VAR*initialThrust; 

ii=ii+1; 
 

end 
 

 

figure(6) 

plot(elePropThrusSens.thrust, elePropThrusSens.propellantMass) 
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ii=1; 

while(newIsp <= 1.2*initialIsp) 

g=9.8; 

elePropIspSens.electricalEfficiency(ii)=initEleEff; 

elePropIspSens.isp(ii)=newIsp; 

elePropIspSens.thrust(ii)=initialThrust; %Newtons 

elePropIspSens.totalEfficiency(ii)=initTotEff; 

elePropIspSens.velocityExhaust(ii)=elePropIspSens.isp(ii)*g; 

elePropIspSens.massFlowPropellant(ii)=elePropIspSens.thrust(ii)/ 

'→ elePropIspSens.velocityExhaust(ii); 

elePropIspSens.powerJet(ii)=0.5*elePropIspSens.massFlowPropellant( 

'→ ii)*elePropIspSens.velocityExhaust(ii)^2; 

elePropIspSens.propellantMass(ii)=electricPropulsionParameters. 

'→ massDelivered*(exp(deltaV/elePropIspSens.velocityExhaust(ii) 

'→ )-1); 

elePropIspSens.inputPower(ii)=elePropIspSens.powerJet(ii)/ 

'→ elePropIspSens.totalEfficiency(ii); 

elePropIspSens.powerDissipated(ii)=elePropIspSens.inputPower(ii) 

'→ *(1-elePropIspSens.electricalEfficiency(ii)); 

newIsp=newIsp+THRUST_VAR*initialIsp; 

ii=ii+1; 
 

end 
 

 

figure(7) 
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plot(elePropIspSens.isp, elePropIspSens.propellantMass) 
 

 

 
 

ii=1; 

while(newEleEff <= 1.2*initEleEff && newEleEff<=1) 

g=9.8; 

elePropEleEffSens.electricalEfficiency(ii)=newEleEff; 

elePropEleEffSens.isp(ii)=initialIsp; 

elePropEleEffSens.thrust(ii)=initialThrust; %Newtons 

elePropEleEffSens.totalEfficiency(ii)=initTotEff; 

elePropEleEffSens.velocityExhaust(ii)=elePropEleEffSens.isp(ii)*g; 

elePropEleEffSens.massFlowPropellant(ii)=elePropEleEffSens.thrust( 

'→ ii)/elePropEleEffSens.velocityExhaust(ii); 

elePropEleEffSens.powerJet(ii)=0.5*elePropEleEffSens. 

'→    massFlowPropellant(ii)*elePropEleEffSens.velocityExhaust(ii) 

'→ ^2; 

elePropEleEffSens.propellantMass(ii)=electricPropulsionParameters. 

'→ massDelivered*(exp(deltaV/elePropEleEffSens.velocityExhaust( 

'→ ii))-1); 

elePropEleEffSens.inputPower(ii)=elePropEleEffSens.powerJet(ii)/ 

'→ elePropEleEffSens.totalEfficiency(ii); 

elePropEleEffSens.powerDissipated(ii)=elePropEleEffSens.inputPower 

'→ (ii)*(1-elePropEleEffSens.electricalEfficiency(ii)); 

newEleEff=newEleEff+THRUST_VAR*initEleEff; 

ii=ii+1; 
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end 
 

 

figure(8) 

plot(elePropEleEffSens.electricalEfficiency, elePropEleEffSens. 

'→ propellantMass) 

ispOverall=horzcat(elePropIspSens.isp,elePropThrusSens.isp, 

'→ elePropEleEffSens.isp); 

thrustOverall=horzcat(elePropIspSens.thrust,elePropThrusSens.thrust, 

'→ elePropEleEffSens.thrust); 

inputPowerOverall=horzcat(elePropIspSens.inputPower,elePropThrusSens. 

'→ inputPower,elePropEleEffSens.inputPower); 

propMassOverall=horzcat(elePropIspSens.propellantMass,elePropThrusSens 

'→ .propellantMass,elePropEleEffSens.propellantMass); 

eleEffOverall=horzcat(elePropIspSens.electricalEfficiency, 

'→ elePropThrusSens.electricalEfficiency,elePropEleEffSens. 

