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Abstract

The study varies key parameters and trajectories of a spacecraft mission
using an electric propulsion (EP) system. For consistent comparison, the space-
craftisassumedtobe onamissiontoMars. The spacecraftis assumedtohave
started at LEO and should be able to travel to Low Mars Orbit and return
to LEO. This would assume that the spacecraft has been transferred to LEO
via a chemical propulsion launch vehicle. Optimal trajectories are determined
and examined based on previous studies of trajectory optimization and optimal
launch windows. The key independent variables of the EP system are the input
power, the input current, the mass flow rate, and the exhaust velocity. The key
parameters observed for variation are thrust, efficiency, total mass, and total
mission time. The variation is examined to determine the effect those param-
eters have on the mission time. The purpose for examining these parameters
1s to determine if the issue of mission time can be addressed when using EP.
EP1is an appealing propulsive system in spacecraft because of the significant
weightreduction, butatthecostofanincreased missiontimeincomparisonto
chemical propulsion. This study is a preliminary determination of the possible
time optimization for a space mission toMars. The total mission timeisbeing
set for a time of 150 days in order to provide a decreased amount in mission

time. The trajectory optimization is still in progress.



Nomenclature

g Acceleration due to gravity, m/s’

mg Mass at burnout, kg

mgq Mass delivered, kg

m, Propellant mass, kg

mp, Propellant mass flow rate, kg/s
¥ Position Vector, km

q Electrical Charge, C

Vex Exhaust Velocity, m/s

v Velocity Vector, m/s
B Magnetic Field, T

E Electric Field, N/m
F Force Vector, N

Iy Beam current, A

lsp  Specific Impulse, s
Pais Power Dissipated, W
P Input Power, W

Pje: Jet Power, W

T Thrust, Newtons

X  State Vector, [m,m,m,m/s,m/s,m/s]
Van Anode Voltage, V

Vy, Beam Voltage, V

ne  Electrical Efficiency
nr  Total Efficiency

iU Standard Gravitational Parameter, m’/s’



Av  Velocity change requirement, m/s

AB Change in Angle, rad

Vi



1 Introduction

1.1 Motivation

Electric propulsion (EP) systems are an option in spacecraft. The issue with electric
propulsion is that it increases the required mission time. It does, however, allow for
a lower spacecraft mass. It would be ideal to decrease the mission time and mass
simultaneously. This EP system requires a larger power source. In some cases, the
idea is to implement nuclear power sources. The issue with nuclear power plants is
mainly political in nature so there has be minimal advancement in nuclear technologies
in spacecraft. The main goal is to increase the thrust, the total efficiency, minimize
mass, and decrease the mission time.

The reduction in mission time will be used to also observe the type of power
requirements necessary for a propulsion system of this type. Though not under current
consideration, the power requirement would determine the size of the spacecraft as
well. With current technology, the more power the system requires, the bigger the

power supply tends to be in the spacecratft.

1.2 Literature Review

RobertHutchingsGoddardisoneoftheearliermentionswhoconsidered EPforusein
spacecraft. Theinitial intentwas to electrostatically accelerate electrons to provide a
propulsive thrust. Goddard was knowledgeable about canal rays so it was interesting
that he had not yet thought of accelerating ions rather than electrons. The idea,
eventually, arose and one of the first concepts of an ion thruster began to develop.
lons can be accelerated and ejected to create the propulsive force needed to provide

thrust. This means that positively charged particles in equal parts are alsoejected.



Goddard would use these ideas to patent the idea of an electrostatic ion accelerator.

Figure 1 shows the schematic of the electrostatic ion accelerator [1].
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Figure 1: The figure shows the third variation of Goddard’s electrostatic ion acceler-
ator from 1917.

The development of EP has been hindered by the high power requirements of the
system. Because of the high power requirements, Yuri V. Kondratyuk argued against
focusing on EP due to the relationship between the exhaust velocity and the power

requirement. The relationship can be seen in Equation 1.

T n
=2 1
P Ve @

Equation 1 shows that the power and the exhaust velocity are directly proportional.
For this reason, Kondratyuk suggested that the focus for propulsion research should be
on chemical propulsionrather thanelectric propulsion. From 1917-1919, the propul-
sion system of choice was chemical propulsion.

Hermann Julius Oberth was one of the next major influences on electric propul-

sion. Oberth came along to suggest that the use of electric propulsion wouldresult
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in significant mass reduction in spacecraft. Oberth’s schematics included the use of
Goddard’sideaofthe electrostatic ion accelerator that would later be used to develop
the ion thruster. This was the major breakthrough of this era.

This era was followed by an era of scientist using the designs and concepts to
createanelectricpropulsionsystem. Up until the 1970s, most EP systemswere tested
experimentally. One of the first ion thrusters was flown in 1994 and since then has
remained a popular research area. They have become more popular for commercial
use. With EP, it is typically easier to perform station keeping on satellites.

In electric propulsion, systems are separated into 3 general categories of propulsion
which go as follows: electrothermal, electrostatic, and electromagnetic.

Electrothermal propulsion is the use of an electrical method to heat up a propel-
lant inducing a thermodynamic expansion in a nozzle. This is the category where
resistojets and arc jets typically fall into. Electrostatic propulsionis the when ion are
accelerated through an electric field to create a propulsive force. Hall thrusters and
ion thruster fall into this category of EP. Electromagnetic propulsion occurs by driv-
ingacurrentthroughaplasmatocreate aforce. The force created in electromagnetic

propulsion is governed by the Lorentz force found in equation 2 [2].

F=gE+qvxB (2)

Some examples of electromagnetic propulsion are pulsed plasma thrusters (PPT) and
magnetoplasmadynamic thrusters (MPDT).

The long mission times have been reduced through research by developing new
electric propulsion systems. The development of ion thrusters, hall thrusters, pulsed
plasma thrusters and magnetoplasmadynamic thrusters are example of EP systems

that have a significant mass reduction. The magnetoplasmadynamic thruster (MPDT)



has been considered by some to be the electric propulsion of the future [3]. The prob-
lem with this EP system is the high power requirement necessary for most MPDT
designs. Some of these systems range from the order of MW to GW requirements
in power. Many of these design are experimental and few have gone through atest
flight.

Although the MPDT system is considered the future of EP, it would be of use to
determinewhetherornototherformsof EP couldalsobedesignedandoptimizedwith
respect to the mission time and total efficiency. The main issue in either case would
be the power inputand the power requirementto be able to significantly decrease the
mission time [4].

Decreasing mission time with EP is a current research topic due to the smaller
size of EP powered spacecraft. There are several ways being researched to decrease
mission time. Several options include trajectory optimization, increasing power levels,
andincreasingtheexhaustvelocity. Onesuggestionistousenuclearenergytoprovide
larger amounts of energy.

The more feasible of the three options at this time is trajectory optimization[5].
There are ways to efficiently optimize trajectories and they will be taken into account
in this analysis[6]. Research on trajectory optimizations has been done for nuclear
electric propulsion systems[7]. Typical flight times between Earth to Jupiter for
these systems ranges from 4-6 years [8]. The optimization was also done for various
destinations between Jupiter and Pluto with a maximum flight time of 14 years from

Earth to Pluto.



Table 1: This table was taken from "Preliminary Design of Nuclear Electric Propul-
sion Missionstothe OuterPlanets”[8]]. Itshowsthesummary,includingflighttimes,

of traveling to several planets.
Encounter Launch Date Launch V.. Flight Times for Total Time of  Final Mass,

Sequence km/s each leg, days Flight, vears kg
Jupiter

E-I* Apr 13,2024 0 2019 553 13,301
E-] Apr 24,2024 1.23 2019 553 13,709
E-M-J* Jan 12, 2022 0 771, 1038 495 13,996
E-M-] Feb 17, 2022 1.04 759, 1050 495 14,879
E-E-J Sep 6, 2015 0.59 460, 1340 493 16,260
E-E-J Sep 29,2015 0.71 441, 1209 452 16,181
E-V-E-] Aug 22, 2018 2.19 188, 347, 1115 452 15,606
Saturn

E-§8* Oct 9,2022 0 2631 7.20 11,285
E-8 Jan 24, 2023 1.30 2631 7.20 12,653
E-M-8 Feb 16, 2022 1.20 587, 2043 7.20 13,943
E-M-5 Apr 14, 2022 217 541, 1759 6.30 12,444
E-V-E-8 Oet 21, 2021 1.95 172,324, 1804 6.30 14,306
E-V-E-I-8 June 4, 2015 2.24 179, 340, 648, 1283 6.71 12,872
Uranus

E-U" Ot 20, 2020 0 3537 9.68 8.268
E-U June 5, 2021 2.32 3537 9.68 10,402
E-E-J-U Jan 28, 2019 1.02 423, 599, 2378 931 12,912
E-E-J-U Feb 11, 2020 0.94 445 582, 2374 931 13,029
E-M-E-J-U Dec 28, 2017 1.16 1039, 195, 515, 2450 11.5 14,097
E-V-E-J-U Aug 25, 2018 221 184, 345, 587, 2284 931 12,172
E-V-E-J-U Sep 27, 2018 2.81 172,327, 526, 1976 821 9,225
Neptune

E-N* Aug 7, 2019 0 4114 11.3 6,347
E-N Apr 21, 2020 263 4114 11.3 8,543
E-V-E-J-N Aug 26, 2018 222 187, 348, 518, 3247 11.8 11,783
E-V-E-J-N Sep 13, 2018 248 179, 338, 501, 2583 9.86 9,264
Pluto

E-P* May 28, 2015 0 4320 1.3 5,661
E-P Aug 20, 2015 275 4320 113 6,890
E-I-P May 29, 2014 1.11 1675, 3125 13.1 9,109
E-I-P Feb 10, 2015 2.03 1706, 3214 13.5 8,666
E-E-J-P Sep 2, 2015 2.44 424 640, 2879 10.8 8,867
E-M-E-]-P Mar 19, 2014 2.06 737, 285,470, 2799 11.7 9,162
E-V-E-J-P May 13, 2015 2.19 155, 448, 479, 2768 10.5 9,196

Another method is to increase the exhaust velocity which would have an affect
on the payload mass fraction[9]. Changing the payload mass fraction, by extension,
can optimize the parameters of the EP system. The payload mass fraction method
examines the parameter space to determine viable configurations. This was done
by examining the space after trying a range of values for the I, the power, and
launch energy (km/s’)[10]. Figure 2 shows an example of the data obtained through

variations in the payload mass fraction.
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Figure 2: The figure shows variation of Is, and launch energy with the power sys-
tems specific mass. The plot is taken from "Maximizing Payload Mass Fractions of
Spacecraft for Interplanetary Electric Propulsion Missions [10].”

