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ABSTRACT   

      This   study   lays   a   foundation   for   the   next   generation   of   in-flight   orbital   determination   using   
artificial   intelligence.   Artificial   neural   networks   (ANN),   a   branch   of   recurrent   neural   networks   
(RNNs),   are   used   to   detect   solar   perturbations   to   optimize   trajectories   by   locating   the   positions   
and   magnitudes   of   minimum   burns   for   flyby   missions.   The   major   findings   are:   how   to   establish   a   
proper   working   NN   model   for   a   small   orbital   dynamics   data   sample,   choice   and   reasoning   of   
open   source   platform   used,   NN   model,   and   a   defined   process   to   initiate   the   necessary   contour   
mapping   of   the   solar   perturbations.   A   long-short   term   memory   (LSTM)   is   used   for   the   NN  
model.   NASA’s   General   Mission   Analysis   Tool   (GMAT),   using   the   Runge-Kutta89   numerical   
integrator,   is   used   for   orbit   propagation.   Open   source   platforms   Google   Colab   (using   
Tensorflow/Keras)   and   Jupyter   notebook   are   used   for   NN   training.   The   necessary   contour   
mapping   is   done   via   the   weights   captured   for   every   feature   and   time   step   at   each   epoch   during   
training.   The   example   in   this   paper   is   a   flyby   of   Venus   followed   by   a   trajectory   to   Saturn.   
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Chapter   1   -    Introduction   

1.1   Motivation     

1.1.1   Background   

The   20th   century   marked   the   beginning   of   space   exploration   and   the   development   of   the   
computerized   mathematical   methods   required   to   accomplish   it.   Past   missions,   such   as   the   Apollo   
11   through   17,   depended   on   these   methods   and   laid   the   foundation   for   future   space   missions’   
characterization   and   trajectory   determination.   Automated   math   models,   such   as   simulated   
propagators,   use   computational   numerical   methods   to   determine   future   trajectories   for   spacecraft   
missions.     

  
One   such   example   is   the   Hill   sphere   approximation,   which   is   the   volume   of   space   that   

contains   the   stable   orbit   on   which   a   satellite   will   find   itself   [1].   The   Hill   sphere   radius   is   the   
location   where   the   radial   force,   between    a   spacecraft   and   a   secondary   mass,   transforms   to   a   tidal   
force   that   is   at   hydrostatic   equilibrium,   and   can   be   further   affected   by   the   gravitational   
perturbations   introduced   by   a   larger   mass   [2].    The   Hill   sphere   radius   determines   whether   a   
problem   can   be   considered   a   two-body   or   three-body   problem.   This   type   of   approximation   can   
be   visually   mapped   via   vector   or   contour   plotting,   as   shown   in    Figure.1,   where   the   Lagrange   
points   and   the   space   bodies   with   different   potential   fields   are   also   shown.   Other   popular   
methodologies   within   astrodynamics   include,   but   not   limited   to,   the   Lambert’s   problem   and   
orbital   phasing.     

  

The   Age   of   Globalization   &   Technology   in   the   20th   century,   facilitated   the   Age   of   
Information   in   the   21st   century,   and   the   combination   of   both   gave   birth   to   the   internet,   
autonomous   design,   and   ‘smart’   commercial   applications.   The   establishment   of   the   Internet   of   
Things   (IOTs)   generated   unlimited   and   continuously   streaming   data   from,   both,   sensor   and   cloud   
based   intelligent   embedded   systems.   Thus,   it   was   only   a   matter   of   time   before   engineers   and   
scientists   found   creative   solutions   and   were   able   to   use   large   amounts   of   data   for   visualization,   

11   

  

 Figure   1 :   Contour   plot   of   the   Hill   sphere   mapping   (often   discussed   in   association   with   the   Roche   limit)   
about   the   Sun   and   Earth   as   well   as   the   five   Lagrange   points[3]   .   

  



  

communication   and   preprocessing.   In   regards   to   the   aerospace   industry,   porkchop   plots   (Fig.2)   
are   an   example   of   data   visualization,   where   large   amounts   of   historical   data   was   used   to   generate   
contour   plots   to   determine   launch   and   arrival   dates,   as   well   as   the   minimum   burns,   or      ‘s,    for   
interplanetary   flights.   This   in   turn   brought   forth   machine   learning   (ML)   and   brought   back   
artificial   neural   networks   (ANN)    (   which   originated   from   the   1940’s)   to   the   forefront   of   the   
political,   economic   and   social   spheres   of   human   life.     

A   neural   network   (NN)   is   a   type   of   deep   learning   (DL)   algorithm.   DL   is   a   subset   of   ML,   
and   these   two,   DL   and   ML,   are   in   turn   subsets   of,   what   is   commonly   referred   to   as,   artificial   
intelligence   (AI).   NNs   are   so   named   because   their   models   resemble   the   neural   structure   of   the   
human   brain   (as   shown   in   Figure   3).   NN   is   divided   into   three   main   methodologies:   supervised,   
unsupervised   and   reinforced   learning.   The   difference   between   supervised   and   unsupervised   
models   is   that   the   former   requires   output   training   labels,   provided   by   an   operator,   while   the   latter   
classifies   raw   clustered   data   without   any   output   labels   to   guide   its   decision-making   process.   
Reinforced   learning   is   often   administered   with   live   machines,   such   as   robots,   with   an   operator   to   
guide   the   machine   via   reward   (similar   to   the   B.F   Skinner    psychological/operative   conditioning)   
to   distinguish   between   what   is   correct   and   what   is   not.   Regardless   of   the   methodology   selected,   
all   three   require   data   and   can   be   in   the   form   of   statically   stored   or   live   feed,   as   the   machine   
‘learns’   to   adapt   to   its   surroundings.     
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 Figure   2 :    Porkchop   plots   by   NASA   [4].   
  

https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0


  

  

The   current   trend   in   dynamic   and   energy-based   systems   is   combining   classical/modern   
control   system   design   with   ML   and   NN   infrastructure.   In   the   aerospace   industry,   this   is   evident   
with   the   creation   of   unmanned   air   vehicles   (UAVs)   and   in-situ   planetary   exploration,   such   as   
quad   copter   drones   and   the   Mars   land   rovers,   respectively.   However,   not   much   has   been   done   in   
the   way   of   autonomizing   spacecraft   in   flight   or   in   mission   planning   (in   contrast   to   the   attitude,   
determination   and   control   system   (ADC)).   Currently   trajectories   are   monitored   and   controlled   by   
ground   stations   or   JPL’s   deep   space   network   (DSN)   using   radar   technology   to   track   
interplanetary   travel   [6]   and   the   ISS’s   telecommunication   centers.   The   risk   associated   with   such   a   
communication   link   is   a   delay   in   feedback   causing   unprecedented   loss   of   the   spacecraft   itself.   
Examples   of   where   loss   of   signal   (LOS)   has   occurred   between   spacecraft   and   ground   stations   are   
Cassini,   Voyagers   1   and   2,   as   well   as   one   of   the   most   recent   missions:   JPL’s   Surveyor   II.   The   loss   
of   communication   is   usually   due   to:   malfunctioning   hardware   and   mishandling   of   data   at   the   
ground   stations   with   respect   to   the   spacecraft’s   command   frame   or   unprecedented   perturbations   
within   space   (such   as   magnetic   or   solar   perturbations)   [7].    Figure   4   displays   a   table   of   the   most   
recent   manual,   semi-autonomous   and   autonomous   Navigation,   Guidance   and   Control   (NGC)   
units   aboard   certain   spacecraft,   but   not   all   have   been   put   into   practice,   as   indicated   in   Figure   5.   
The   autonomous   design   is   not   commonly   used   due   to   its   additional   weight,   hardware   and   cost   
requirements.   Thus,   there   is   much   to   be   explored   in   the   area   of   ‘smart’   technologies   in   orbital   
determination   to   capture   real   time   data   for   mission   optimization.   
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 Figure   3 :   Comparison   between   a   biological   and   artificial   neural   structure   [5].   
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 Figure   4 :   List   of   NGC   systems   used   in   various   spacecraft   along   with   their   dis/advantages    [6].   



  

  

1.1.2   Significance   

The   significance   of   this   project   is   that   it   paves   the   way   for   combining   past   classical   control   
systems,   established   by   the   Fly-by-wire   projects   in   the   early   1970’s   [8-9],   with   ‘smart’   
technologies,   such   as   ML   and   DL,   to   autonomous   navigation.   Current   automated   control   system   
design   in   spacecraft   is   limited   for   attitude   control   of   the   spacecraft’s   propulsion   systems,   
electrical   supply   maintenance,   and   antenna   orientation,   due   to   the   additional   weight   and   cost   of   
past   projects   that   tried   to   bring   on   board   automated   versions   for   the   NGC   unit   [6].    Thus,   
integrating   NN   to   create   an   onboard   intelligent   control   system   module   that   would   minimize   
potential   losses   with   respect   to   the   energy   usage,   cost   of   the   overall   spacecraft   (especially   
concerning   weight),   is   the   next   step   in   futurizing   aerospace   flight.    The   NN   mapping   of   the   solar   
perturbation   field   will   be   used   specifically   for   interplanetary   flyby   trajectories.   The   spacecraft   
will   use   the   NN   to   minimize   trajectory   corrections   maneuvers   (burns)   by   ‘free-riding’   on   the   
solar   perturbation   field   when   transitioning   from   one   space   phase   to   another.     
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 Figure   5 :   In-depth   characterizations   of   the   different   types   of   NGCs   for   spacecrafts   [6].   