'→ electricalEfficiency); 

tri = delaunay(ispOverall, thrustOverall); 

figure(9) 

trisurf(tri, ispOverall, thrustOverall, propMassOverall); 

xlabel(’ispu(s)’);ylabel(’thrustu(N)’); zlabel(’propellantumassu(kg)’) 

'→ ; 

shading interp; 

figure(10) 

trisurf(tri, ispOverall,thrustOverall,inputPowerOverall) 

xlabel(’ispu(s)’);ylabel(’thrustu(N)’); zlabel(’inputupoweru(W)’); 
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shading interp; 

quad=delaunay(ispOverall,eleEffOverall); 

figure(11) 

trisurf(quad,ispOverall,eleEffOverall,propMassOverall); 

xlabel(’ispu(s)’);ylabel(’electricaluefficiency’); zlabel(’propellantu 

'→ massu(kg)’); 

shading interp; 

figure(12) 

trisurf(quad,ispOverall,eleEffOverall,inputPowerOverall); 

xlabel(’ispu(s)’);ylabel(’electricaluefficiency’); zlabel(’inputupower 

'→ u(W)’); 

shading interp; 

squad=delaunay(thrustOverall,eleEffOverall); 

figure(13) 

trisurf(squad,thrustOverall,eleEffOverall,propMassOverall); 

xlabel(’thrustu(N)’);ylabel(’electricaluefficiency’); zlabel(’ 

'→ propellantumassu(kg)’); 

shading interp; 

figure(14) 

trisurf(squad,thrustOverall,eleEffOverall,inputPowerOverall); 

xlabel(’thrustu(N)’);ylabel(’electricaluefficiency’); zlabel(’inputu 

'→ poweru(W)’); 

shading interp; 
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The Lambert Solver Used in this script: 
 
 
 

function [v1,v2,capFOfZ,yOfZ,z] = lambertSolver2(r1_vec, r2_vec, 

'→ deltaT, trajectory, MassOfCentralBody) 

%% Finding the magnitude of the position vectors 
 

r1 = norm(r1_vec); 

r2 = norm(r2_vec); 

 
 

%% Determining the trajectory of the spacecraft and solving 

'→ delta_theta 

crossOfRadVectors = cross(r1_vec, r2_vec); 

if strcmp(trajectory,’prograde’) 

if crossOfRadVectors(3) >= 0 

deltaTheta = acosd(dot(r1_vec, r2_vec)/(r1*r2)); 

else 

deltaTheta =360 - acosd(dot(r1_vec, r2_vec)/(r1*r2)); 
 

end 

elseif strcmp(trajectory, ’retrograde’) 

if crossOfRadVectors(3) >= 0 

deltaTheta =360 - acosd(dot(r1_vec, r2_vec)/(r1*r2)); 

else 

deltaTheta =acosd(dot(r1_vec, r2_vec)/(r1*r2)); 
 

end 

end 
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%% Finding the value of A 
 

A = sind(deltaTheta)*sqrt(r1*r2/(1-cosd(deltaTheta))); 
 

 

%% Finding a function of z to iterate to find the z-value 
 

mu = 6.67E-20*MassOfCentralBody; 

z = linspace(-100,100,100000); 

numberOfIterations = 4; 

for kk = 1:numberOfIterations 

sOfZ = zeros(1,length(z)); 

cOfZ = zeros(1,length(z)); 

for ii=1:length(z) 

if(z(ii)>0) 

sOfZ(ii)=(sqrt(z(ii))-sin(sqrt(z(ii))))/(sqrt(z(ii))) 

'→ ^3; 

cOfZ(ii)=(1-cos(sqrt(z(ii))))/z(ii); 

elseif(z(ii)<0) 

sOfZ(ii) = (sinh(sqrt(-z(ii)))-sqrt(-z(ii)))/(sqrt(-z( 

'→ ii)))^3; 

cOfZ(ii) = (cosh(sqrt(-z(ii)))-1)/(-z(ii)); 

else 

sOfZ(ii) = 1/6; 

cOfZ(ii) = 1/2; 

end 

end 
 

yOfZ = r1 + r2 + A*(z.*sOfZ-1)./(sqrt(cOfZ)); 
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Julian Day Function: 
 
 

capFOfZ = real(((yOfZ./cOfZ).^1.5).*sOfZ + A*sqrt(yOfZ) - sqrt( 

'→ mu)*deltaT); 

jj = 1; 

while(capFOfZ(jj)*capFOfZ(jj+1) > 0) 

jj = jj+1; 

end 

z = linspace(z(jj),z(jj+1),length(z)); 

end 

%% Solving for Y and Lagrangian Coefficients 

y = yOfZ(jj); 

f = 1-y/r1; 

g = A*sqrt(y/mu); 

gDot = 1-y/r2; 

%% Finding velocity vectors 

v1 = 1/g*(r2_vec  -  f*r1_vec); 

v2 = 1/g*(gDot*r2_vec-r1_vec); 

function J = JulianDay(year, month, day, UT) 

J_0 = 367*year-floor(7*(year + floor((month+9)/12))/4) + floor 

'→ (275*month/9)... 