Tobeginthe optimizationprocess, therewasasetofassumptionsmade tosimplify
the problem[11]. Because of the inter-dependencies between variables, the list of
variable to set as independent variable requires though in order to solve a system
of equations. Since the optimization is highly computational and numerical, the
set of boundaries and constraints are an important starting point for this process.
Therefore, onlyvaluesthatare representative of current EP designswillbe considered
regarding the random generation of the independent values. The processis iterative
and must be done for a different set of values. The set of important dependent
variables for which the optimization is done must also be defined. This allows the
analysis of any parameter that are considered crucial.

It is important to look at the performance parameters and the trajectory [12].
Trajectory optimization has been done using electric propulsion by setting some rea-
sonable values for the performance parameters in an EP system. The key for this

mission and optimization is to reduce the mass of the system.



1.2.1 Monte Carlo Method

The Monte Carlo Method is a statistical computation method used to solve analytical
problems. An optimization problem can take advantage of statistical information to
select an optimal set of condition for a problem. This method will allow for the
statistical optimization of an electric propulsion system.

The way the Monte Carlo method is initiated is as follows:

1. Decide on a group of values (inputs) to randomly generate
2. Based on those values, calculate a set of observational values
3. Run N number of trials

4. Use statistical methods to measure the observational data

The simulation has to be run in a set number of trials in order to provide for enough
sampling information. The essence of the N number of trials is to create a large
enough sample size to work with while also following a random sampling method.
The mean and standard deviation of the set of information can be determinedand
the observed values can be measured and compared to the rest of the data in the set

[13].

1.2.2 Computational Limits and the Call Stack

In most programming languages and implementation, the call stack of the program
should be a consideration. The call stack occurs every time the program makes a call
to a function. The reason for considering this is due to the limitations this may put
onto the processing of the code itself.

A call stack can be broken down to its individual stack frames. Every call to a

function would contribute a stack frame to the programasawhole. Each stack frame
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will contain the inputs and the outputs of said function. In C++, there is at least
1 stack frame in the execution of the program. The main function is considered the
initial stack frame. The call to the function which the program is currently on, is
considered the innermost stack frame. Abacktrace of the program can be found. The
backtrace provide a summary of the steps or frames the program took to arrive to
the final product. This will provide for a flow for the user to follow into the order in
which the program called the functions[14]. Figure blank, contains avisual guide for

the flow and direction of a calls stack.

Topof stack

( »  Call Stack: is a stack that contains a
Local Variahles collection of stack frames.
» +  Astackframe, also called as
St 4 Return Address Te\c_ti\.ratio.n record, c_c:n:a.ins
R information about function call.
Argn +  Whenthe program runs, the call
stack contains at least one stack
Argl Decreasing  frame which is for the main
F Address function. A stack frame is created
Local Variables whenever a function is called.
*  Arguments are inserted into stack
frame from right to left.
Funcafargl, arg2.-} Return Address +  The stack grows from higher
Argn oddresses to lower oddresses,
»  Astack pointer register (register 1)
:ﬂtrgi is used to mark the current "top” of
the stack.
s
Call Stack

Figure 3: The figure shows the flow and direction of the call stack in programming
languages such as C++.

Thisdevelopsadirectionand aflow for the way the program will execute the steps
to get to a final result. The limitation of the program and the number of iterations
or executions it may run may be limited by the amount of memory taken by the call

stack.



1.3 Project Proposal

The main objective of this project is to reduce the mission time through key per-
formance parameters of the EP system(i.e. the specific impulse, thrust, electrical
efficiency, and total efficiency). These values will be randomly generated to create
a several EP system configurations. The parameter will be used to determine the
efficiency and effectiveness of the system. Once that is done, the optimal trajectory
will be determined. The initial simulation and optimization will be done in MATLab.
Thetrajectory optimization will be based on previous trajectory optimization or may
be calculated in MATLab as well. The systems Av requirement will be based on
the idea that the system does not travel to LEO using electric propulsion. The EP

system will transfer from LEO to Low Mars Orbit and back to LEO.

1.4 Methodology

The initial MATLab simulations for the main parameter study of the EP system
will be based on some of the essential EP equations. The rocket equation can be
applied to an EP system but the parameter are slightly different and the values of
the exhaust velocity are much higher than chemical propulsion system. lons will be
assumed of single charge, rather than a mixture of singleand double chargedions[2].
This allows for simpler calculations. The trajectory optimization will be determined
using software or running simulations for optimal orbital transfers [15]. The orbital
transfers will assume that there are no perturbations. The EP system will operate in
a regime that is near vacuum conditions.

The general scheme of the optimization will follow that of the Monte Carlo simu-
lation scheme. The randomization has been doing using a normal distribution scheme

in MATLab. With the difficulty of generating a truly random numbers, the random



number generator is dependent on the time itself. Different schemes may be used
dependentonthe ideal randomization. The optimization will be slightly statistical to
select the optimal space system. Based on this, a decision on the type of propulsive
system can be made that matches the constraint parameters. Further statistical con-
straints are applied to narrow down the candidate option down to, at most, 5. This

allows for an easier selection process.

2 Approach

2.1 Electric Propulsion System

To perform the parametric study, several assumptions are made regarding the per-
formance parameters of the system. In some cases, the assumption is that there is
apower supply large enough to power the propulsive system. The mass being deliv-
ered in the mission will stay constant throughout the process at 20kg until a better
spacecraft mass is determined. The other parameters that are assumed to be given
are ne, lsp, T, Av, nr, mq. These parameters, aside from the delivery mass (mgq) and
Av will be randomized within a reasonable range of values based on preexisting EP
systems [2].

Using the randomized variables, some of the other performance parameters will
be determined. The first parameter that can be determined is the exhaust velocity,

Vex. The exhaust velocity can be determined through the Equation 1 [2].
Vex = Ispg (3

Since the thrust is being randomly generated, the value of the mass flow rate can be

10



determined through Equation 2[2].

. T
mp = Vo (4)
The jet power generated by the propulsive force of the system can be determined from

the value of the propellant flow rate and the exhaust velocities. Equation 3 shows
the relationship[2].

Pjet = ;mpVZx %)
For the initial estimates, the Av requirement will be assumed to be a constant value.
This would suggest that the requirement should stay the same since the mission
would be staying the same. The requirement can be determined through previous
missionsto Mars. The secondary analysis can be done through calculations of orbital
determination. The Av requirement can be used to determine the mass of propellant
required for the mission. Equation 4 shows this relationship[2].

C-» -

Mp=ma  giex —1 (6)

This will allow us to determine how large the system will be during deployment.
The input power can be determined by using the total efficiency of the system,

nr . Equation 5 shows the relationship[2].

Pi
Py, = et ™

T

The power dissipated, once P;, is determined, is found by equation 6[2].

Pdissipated =Pin (1 - ne) (8)

11



Thesesetofequationwill be used to determine the effectthatthe changeinparameter

has on the mission.

2.2 Requirements

Although the set of equations are known, the requirements will determine which
design configurations will move on in the selection process and which design con-
figurations fail the initial constraints. A set of tests are initialized to narrow down
possible EP system configurations.

The following initial parameter requirements are as follows: 1)The mass of the
propellant should be equal to or less than the delivered mass 2) The electrical efficiency
should be above 75 percent 3) The total efficiency of the electric propulsion system
should be above 50 percent 4) The total efficiency shall not exceed the electrical
efficiency. The last requirement allows for a realistic configuration. Total efficiency
is dependent on the efficiency of the components of the system.

To further narrow the options, the average of each of the parameters will be
determined along with the standard deviation. The attempt will be to choose the
systemsabove or belowtwostandarddeviationsdependingontheintentofthedesign.
That is, two standard deviation will be chosen if the parameter is supposed to be
minimized and two standard deviation above will be chosen if the goal is to maximize
the parameter. This is done to determine the optimal configuration. Based on the
number or resulting configurations, the requirement may change. Neither of the
efficiencies should exceed 100 percent and the total efficiency should not exceed the
value of the electrical efficiency.

The trajectory still needs to be determined. Whether doing a gravity-assist trans-

ferorapowered transferwould prove more efficient still needs to be determined. The
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window of opportunity for orbit transfer was done based on NASA’s InSight Lander’s
launch windows. For the first iterations, a previous orbit window will be used along
with the optimal Av requirement to get to Mars[16]. The optimization of the orbit
itself was more difficult to approach due to the number of factor and the number
of factors and methods considered in finding an initial orbit and in the Monte-Carlo
method. The requirementisdriven throughalLambert Method approach of calculat-
ing the propellant requirements.

Once an initial set of the requirements are used to eliminate electric propulsion
configurations, the next criteria used is elimination through the use of the mean of
the data. The initial intent was to use the standard deviation as well but there was
too much conflictin the parameter to try to maximize parameters using this method.

The requirements are as follows:

1. The propellant mass is less than the average propellant mass

2. The electrical efficiency is greater than the average electrical efficiency

3. The total efficiency is greater than the average total efficiency

2.3 Monte Carlo Method

Following the steps of the Monte Carlo Method, the thrust, specific impulse, and the
electrical efficiency are the input parameters that are randomly generated. Though
morevalueswere included, the observational parameter ofinterestare the propellant
mass and the input power needed for the system. The input power will suggestthe

feasibility of an EP system considering the amounts of power one of these systems
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requires and the existing technology to provide for the power requirement. The
propellantmassis, ideally, minimumwhile still performing the missionintherequire
amount of time. The number of trials designated for this simulation is not set, but
will be above 10000 trials. Once the preliminary designs have been discarded using
the requirements mentioned earlier, the standard deviations of the data sets will be
used to further eliminate any other designs.

The design and all the pertinent information will be stored in data structure
within MATLab. The information for all the designs will be stored in that structure
and a new data structure will be created will all the designs that have passed the
initial and final requirements. The set of configurations are eliminated until the data
structure is left with less than 10 EP designs to ease the decision-making of the ideal

configuration.