  

1.2   Literature   Review   
  

The   initial   concept   of   the   artificial   neuron   began   during   the   1940’s   by    McCulloch   and   Pitts    ,   
but   this   logical   rendition   of   the   early   NN   was   constrictive,   and   the   first   perceptron   was   not   
discovered   until   the   1950’s   by   Frank   Rosenblatt   [10].    Rosenblatt's   perceptron   ran   under   a   binary   
formulation   to   determine   whether   or   not   the   neuron   will   activate   instead   of   being   dependent   on   
the   dot   product   of   the   weights   and   inputs   (as   was   done   with   Pitts’).   Figure   6   depicts   the   early   
framework   of   the   artificial   neuron.   It   was   not   until   1998   that   neural   networks   made   a   
reappearance   in   the   industry,   and   it   was   called   the   LeNet-5   and   is   considered   to   be   the   first   
‘famous’    Convolutional   Neural   Network   (CNN)   architecture   [11].   The   CNNs   are   categorical   
classifiers   and   so   all   the   later   developments   of   this   model,   such   as   the   AlexNet   (2012)   and   the   
VGG-16,   examined   images   and   text-based   data.   Figure   7   presents   a   few   of   the   commonly   known   
CNN   architectures   that   helped   shape   the   neural   network   algorithms   that   are   used   today.     
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 Figure   6 :    The   first   artificial   neuron   model   developed   during   the   1940’s   by    McCulloch   and   Pitts    [10].   



  

  

  

In   2018,   Dr.   Stijn   De   Smet   published   two   research   papers   that   discuss   how   to   use   neural   nets   
for   solar   gravity   driven   orbital   transfers   in   the   Martian   and   other   planetocentric   spheres   of   
influence   [13-14].   His   research   established   the   foundation   for   a   NN   based   propagator   for   space   
missions.This   analysis   compares   NN   models   that   used   data   generated   by   the   two    numerical   
approaches,   the   Circular   and   Elliptical   Hill   sphere   methods,   to   complete   the   Poincare   mapping.   
The   error   was   calculated   by   using   GMAT   data   to   verify   the   results,   which   indicated   a   high   level   
of   accuracy.   The   type   of   NN   model   created   by   Dr.   Stijn   was   a   fully   condensed   layer   that   had   a   15   
x   15   matrix   (15   neural   inputs   and   outputs,   along   with   15   hidden   neurons).   The   NN   was   used   to   
determine   the   initial   conditions   with   respect   to   the   expected   final   destinations,   as   well   as,   to   
identify   imperfect   maneuvers   on   the   transfers   [13].   
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 Figure   7 :   Few   of   the   earlier   popular   CNN   models   and   their   architecture   [12] .     
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 Figure   8 :   Schematic   of   the   transfers   by   D.Stijn   et   al   [13-14] .   

  

 Figure   9 :   NN   architecture   from   Dr.   Stijn’s   research.   Used   a   combination   of   linear   and   tanh   activation   
functions   within   the   cells.   The   five   Keplerian   elements   that   are   used   as   inputs   are   designated   on   the   left   
hand   side   of   the   model;   while   the   output   is   at   the   far   right.   [13]     



  

There   are   two   general   categories   of   deep   learning:   supervised   and   reinforcement.   While   
Dr.   Stijn’s   research   was   in   supervised   learning,   the   incorporation   of   reinforcement   learning   with   
classical/modern   control   system   design   was   done   by   Dr.   Howell   et   al   [15].   This   study   was   to   
provide   a   ‘lightweight’   solution   [15]   with   respect   to   the   NGC   subsystem’s   physical   weight   
requirements   due   to   the   heavy   computational   algorithm   that   is   necessary   for   non-linear   dynamic   
modeling.   The   test   subject,   a   spacecraft   which   is   addressed   as   the   ‘agent’,   undergoes   several   trial   
runs   through   different   ML   models,   such   as   K-Nearest-neighbor   (or   K-dimensional   tree),   Hidden   
Markov   Model   (HMM)   and   Monte   Carlo.   The   astrodynamics   model   consists   of   two   planetary   
bodies   (Earth   and   Moon)   and   a   spacecraft   which   transfers   from   one   closed   orbit   to   another.   The   
ML   algorithms   receive   historical   data   to   train   the   agent   to   determine   the   optimal   locations   of   the   
burns   for   the   expected   transfers   without   the   aid   of   the   original   controller.   Perturbations,   in   
position   and   velocity,   are   introduced   into   the   model.   The   reward   and   penalty   signals   are  
administered   to   guide   the   NN’s   training   process   (Figure   10).   The   outcome   of   the   study   indicated   
that   the   agent   does   complete   the   expected   transfer,   however   it   is   offset   by   30   km   and   does   not   
meet   the   defined   criteria   [15].     
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 Figure   10 :   Penalty   and   Reward   plot   as   agent   learns   the   expected   trajectory   via   RL   [15].   
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 Figure   11 :   NN   architecture   for   the   RL   modeling.   The   input   contains   11   values   and   is   mapped   to   120   
neurons   [13].   Output   values   are   thrust   components   [15].   

  
  
  

 Figure   12 :   Diagram   of   agent’s   reference   trajectory   along   with   the   Moon’s   perturbation   between   two   
liberation   points   about   closed   orbits[15].     
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       Since   automation   is   popularly   used   for    in-situ   exploration,   Dr.   Bassil   [16]   created   a   
supervised   learning   approach   to   guide   the   Mars   rover   across   obstacles   that   could   have   
prevented   it   from   completing   its   sampling   mission.   The   NN,   with   cells   that   are   linearly   
activated,   is   made   up   of   three   layers   (input,   hidden   and   output).   Results   indicated   that   the   
simulated   rover   was   able   to   avoid   being   deterred,   however,   parallelization   computation   was   
found   necessary   for   robust   computation   and   execution   time.   This   means   that   a   GPU   (and   
perhaps   even   incorporating   CNN   or   Transformers)   is   essential   in   training   the   model.   However,   
the   current   CPUs   and   FPGAs   are   inadequate   for   such   exercises.     
  

  
  
  

 Figure   13 :   Last   run   of   agent   as   it   completes   expected   transfer   but   does   not   arrive   at   the   expected   
arrival   spot   at   the   designated   time   step   [15].   

  

 Figure   14 :   Three   layered   NN   model   with   linear   activation   [16].   
  



  

1.3    Project   Proposal     

1.3.1   Objective   

The   objective   of   this   project    is   to   incorporate   ANN   to   create   a   mapping   of   solar   perturbations   
for   cost   optimization   of   the   spacecraft   while   it   conducts   interplanetary   flyby   missions   to   the   outer   
planets.   This   supervised   learning   model   will   guide   the   spacecraft   in   the   path   that   will   minimize   
burns   ( Δv ),   or   the   maximum   alignment   to   any   desired   trajectory,   needed   to   correct   for   the   
influences   of   the   solar   gravity   perturbations.   The   analysis   for   the   flybys   will   be   done   at   different   
radii   of   approach   to   determine   the   trajectory   that   will   require   the   least   amount   of   corrections   (or   
burns).    The   flybys   will   primarily   be   conducted   about   Venus,   Mars,   Jupiter   and   Saturn.     
  

  

1.4   Methodology   

1.4.1   Approach   

This   project   will   be   carried   out   in   three   stages:   

● Establishment   of   a   recurrent   neural   network   (RNN)   model:    that   takes   in   temporal   
based   data,   and   creates   a   sequence   by   sequence   analysis   using   long-short   term   memory   
(LSTM)   layers.     

● GMAT   propagator   to   collect   data   sample(s):    will   be   used   for    batch   test   runs   to   finalize   
the   type   of   NN   architecture   for   training   the   NN.   The   software   is   used   to   collect   the   
perturbed   and   unperturbed   data   for   the   particular   spacecraft   mission.   

● Astrodynamics   theory:    Kepler’s   Laws   and   patched   conics   (two-body   problem)   to   
calculate   the   appropriate   ephemerides   and   epoch.     
  

The   NN   predicts   perturbed   data   of   six   features   (the   three   translational   vectors   of   position   [X,   
Y,    and   Z]   as   well   as   for   the   velocities   [Vx,   Vy,   Vz]).   In   the   first   stage,   a   small   data   sample   will   
be   collected   for   a   batch   test   run   to   overfit   (exact   or   a   linear   regression   fit)   a   ‘baby’   NN   model,   so   
as   to   finalize   the   type   of   architecture   for   the   actual   (much   larger)   data   that   will   be   used   for   
training   the   NN.     

  
In   the   second   stage,   all   samples   and   data   to   be   collected   are   done   through   the   GMAT   

propagator.   The   software   is   used   to   collect   the   perturbed   and   unperturbed   data   for   the   particular   
spacecraft   mission.     

  
In   the   third   stage,   the   spacecraft   will   conduct   a   gravity   assist   maneuver   about   Venus   and   use   

the   heliocentric   velocity   gained   to   propel   it   to   Saturn.   However,   before   data   collection   can   ensue,   
the   correct   epoch   must   be   selected,   for   the   celestial   bodies   are   not   stationary   objects   and   have   
their   own   orbital   periods   and   angular   velocities.   The   epoch   selected   must   have   Earth   trailing   
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Venus   and   both   trailing   Saturn,   for   it   ensures   that   the   spacecraft   will   not   be   traveling   against   the   
retrograde   (counter-clockwise)   spin   of   the   Sun.     

  
In-depth   discussion   about   data   collection   and   preparation,   as   well   as,   the   astrodynamics   

involved   can   be   found   in   Chapter   2.   
  

In-depth   discussion   of   the   NN   can   be   found   in   Chapter   3.   
  