+day + 1721013.5; 

J = J_0 + UT/24.0; 
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Propagator: 

 
 
 

function [pos,vel] = propagator(rx,  ry,  rz,  vx,  vy,  vz,  delT,  totT,  M)  

mu = 6.67E-20*M; 

r = [rx;ry;rz]; 

v =  [vx;vy;vz];  

h = delT; 

N = totT/delT +  1; 

temppos = zeros(3, N+1); 

tempvel = zeros(3, N+1); 

temppos(:,1) = r; 

tempvel(:, 1) = v; 

% time = linspace(0, totT, N); 
 

w = [rx; ry; rz; vx; vy; vz]; 
 

 

for ii = 1:N 

k1 = h*rkf45op(w, mu); 

k2 = h*rkf45op(w+k1/2, mu);  

k3 = h*rkf45op(w+k2/2, mu);  

k4 = h*rkf45op(w+k3,mu); 

w = w+(1/6)*(k1+2*k2+2*k3+k4); 

temppos(:, ii+1) = w(1:3,1); 

tempvel(:,   ii+1)   = w(4:6,1); 
 

end 

pos = temppos; 
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RK4 Scheme: 
 
 

 

Stumpff Function C: 
 
 

 

Stumpff Function S: 

vel = tempvel; 

end 

function [ f ] = rkf45op(x, mu  ) 

f = zeros(6,1); 

f(1)  = x(4); 

f(2)  = x(5); 

f(3)  = x(6); 

f(4)   =   -mu*x(1)/(norm(x(1:3)))^3; 

f(5)   =   -mu*x(2)/(norm(x(1:3)))^3; 

f(6)   =   -mu*x(3)/(norm(x(1:3)))^3; 

end 

function c = stumpC(z) 

if z > 0 

c = (1 - cos(sqrt(z)))/z; 

elseif z < 0 

c = (cosh(sqrt(-z)) - 1)/(-z); 

else 

c = 1/2; 

end 
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Current C++ code: 

function s = stumpS(z) 

if z > 0 

s = (sqrt(z) - sin(sqrt(z)))/(sqrt(z))^3; 

elseif z < 0 

s = (sinh(sqrt(-z)) - sqrt(-z))/(sqrt(-z))^3; 

else 

s = 1/6; 

end 

#include <iostream> 

#include <cstdlib> 

#include <ctime> 

#include <math.h> 

#include  <string> 

#include <sstream> 

#include <time.h> 

using namespace std; 

struct electricPropulsion { 

double electricEff; 

double isp; 

double thrust; 

double totalEff; 

double velEx; 
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double massFlowProp; 

double  powerJet; 

double propellantMass; 

double inputPower; 

double powerDiss; 

}; 
 

 

double randNorm(){ 

double randVal; 

randVal=rand(); 

randVal=randVal/RAND_MAX; 

return randVal; 

} 
 

 

double julianDay(int year, int month, int day,  double  univTime){ 

double julNot = 367*year-floor(7*(year + floor((month+9)/12))/4) + 

'→ floor(275*month/9)+day + 1721013.5; 

double jul = julNot +  univTime/24.0; 

return jul; 

} 
 

 

double magnitude(double vector[3]){ 

double c=sqrt(pow(vector[0],2) + pow(vector[1],2) + pow(vector[2],2) 

'→ ); 

return c; 
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} 
 

 

double dot(double vectorOne[3],double vectorTwo[3]){ 

double c = vectorOne[0]*vectorTwo[0] + vectorOne[1]*vectorTwo[1] + 

'→ vectorOne[2]*vectorTwo[2]; 

return c; 

} 
 

 

double * cross(double vectorOne[3], double vectorTwo[3]){ 

static double newVec[3]; 

newVec[0]=vectorOne[1]*vectorTwo[2]-vectorOne[2]*vectorTwo[1]; 

newVec[1]=vectorOne[2]*vectorTwo[0]-vectorOne[0]*vectorTwo[2]; 

newVec[2]=vectorOne[0]*vectorTwo[1]-vectorOne[1]*vectorTwo[0]; 

return newVec; 