2.4 Orbit Determination and Av Requirement

To determine the Av requirement, the orbit transfer and orbit determinations analysis
must be performed. Todo so, I chose alaunch date, that was currentwith the analysis
of this project. The launch from Earth to Mars would begin on June 8, 2018 with a
return date of October 8, 2018. This is the proposed launch window for this project.
The position of the planets will be taken at these dates in order to determine the
velocity vectors using Lambert’s method. The velocity vectors will dictate the Av
requirement for this mission as well as the proposed 4 month duration.
Lambert’'s method states that the orbit of a particle can be determined through
the use of two position vectors as well as the time between the two points. The first

step is to find the magnitudes of the position vectors and define the trajectory of the
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flight as either prograde or retrograde to find A6.

n= mh )
= - R (10)
G\
AB = arccos ik (11)
nr,

The spatial ambiguity is determined by the the z component of the cross product of
the first position vector crossed with the second position vector. Once the valueof

AB is found, the value for A can be determined.

! 5LP)
1 - cos(A6)

A = sin(AH) (12)

The Stumpff functions C(z) and S(z) are used to determine the value of z to be used

for orbit determination. The equations used are as follows:

y@@)=r+n+ Aé(a;l (13)
C(2)
v C )L(Ll\i - o
HAL = c(2) S(z) +A y(2) (14)
C y(2) \g N,
F(2)= () S(z) +A y(z)- pAt (15)
C(2)

The idea at this point is to find the value of z by iterating through given values of z
to find the point where F (z) is about 0. Once the value of z is found, it is plugged

into equation 27 to get a value for y. This value will be used to find the Lagrange
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values in the following equations:

f=1- @ (16)
g=n ¥ an
N u
f= P Y@ 54—y (18)
rr C(Z)
g=1- 12 (19)
1
= (== fr) (20)
1
W = g—(gﬁ —F) (21)

With thisinformation, the Av requirementcan be determined by comparing the orbit

velocity with the required velocity of the spacecraft[17].

2.4.1 Numerical Solution Method for F(z)

There are several methods to determine the O of the function of F(z). In thisanalysis,
the solution to F(z) will be found using the bisection method. The bisection method
istypically usedfor finding rootsofanonlinear function. The bisection method works
by searching for a change of sign between two points. If there is no such change in
sign, the root of the function in that interval is inconclusive and either a new interval
is tested or the search may also be concluded. The purpose of the bisection method
is to hone in on two points opposite in sign to determine the possibility of a root in
the function. The ideal case is that the function has 1 root and the sign change is

found. This would be the case in Figure 3.
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Figure 4: The figure shows the ideal case when running the bisection method to find
a root of the function.

In the case of Figure 3, the bisection method would work to find the zero ofthe
function. Typically a tolerance can be set in order to get a pretty accurate value of
the root while decreasing the number of iterations the program may need to find the
root. When the initial interval is found the next interval is shrunk to begin honing
in on the root of the function.

There are cases where the bisection method has its downfall when trying to find
the root of the function. There are cases when the sign is different and there exists no
root. One example is the case of rational functions. The graph of 1/x has a change
in signs if you pick a point less than O and a point greater than O, but there is no
root to that function.

The next case is when you do have a root but there is no interval in the domain
where the values of the function have different signs. If the function is of the form

(x—a))’, where aisaconstant, then there the bisection method of root finding would

17



fail even though there exists a root to the function[18].

The last case to mention is when there is more than one root to the function.
Thiswould cause the bisection method run into the issue of having no change in sign
even though there is a root within such interval. This scenario would result into the
inspectionofadifferentinterval or, possibly, ending the search for the root. The issue
is in this case is, also, determining which root to use to satisfy the function if a new

interval is examined to determine the roots in this case.

2.4.2 Propagator for Orbit Visualization

To generate visualization for the spacecraft mission, a propagator was developed to
plot the points in the trajectory. The Runge-Kutta (i.e. RK4) method was used
for the propagator. The method would be implemented to develop a function in
MATLab taking in the initial state vector as an input. The initial state vector would
be read as follows: [x : ¥] where x =[x,y,z] and v =[vyx, vy, Vz]. For the purpose of this

propagator, 6 coefficients need to be determined.

b(l) = Vs (22)
b(2) = vy (23)
b(3) =V, (24)
b(4) = —% (25)
b(5) = —% (26)
b(6) = —i—ZP @7)

Thesevalues, let’s call it b,are used to determine the value of the position and velocity

in the next time step, At. The value for bis a function of p and the state vector
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X. The calculations for the next values in the position and velocity are calculated as

follows:

ki = b(Xn, AL (28)

k:=b(Xn * k_21 AL (29)

o = DX + k—; WAL (30)

Ki = b(Xy + ks, WAL (31)

Xni = Xn+ %k + 2k, + 2K; + k) (32)

Thismethodrunsundertheassumptionthattherearenoperturbationsinthesystem.
The orbit is running under ideal conditions. The name of this numerical scheme
suggest a 4th order accurate numerical scheme. For the purpose of a visualization

and mission trajectory, this numerical scheme is sufficient.

2.5 Design of Experiments

Tofurther testsome of the values that were determined in the optimization process, a
design of experiments can be done. Inthis case, based on the variable and parameter
that were randomized, three of those value are examined and a response surface will
be generated for each scenario. The 3 values in question are the thrust, specific
impulse, and electrical efficiency. One of the 3 parameter is varied while the other
time are kept constant in order to test the sensitivity of each input parameter. One
the data is gather, a response surface is generated to aid in visualizing the sensitivity
of the system.

The data, at this point, should be fairly optimized so the response surface plots

should not need to have a wide range of values but it serves to help visualize how
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much more optimal the system can get and the sensitivity of the system after the
optimization. This could be used later on to generate more trials and can serve to

further optimize the design configurations.

2.6 C++ Implementation of the Code

The C++ code can be generated by mimicking the MATLab script and following the
same set of instruction using the C++ syntax. Since MATLab has some of the built-in
math function already defined, these function may need to be designed in C++. Such
functionsincludethefunctionto performdotproductsandcrossproducts. Thearrays
and the structure for the EP systems have to be designed to develop the functions to
calculate for the required velocity using Lambert’s Problem.

The purpose of the implementation of thiscode isto create acomparison between
the run-time of the MATLab script and the C++ code. To provide for a fair com-
parison, the plots and the figures generated in MATLab will not be generated for the
comparison. The initial development of the C++ code will not include the graphics
created using MATLab. If time permits, the entirety of the C++ code will be written.

Otherwise, the sections of the code can be compared.

3 Results

3.1 Parametric Optimization

Toarrive to the optimal electric propulsive system, the values are randomly gener-
ated through the use of a normal distribution via the Monte Carlo simulation. The
randomly generated values are used to determine the remaining parameters of the

propulsive system. The requirements mentioned before areimplemented ina MAT-



Lab script in order to organize the EP systems. To provide for a fair amount of
options, 100000 iterations were run to find propulsion system parameters matching
the minimum scope. By doing so, there were approximately 3000 options left to
choose from once the simulation was run. From those results, the next criteria needs
to be implemented. The Av requirements and the delivered mass were kept constant
for the first step in this process. The following step, the orbit determination, is to
determine the most efficient Av trajectory for the mission. This will still need to be
determined.

The current trajectory is based on the launch windows that were provided for
NASA'’s InSight Lander. There may be a better way to optimize the trajectory of the
flight. The methods of trajectory optimization still need to be examined toprovide
for a more efficient spacecraft flight.

Fromthose 100000 iterations, the EP system configurations have been narrowed
down to 5 systems. The following table gives a table of the 2 configurations found in

MATLab.

isp (s) Ad thrust (N) §d ele

92783.65 0.972572609 0.95356992 0.805247035 909279.7878 1.06961E-06 442170.3076 1.789556036 549111.3353 5.28331
85155.12 1468391554 (.945541803 (.793849689 834520.1374 1.75956E-06 6127011606 1.957432908 766579.2819 41768.30852)

| massFlowPropellant (kg/s) B powertet (w) B propellantiass (kg) B inputPower (w) B3 powerbissipated (w) 2

totalEfficiency B velocityExhaust (m/s) B2

Table 2: The table shows the initials set of optimized EP configurations.

The MATLab code is set to have a maximum of 5 EP configurations so the code
eliminated values until it had 2 EP configurations left. Based on the table of values
the same Monte Carlo process can be followed to further optimize the system. This
provides for a baseline of values to use for the sensitivity analysis done in the DOE

portion.
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3.2 Orbital Mechanics

The launchwindow for this flight was chosen to starton June 8, 2018 and the mission
was to last until November 15, 2018. From these values, the Av requirement can be
determined. The assumption was made that the time it took from June 8th to July
18 to get from Earth to Mars. The spacecraft stayed in Mars orbit from July 18 to
August 27. Then it goes from August 27 to November 5 on its return trip to Earth
from Mars. The problem was solved using Lambert’s Problem. The mapping seenin

the following figure was found using the propagator.

Distance (km)

Figure 5: The figure shows a plot of the trajectory of the mission where the sunin
considered the origin of the plot.

Lambert’s Problem is used when the spacecraft is going from Earth orbit into
Mars orbit. This helped provide the parameters needed as input for the propagator
to provide the visual of the orbit transfer. The Av requirementbased on this analysis
was found to be 34.64 km/s. The goal is to minimize the cost of the mission, but this

comes at the cost of increasing the Av requirement of the mission.
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3.2.1 Challenges with Lambert’s Problem and Propagator

Theinitialissuewiththe propagatoroccurredwiththebisectionmethodwhensolving
for the root of the function F(z). Originally, there were issue with determining a root
of the function and MATLab script would throw and error stopping the code at
Lambert’'sProblem. After inspection of the value of the function, there were complex
root to consider in this solution set. To adjust for this scenario, only the real portion
of each solution wasconsidered. Thisallowed for the correct trajectory visualization.

The trajectory was compared to the existing Lambert code shared on an open
source website. Once the prior code was debugged for this issue, the two trajectories

were compared to ensure that the solutions were similar.