1.4.2   Theory   and   Principles   

Kepler’s   Laws   and   patched   conics   are   defined   in   Curtis’   book   [23]   and   the   SJSU   
astrodynamics   course   readers   SJSU   [17].   Frame   of   reference   diagrams   for   inner   to   outer   planet   
flyby   trajectories,   as   depicted   in   Curtis’   book,   will   illustrate   the   v_inf   approach   ( )   of   the  v∞a  
spacecraft   traveling   towards   Venus,   as   well   as,   v_inf   departure   ( )   ,   as   the   spacecraft   leaves  v∞d  
Venus.    Lambert’s   problem   defines   the   initial   and   final   position   and   velocity   components   of   
interplanetary   transit.   Kepler’s   Laws   are   defined   in   Chapter   2,   while   Lambert’s   problem   is   
presented   via   Matlab   in   Chapter   4.     

   

1.4.3   Resources   Needed   

Resources   to   complete   deliverables   for   the   project   are   listed   below.   
  

Table   1.1     Potential   resources   and   its   expected   acquisition   date   for   each.     

  

1.4.4   Preliminary   Work   

Work   completed   so   far:   
● The   tentative   epoch   selected   is   July   21,   2020.   Further   calculations   will   be   done   to   provide   

a   basis.   An   online   propagator   was   used   to   make   such   a   selection.     
● Collected   a   small   sample   size,   for   a   single   batch   test   run   for   perturbed   and   unperturbed   

data   in   .csv   format.     
● Loaded   the   data   into   a   jupyter   notebook   on   Google   Colab,   successfully   split   the   data   into   

training   and   testing,   normalized   the   data,   created   a   basic   LSTM   and   dense   layer   model   
with   single   nodes,   and   successfully   trained   the   data.   
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Item   Expected   Acquirement   Date   (and   Cost)   

Google   Colab   (Jupyter   Notebook)   Free,   Online,   Requires   Google   Drive   account   

Pycharms     Free   download   

Keras/TensorFlow   (v.2.3)/Pytorch   (3.2)   Free,   Online,   With   Google   Colab   

GMAT   v.   2018   Free   download   



  

● Updated   and   refined   the   objective.     
● Strategized   on   the   set   up   of   GMAT,   refined   the   context   of   the   problem,   and   did   some   

review   on   the   background   of   GMAT   and   astrodynamics.     
  
  

1.4.5   Anticipated   Challenges   and   Alternative   Strategies   

1. Autoencoding   the   weights   to   capture   solar   potential   vector   fields   may   require   a   
propagation,   at   which   the   solar   potential   field   data   is   to   be   collected   as   the   spacecraft   
maneuvers   in   its   prescribed   trajectory.    

2. Difficulty   in   weight   interpretation,   will   require   methodology   to   be   reformulated:   
a. Incorporating   the   Hidden   Markov   Model   for   direct   weight   interpretation.     
b. Rely   on   hard   coding   for   customization   of   ready   made   wrappers   given   by   Keras.   
c. Use   the   Hamiltonian   or   the   Transformer   or   incorporate   the   decoder-encoder   NN   

model   within   the   LSTM.     
d. Instead   of   comparing   position   and   velocity   between   unperturbed   and   perturbed   

data,   will   instead   compare   the   force   vectors   that   make   up   the   solar   potential   
gravity   field.     

e. May   have   to   use   the   unsupervised   learning   approach   instead   of   supervised.   
f. Increase   the   amount   of   ephemerides   as   variables   of   input   and/or   the   overall   

architecture   of   the   NN.   
  

1.4.6   Deliverables   

The   executable   files   for   this   project   will   be   as   follows:     
●   .iPynb   files   for   NN   framework   
● .   csv    file   for   storing   captured   data   
● Mathematical   models   
● .script   and   .bak   files   from   GMAT.   

  

1.4.7   Evaluation   Metrics   

The   associated   evaluation   metrics   for   this   project,   and   its   future   versions,   will   be   as   follows:     
● Ability   to   maintain   the   ideal   trajectory   with   flight   path   angle   ( )   error   of   .  γ  ± 5 ∘  
● Ability   to   maintain   the   ideal   trajectory   by   calculating   the   correct   aiming   radius   ( )   error  Δ  

of   .   km± 1  
● Ability   to   calculate   the   ideal   epoch   for   a   transfer   orbit   insertion   (TOI)   towards   a   

particular   planet   ( ).  300 Julian days±   
● Faster   system   response   time   ( ),   with   respect   to   the   evaluation   and   decision  .5 ms± 0  

making   process   of   the   NN   controller.   
● Validation   loss   greater   than   the   training   loss.   
● Training   and   validation   accuracy   at   98   percent.     
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1.4.8   Timelines   

Timelines   are   conventionally   shown   using   a   Gantt   chart.   The   Gantt   charts   are   seasonal,   hence   
the   first,   shown   below   and   specifically   for   this   proposal,   will   be   for   the   Summer   of   2020   and   is   
referred   to   as   Phase   A.    Next,   is   Phase   B,   which   is   for   the   Fall   of   2020,   and   last   is   Phase   C   for   
Spring   of   2021.    
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 Figure   15 :    Gantt   chart   for   phase   A .     

 

 Figure   16 :   Gantt   Chart   B.   
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 Figure   17 :     Gantt   Chart   for   Phase   C   



  

Chapter   2   -    Astrodynamics   Theory   and   Data   Pre-processing   
  

2.1   Data   Visualization     

2.1.1   Background   and   Data   Preparation   

The   importance   and   methods   of   data   preparation   for   an   AI   model,   the   necessary   
fundamentals   of   astrodynamics,   as   well   as,   initial   setup   of   GMAT   that   is   integral   for   data   
collection   are   covered   in   this   chapter.   The   intent   of   this   chapter   (and   Chapter   3)   is   to   allow   both   
technical   and   non-technical   majors   to   understand   the   setup   and   theory   of   both   NNs   and   
astrodynamics.     
  

Finding   a   better   approach   to   using   a   large   data   set   and   saving   large   amounts   of   
computational   loads   and   time   is   the   purpose   behind   the   concept   (and   acquired   skill)   called   data   
visualization.   Data   visualization   helps   in   determining   the   critical   and   limiting   factors   within   a   
dataset,   recognizing   potential   patterns   to   formulate   certain   conclusions,   and   is   the   precursor   and   
defining   factor   to   how   the   NN   will   be   trained.   There   are   seven   different   data   types   [21]   and   each   
requires   using   modern   methods   of   analysis.   The   data   types   are   as   follows:   categories   and   
fractions,   maps,   distributions,   high-dimensional   data,   written   text,   network   data   and   mixed,   
multimodal   data.   Each   data   type   has   a   plot   type   that   guides   in   telling   the   story   (Figure   18).   The   
type   of   data   that   will   be   used   throughout   the   course   of   this   project   is   high-dimensional   data,   
because   the   data   samples   that   are   extracted   from   the   simulator   will   have   multiple   time   steps   and   
at   each   time   step   there   are   multiple   qualitative   (also   called   categorical)   and   quantitative   (also   
known   as   regressional)   features.   However,   for   this   project,   to   conserve   time   and   resources,   only   a   
few   of   the   quantitative   features   (of   the   overall   features   that   the   propagator   provides)   have   been   
selected   as   the   data   sample   to   train   and   test   the   NN   model.     

  

27   

(a)   



  

28   

(b)   
  

(c)     
  

(d)   
  

(e)   



  

29   

(f)   
  

(g)   
  

(h)   
  
  



  

  
  

By   selecting   a   propagator   to   extract   the   necessary   data,   the   risk   of   retrieving   ‘unclean’   
(anomalies)   data   is   minimized   and   makes   data   shaping,   normalization   and   analysis   that   much   
faster.   If   the   data   collected   has   outliers   or   mismatching   data   types,   then   it   is   up   to   the   operator   to   
delete   such   anomalies   by   setting   them   to   zero,   removing   them   from   the   dataset,   or   dividing   the   
data   in   such   a   way   that   the   NN   is   being   fed   sectionally   (or   in   parts/batches).     
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(i)   
  
  

 Figure   18 :   Examples   of   data   types.    (a) fractional,    (b) map,    (c)    categorical,    (d)    distribution,    (e)    high   
dimensional   data,    (f)    words,    (g)    networks,    (h)    clustering,    (i)    moving   and   interactive.   [21]   

  

 Figure   19 :   Pre-processed   data   is   expected   to   be   ‘cleaned   out’   (as   explained   earlier)    and   normalized   
before   being   fed   into   the   NN   model.   Be   aware   that   there   are   different   types   of   normalization   tools   out   
there   that   can   be   used   (for   instance,   if   an   operator   wants   to   normalize   the   whole   data   set   instead   of   per  
feature,   which   is   the   default   setting   for   most   python   libraries,   then   one   must   hard   code   the   correct   



  

  
  

  
Once   data   type   has   been   confirmed   and   pre-processing   has   been   completed   (including   

conducting   statistical   inferences   in   the   data),   then,   it   is   time   for   data   preparation.   The   questions   
one   needs   to   ask   are:   

● How   should   this   data   be   presented   to   the   NN   model?   (the   expected   file   format   
with   respect   to   the   open   source   library,   platform   selected,   and   data   library   based   
on   the   language   and   open   sourced   platform   selected   [for   this   study   it   was   
Panda]...etc.)   

● What   are   the   expected   input   sizes   (dimensions,   such   as   3-D   or   2-D)   and   output   
sizes   of   the   type   of   the   selected   NN   model?   (a   3-D   input   shape   means   that   it   has   3   
elements   that   make   up   its   matrix   dimensions   -   width   [row],   length   [column]   and   
depth;   while   2-D   means   that   the   input   shape   is   made   up   of   2   elements/dimensions:   
row(n),   column(m),   n   x   m...etc.)   