} 
 

 

// struct lambPar { 

// double velocityOne [3]; 

// double velocityTwo [3]; 

// double zValue; 

// } 

// 

// lambPar lambertSolver(double firstRVector [3], double 

'→ secondRVector [3], double deltaT, string trajectory, double 

'→ massOfCenBody){ 
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// 

// } 
 

int main() 

{ 

/*This portion of the project will begin to initialize the beginning 

'→ of the 

initial position from the start of the Earth trajectory, then the 

'→ Mars entry 

position, Mars departure position, and Earth arrival position*/ 

// Earth Initial Positon to Mars Entry Position 
 

double earthInitPos[3]={149598000*-2.244542935534042e 

'→ -1,149598000*-9.898623255903916e-1,149598000*4.560701155303384 

'→ e-5}; 

double earthInitVel[3]={149598000/86400*1.649999873155679e 

'→ -2,149598000/86400*-3.875737397365565e 

'→ -3,149598000/86400*4.005872971272586e-7}; 

double marsInsPos[3]={149598000*4.000337515036055e 

'→ -1,149598000*-1.366767680356064,149598000*-3.845438967555528e 

'→ -2}; 

double marsInsVel[3]={149598000/86400*1.395777605470139e 

'→ -2,149598000/86400*5.132183704069709e 

'→ -3,149598000/86400*-2.349802301687601e-4}; 
 

 

// Mars Departure Position to Earth Orbit Reentry 
 

double marsDepPos 
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'→ [3]={149598000*1.192813351251525,149598000*-6.969502737632471E 

'→ -1,149598000*-4.387304975491351E-2}; 

double marsDepVel[3]={149598000/86400*7.591205446206280E 

'→ -3,149598000/86400*1.327897806399470E 

'→ -2,149598000/86400*9.197681741173623E-5}; 

double earthRetPos[3]={149598000*9.751904220415768E 

'→ -1,149598000*2.205338163864697E-1,149598000*-1.485898354345033 

'→ E-5}; 

double earthRetVel[3]={149598000/86400*-4.072134829623000E 

'→ -3,149598000/86400*1.672285385762414E 

'→ -2,149598000/86400*-1.282508017134359E-6}; 
 

 

//Constants 
 

double mu=1.32712440042e+11; 

double mSun=1.989e+30; 

double radiusSun=695508.0; 

double deltaT1 = 24*(3600*(julianDay(2018,7,18,7.5)-julianDay 

'→ (2018,6,8,7.5))); 

double deltaT2 = 24*(3600*(julianDay(2018,9,28,7.5)-julianDay 

'→ (2018,7,18,7.5))); 
 

 

clock_t t; 

t = clock(); 

double deltaV = 3.464e+4; 

double massDelivered = 20; 
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srand((unsigned)time(NULL)); 

double g = 9.8; 

int numIter=10000; 

electricPropulsion initialRandom[numIter]; 

double foo [numIter]; 

int counter = 0; 

int indexTrack [numIter]; 

for(int i=0; i<numIter;i++) 

{ 
 

initialRandom[i].electricEff = randNorm(); 

initialRandom[i].isp = 100000*randNorm()+11000; 

initialRandom[i].thrust = 2*randNorm(); 

initialRandom[i].totalEff = randNorm(); 

initialRandom[i].velEx = initialRandom[i].isp*g; 

initialRandom[i].massFlowProp = initialRandom[i].thrust/ 

'→ initialRandom[i].velEx; 

initialRandom[i].powerJet = 0.5*initialRandom[i].massFlowProp*pow( 

'→    initialRandom[i].velEx,2); 

initialRandom[i].propellantMass = massDelivered*(exp(deltaV/ 

'→ initialRandom[i].velEx)-1); 

initialRandom[i].inputPower = initialRandom[i].powerJet/ 

'→ initialRandom[i].totalEff; 

initialRandom[i].powerDiss = initialRandom[i].inputPower*(1- 

'→ initialRandom[i].electricEff); 

if((initialRandom[i].propellantMass<=massDelivered)&&( 
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'→ initialRandom[i].electricEff>=0.75)&&(initialRandom[i]. 