3.3 Electric Propulsion Parameters

Therequirementsareusedtonarrowdownthe possibleoptionsforanelectricpropul-
sion system. The systems that are left can be used to determine an ideal electric
propulsion system to launch. The system will determine the mission time needed to
achieve the goal of orbiting to Mars and back to Earth. With the script finished for
the initial step in the optimization, there are around 3000 viable configurations for
the EP system after the initial requirements were applied.

The drawback is the power requirement for a system to fulfill this mission. The

initial input power requirement distribution can be seen in Figure 5.
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Figure 6: The figure shows the distribution in power requirements for the remaining
configuration after the initial constraints.

Based onthe mission requirements, theamountof power required for this system
is in the range of tens to hundreds of kW for a delivery mass of 20 kilograms. It
has not been determined yet whether solar panels would provide enough energy for
any of the EP configurations found. For a larger payload mass, the required power
would increase. It is typical for larger spacecraft to require power on the order of
MW if they are using an EP system. Some of the EP parameters were refined due to
the occurrence of negative values. A further process of elimination will be invoked to
check for these extraneous solutions.

The initial distribution for the other parameter of interest can be found in figures
7,8,and 9. The MATLab script is designed to check for negative values in the thrust

and in the input power, as this was a previous issue.
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Distribution of Thrust
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Figure 7: The figure shows the distribution in thrust for the remaining configuration
after the initial constraints.

"0 Distribution of Total Efficiency
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Figure 8: The figure shows the distribution fulfilling the initial total efficiency re-
guirements.
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Figure 9: The figure shows the distribution of initial propellant masses fulfilling the

requirements.

3.4 Design of Experiments Results

The response surfaces generated do not supply awide range of values and thiswould,

in part, be a result of optimizing the system before the sensitivity check. In effect, it

seemsthe leastvariable combination of parameter wasthe interaction space between

the power, thrust and electrical efficiency, but this would require further analysis.

The outlier in the data must first be examined and fixed to reach this conclusion.
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Figure 10: The figure shows the response surface of the interaction between the
electrical efficiency and the I, and their implication on the propellant mass.
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Figure 11: The figure shows the response surface of the interaction between the
electrical efficiency and the thrust and their implication on the propellant mass.
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Figure 12: The figure shows the response surface of the interaction between the I,
and the thrust and their implication on the propellant mass.
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Figure 13: The figure shows the response surface of the interaction between the I,
and the electrical efficiency and their implication on the input power.
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Figure14: Thefigureshowsthe responsesurface oftheinteraction betweenthethrust
and the electrical efficiency and their implication on the input power.
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Figure 15: The figure shows the response surface of the interaction between the I,
and the thrust and their implication on the input power.

The response surface found in Figure 10 makes complete sense, the higher the
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value of the Is, and the electrical efficiency the lower the mass of the propellant
required. The value of I, is known to be indicative of the amount of propellant
required regardless of it beingachemical, solid, or electric propulsion system. In this
case the darker the blue the more optimal the system.

Figure 11 needs further analysis. There is an outlier in the response surface that
should be determined and omitted from the response surface. The response surface
with this scheme would suggest that propellant mass will not change drastically with
the change in the propulsive thrust.

Figure 12 suggest that there is an optimal range or value for the thrust that would
result in the decrease of the propellant mass. The value is between 1.5 and 1.6 based
on the response surface. Thisvisual would allow us to run another set of simulations
based on these values to further optimize the system.

Incontrastto Figure 10, Figure 13 shows that the lower the I s, the lower the input
requirement. The higher the value of the Is, the more energy that is required for the
EP system. Thiswould imply an need for compromise between the input power and
the propellant mass because of conflicting influence of the I s, on both of those values.

Figure 14 shows that the lower the thrust of the EP system, the lower the required
inputpower. Because of the directcorrelation, the higher theelectrical efficiency, the
lower the required input power.

Figure 15 shows that the higher the Isp, the higher the input power requirement
andthehighertheelectricalefficiency, thelowertheinputpowerrequirement. The EP
configurationwillhavetobalancethelsyinordertocompromiseadecreaseinboththe
inputpower and the propellant mass. Running more possibilitiesand configurations
will increase the run time for the MATLab script but testing the difference in the
result can prove useful.

The current run time for the MATLab script is nearly 110 seconds. This is due to

3



the process of the Monte Carlo Method alongwith the generation of 100000 different
configurations. It would be useful to compare the results to determine whether it is
efficient to generate this number of configurations. This could also help determine
whether or not the number of configurations should be increased. This test of con-
vergence is limited by the amount of processing power needed and the amount of
processing power available. The following table shows the current distribution of the

run time for the simulations done with 100000 generated configurations.

Profile Summary
Generated 21-Nov-2018 19:49:01 using performance time.

Function Narme Calls Total Time Self Time* | Total Time Plot
(dark band = self time)

elecParametric3Diffl ambert 1 101.455s  2803s 1

propagator 5 95.907 s 24196 s | IR
tkf450p 9805332 | 71.711 s 7171 s |

lambertSolver? 2 0.888 s 0870 s |

Table 3: The figure shows the major components of the run time of the Monte Carlo
simulation. The total time is roughly 110 seconds.

Based on this result, it would be interesting to attempt to examine the difference
in run-time if the simulation were done in a programming language. This resulted in
an attempt to begin writing the coded in C++ but under the time given the C++
code is incomplete. This will be turned into future work, but it would be interesting
to begin and observe some of the differences between MATLab and C++ as well as

any differences in writing the functions needed to run the simulation.

3.5 Implementation of C++ Code/MATLab Script

The development of the code is still in progress. So far, the functions for the cross
product, the dot product, and the magnitude have been developed. The random

generator hasbeentested so thatthe numbersare randomized based onthe run-time
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of the code execution. Itis desired that the code develop a random number between
0 and 1 so the cstdlib library is being used to create a function to do this task.
The random generator, as mentioned earlier, takes the time-based random number
and divides it by the library defined RAND MAX. Upon testing the random number
generation, the issue of the hardware limitations became apparent. This along with
the large call stack may have caused the program to compile the code but prevent
the code from generating the required output. The program was asked to generate
300000 random numbersand this resulted in the lack of an output. Once the desired
array size of the randomly generated numberswas broughtdown to 200000 random
numbers, the program worked fluidly through the execution.

This would lead to the testing of the MATLab script to examine if the program
would run under the desired conditions of increasing the number of elementsin the
array. Upon testing an array of this magnitude, the MATLab script began to take too
long or even cause MATLab to stop responding. Towork around this there is either
aneed for better hardware to generate a larger number of random EP configurations
or continue to iterate through the same number of configurations more than one
time around. Multiple iterations of the same process could cause the solution set to
converge towards a certain set of EP parameters. Generating more configurations
than 200000 would cause the program to fail to execute properly.

The call stack takes up a place in the computers memory so adding more function
calls could result in the inability of a program to complete the task. The number of
configurations will be kept under 200000 to conform to the hardware limitations at
hand.

The first challenge in creating the C++ code thus far was creating a function to
allow for an array of values as the output. There are many solutions to this problem

but both manipulate and use pointers to solve this issue. The following pseudocode
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shows the approach taken to achieve the solution to this issue.

outputType * myFunction(inputType varNamel, inputType varName?2...){
static double returnVariable;
some lines of code here

return returnVariable;

This would force the use of pointer to this problem in order to access the value of the
desired array.

The next step in this process would be to work on the Lambert Solver function as
wellas the necessary functionto complete the Lambert Solver. The initial planwasto
create astructure for the Lambert Solver, butasimilar solution to the one mentioned
above can be used. A pointer to the array can be used to extract all the values needed.
The array would contain the initial velocity needed, the final velocity needed, and
the solution to the set of Stumpff functions. The current state of the C++ code can
be found in the Appendix but it has not been completed. There was not enough
time to turn the MATLab script into C++ code and that portion of the project is
consideredto be possible future work. There were several issues when beginning the
C++implementation, such as the understanding of returning the pointer to an array,
that may have come up and taken even longer for the implementation of the C++
code. As it stands, the functions work correctly and the main script was simply used
to debug or test some of the functions.

To serve as a point of comparison in C++, the Av requirement was considered
constant and the number of configurations developed was set to 10000. The visual

plots were also taken out of the MATLab script and this would allow for a fair com-
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parison between the script and the C++ code. Using the clock functions C++ and

using the "Run and Time” debugger in MATLab, the times of the two implemen-

tations could be determined. The following figure shows the output given from the

C++ script:

EX Command Prompt

otal Efficiency is 8.764386.

Exhaust Velocity is 8168976.

Propellant Mass Flow Rate is 5.16914e-8@7
Jet Power is 980

otal Mass is 28.8
Input Power is

issipated Power

he parameters for configuration 2 are:
Flectrical Efficiency is ©.951415.
Specific Impulse is 98854s.

hrust is 1.8 '

otal Efficiency is @.783532.

Exhaust Velocity is 968938.

Propellant Mass Flow Rate is 1.11583e-6@6kg/s.
Jet Power is 515172W.

otal Mass is 28.7341kg.
[[nput Power is 6575000.

issipated Power is 31944 .9W.

he parameters for configuration 3 are:
Electrical Efficiency is ©.935301.
specific Impulse is 47234.6s.

hrust is 1.38387N.

otal Efficienc)

Exhaust Velocity is 462 .

ropellant Mass Flow Rate is 2.81675e-8e@ckg/s.
Jet Power is 381781W.

otal Mass is 21.5541kg.

he parameters for configuration 4 are:
Electrical Efficiency is ©.945708.

Specific Impulse is 5

hrust is 8.

otal Efficie

Exhaust Velocity is 8 .

Propellant Mass Flow Rate is 9.331e-887kg/s.

his process took 156 clicks (8.156000 seconds).

C:\Users\rafae\Documents\SISU Courses\AE 295A>

Figure 16: The figure shows the output of the C++ code with the time the code took

in the process.

As can be seen in the figure, the time it took for the C++ code to run was about
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half as much as the time it took for the MATLab script to run. MATLab took 0.346
seconds where as the C++ code took 0.156 seconds. This is minimal in this case but

this could make a bigger difference if the inclusion of visuals was also done in C++.