● How   does   each   layer   that   is   created   in,   either,   the   functional   or   sequential   API,   
processes   the   input(s)   and   proposes   the   output(s)?   In   other   words,   what   are   the   
calculations   done   in   each   cell   (based   on   either   activation   function   or   the   type   of   
NN   model   selected)?   

  
Chapter   4   will   present   the   collected   clean   high   dimensional   (also   defined   as   multivariate   

time   series)   data   sample   propagated   by   GMAT.   
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formulations   in   order   to   accomplish   that   goal).[12]   

  

 Figure   20 :   Data   pre-processing   that   is   commonly   used   in   a   reinforcement   learning   model   is    Principal   
Components   Analysis    ( PCA)   and   data   whitening.   PCA   is   dimensional   reduction   (scaling)   with   respect   
to   the   features   in   a   [MxN]   matrix   data   sample;   while   whitening   is   reduction   of   redundancy   within   the   
sampled   data.-   where   features   have   small   correlation   to   one   another   and   have   the   same   variance   and   a   
statistical   mean   of   0.[12]     



  

2.2   Data   Setup   

2.2.1   Background   &   Assumptions   

Position   and   velocity   vectors,   instead   of   the   Keplerian   elements,   will   be   the   inputs   for   the   
NN   model   to   train.   This   is   because   using   vectors   instead   of   the   actual   magnitudes   will   aid   in   
contour   mapping   of   the   results.   Thus,   since   a   supervised   learning   model   is   used   for   this   project   
the   outputs   are   also   the   position   and   velocity   vectors   instead   of   thrust   factors.   Neither   thrust   nor   
atmospheric   drag   will   be   considered   in   this   project.   The   only   force   that   will   be   modeled   is   due   to   
the   n-body   effect.   Orbital   dynamics,   such   as   the   Lambert’s   problem,   Hohmann   transfer   and   
impulse   burns   are   considered   for   the   simulations   and   hand   calculations.     
  

Due   to   real   time   constraints,   the   spacecraft   simulations   will   begin   at   a   phase   point   near   
Venus.   The   flybys   can   be   modeled   about   the   concept   of   ‘rideshare’,   where   a   smaller   satellite   
(such   as   a   microsat)   takes   off   from   a   larger   satellite   that   is   already   in   a   closed   orbit   about   a   
celestial   body;   or   a   spacecraft   that   has   already   done   its   transfer   orbit   insertion   (TOI)    -   at   an   
earlier   phase   in   time   -   and   is   in   transit   towards   Venus.   This   is   done   to   justify   the   initial   position   
and   velocity   vectors   to   be   at   different   phase   points   near   Venus.   
  

The   initial   and   final   state   vectors   of   the   planet’s   ephemerides   can   be   calculated   by   Jet   Propulsion   
Laboratory’s   (JPL’s)   HORIZONS’   web   interface.   The   values   pertaining   to   infinite   velocity   of   
approach   ( )   as   well   as   right   ascension   angle   ( )   was,   initially,   dependent   on   the   Russian  V ∞a Ω  
spaceflight   Venera-D   mission   that   is   to   take   place,   either,   in   2016   or   2017.   However,   it   turns   out   
that   those   values   were   not   intended   for   an   actual   flyby   to   take   place.   Thus,   a   random   initial   
ephemerides   date   was   selected,   along   with   an   offset   to   determine   the   spacecraft’s   position.   The   
Cassini,   as   well   as   the   Voyagers   1   &   2,   missions   will   be   used   as   a   point   of   reference   to   study   the   
alignment   of   the   planets   with   respect   to   each   other,   specifically   Earth,   Venus,   Jupiter   and   Saturn,   
at   particular   times   where   a   burn   or   a   flyby   trajectory   occurs.     
  
  

2.3   GMAT    &   Astrodynamics   
  

2.3.1   GMAT   

GMAT   is   a   NASA   based   orbital   propagator   and   was   commercially   released   in   September,   
2009.   The   mathematics   and   scientific   approach   behind   GMAT   are   Runge-Kutta89,   astrophysics   
dynamics,   and   2-body,   as   well   as,   3-body   orbital   mechanics.   To   simplify   the   scope   of   the   
problem,   the   only   force   modeling   considered   when   gathering   data   from   GMAT   is   the   n-body   
effect   (how   the   gravitational   acceleration   of   point   masses   impact   the   spacecraft).    In   GMAT   
documentation   it   is   called   the   ‘n-Body   Point   Mass   Gravity’   [22],   and   is   defined   as   follows:   
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Equation   1,   below,   is   the   initial   formulation   for   the   n-body   effect   modeling   in   GMAT.   
Below   are   the   list   of   terms   for   Figure   21   :   
  

● :   position   of   spacecraft   with   respect   to   a   hypothesized   inertial   frame.    r s   
●   :   position   of   central   body   with   respect   to   hypothesized   inertial   frame.    r j   
● :   position   of   the   kth   body   with   respect   to   the   hypothesized   inertial   frame.   r k  
● :   position   of   spacecraft   with   respect   to   central   body   of   integration   (   body).   r   j th  
● :   position   of   the   gravitational   body   with   respect   to   the   central   body.   r k  k th  
● :   defining   the   position   of   spacecraft   with   respect   to   the   central   body.    r j + r = r s  

○ :   second   derivative   with   respect   to   time.     r′′ = r′′ s − r′′ j  
  

  
  

               ( 1 )   [22]   r   (r )m s ′′ s = ∑
n

k=1
F k = G ∑

n

k=1

m m s k

r r  ∣ k− ∣ 3 k − r  

  
  

Equation   1   is   achieved   by   applying   Newton’s   2nd   Law,   where:   
  

● :   is   vector   from   spacecraft   to   the   body.    r k − r  k th  
● :   mass   of   the   spacecraft   m s  
● :   mass   of   the   body.   m k  k th  

  
can   be   re-written   as   follows:   r s

′′  

           ( 2 )   [22]   (r  r)r s
′′ = G ∑

n

k=1

m k
r r  ∣ k− ∣ 3 k −   
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 Figure   21 :   N-body   effect   diagram   between   a   central   body,   spacecraft   and   kth   point   mass.   [22]   



  

Newton’s   second   law   to   the     body   to   obtain:   j th  
  

                    ( 3 )   [22]   r r m j j
′′ =

r 3
Gm m s j + G ∑

n

k=1,j=k/ r  ∣ k∣ 3

m m j k
k  

  
● The   first   term   is   the   influence   of   the   spacecraft   on   the   central   body   
● The   second   term   is   the   influence   of   the   k   point   mass   
● Thus,   can   be   simplified   as   follows:   r j

′′  

○                                 ( 4 )   [22]   r r r j
′′ =

r 3
Gm s + G ∑

n

k=1, j=k/

m k
r  ∣ k∣ 3 k  

  
  

Substituting   in   equations   2,   3   and   4   into   :     r′′ = r′′ s − r′′ j  

○       ( 5 )   [22]   (r  r) r r r ′′ = G ∑
n

k=1

m k
r r  ∣ k− ∣ 3 k −  − r 3

Gm s − G ∑
n

k=1, j=k/

m k
r  ∣ k∣ 3 k  

○ Collecting   terms   yields:   

■                           ( 6 )   [22]   (r ′′
pm =− r 3

μ j + G ∑
n

k=1, j=k/

r rk−
r r  ∣ k− ∣ 3 −

r k
r  ∣ k∣ 3  

● The   first   term:   acceleration   on   the   spacecraft   due   to   central   body   
● The   second   (direct)   term:   accounts   for   the   force   of   the   body   on   k th  

spacecraft.   
● The   third   (indirect)   term:   accounts   for   the   force   of   the   body   on   k th  

the   central   body.   
  

Since,   force   is   conservative,   velocity   and   mass   partials   equate   to   zero:   
  
  

  
                                              ( 7 )    [22]   

  
A   vector   identity,   refer   to   Equation   8,   is   then   used   to   determine   the   partials   with   respect   to   
position   (Equation   9)   :   
  
  

( 8 )   [22]   
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( 9 )   [22]   

  
Applying   the   vector   identity   (Equation   8)   to   the   direct   terms   of   Equation   9,   then   taking   the   
derivative   of   the   indirect   terms,   which   are   zero,   and   combining   like   terms,   finally   get   the   
following   result:   
  
  

  
( 10 )   [22]   

  
The   time   Jacobian   form   of   the   n-body   force   modeling   is   as   follows:   
  
  

  
( 11 )    [22]   

  
There   are   several   types   of   numerical   integrators,   but   the   Runge-Kutta89   is   the   integrator   of   
choice   for   this   project.   The   Runge-Kutta89   is   defined   via   the   following   equation:   
  

 (t, )dt
dr i = f r     (     12 )   [22]   

  
As   the   equation   suggests,   it   calculates   the   integration   at   each     of   a   step   and   considers   the   later   i th  
states   as   the   initial   states   for   the   upcoming   step.     
The   series   of   formulation   that   the   propagator   undergoes   as   it   simulates   the   trajectories   are   as   
follows:   
Estimates   the   next   stage   via   time   multiplier     and   time   interval   :   α i  δtα i    
  

             ( 13 )   [22]   t f (t  δt,  (t) k )k i
(n) = δ + a i r (n) + ∑

i 1−

j=1
bij j

(n)  

  
Total   integration   step   can   be   calculated   by   another   set   of   coefficients:   
  

  (t t)  (t)  kr (n) + δ = r (n) + ∑
stages

j=1
c j j

(n)       ( 14 )   [22]   
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Estimating   the   accuracy   of   the   step   by   comparing   the   steps   at   different   orders   of   integration:   
  

          ( 15 )   [22]   (t t)  (t) k r t(n) + δ = r (n) + ∑
stages

j=1
cj

*
j

(n)*
 

 

  
The   error   estimation:   
  

  Δ (n) = (c  )k 
 ∣ 
∣ 
∣ 
∣ 
∑

stages

j=1
j − c j

*
j
(n)

 ∣ 
∣ 
∣ 
∣ 
      ( 16 )   [22]   

  
The   new   step   size   to   optimize   the   accuracy   are   as   follows:   
  

 t δt( ) δ new = σ ε
α 1

m 1−      ( 17 )    [22]   
  

 t δt( ) δ new = σ ε
α 1

m                 ( 18 )    [22]   
Where     is   the   order   of   truncation   being   solved    and     is   a   factor   of   safety   error   to   prevent  m σ  
unnecessary   over   iterations   [22].   
  