'→ totalEff>=0.50)&&(initialRandom[i].totalEff<=initialRandom[i 

'→ ].electricEff)&&(initialRandom[i].propellantMass>0)){ 

indexTrack[counter] = i; 

counter++; 

} 

} 
 

int indexTrackSec [counter]; 

electricPropulsion newEleSys[counter]; 

for(int i = 0; i < counter; i++){ 

newEleSys[i]=initialRandom[indexTrack[i]]; 
 

} 

electricPropulsion finalSystem[10]; 

while(counter>10){ 

electricPropulsion tempSys[counter]; 

int indexTrackTemp[counter]; 

int tempCount = 0; 

double sumElEf = 0.0; 

double sumIsp = 0.0; 

double sumThrust = 0.0; 

double sumTotEf = 0.0; 

double sumVelEx = 0.0; 

double sumMassFlRt = 0.0; 

double sumPowJet = 0.0; 

double sumPropMass = 0.0; 
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double sumInPow = 0.0; 

double sumPowDiss = 0.0; 

for(int i = 0; i < counter; i++){ 

newEleSys[i]=initialRandom[indexTrack[i]]; 

sumElEf += newEleSys[i].electricEff; 

sumIsp += newEleSys[i].isp; 

sumThrust   +=    newEleSys[i].thrust; 

sumTotEf +=   newEleSys[i].totalEff; 

sumVelEx += newEleSys[i].velEx; 

sumMassFlRt += newEleSys[i].massFlowProp; 

sumPowJet += newEleSys[i].powerJet; 

sumPropMass += newEleSys[i].propellantMass; 

sumInPow += newEleSys[i].inputPower; 

sumPowDiss += newEleSys[i].powerDiss; 

} 

double avgElEf =  sumElEf/counter; 

double avgIsp   =   sumIsp/counter; 

double avgThrust = sumThrust/counter; 

double avgTotEf = sumTotEf/counter; 

double avgVelEx = sumVelEx/counter; 

double avgMassFlRt = sumMassFlRt/counter; 

double avgPowJet = sumPowJet/counter; 

double avgPropMass = sumPropMass/counter; 

double avgInPow  =  sumInPow/counter; 

double avgPowDiss = sumPowDiss/counter; 
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for(int i=0; i<counter; i++){ 

if(newEleSys[i].propellantMass < (avgPropMass)&& newEleSys[i]. 

'→ electricEff > (avgElEf) &&newEleSys[i].totalEff > ( 

'→ avgTotEf)){ 

newEleSys[tempCount] = newEleSys[i]; 

tempCount++; 

} 

else{ 

newEleSys[i]={}; 
 

} 

} 
 

counter  =  tempCount; 

} 
 

for(int i = 0; i<counter; i++){ 

finalSystem[i] = newEleSys[i]; 

cout<<"Theuparametersuforuconfigurationu" << i+1 << "uare:" << 

'→ endl; 

cout<<"ElectricaluEfficiencyuisu" << finalSystem[i].electricEff << 

'→ "." << endl; 

cout<<"SpecificuImpulseuisu" << finalSystem[i].isp << "s." << endl 

'→ ; 

cout<<"Thrustuisu" << finalSystem[i].thrust << "N." << endl; 

cout<<"TotaluEfficiencyuisu" << finalSystem[i].totalEff << "." << 

'→ endl; 

cout<<"ExhaustuVelocityuisu" << finalSystem[i].velEx << "." << 
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'→ endl; 

cout<<"PropellantuMassuFlowuRateuisu" << finalSystem[i]. 

'→ massFlowProp << "kg/s." << endl; 

cout<<"JetuPoweruisu"  <<  finalSystem[i].powerJet  <<  "W."  <<  endl; 

cout<<"TotaluMassuisu" << finalSystem[i].propellantMass + 20 << " 

'→ kg." << endl; 

cout<<"InputuPoweruisu" << finalSystem[i].inputPower << "W." << 

'→ endl; 

cout<<"DissipateduPoweruisu" << finalSystem[i].powerDiss << "W." 

'→ << endl; 

} 
 

cout<<counter<<endl; 

t=clock() - t; 

t=double(t); 

printf ("Thisuprocessutooku%duclicksu(%fuseconds).\n",t,((float)t)/ 

'→ CLOCKS_PER_SEC); 

// for(int i=0; i<numIter;i++){ 

// sumIsp += initialRandom[i].isp; 

// } 

// double ispAvg = sumIsp/numIter; 

// cout<<ispAvg<<endl; 
 

return 0; 

} 
 

// To run the code in cmd prompt follow these steps 

// 1) Type in the following command g++ helloworld.cpp -o helloworld 



70  

 

 

'→ .exe 

// 2) Then type in the .exe file you have Created 
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