4 Conclusion

4.1 Discussion of Results

The input power required isinthe magnitude of 100’s of KW. The value for thiswould
make sense given the designed mission time. There is a need for a greater Av in this
mission. The next step in this process would be to determine a power source capable
of providing the amount of power needed for this spacecraft. It would be interesting
to examine the number of existing viable EP systems for this mission, assuming a
power source is within the feasible spacecraft weight limits.

After an observation of some of the available power supplies that can produce
200kW of power, the size of the spacecraft desired, in this case, would not be feasible.
It would need to undergo a revision in order to make the sizing of the system more
realistic. The purpose of this study was to examine the amount of power neededto
run a mission to Mars under the assumption that the power supply was not much of
aconcern. This would suggest that the amount of power needed is the largest factor
in the weight of the spacecraft. It would be useful to perform future work and run
another iteration of simulations under the assumption that the weight of the power
supply is known within a certain margin.

An initial set of design parameters has been established and a set number of
configurations has been determined based on the use of the initial requirements and

the use of statistics to narrow down the results to desirable parameters. Theintent
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is to determine a method to optimize the orbital trajectory, as well, to decrease the
AV requirement for this mission.

The result show that the propellant mass and the specific impulse are indirectly
proportional while the input power and the specific impulse are directly proportional.
Thiswould direct the system to acompromise between the two values and the use of
statistics can attempt to quantify a system that is better suited for the mission. This
information is confirmed in the response surface shown earlier in this report. This
relationship can also be seen in the equations used to determine the EP parameters.

The following list shows the final list of optimal configurations. Many of the
configurations would revolve around these values because of the inverse relationship

between the power required and the specific impulse.

8.14E+04 1.69E+00 9.38E-01 8.09E-01 7.98E+05 2.12E-06 6.73E+05 8.88E-01 8.32E+05 5.18E+04
7.79E+04 1.45E+00 9.43E-01 8.26E-01 7.64E+05 1.90E-06 5.52E+05 9.28E-01 6.69E+05 3.82E+04
7.70E+04 1.62E+00 9.44E-01 7.72E-01 7.55E+05 2.15E-06 6.12E+05 9.39E-01 7.92E+05 4.42E+04
8.34E+04 1.68E+00 9.74E-01 8.65E-01 8.18E+05 2.05E-06 6.87E+05 8.66E-01 7.94E+05 2.03E+04,

Table 4: The table shows a list of the configurations developed where each row
represents a configuration.

The table was generated by using the workspace and using the following line of

code in MATLab:

writetable(struct2table(structVar),” fileName.xlsx  );

The major point made here is the need for higher electrical and total efficiencies for
an electric propulsion system. The values for the thrust, specific impulse and the
propellant mass revolve around a certain range of values. This would suggest that
in, most cases, there is an optimal range for the design on an EP system based on
minimizing the weight of the system as a whole. As a future work, it would be

interesting to possibly develop a cost function in order to more accurately optimize
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the problem.

At this point in time, the number of configurations that can be generated by the
code is limited by the hardware in use. If more configurations are desired, then the
code can run multiple iterations of the Monte Carlo in order to increase the sample
space. Each time, it should only save the optimal configurations and at the end of
N configurations, compile each of the optimal configurationsinto onestructure. This
would allow for a larger design space. As far as the simulation goes, doing further
research into increasing the processing power or improving the hardware at hand
would be useful if less iterations are desired. The goal of this project was to examine
the effects of attempting to shorten the mission time on the design parameters of an
EP system. The end goal after the completion of this project is to attempt to design
a software that could generate some possible EP configurations that may be within
reason. The current constraint to current EP technology is the size and amount of
a powering system needed for some of these systems. The MPDT would be a great
example of high power requirements. The typical power system needed for a system
such as this is typically large in size. The end goal after this project is to develop
some software or GUI thatallows the user to input specific mission requirementsand

the program would select some EP system options.

4.2 Future Remarks

Before continuing to optimize the trajectory, a method should be proposed to continue
cycling through the optimization. Togetabetter set of results, the optimal values can
be reused to run another iteration of Monte Carlo simulations. This time, the value
can be based off of one of the final designs. The comparison process can continue to

find even better options. The randomization can be done within a given percentage
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of said values. The trouble is going to be the balance between Is, and its effect on
the input power and propellant mass.

The calculations are currently done for a specified Av. The value has not yet
been optimized and would be the next step in the process of designing the mission
using an EP system. A separate set of calculations will be done to determine the
most efficient orbit transfers. The Av requirement may decrease because it will be
assumed that the EP system was transferred to LEO via a chemical rocket. The orbit
determination remains a work in progress. This will be further explored to provide
for better optimization. The time window would ideally be planned and optimized
based on previous trajectory optimization algorithms.

In terms of the coding, it would be ideal to keep track of the run-time for the
MATLab script. If time permits, the code will be moved over to C++. This would
allow for a comparison in run-time in an attempt to optimize the code as well. Each
configuration could be defined as a class of its own in C++ so that it would store all
the necessary parameter of the system.

Based on some of the results, there may need to be a more strict criteria for the
configurations. There have been cases where the total efficiency has exceeded 100
percent. The total efficiency should also be lower than or equal to the electrical
efficiency. This method may decrease the number of steps required to narrow down
the option for EP configurations. Reducing the number of required steps may also
decrease the run-time of the MATLab script because each step would require less
data to store.

The next step would be to determine if there are any existing EP systems to satisfy
the optimal conditions. This would force us to examine all types of EP systems. The
biggest concern is the power source for the system. If there exists a power source for

this system that can provide enough energy, the size of that system would, ideally,
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have to fall within the weight constraint enforced in the optimization. It would be
interesting to design the physical system and try to run simulations. Trying to utilize
the physics behind electromagnetism or plasma physics, though, would require more
research and time to provide for such a simulation.

The C++codeiscurrently under development before the trajectory optimization.
Ideally, the comparison of the run-time of the code can be performed. The current
C++ code needs more work and some of the function still need to be generated. If
there are workarounds for the call stack limitation, that would be interesting as it
would enable for a higher number of iterations to be executed in the program. This
would be done before the trajectory optimization is done.

The MATLab script could also be altered in order to run more than the 100000
configurations being generated. By dumping and filling up the data structure, the
simulations can be done for a larger amount of different electric propulsion parameters.
This would, then, allow for a better optimization of the EP system.

It would be ideal to use this information to begin designing and running simula-
tions an a system that can match the final parameters. It would be interesting to try
to run simulations either through development of the plasma physics in MATLab or
through the use of ANSYS. This would allow for a more accurate efficiency analysis

and this would allow for the observation of the exhaust flume effects on the system.
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5 Appendix

Orbit Determination Script:

clc; close all; clear all;

%% Orbit Determination
% Assume a start date or launch from LEO to Mars on June 8, 2018 at
— 7:30AM UTC
% Mission should last between 120 to 150 days, this will determine
— the
% delta v requirements
% 1 au = 149,598,000 kilometers
%% Initial launch from Earth to Mars (all values in km or km/s)
earthInitPos=[-2.244542935534042E-1,-9.898623255903916E
— -1,4.560701155303384E-5]*149598000;
earthInitVel=[1.649999873155679E-2,-3.875737397365565E
— -3,4.005872971272586E-7]*149598000/86400;
marsInsPos=[4.000337515036055E-1,-1.366767680356064,-3.845438967555528
— E-2]*149598000;
marsInsVel=[1.395777605470139E-2,5.132183704069709E
— -3,-2.349802301687601E-4]*149598000/86400;

% deltaV1=norm(marsinsVel)-norm(earthinitVel);

%% Return trip from Mars to Earth (all value in km or km/s)
marsDepPos=[1.192813351251525,-6.969502737632471E-1,-4.387304975491351
— E-2]%149598000;




marsDepVel=[7.591205446206280E-3,1.327897806399470E
—-2,9.197681741173623E-5]*149598000/86400;
earthRetPos=[9.751904220415768E-1,2.205338163864697E
— -1,-1.485898354345033E-5]*149598000;
earthRetVel=[-4.072134829623000E-3,1.672285385762414E
— -2,-1.282508017134359E-6]%149598000/86400;
% deltaV2=norm(marsDepVel)-norm(earthRetVel);

%% Visual Aid for Mission

mu=1.32712440042E11;

mSun=1.989E30);

radiusSun=695508;

deltaT1 = 24*(3600*(JulianDay(2018,7,18,7.5)-JulianDay(2018,6,8,7.5)))

deltaT?2 = 24*(3600*(JulianDay(2018,9,28,7.5)-JulianDay(2018,7,18,7.5))
— )
[velFromEarth,velAtMars,f,yOfZ, zVal]=lambertSolver2(earthInitPos,
‘— marsInsPos,deltaT1,” prograde” , 1.989E30);
[posEarthToMars,velEarthToMars] = propagator(earthInitPos(1),
"— earthlnitPos(2),earthInitPos(3),velFromEarth(1),velFromEarth(2)
— ,velFromEarth(3),60,deltaT1,mSun);
[posMarsMissionOrbit,velMarsMissionOrbit] = propagator(marsinsPos(1),
"— marsInsPos(2),marsInsPos(3),marsInsVel(1),marsInsVel(2),

"— marsInsVel(3),60,deltaT2,mSun);
[earthOrbit,velEarthOrbit] = propagator(earthInitPos(1),earthInitPos
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— (2),earthInitPos(3),earthInitVel(l),earthInitVel(2),
“— earthInitVel(3),50,366%24*3600,mSun);
[marsOrbit,velMarsOrbit] = propagator(marslnsPos(1),marsInsPos(2),
"— marsInsPos(3),marsInsVel(1),marsInsVel(2),marsInsVel(3)
—,50,80000000,mSun);
[velFromMars,velAtEarth |=lambertSolver2(marsDepPos,earthRetPos,deltaT1
'— 7 prograde’ , 1.989E30);
[posMarsToEarth,velMarsToEarth]=propagator(marsDepPos(1),marsDepPos(2)
— ,marsDepPos(3),velFromMars(1),velFromMars(2),velFromMars(3),60,
— deltaT1,mSun);
figure(1)
hold on
[x,y,z]=sphere;
x=radiusSun*x;
y=radiusSun*y;
z=radiusSun*z;
surf(x,y,z, DisplayName’ ,” Sun’ )
plot3(earthOrbit(1,:),earthOrbit(2,:),carthOrbit(3,:), © DisplayName™
— 7 EarthuOrbit' )
plot3(marsOrbit(1,:),marsOrbit(2,:),marsOrbit(3,:), ~ DisplayName™
- MarsuOrbit’" )
plot3(posEarthToMars(1,:),posEarthToMars(2,:),posEarthToMars(3,:),
'— DisplayName’ ,’ TouMars )
plot3(posMarsMissionOrbit(1,:),posMarsMissionOrbit(2,:),
'— posMarsMissionOrbit(3,:), © DisplayName™ ,’ OnuMars )
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plot3(posMarsToEarth(1,:),posMarsToEarth(2,:),posMarsToEarth(3,:), '
'— DisplayName' ,  TouEarth® )

xlabelC Distanceu(km)’ );ylabelC Distanceu(km)’ );zlabel( Distanceu(km)’
— s

legend

hold off;