  
  

2.3.2   Astrodynamics:   Basic   Overall   Theory   and   Principles     
  

The   Hohmann   transfer   from   Earth   to   Venus   will   be   modeled   with   2-body-problem   orbital   
dynamics.   The   encounter   at   Venus   will   be   approximated   using   patched   conics   for   the   3-body   
aspects   of   the   flyby   transfers   so   that   Kepler   laws   may   be   used.   Two   body   orbit   problems   are   
often   theorized   in   calculations   to   simplify   the   amount   and   type   of   forces   considered   with   respect   
to   the   spacecraft   and   its   surrounding   celestial   environment.   Thus,   for   a   two   body   problem   the   
only   force   modeled   is   the   gravitational   force   of   the   celestial   body,   during   the   time   when   the   
spacecraft   is   in   its   sphere   of   influence   (SOI).     
  

Gravitational   force   along   the   ‘r’   component:   
                       ( 19 )   [17]   q  F Q =− r 2

GMm
r  
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.   

  
The   orbit   equation   is   used   to   define   the   polar   position   of   the   spacecraft,   as   well   as   the   orbit’s   
eccentricity   and   angular   momentum   in   any   restricted   2-body   problem.   It   is   the   following:   
  

    where   e   >   1   for   a   hyperbola            ( 20 )   [17]  ( )r = h 2
GM

1
1+ecosθ  
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 Figure   22 :   Basic   orbital   diagram.   The   spacecraft’s   position   is   defined   with   respect   to   the   ‘q’   
components,   as   well   as   the   polar   coordinates,   ‘r’   and     [17].  θ  

  

 Figure   23 :   Basic   characteristics   of   a   two-body   problem;   where   a   closed   elliptical   2-D   orbit   is   depicted.   
The   angle   ( )   and   the   distance   ( )   indicate   the   location,   in   polar   coordinates,   of   the   spacecraft   with  θ r  
respect   to   the   foci   (emboldened   period).   The   foci   is   where   the   planet,   or   celestial   body   of   interest   is   
located.   The   point   of   perigee   ( )   is   the   closest   point   on   the   closed   orbit   to   the   foci   or   the   planet   of  P  
interest,   and   is   made   up   of   vector   components     and   .   The   semi-   latus   rectum   is   the   shortest   P x  P y  

perpendicular   distance   between   the   foci   and   the   closed   orbit   at   which   the   spacecraft   is   on.   ‘C’   is   the   
center   of   the   closed   elliptical   orbit   and   ‘a’   is   the   semi-major   axis   of   the   closed   elliptical   orbit.   [17].   



  

  
  
  

                                               ( 21 )   [17]  r = a(1 e )− 2

1+ecosϑ  
  

where   a   =   semi   major   axis,   e   =    eccentricity   of   the   orbit   [e   =   0   is   a   circle,   while   0<e<1   is   an   
ellipse   and   e=1   is   a   parabola],     =   angle   between   line   of   apsides   and   the   spacecraft’s   location  θ  
depicted   by   ‘r’.   Note   that   since   both,   Equation   20   and   Equation   21,   are   the   orbit   equations,   

.   Where   ‘h’   is   angular   momentum   per   mass,   ‘G’   is   the   gravitational   constant,  (1 e )h 2
GM = a −  2  

and   ‘M’   is   the   mass   of   the   celestial   body   of   interest   located   at   the   foci.     
  

  
As   depicted   in   Figure   24,   the   Keplerian   elements   that   are   used   to   define   any   orbit   (closed   or   
open)   are   as   follows:   

Right   ascension   angle;   measured   between      and   the   line   of   the   nodes.   The   line   of   nodes   Ω = c e x  
is   where   the   orbital   plane   intersects   with   the   equatorial   plane.   Note   that   often   times   there   are   two   
types   of   line   of   nodes:   ascending   (spacecraft   is   traveling   up   along   the   elliptical   perimeter   of   the   
orbital   plane)   and   descending   (spacecraft   is   traveling   downward,   sometime   after   the   point   of   
perigee,   along   the   elliptical   perimeter   of   the   orbital   plane).   

   =    Inclination   angle   of   the   orbit.  i  
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 Figure   24 :   The   Keplerian   elements,   where   the   Newtonian   reference   frame   (ecx,   ecy,   ecz)   is   at   a   fixed   
inertial   point   at   the   center   of   the   celestial   body.   Note   that   the   orbital   plane   is   not   always   at   the   

equatorial   plane.    [17]   



  

  =    Specific   angular   momentum.   Always   normal   to   the   orbital   plane.  h  
Argument   of   perigee;   measured   between   the   line   of   nodes   and   the   line   of   apsides.  ω =  

   =   Eccentricity   of   the   orbit.  e  
  Spacecraft   location   (magnitude   of   the   spacecraft’s   position   vector).    r =   
Spacecraft’s   location   in   polar   coordinates,   measured   between   the   line   of   apsides   and   the   θ =  

vector   form   of   ‘r’.   
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 Figure   25 :     The   Hohmann   transfer   is   an   elliptical   transfer   that   is   considered   to   be   the   shortest   and   most   
efficient   form   of   interplanetary   travel.   The   transfer   is   made   between   two   circular   closed   orbits   either   
about   one   particular   celestial   body   of   interest   or   two.   The   state   vector   change   with   respect   to   position   
and   velocity,   as   well   as   the   flight   path   angles,   are   done   through   pre-calculated   impulsive   burns.     r 1  

and     are   radii   for   circular   orbit   1   and   orbit   2,   respectively.   Since   the   orbits   are   circular   their   r 2  
calculations   with   respect   to   velocity   are   simplified,   as   well.   The   velocity   equations   are   also   considered   

the   energy   equations   for   the   difference, ,   is   what   constitutes   as   the   amount   of   ‘burn’   or   fuel   a  vΔ  
spacecraft   must   use   to   get   from   point   A   to   point   B.   [17]   
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 Figure   26 :    Sun   centered,   or   heliocentric,   flyby   trajectories   between   Earth   and   Venus   [23].     A   flyby   can   
be   viewed   as   a   power   push   for   the   spacecraft,   thus   making   it   an   ideal   choice   to   reduce   the   amount   of   

fuel   usually   used   for   impulsive   burns   when   changing   the   flight   path   angle.   This   in   turn   prolongs   the   life   
cycle   of   the   spacecraft   as   it   conducts   its   interplanetary   travels.   The   flyby   is   also   considered   as   an   open   

orbit,   for   it   is   either   parabolic   or   hyperbolic   in   nature.     
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The   hyperbolic   trajectory’s   elements   are   the   following:   

  

[17]   
  

The   arrows   in   Figure   27   are   traveling   in   a   counterclockwise   motion,   and   depending   on   the   

  

 Figure   27 :   on   the   left   hand   side   is   where   the   full   focus   is   (a.k.a   planet   of   interest).   The   approaching   
arrow   from   the   bottom   (below   the   Apse   line)   is   where   the   spacecraft   is   approaching   at   a   velocity   

defined   as   .   The   arrow   above   the   Apse   line   is   the   departing   velocity   of   the   spacecraft   defined   as   V ∞a  
.     [17]   V ∞d  
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direction   of   the   planet   and   where   the   spacecraft   is   approaching,   the   flyby   is   determined   to   be   
either   a   leading   or   trailing   side   flyby.   A   leading   side   flyby   is   where   the   spacecraft   happens   to   
come   in   front   of   the   planet   while   the   trailing   edge   flyby   is   where   the   spacecraft   travels   behind   
the   planet.   The   trailing   side   flyby   is   most   desirably   sought   in   interplanetary   travel,   due   to   the   
spacecraft   having   more   push   from   the   planet’s   retrograde   motion   as   it   (spacecraft)   travels   
behind   it.   
  