%% Calculating Delta V
deltaV=abs(norm(earthInitVel)-norm(velFromEarth))+abs(norm(marsinsVel)
— -norm(velAtMars))...
+abs(norm(marsDepVel)-norm(velFromMars))+abs(norm(earthRetVel)-
"— norm(velAtEarth));
deltaV=deltaV*1000;

n=100000; % number of iterations

%% Developing the Basic Random Generation of EP Systems

rmg(C  shuffle’ );
electricPropulsionParameters.electricalEfficiency=zeros(n,1);
electricPropulsionParameters.isp=zeros(n,1);
electricPropulsionParameters.thrust=zeros(n,1);
electricPropulsionParameters.totalEfficiency=zeros(n,1);
electricPropulsionParameters.velocityExhaust=zeros(n,1);
electricPropulsionParameters.massFlowPropellant=zeros(n,1);
electricPropulsionParameters.powerJet=zeros(n,1);

electricPropulsionParameters.propellantMass=zeros(n,1);
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electricPropulsionParameters.inputPower=zeros(n,1);
electricPropulsionParameters.powerDissipated=zeros(n,1);
electricPropulsionParameters.deltaV=deltaV;

electricPropulsionParameters.massDelivered=20;

for 11=1:length(electricPropulsionParameters.isp)

£=9.8;
electricPropulsionParameters.electricalEfficiency(i1)=(randn/3+1)

— /2;
electricPropulsionParameters.isp(i1)=100000*((randn/3+1)/2)+11000;
electricPropulsionParameters.thrust(il)=(randn/3+1)/2+1; YoNewtons
electricPropulsionParameters.totalEfficiency(ii)=(randn/3+1)/2;
electricPropulsionParameters.velocityExhaust(i1)=

"— electricPropulsionParameters.isp(ii)*g;
electricPropulsionParameters.massFlowPropellant(i1)=

— electricPropulsionParameters.thrust(ii)/

— electricPropulsionParameters.velocityExhaust(ii);
electricPropulsionParameters.powerJet(i1)=0.5*

“— electricPropulsionParameters.massFlowPropellant(ii)*

"— electricPropulsionParameters.velocityExhaust(ii)2;
electricPropulsionParameters.propellantMass(i1)=

"— electricPropulsionParameters.massDelivered™*(exp(

"— electricPropulsionParameters.deltaV/

‘— electricPropulsionParameters.velocityExhaust(ii))-1);

electricPropulsionParameters.inputPower(il)=
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— electricPropulsionParameters.powerJet(ii)/

"— electricPropulsionParameters.total Efficiency(ii);
electricPropulsionParameters.powerDissipated(i1)=

"— electricPropulsionParameters.inputPower(ii)*(1-

"— electricPropulsionParameters.electricalEfficiency(i1));

counter=1;

for jj=1:length(electricPropulsionParameters.isp)

1f((electricPropulsionParameters.propellantMass(j))<=

"— electricPropulsionParameters.massDelivered) & &(
— electricPropulsionParameters.electricalEfficiency(j))>=0.75)
— &&(electricPropulsionParameters.totalEfficiency(jj)>=0.50)
— &&(electricPropulsionParameters.totalEfficiency(jj)<=
“— electricPropulsionParameters.electricalEfficiency(jj)) & &(
— electricPropulsionParameters.propellantMass(jj)>0))
electricPropulsionParameters2.electricalEfficiency(counter, 1)=

“— electricPropulsionParameters.electricalEfficiency(jj);
electricPropulsionParameters2.isp(counter,1)=

"— electricPropulsionParameters.isp(jj);
electricPropulsionParameters2.thrust(counter,1)=

— electricPropulsionParameters.thrust(jj);
electricPropulsionParameters2.totalEfficiency(counter,1)=

“— electricPropulsionParameters.totalEfficiency(jj);
electricPropulsionParameters2.velocityExhaust(counter,1)=

“— electricPropulsionParameters.velocityExhaust(jj);
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electricPropulsionParameters2.massFlowPropellant(counter,1)=

"— electricPropulsionParameters.massFlowPropellant(jj);

electricPropulsionParameters2.powerlet(counter,1)=
"— electricPropulsionParameters.powerJet(jj);
electricPropulsionParameters2.propellantMass(counter, 1)=
"— electricPropulsionParameters.propellantMass(jj);
electricPropulsionParameters2.inputPower(counter, 1)=
"— electricPropulsionParameters.inputPower(jj);
electricPropulsionParameters2.powerDissipated(counter,1)=
"— electricPropulsionParameters.powerDissipated(jj);
counter=counter+1;
end

end

figure(2)
histogram(electricPropulsionParameters2.inputPower)
xlabelC InputuPoweru(W) )

titleC DistributionuofulnputuPower’ )

figure(3)
histogram(electricPropulsionParameters2.propellantMass)
xlabelC PropellantuMassu(kg)” )

title(C DistributionuofuPropellantuMass’ )

figure(4)
histogram(electricPropulsionParameters?2.totalEfficiency)

xlabelC TotaluEfficiency’ )
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titleC  DistributionuofuTotaluEfficiency’ )
figure(5)
histogram(electricPropulsionParameters2.thrust)
xlabelC  Thrustu(N)" )

titleC  DistributionuofuThrust’ )

numberOfConfig=length(electricPropulsionParameters2.isp);

while(numberOfConfig>=10 && numberOfConfig~=0)
counter=1;
temp=electricPropulsionParameters2;
avegPropMass=mean(temp.propellantMass);
stdPropMass=std(temp.propellantMass);
avgElectricalEfficiency=mean(temp.electricalEfficiency);
stdElectricalEfficiency=std(temp.electricalEfficiency);
avgTotEfficiency=mean(temp.totalEfficiency);
stdTotEfficiency=std(temp.totalEfficiency);
electricPropulsionParameters3= structC isp’ , [], = thrust’ ,[],’
'— electricalEfficiency’ , [], totalEfficiency’ , [],’
'— velocityExhaust” , []...
., massFlowPropellant” , [], = powerJet ,[], propellantMass’
— [],” inputPower ,[],” powerDissipated |, []);
for kk=1:length(temp.isp)
if(temp.electricalEfficiency(kk)>0 && temp.isp(kk)>0 && temp.
‘— totalEfficiency(kk)>0 && temp.thrust(kk)>0 && temp.
— velocityExhaust(kk)>0 && temp.massFlowPropellant(kk)>0 &&

a7

b



— temp.powerJet(kk)>0 && temp.inputPower(kk)>0 && temp.

"— powerDissipated(kk)>0 && temp.propellantMass(kk) < (

"— avgPropMass)&& temp.electricalEfficiency(kk) > (

"— avgElectricalEfficiency) &&...
temp.totalEfficiency(kk) > (avgTotEfficiency))
electricPropulsionParameters3.electricalEfficiency(counter,1)=

— temp.electricalEfficiency(kk);

electricPropulsionParameters3.isp(counter, 1 )=temp.isp(kk);

electricPropulsionParameters3.thrust(counter, 1 )=temp.thrust(kk)

—
electricPropulsionParameters3.totalEfficiency(counter,1)=temp.
— totalEfficiency(kk);
electricPropulsionParameters3.velocityExhaust(counter, 1)=temp.
"— velocityExhaust(kk);
electricPropulsionParameters3.massFlowPropellant(counter, 1 )=
"— temp.massFlowPropellant(kk);
electricPropulsionParameters3.powerJet(counter,1)=temp.powerJet
— (kk);
electricPropulsionParameters3.propellantMass(counter, 1 )=temp.
"— propellantMass(kk);
electricPropulsionParameters3.inputPower(counter, 1 )=temp.
"— inputPower(kk);
electricPropulsionParameters3.powerDissipated(counter, 1 )=temp.
"— powerDissipated(kk);

counter=counter+1;




numberOfConfig=length(electricPropulsionParameters3.isp);
end
end
electricPropulsionParameters2=electricPropulsionParameters3;

end

%% The one at a time parametric study of the optimal values

% change one of the value that was being randomized by a small

‘— amount to
% determine the significance of each parameter will be observing the
% propellant mass, the input power and mass flow propellant and will

— be

% varying the thrust and the isp

THRUST_VAR=0.001;

INITIAL_THRUST_PERCENT=0.8;

mitial Thrust=mean(electricPropulsionParameters2.thrust);
mitiallsp=mean(electricPropulsionParameters2.1sp);
mitTotEff=mean(electricPropulsionParameters2.totalEfficiency);
initEleEff=mean(electricPropulsionParameters2.electrical Efficiency);
newThrust=initial Thrust*INITIAL_THRUST_ PERCENT;
newlsp=initiallsp*INITIAL_THRUST_PERCENT;
newEleEff=initEleEff*INITIAL_THRUST_PERCENT;