  
  

  
  
  

  

 Figure   28 :   This   is   an   example   of   a   trailing   side   flyby.   Note   that   the   red   arrows   and   lines   indicate   the   
planet's   pathway   while   the   black   arrows   indicate   the   fly   by   direction   of   the   spacecraft.   The   
spacecraft’s   velocity   of   approach   is   opposite   to   the   direction   of   the   planet’s   orbital   pathway   and   the   
spacecraft   conducts   the   flyby   behind   the   planet’s   pathway,   as   well.   [17][23]   
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The   energy   equations   mentioned   previously   are   as   follows:   
  

Velocity   required   to   maintain   within   a   closed   circular   orbit:   
  

   v circular =√ r
GM  

                                                                        ( 22 )   [17]   
  

Velocity   required   to   escape   the   SOI   of   a   celestial   body,   like   in   a   flyby   trajectory.   The   orbit   is   
usually   open   and   can   either   be   parabolic   or   hyperbolic   in   geometry.   
  

   v escape =√ r
2GM  

                                                                      ( 23 )   [17]   
  

Velocity   required   to   maintain   an   elliptical   closed   orbit   or   the   energy   required   to   complete   a   
Hohmann   transfer:      
  
  

  v =√ r
2GM − a

GM  
                                                                                 ( 24)     [17]   

  
  
  
  

  

 Figure   29 :   Leading   side   flyby.   Note   that   the   pathline   that   runs   parabolically   across   the   diagram   is   
the   planet’s   orbit   while   the   spacecraft   is   marked   by   the   purple   pathway   and   the   blue   arrows.   The   
spacecraft   is   indeed   flying   in   front   of   the   planet’s   pathway   as   it   conducts   its   flyby   trajectory.   [17]   
[23]   



  

The   overall   process   of   calculating   the   required   input   for   GMAT   is   as   follows:   
● Since,   there   are   no   hyperbolic   elements   (   ,   ,   )   from   the   2016    Venera-D   V ∞a  Ω a V ∞d  

mission   that   defines   a   flyby   -   will   instead   use   JPL’s   Horizons   Ephemeris   data    and   a   
Matlab   code   of   Lambert's   problem.   

● All   data   collected   via   JPL’s   Horizons   and   GMAT   are   heliocentric.     
● Lambert’s   problem   (will   be   discussed   more   in   depth   in   Chapter   4)   requires   an   initial   and   

final   position   state   vector,   as   well   as   the   duration   of   flight.   Since   the   Cassini   mission   had   
a   flyby   from   Venus   to   Saturn,   the   value   for   the   time   of   flight   (of   five   years)   was   used.     

● Input   necessary   parameters   (start   date   and   position   and   velocity   vectors   of   spacecraft)   
into   GMAT   to   retrieve   data   samples   for   one   flyby   (particularly   between   Venus   and   
Saturn),   and   create   different   sets   of   data   at   different   radii   of   approach   (for   that   particular   
flyby).   These   different   sets   of   data   will   be   listed   as   perturbed   or   unperturbed   based,   and   
will   be   divided   into   training,   validation   and   test   data   sets   for   the   NN.   

● If   time   permits,   then   conduct   multiple   flybys   towards   different   planets,   starting   from   
Venus   (this   is   to   create   a   more   diversified   contour   mapping   of   the   solar   perturbations   and   
this   will   allow   the   NN   to   create   better   predictions).   

● The   only   force   modeling   to   be   considered   is   gravitational   amongst   bodies   (n-body   effect).   
All   others   (atmospheric   drag,   non-spherical,   spacecraft   thrust,   relativistic   corrections,   
solar   radiation   pressure,   and   percent   shadow   partial   derivatives)   will   not   be   considered   
due   to   simplification   and   real   time   constraints.     

  
  
  
  

2.4.    GMAT   SETUP   
  

2.4.1   Few   GMAT   Initial   Pointers   
  

The   data   that   is   to   be   sampled   will   have   a   six   features   for   the   unperturbed   states:   
  and   six   perturbed   states:     at  , , Z  , , , V  XU  Y U  U  V xU  V yU  zU , , Z  , , , VXP  Y P  P  V xP  V yP  zP  

every   simulated   time   step.    The   important   step   that   must   be   done   before   running   the   simulator   is   
making   sure   for   which   six   features   are   the   desired   output   (is   it   for   the   perturbed   set?   Or   the   
unperturbed   set?),   and   to   do   that,   one   must   navigate   to   the   ‘Propagator’   window   and   select   or   
deselect   (depending   which   set,   respectively),   as   shown   below   in   Figure   30,   inputting   the   sun   as   a   
considered   point   mass   (please,   take   note   that   solar   radiation   pressure   (SRP)   is   in   reference   to   the   
solar   influence   on   the   solar   panels   of   the   spacecraft.   Hence   is   not   the   focus   of   this   study.)   :   
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2.3.3   Astrodynamics   Methodology  



  

  
Must   also   toggle   on   the   ReportFile   before   the   start   of   your   ‘Mission’   sequences,   as   shown   

below   in   Figure   31   ,   this   way   all   the   necessary   data   is   captured   for   all   iterations:   
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 Figure   30 :   Propagator   window   at   GMAT.   The   point   masses   are   adjustable.   Since   a   transfer   to   Saturn   
is   to   be   done,   Sun   and   Venus   are   selected   as   the   critical   bodies.     



  

  

The   launch   dates   and   the   overall   orbital   phasing   is   strategized   after   the   Cassini,   the   Venera-D   
missions,   as   well   as,   Voyagers   1   &   2.   More   of   the   overall   GMAT   setup   and   final   astrodynamic   
calculations,   as   well   as,   data   collection   will   be   covered   in   Chapter   4.     
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 Figure   31 :   GMAT’s   mission   and   Resources   tab.   Notice   that   the   ‘ReportFile1’   is   an   output   option   under   
the   Resources   menu   and   is   defined   to   turn   on/off,   ‘Toggle1’,   under   the   Mission   tab.   Note   that   the   
name‘ReportFile1’   is   modifiable,   as   well   as,   the   selection   of   what   type   of   data   outputs   the   simulator   is   
expected   to   give.     
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 Figure   32 :   Cassini   mission   timelines   and   trajectories   [17].   



  

Chapter   3   -    Back   Propagation   Method   &   RNNs   
  

3.1   NNs   &   Back   Propagation     

3.1.1   Background   

Chapter   1   discussed   briefly   the   different   categories   of   neural   networks,   and   this   chapter   will   
delve   a   bit   deeper   and   beyond   that   scope.   Chapter   3   is   all   about   Artificial   Neural   Networks   
(ANNs):   its   building   blocks,   its   main   categories,   the   different   types   that   exist,   as   well   as   how   to   
train   one.   This   section   will   focus   on   the   main   categories   of   all   NN   models,   as   well   as   the   
classical   ML   algorithms,   connected   in   the   overall   paradigm   that   is   AI.     
  

The   diagram   in   Figure   33   presents   the   overall   categorization   between   supervised   and   
unsupervised   learning,   where   the   former   requires   input   and   output   data   to   create   a   predicted   
model   and   the   latter   requires   only   input   data   for   grouping   and   interpretation.     
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The   thinking   process   to   decide   between   whether   or   not   to   select   the   three   categories   can   best   be   
described   as   the   following   diagram.    Consideration   of   the   data   type   will   determine   the   best   model   
to   use.   The   diagram,   shown   in   Figure   35,   contains   a   general   question   and   answer   pathway   to   
figuring   out   what   model   to   eventually   use.     
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 Figure   33 :   Models   used   for   supervised   vs   unsupervised   learning   types.   This   study   falls   under   
supervised   learning   and   is   a   regression   type   of   problem   due   to   the   fact   that   the   data   sampled   is   
numerical.   Thus,   the   NN   model   is   a   viable   option.    [24]   

 Figure   34 :   General   ML   diagram.   This   diagram   shows   all   three   general   categories   (2nd   column)   
pertaining   to   ML   and   the   type   of   models   (last   column)   that   can   be   used   based   on   the   data   type   (3rd   
column)   that   an   operator   is   dealing   with.   Note   that   reinforcement   learning   can   also   be   defined   as   
semi-supervised.   [25]   



  

  
  

Once   the   type   of   data   has   been   defined   and   potential   models   have   been   selected,   then   one   must   
decide   whether   the   purpose   of   the   data   is   to   model   or   modify   as   the   diagram   in   Figure   35   
suggests).   For   example,   the   purpose   of   the   data   collected   in   this   study   is   to   allow   a   machine   to   
predict   where   the   solar   perturbations   are   and   which   can   be   used   for   fuel   effective   maneuvers.   
Thus,   not   only   is   the   numerically   labeled   data   (supervised   regression)   used   for   prediction,   but   is   
also   expected   to   allow   a   machine   to   ‘learn’   (model)   from   it,   thus,   the   ideal   type   of   model   (or   
tool)   to   use   is   a   NN.   Section   3.2   discusses   different   types   of   NN   models   an   operator   can   choose   
from   based   on   the   application   and   data   type   at   hand.     
  

Other   fields   at   which   NN   was   used   was   in   predicting   the   stop   times   for   maritime   transit   at   
different   sea   ports,   as   depicted   in   Figure   36.   This   is   a   regression   high-dimensionality   type   of   data   
set,   since   it   is   both   numerical   and   contains   multiple   features,   respectively.   Another   research   topic   
that   adopts   a   similar   platform   to   this   thesis,   as   well   as   that   shown   in   Figure   36,   was   in   anomaly   
detection   for   temporal   data   derived   from   machines,   such   as   electrocardiograms   (ECGs)   (Figure   
37).     
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 Figure   35 :   Dr.   Brunton’s   ML   diagram.   This   diagram   allows   one   to   ask   the   right   questions   in   figuring   
out   what   model   to   use   for   their   data   type.   [21]   



  

  

  
Data   preparation   usually   includes   plotting   and   statistical   analysis   to   observe   the   behavior   of   the   
features   of   interest.   This   tactic   aids   the   operator   in   determining   what   features   to   use   as   inputs   and   
outputs   and   what   the   machine   is   expected   to   predict.     
  

In   short,   if   the   data   are   images,   this   is   treated   as   a   categorical   or   classification   or   a   discretized   
type;   while   sentences   and   numbers   that   have   a   continuous   form   are   treated   as   a   regression   type   of   
data.   
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 Figure   36 :   Data   sample   used   for   RNN.   The   data   was   shaped   in   such   a   way   where   the   NN   was   expected   
to   predict   the   amount   of   time   it   takes   to   travel   to   the   next   signal,   and   it   achieves   that   by   being   fed   the   
input   variables   from   the   previous   times   and   travel   distances   the   ship   has   traveled.   [26]   

 Figure   37 :   Time   Series   ECG   dataset.   Note   that   this   is   a   regression   data   type   and   is   time   dependent,   as   
well.   Yet,   it   is   not   high   dimensionality   because   it   only   focuses   on   one   feature   which   is   just   the   heartbeat   
or   pulse/ms   readings   at   every   time   step.   [27]   



  

3.1.2   Backprop   &   How   Does   it   Work?   

In   general,   once   the   data   have   been   collected   and   prepared   the   operator   must   select   the   
type   of   model   to   use.   If   in   this   case,   a   NN   was   selected   due   to   the   context   of   the   application,   then   
the   following   explains   how   NNs   function.   In   Chapter   1   the   structure   of   the   NN   was   briefly   
explored,   but   this   section   will   get   more   involved   in   the   basic   architecture   or   building   blocks   that   
make   up   the   NN.   It   is   important   to   also   note   that   NN   was   initially   designed   (and   commonly   
used)   for   language   processing,   image   classification,   text   or   audio   or   temporal   sequential   
predictions,   as   well   as   object   detection.     
  
  

  
There   are   several   different   types   of   activation   functions   programmed   for   each   layer   of   nodes.  
Typically   the   hidden   layers   contain   non   linear   activation   functions   while   the   output   layer’s   cells   
do   (cannot   have   different   designated   activation   functions   within   a   single   layer).   Figure   39   
presents   the   commonly   used   types.     
  

52   

  

 Figure   38 :   A   basic   model   of   a   node   (also   interchangeably   called   ‘cell’   or   ‘neuron’).   The   NN   is   made   
up   of   these   little   balls   called   nodes,   just   like   the   brain   is   made   up   of   neurons   (as   depicted   in   Figure   35).   
Note   that   the   node   has   two   inputs   (x   and   y)   and   one   output   (z).   The   arrows   are   called   branches   and   are   
designating   the   forward   propagation,   since   it’s   moving   in   one   direction,   from   input   to   output.   The   ‘f’  
designated   at   the   center   of   the   node   is   the   activation   function   that   each   node   has   (similar   to   the   way   a   
brain’s   neuron   is   ‘activated’   once   a   signal   is   introduced).   The   different   types   of   activation   functions   are   
shown   later   in   this   section.   Note   that   for   a   perceptron,   where   there   is   only   one   node   used,   the   activation  
function   is   linear,   where   f   =   W*x   +   b.   Where   ‘W’   is   the   weight(s),   ‘x’   is   the   input(s),   and   ‘b’   is   the   bias;   
each   input   has   a   weight   and   a   bias   associated   with   it.   [12]   



  

  

  
  

53   

 Figure   39 :   Activation   functions   [12].   Sigmoid,   tanh,   ReLU   and   Leaky   ReLU   are   popularly   used   
activation   functions   in   current   NN’s   hidden/output   layer’s   cells’.   Keep   in   mind   that   the   activation   
functions   only   work   with    normalized   data   where   the   input   values   typically   range   from   0   to   1   (but   there   
are   cases   where   it’s   between   -1   to   1,   as   the   Leaky   ReLU,   tanh,   and   ELU   functions   point   out).   Keep   in   
mind   that   due   to   the   nature   of   the   function,   sigmoid   and   tanh   functions   have   issues   with   saturation   
(values   dying   out).[12]   

  

 Figure   40 :   General   overall   architecture   of   a   NN.   In   contrast   to   what   was   shown   in   Figure   34,   multiple   
nodes   are   depicted   and   are   connected   to   each   other.   Any   set   of   nodes   (or   units)   that   exists   between   the   
input   column   of   nodes   and   the   output   column   of   nodes   are   called   the   hidden   nodes.   Each   node,   
however,   has   an   internal   activation   function   that   is   expected   to   be   specified   when   creating   the   model   
(regardless   if   either   the   sequential   or   functional   API   is   selected)   in   either   PyTorch,   Keras/Tensorflow   
and   other   machine/deep   learning   open   source   platforms.   Furthermore,   depending   on   the   type   of   NN   
selected,   the   overall   number   of   parameters   (total   connections/branches)   will   be   calculated   differently.   
[28]   



  

  
In   a   NN,   every   node   that   is   connected   to   another   node   has   an   associated   weight   (that’s   
multiplied)   and   a   bias   that’s   added,   as   depicted   below   in   Figure   38.   The   weight   is   also   defined   as   
the   ‘strength’[29]   an   input   has   on   the   output.   Weights   are   randomly   initialized   (automatically   by   
the   software   or   open   sourced   platform)   and   are   updated   based   on   the   error   between   the   estimated   
output   of   the   NN   and   the   actual   target   value.   The   update   is   done   via   gradient   descent   (a   series   of   
partial   derivations   between   the   nodal   connections)   optimization   tactics   such   as   stochastic   
gradient   descent   (SGD)   or   the   Adam   optimizer,   as   will   be   shown   later   in   this   section.     
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 Figure   41 :   Diagram   of   a   perceptron   initiated   by   Frank   Rosenblatt   around   1957.   Similarities   between   a   
cell   body   in   a   NN   vs   that   of   a   brain.   The   parameters   depicted   in   the   left   image   are   fully   explained   in   the   

next   figures.   [12]   

  

 Figure   42 :   Nodal   representation   of   weights   and   biases.   All   the   ‘W’s’   correspond   to   the   weights   and   the   
subscripts   correspond   to   which   nodes   it’s   in   between.   Note   that   the   weights   are   labeled   along   the   



  

  
Understanding   back   propagation   requires   the   operator   to   understand   how   forward   propagation   
works.   In   order   to   simplify   the   initial   understanding   of   the   process,   this   will   be   done   in   a   general   
sense   where   the   type   of   activation   function   that   exists   within   the   node   will   be   specified   later,   and   
the   type   of   NN   model   selected   isn’t   specified   and/or   considered.   Furthermore,   the   diagrams   
presented   as   examples   will   be   using   actual   numbers   before   presenting   the   general   mathematical   
diagram   in   order   to   facilitate   a   better   understanding   of   the   process.     
  

  
Weight   initialization   is   automated   by   the   open   source   platform   (Tensorflow/Keras,   Pytorch...etc.)   
and   the   values   are   usually   between   0   and   1;   because   it   mimics   a   Gaussian   distribution.   In   fact,   a   
lot   of   the   data   analysis   and   tools   used   in   the   NN   or   deep   learning   online   platforms   tend   to   follow   
such   a   statistical   distribution.   This   is   why   it   is   important   to   consider   whether   or   not   the   online   
tools   (usually   in   the   form   of   extended   Python   libraries,   such   as   scikit-learn)   are   in   alignment   with   
the   type   of   data   and   prediction   model   the   operator   wants   to   generate.     
  

Next,   once   the   model   has   completed   the   first   forward   propagation   pass,   Figs.   41   -   43   presents   
how   the   resulting   values   would   look,   as   well   as   the   mathematics   behind   it:   
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branches   and   the   biases   (denoted   by   ‘B’   and   associated   subscript)   are   at   the   nodes.   The   middle   column   
or   ‘layer’   is   called   the   ‘hidden’,   while   the   first   layer   is   the   input   and   the   last   is   the   output   layer.   Since   
data   is   represented   in   vectorized   format   (   or   matrices)   so   are   weights,   biases   and   the   outputs   of   the   NN.   
[30]   

  

 Figure   43 :   Weights   are   initialized   within   this   three   layered   NN.   Note   that   the   two   inputs   are   just   a   
numerical   integer   of   ‘1’   and   the   estimated   output   is   just   a   ‘0’.   Note   that   this   is   just   the   initial   stage   
where   the   operator   has   only   just   declared   his/her   model   with   respect   to   the   amount   of   input   features   
that   the   NN   model   should   dissect,   as   well   as,   the   amount   of   cells   that   the   hidden    and   output   layers   
should   have.   It   is   a   rule   of   thumb   to   have   more   hidden   layer   cells   than   that   of   either   the   input   or   output   
layers’   (usually   by   a   factor   of   2,   with   respect   to   the   number   of   input   cells   and   the   hidden   layer   after   a   
prior   hidden   layer).     [29]   



  

  

  
Once   the   values   for   the   first   hidden   layer   are   complete,   including   the   calculation   done   for   the   
sigmoid   activation   function   programmed   within   the   hidden   layer’s   cells   (the   values   that   are   in   
larger   font   size   in   the   hidden/middle   layer),   the   next   set   of   calculations   will   be   for   the   estimated   
output.   S()   is   the   sigmoid   function   and   its   inputs,   ‘x’,   are   the   linear   values   calculated   in   Figure   
40.   
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 Figure   44 :   ,   where   ‘x’   is   the   perceived   input   with   respect   to   the   node   of   interest;   but   with   Σ(W )f =  * x  
regards   to   this   single   hidden   layer   model,   the   input   is   from   the   actual   input   layer.   Thus,   the   
mathematical   model   will   be   input   layer’s   value   *   initialized   weight   +   the   2nd   input   layer’s   value*   it’s   
initialized   weight   =   value   for   the   linearly   activated   node   in   the   first   hidden   layer.   [29]      
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 Figure   45 :   Calculating   the   sigmoid   function’s   values   and   the   estimated   output.   Note   that   in   the   context   
of   this   particular   model,   the   estimated   value   turned   out   to   be   ‘0’.   The   calculation   goes   from   the   input   
value   of   the   hidden   cell   *   it’s   initialized   weight   +   the   2nd   hidden   cell’s   value   *   it’s   initialized   weight   +   
the   3rd   hidden   cell’s   value   *   it’s   initialized   weight   =   estimated   value   (at   the   single   cell   output,   note   that   
the   output   layer   can   have   multiple   cells,   depending   on   how   many   features   the   operator   wants   to   be   
considered   as   a   targeted   label).   The   calculations   shown   above   the   diagram   is   for   the   sigmoid   activation   
function,   where   the   input   ‘x’,   in   the   sigmoid   equation,   are   the   linear   values   calculated   via   the   weights   
and   inputs   as   described   earlier.    [29]   