11i=1;
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while(newThrust <= 1.2*initial Thrust)
2=9.8;
elePropThrusSens.electricalEfficiency(i1)=1nitEleEff;
elePropThrusSens.isp(ii)=initiallsp;
elePropThrusSens.thrust(ii))=newThrust; YoNewtons
elePropThrusSens.totalEfficiency(i1)=1nitTotEff;
elePropThrusSens.velocityExhaust(il)=elePropThrusSens.isp(i1)*g;
elePropThrusSens.massFlowPropellant(i1)=newThrust/elePropThrusSens
"— .velocityExhaust(ii);
elePropThrusSens.powerJet(11)=0.5*elePropThrusSens.
"— massFlowPropellant(ii)*elePropThrusSens.velocityExhaust(ii)
" A
elePropThrusSens.propellantMass(11)=electricPropulsionParameters.
—  massDelivered*(exp(deltaV/elePropThrusSens.velocityExhaust(
— iD))-D);
elePropThrusSens.inputPower(ii)=elePropThrusSens.powerJet(ii)/
— elePropThrusSens.totalEfficiency(ii);
elePropThrusSens.powerDissipated(ii)=elePropThrusSens.inputPower(
"— 11)*(1-elePropThrusSens.electricalEfficiency(ii));
newThrust=newThrust+THRUST VARZ*initialThrust;
1i=ii+1;

end

figure(6)
plot(elePropThrusSens.thrust, elePropThrusSens.propellantMass)
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11=1;
while(newlIsp <= 1.2*1n1tiallsp)

2=9.8;

eleProplspSens.electricalEfficiency(i1)=initEleEff;

eleProplspSens.isp(i1)=newIsp;

eleProplspSens.thrust(ii)=initial Thrust; YoNewtons

eleProplspSens.totalEfficiency(11)=1nitTotEff;

eleProplspSens.velocityExhaust(ii)=eleProplspSens.isp(i1)*g;

eleProplspSens.massFlowPropellant(ii)=eleProplspSens.thrust(ii)/
— eleProplspSens.velocityExhaust(ii);

eleProplspSens.powerJet(11)=0.5*eleProplspSens.massFlowPropellant(
— 11)*eleProplspSens.velocityExhaust(ii)?2;

eleProplspSens.propellantMass(ii)=electricPropulsionParameters.
‘— massDelivered*(exp(deltaV/eleProplspSens.velocityExhaust(ii)
—)-1);

eleProplspSens.inputPower(i1)=eleProplspSens.powerJet(11)/
"— eleProplspSens.totalEfficiency(ii);

eleProplspSens.powerDissipated(ii)=eleProplspSens.inputPower(ii)
— *(1-eleProplspSens.clectricalEfficiency(ii));

newlsp=newlIsp+THRUST_VAR*1nitiallsp;

1i=ii+1;

end

figure(7)
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plot(eleProplspSens.isp, eleProplspSens.propellantMass)

1i=1;
while(newEleEff <= 1.2*1nitEleEff && newEleEff<=1)
9=9.8;
elePropEleEffSens.electricalEfficiency(i1)=newEleEfT;
elePropEleEffSens.isp(i1)=initiallsp;
elePropEleEffSens.thrust(ii)=initial Thrust; 2ocNewtons
elePropEleEffSens.totalEfficiency(i1)=1nitTotEff;
elePropEleEffSens.velocityExhaust(i1)=elePropEleEffSens.isp(11)*g;
elePropEleEffSens.massFlowPropellant(i1)=elePropEleEffSens.thrust(
"— 11)/elePropEleEffSens.velocityExhaust(ii);
elePropEleEffSens.powerlet(i1)=0.5*clePropEleEffSens.
‘—  massFlowPropellant(ii)*elePropEleEffSens.velocityExhaust(ii)
" AD:
elePropEleEffSens.propellantMass(ii)=electricPropulsionParameters.
"— massDelivered*(exp(deltaV/elePropEleEffSens.velocityExhaust(
— iD))-1);
elePropEleEffSens.inputPower(il)=elePropEleEffSens.powerJet(11)/
"— elePropEleEffSens.totalEfficiency(ii);
elePropEleEffSens.powerDissipated(i1)=eclePropEleEffSens.inputPower
— (11)*(1-elePropEleEffSens.electricalEfficiency(ii));
newEleEff=newEleEff+THRUST_ VAR*1nitEleEff;

11=ii+1;
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end

figure(8)
plot(elePropEleEffSens.electricalEfficiency, elePropEleEffSens.
"— propellantMass)
1spOverall=horzcat(eleProplspSens.isp,elePropThrusSens.isp,
"— elePropEleEffSens.isp);
thrustOverall=horzcat(eleProplspSens.thrust,elePropThrusSens.thrust,
"— elePropEleEffSens.thrust);
mputPowerOverall=horzcat(eleProplspSens.inputPower,elePropThrusSens.
‘— inputPower,elePropEleEffSens.inputPower);
propMassOverall=horzcat(eleProplspSens.propellantMass,elePropThrusSens
"— propellantMass,elePropEleEffSens.propellantMass);
eleEffOverall=horzcat(eleProplspSens.electricalEfficiency,
— elePropThrusSens.electricalEfficiency,elePropEleEffSens.
"— electricalEfficiency);
tr1 = delaunay(@spOverall, thrustOverall);
figure(9)
trisurf(tri, ispOverall, thrustOverall, propMassOverall);
xlabelC  ispu(s)’ );ylabelC thrustu(N) ); zlabel( propellantumassukg)’ )
shading interp;
figure(10)
trisurf(tri, 1spOverall,thrustOverall,inputPowerOverall)

xlabelC ispu(s)’ );ylabelC thrustu(N) ); zlabel(C inputupoweru(W) );
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shading interp;

quad=delaunay(ispOverall,eleEffOverall);

figure(11)

trisurf(quad,ispOverall,eleEffOverall,propMassOverall);

xlabelC  ispu(s)’ );ylabelC electricaluefficiency’ ); zlabel(C propellantu
‘— massukg)’ );

shading interp;

figure(12)

trisurf(quad,ispOverall,eleEffOverall,inputPowerOverall);

xlabelC ispu(s)” );ylabel(C electricaluefficiency’ ); zlabel( inputupower
—u(W)" );

shading interp;

squad=delaunay(thrustOverall,eleEffOverall);

figure(13)

trisurf(squad,thrustOverall,eleEffOverall,propMassOverall);

xlabelC thrustu(N) );ylabelC electricaluefficiency’ ); zlabel(
“— propellantumassu(kg)’ );

shading interp;

figure(14)

trisurf(squad,thrustOverall,eleEffOverall,inputPowerOverall);

xlabelC thrustu(N) );ylabelC electricaluefficiency’ ); zlabel(C inputu
— poweru(W)" );

shading interp;
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The Lambert Solver Used in this script:

function [v1,v2,capFOfZ,yOfZ,z] = lambertSolver2(rl_vec, r2_vec,
"— deltaT, trajectory, MassOfCentralBody)
%% Finding the magnitude of the position vectors
rl = norm(rl_vec);

r2 = norm(r2_vec);

%% Determining the trajectory of the spacecraft and solving
'— delta_theta
crossOfRadVectors = cross(rl_vec, r2_vec);
if strecmp(trajectory,” prograde’ )
if crossOfRadVectors(3) >=0
deltaTheta = acosd(dot(rl_vec, r2_vec)/(r1*12));
else
deltaTheta =360 - acosd(dot(rl_vec, r2_vec)/(r1*r2));
end
elseif stremp(trajectory, = retrograde’ )
if crossOfRadVectors(3) >= 0
deltaTheta =360 - acosd(dot(rl_vec, r2_vec)/(r1*r2));
else
deltaTheta =acosd(dot(rl_vec, r2_vec)/(r1*r2));
end

end
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%% Finding the value of A
A = sind(deltaTheta)*sqrt(rl1 *r2/(1-cosd(deltaTheta)));

%% Finding a function of z to iterate to find the z-value
mu = 6.67E-20*MassOfCentralBody;
z = linspace(-100,100,100000);

numberOflterations = 4;

for kk = I:numberOflterations
sOfZ = zeros(l,length(z));
cOfZ = zeros(l,length(z));
for 11=1:length(z)
1f(z(11)>0)
sOtZG1)=(sgrt(z(11))-sin(sqrt(z(11))))/(sart(z(i1)))
", A3

cOfZ2G1)=(1-cos(sqrt(z(11))))/z(11);
elseif(z(11)<0)
sOfZ(1) = (sinh(sgrt(-z(11)))-sart(-z(11)))/(sqrt(-z(
— 1DNN3;
cOftZ@(1) = (cosh(sart(-z(11)))-1)/(-z(11));
else
sOfZ@1) = 1/6;
cOfZ) = 1/2;
end
end

yOfZ =rl + 12 + A*(z.*sOfZ-1)./(sqrt(cOf2));
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capFOfZ = real ((YOfZ./cOfZ2).N1.5).#sOfZ + A*sgrt(yOfZ) - sgrt(
— mu)*deltal);

=1

while(capFOfZ(jj)*capFOfZ(jj+1) > 0)
b= 3+l

end

z = linspace(z(3j),z(jj+1),length(z));

end

%% Solving for Y and Lagrangian Coefficients
y = yOIZ(p:;
f=1-y/rl;
g = A*sart(y/mu);

gDot = 1-y/12;

%% Finding velocity vectors
vl = 1/g*(@2_vec - f*rl_vec);

v2 = 1/g*(gDot*r2_vec-rl_vec);

Julian Day Function:

function J = JulianDay(year, month, day, UT)
J_0 = 367*year-floor(7*(year + floor((month+9)/12))/4) + floor
"— (275*month/9)...
+day + 1721013.5;
J=J_0+UT/24.0;
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Propagator:

function [pos,vel] = propagator(rx, ry, rz, vx, vy, vz, delT, totT, M)
mu = 6.67E-20*M;
r = [rx;ry;rz];
v = [vxX;vy;vz];
h = delT;
N = totT/delT + 1;
temppos = zeros(3, N+1);
tempvel = zeros(3, N+1);
temppos(:,1) =13
tempvel(:, 1) = v;

% time = linspace(0, totT, N);

w = [rx; ry; rz; vX; vy; vz];

for i1 = 1:N
k1 = h*rkf450p(w, mu);
k2 h*rkf45op(w+k1/2, mu);
k3 h*rkf45op(w+k2/2, mu);
k4 = h*rkf450p(w+k3,mu);
w = w+(1/6)*(k14+2*k2+2*k3+k4);

temppos(:, 11+1) = w(1:3,1);
tempvel(:, 11+1) =w(4:6,1);
end

pos = temppos;
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vel = tempvel;

end

RK4 Scheme:

function [ £ ] = rkf450p(x, mu )
f = zeros(6,1);

f(1) = x4@);
f2) = x(5);
f(3) = x(6);

f(4) = -mu*x(1)/(norm(x(1:3))"3;
f(5) = -mu*x2)/(morm(x(1:3))"3;
f(6) = -mu*x(B)/(morm(x(1:3))"3;

end

Stumpff Function C:

function ¢ = stumpC(z)
ifz>0

c = (1 - cos(sart(z)))/z;
elseif z < 0

c = (cosh(sart(-z)) - 1)/(-2);
else

c=1/2;

end

Stumpff Function S:
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function s = stumpS(z)
ifz> 0

s = (sart(z) - sin(sqrt(z)))/(sqrt(z)"3;
elseif z < O

s = (sinh(sgrt(-z)) - sgrt(-z))/(sqrt(-z))"3;
else

s = 1/6;

end

Current C++ code:

#include <iostream>

#include <cstdlib>
#include <ctime>
#include <math.h>
#include <string>
#include <sstream>
#include <time.h>

using namespace std;

struct electricPropulsion {
double electricEft;
double 1sp;
double thrust;
double totalEff;
double velEx;




double massFlowProp;
double powerlJet;
double propellantMass;
double inputPower;

double powerDiss;

}s

double randNorm(){
double randVal;
randVal=rand();
randVal=randVal/RAND MAX;

return randVal;

double julianDay(int year, int month, int day, double univTime){
double julNot = 367*year-floor(7*(year + floor((month+9)/12))/4) +
“—floor(275*month/9)+day + 1721013.5;
double jul = julNot + univTime/24.0;

return jul;

double magnitude(double vector[3]){
double c=sqrt(pow(vector[0],2) + pow(vector[1],2) + pow(vector[2],2)
— )

return c;
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double dot(double vectorOne[3],double vectorTwo[3]){
double ¢ = vectorOne[O]*vectorTwo[0] + vectorOne[1]*vectorTwo[1] +
— vectorOne[2]*vectorTwo[2];

return c;

double * cross(double vectorOne[3], double vectorTwo[3]){
static double newVec[3];
new Vec|[O]=vectorOne|1]*vectorTwo[2]-vectorOne[2]*vectorTwo[1];
new Vec|[1]=vectorOne[2]*vectorTwo[0]-vectorOne[O]*vectorTwo[2];
new Vec[2]=vectorOne[O]*vectorTwol[ 1]-vectorOne[ 1 ]*vectorTwo[0];

return newVec;

// struct lambPar {
// double velocityOne [3];
//double velocityTwo [3];
// double zValue;
//}
//
// lambPar lambertSolver(double firstRVector [3], double
— secondRVector [3], double deltaT, string trajectory, double

'— massOfCenBody){
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//
//}
int main()
{
/*This portion of the project will begin to initialize the beginning
“— of the
initial position from the start of the Earth trajectory, then the
— Mars entry
position, Mars departure position, and Earth arrival position*/
// Earth Initial Positon to Mars Entry Position
double earthInitPos[3]={149598000%-2.244542935534042¢
— -1,149598000%*-9.898623255903916e-1,149598000%4.560701155303384
— -5}
double earthInitVel[3]={149598000/86400%1.649999873155679%
— -2,149598000/86400%-3.875737397365565¢
— -3,149598000/86400%4.005872971272586e-7};
double marsInsPos[3]={149598000%4.000337515036055¢
— -1,149598000%*-1.366767680356064,149598000%*-3.845438967555528e
— -2}
double marsInsVel[3]={149598000/86400%1.39577760547013%¢
— -2,149598000/86400%5.132183704069709¢
— -3,149598000/86400%*-2.349802301687601e-4 };

// Mars Departure Position to Earth Orbit Reentry

double marsDepPos
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— [3]={149598000%1.192813351251525,149598000%-6.969502737632471K
— -1,149598000%-4.387304975491351E-2};
double marsDepVel[3]={149598000/86400%7.591205446206280E
— -3,149598000/86400%1.327897806399470E
— -2,149598000/86400%9.197681741173623E-5};
double earthRetPos[3]={149598000%9.751904220415768E
— -1,149598000%2.205338163864697E-1,149598000*-1.485898354345033
— E-5};
double earthRetVel[3]={149598000/86400%*-4.072134829623000E
— -3,149598000/86400*1.672285385762414E
— -2,149598000/86400%-1.282508017134359E-6};

//Constants

double mu=1.32712440042e+11;

double mSun=1.989¢+30;

double radiusSun=695508.0;

double deltaTl = 24*(3600*(julianDay(2018,7,18,7.5)-julianDay
— (2018,6,8,7.5)));

double deltaT2 = 24*(3600*(ulianDay(2018,9,28,7.5)-julianDay
— (2018,7,18,7.5)));

clock_t t;
t = clockQ;
double deltaV = 3.464¢e+4;

double massDelivered = 20;
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srand((unsigned)time(NULL));
double g = 9.8;
int numIter=10000;
electricPropulsion initialRandom[numlter];
double foo [numlter];
int counter = O;
int indexTrack [numlIter];
for(int 1=0; i<numlter;i++)
{
mitialRandom{|i].electricEff = randNorm();
mitialRandom[1].1sp = 100000*randNorm()+11000;
mitialRandom][1].thrust = 2*randNormJ();
mitialRandom][1].totalEff = randNormQ);
mitialRandom][i].velEx = initialRandom/[i].1sp*g;
initialRandom[i].massFlowProp = initialRandom([i].thrust/
‘“— initialRandom][1].velEx;
initialRandom[i].powerJet = 0.5*initialRandom[i].massFlowProp*pow(
“> initialRandom/[i].velEx,2);
mitialRandom([1].propellantMass = massDelivered*(exp(deltaV/
“— initialRandom[1i].velEx)-1);
mitialRandom([1].inputPower = initialRandom[i].powerJet/
"— initialRandom[i].total Eff;
mitialRandom[1].powerDiss = initialRandom[1].1nputPower*(1-
“— initialRandom[i].electricEff);

1f(GnitialRandom[i].propellantMass<=massDelivered)& &(
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}

— initialRandoml[i].electricEff>=0.75)& & (initialRandoml[i].

"— totalEff>=0.50)& & (initialRandom[i].total Eff<=initialRandom|[1

"— ].electricEffH)& & (initialRandom/[i].propellantMass>0)){
indexTrack[counter] = 1;

counter++;

int indexTrackSec [counter];

electricPropulsion newEleSys[counter];

for(int 1 = 0; 1 < counter; 1++){

}

newEleSys[1]=1nitialRandom[indexTrack][1]];

electricPropulsion finalSystem|[10];

while(counter>10){

electricPropulsion tempSys[counter];
int indexTrackTemp[counter];

int tempCount = O;

double sumEIEf = 0.0;

double sumlsp = 0.0;

double sumThrust = 0.0;

double sumTotEf = 0.0;

double sumVelEx =0.0;

double sumMassFIRt = 0.0;

double sumPowlJet = 0.0;

double sumPropMass = 0.0;
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double sumInPow = 0.0;

double sumPowDiss = 0.0;

for(int 1 = 0; 1 < counter; 1++){
newEleSys[i]=1nitialRandom|[indexTrack|[1]];
sumEIEf += newEleSys[1].electricEff;
sumlIsp += newEleSys|[1].1sp;
sumThrust += newEleSys|[i].thrust;
sumTotEf += newEleSys[i].totalEff;
sumVelEx += newEleSys[1].velEx;
sumMassFIRt += newEleSys[1].massFlowProp;
sumPowlJet += newEleSys[1].powerJet;
sumPropMass += newEleSys[i].propellantMass;
sumInPow += newEleSys[i].inputPower;
sumPowDiss += newEleSys[1].powerDiss;

}

double avgEIEf = sumEIEf/counter;

double avglsp = sumlsp/counter;

double avgThrust = sumThrust/counter;

double avgTotEf = sumTotEf/counter;

double avgVelEx = sumVelEx/counter;

double avgMassFIRt = sumMassFIRt/counter;

double avgPowlJet = sumPowlJet/counter;

double avgPropMass = sumPropMass/counter;

double avglnPow = sumlInPow/counter;

double avgPowDiss = sumPowDiss/counter;
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for(int 1=0; 1<counter; 1++){
if(newEleSys[1].propellantMass < (avgPropMass)&& newEleSys[1].
"— electricEff > (avgEIEfl) &&newEleSys[i].totalEff > (
"— avgTotEN){
newEleSys[tempCount] = newEleSys|[i];
tempCount++;
}
else{

newEleSys[i]={};

}

counter = tempCount;

}
for(int 1 = O; 1<counter; 1++){
finalSystem[1] = newEleSys|[i];
cout<<"Theuparametersuforuconfigurationu" << 1+1 << "uare:" <<
— endl;
cout<<"ElectricaluEfficiencyuisu" << finalSystem[1].electricEff <<

— " " << endl;

cout<<"Specificulmpulseuisu" << finalSystem[i].isp << "s." << endl

’
—
4

cout<<"Thrustuisu" << finalSystem[1].thrust << "N." << endl;

cout<<"TotaluEfficiencyuisu" << finalSystem[i].totalEff << "." <<

— endl;

cout<<"ExhaustuVelocityuisu" << finalSystem|[i].velEx << "." <<




— endl;
cout<<"PropellantuMassuFlowuRateuisu" << finalSystem[i].
"— massFlowProp << "kg/s." << endl;
cout<<"JetuPoweruisu" << finalSystem[i].powerJet << "W." << endl;
cout<<"TotaluMassuisu" << finalSystem[i].propellantMass + 20 << "
"— kg." << endl;
cout<<"InputuPoweruisu" << finalSystem[1]..nputPower << "W." <<
— endl;
cout<<"DissipateduPoweruisu" << finalSystem[i].powerDiss << "W."
— << endl;
}
cout<<counter<<endl;
t=clockQ - t;
t=double(t);
printf ("Thisuprocessutooku%duclicksu(%fuseconds).\n",t,((float)t)/
— CLOCKS_PER_SEC);
// for(int i=0; i<numlter;i++){
// sumlsp += initialRandom[i].isp;
/7}
// double ispAvg = sumlsp/numlter;
// cout<<ispAvg<<endl;
return O;
}
// To run the code in cmd prompt follow these steps

// 1) Type in the following command g++ helloworld.cpp -o helloworld
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— .exe

// 2) Then type in the .exe file you have Created
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