  
Once   the   forward   propagation   pass   is   complete   note   that   the   calculated   or   estimated   value   is   
off   from   the   expected   targeted   value.   Thus,   this   is   where   backpropagation   comes   to   play,   it   
basically   adjusts   the   weights   based   on   the   error   between   the   estimated/calculated   output   (0.77   
)value(s)   to   that   of   the   referenced/targeted   value(s)   (0).   In   fact,   based   on   how   many   epochs   (1   
epoch   =   the   full   forward   prop   +   full   backprop   pass   through   all   sampled   data)   an   operator   has   
designated   the   model   to   run   for,   the   back   propagation   passes   will   continue   to   iterate   (1   iteration  
=   1   forward   pass   +   1   backward   pass   over   a   batched   sample,   thus   1   epoch   can   have   several   
iterations   depending   on   how   many   batches   -   or   batch_size),   and   the   accuracy   should   increase   if   
the   model   is   learning,   thus   decreasing   the   error.     
  

  

,       ,   where   ,  um Σ(W )s =  * x  
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,   thus,   (S(1.23)   =   0.77).   

,   next,     

,   now   we   know   that   the   hidden   layer   result,     ,   is   H result  
the   sigmoid   function   value   at   a   particular   hidden   node,   is   *it’s   forward   connecting   weights   =   
output   sum   for   each   hidden   cell   node,   so   can   transform   it   to   the   following:   

,   where   it   states   that   the   greater   change,   or   difference,   
between   output   sum   ( )   and   input   hidden   sigmoid   result   ( )   will   cause   a   greater   O sum  H result  
shift/change   in   the   new   weight   values,   dW,   as   shown   :   

  And   this   calculation   
continues   on   to   the   next   layer   of   nodes   until   all   the   weights   are   upgraded   and   a   new   forward   
propagation   pass   occurs   to   calculate   a   new   estimated   output   value   (which   shown   earlier   was   
0.69).   And   another   margin   of   error   is   calculated,   or   loss,   and   then   another   back   prop   pass   
occurs   until   the   margin   of   error,   or   loss,   is   acceptable   to   the   operator’s   application.     

So,   since   we   know   that: ,   then   change   in   the   hidden   result   is   also   

defined   as:   ,   thus   can   do   the   following: 
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,   thus   numerically   finding   delta   hidden   sum: 

Note   that   the   original   weights   that   are   situated   between   the   hidden   and   output   layers,   as   well   
as   the   original   hidden   sums,    are   used   in   calculating   the   change   in   the   hidden   sums.   This   
delta   hidden   sum   is   then   used   to   calculate   the   new   weights   between   the   input   and   hidden   
layers.   The   following   set   of   equations   derives   the   relationship   between   ,  nputI = i  

,   and   :  H   hange or delta in hidden sumΔ sum = c w delta or change in weightsd =   

thus,   
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new   weights,   
between   the   input   and   hidden   layers   are   calculated.   The   new   weights   =   old   weights   +   delta   
weights.     
  

 Figure   46 :   Calculated   output   value   after   the   first   back   prop.   Note   how   the   accuracy   increased   and   
the   error   decreased   when   compared   to   the   1st   forward   pass’s   result.   The   math   indicates   the   steps   
taken   to   calculating   the   calculated   output   after   each   epoch.   Note   that   the   backprop   takes   the   
derivative   of   the   activation   function   in   the   calculations   (S’()),   and   goes   backwards   along   the   
connections   of   the   NN   until   it   reaches   the   input   layer.   Keep   in   mind   that   there’s   a   difference   between   
sum   and   activation   function’s   result   throughout   the   calculations.   [29]   

  

 Figure   47 :   Plot   to   help   visualize   how   the   derivative   and   the   actual   sigmoid   curve   play   a   part   in   
backpropagation.   [29]   



  

The   margin   of   error   (or   loss   as   was   initially   defined   by   earlier/classical   ML   algorithms)   is   the   
difference   between   the   targeted   and   the   actual   value   that’s   calculated   by   the   sigmoid   function,   
S(),   (as   shown   in   previous   figures).   Once   the   derivative   of   the   sigmoid   function,   S’(),   is   taken   
and   it’s   input   is   the   original   sum*   margin   error   itself,   one   gets   to   see   that   the   sign   of   the   value   
indicates   whether   or   not   the   loss   that’s   calculated   by   the   output   layer   has   to   travel    upwards   (+)   
or   downwards   (-)   to   reach   the   intended   targeted   value.   For   instance,   in   Figure   42,   delta   output   
sum   was   calculated   to   be   -0.13,   thus   the   machine   understands   that   it   needs   to   adjust   the   weights   
so   that   it   can   reduce   the   calculated   value,   0.77,   to   its   intended   targeted   value,   0.   
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 Figure   48 :   General   ebb   and   flow   of   forward   prop   and   backprop.   Note   that   values,   whether   it   be   linear,   
non-linear   or   gradient   based   (derivatives)   calculations,   add   up   where   there   are   multiple   connections   
(or   branches)   at   a   node.   This   is   evident   in   the   previous   figures   when   conducting   the   summations   in   each   
hidden   or   output   node.[12]   

  

 Figure   49 :   the   partial   derivations   that   take   place   throughout   the   entire   nodal   connections   for   back   
prop.   Note   that     and     (both   values   in   red   at   the   bottom   side   of   their   respective   input   df

dy =− 4 dz
df = 3  

branch   ends).   [12]  
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 Figure   50 :   Another   example   where   the   sigmoid   function   is   the   activation   function   for   the   last   output   
result.   Note,   that   it   (sigmoid   function)   has   been   broken   down   to   show   how   the   mathematics   between   the   
derivative   of   the   local   gradient   (current   node   value)   and   upstream   gradient   (previous   node   value)   
works   out   in   back   prop.   The   value   (0.2)   is   the   partial   derivative   of   the   sigmoid   function   with   respect   to   
it’s   input   ‘x’.   [12]   



  

In   conclusion,   back   propagation   is   a   process   that   flows   backward   from   the   output   layer   nodes   to   
the   input   layer   nodes   so   as   to   update   the   weights   to   reduce   the   overall   margin   error   loss;   and   it   
consists   of   partial   derivations   or   Jacobian   matrices,   because   as   witnessed   in   the   prior   
mathematics,   since   data   is   in   matrix/vector   format,   elemental   wise   derivation   was   administered   at   
each   branch.     
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 Figure   51 :   Jacobian   matrices   in   backpropagation.   [12]   

  

 Figure   52 :   A   vectorized   example   of   back   prop.   [12]   



  

  

  
  
  

3.1.3   Training   a   NN   

Once   data   type   (as   discussed   in   section   1   in   both   Chapter   2   and   3   )   and   NN   model   (the   
different   types   will   be   covered   in   section   3.2)   has   been   selected   (which   is   based   on   the   data   type   
and   what   the   operator   expects   the   machine   to   predict   within   the   context   of   the   application)   then  
it’s   time   to   consider   what   resources   to   use   to   train   the   NN.   In   terms   of   hardware,   most   operators   
either   end   up   using   a   GPU   or   a   FPGA/CPU   open   source   platform.   Most   individuals   favor   parallel   
computation   (CUDA)   and   so   opt   for   the   GPU.   Fortunately,   due   to   the   growing   popularity   of   AI,   
Google   has   publicly   provided   Google   Colab   that   contains   Jupyter   Notebooks   (.ipynb)   for   
operators   to   write   their   code   freely   in   the   Cloud   with   the   option   of   using   a   GPU   based   server.   
Although   there   are   multitudes   of   languages/libraries   to   use   (ranging   from   Python   Numpy,   
Javascript,   C++,   Caffe...etc.),   this   project   has   finalized   on   using   Keras   library   with   TensorFlow,  
as   a   backend   engine   (another   choice   would   have   been   PyTorch   or   Theano),   using   Google   Colab   
as   the   choice   of   IDE.   The   reasons   for   these   choices   were   centered   around   budget,   resource   
accessibility   (everything   python   related   is   readily   found   online)   and   aid   from   forums   and   experts   
around   the   world   who   develop   new   packages   for   ease   of   use   considering   the   application   at   hand,   
as   well   as,   it’s   compatibility   for   the   AI   noob.   Furthermore,   due   to   the   flexible   and   growing   nature   
of   python   (due   to   ongoing   support   from   global   software/language   developers),   an   operator   can   
use   a   mixture   of   TensorFlow   and   Pytorch,   or   even   a   combination   of   different   NN   models   in   one   
API.   An   example   of   the   latter   would   be   a   LSTM   +   Transformer   +   Autoencoder   all   in   one   
sequential/functional   API   model.     
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 Figure   53 :   Another   simplified   version   of   forward   (green)   and   back   prop   (red)   using   mathematics.   Note   
that   the   addition   gate   is   considered   to   be   the   gradient   distributor   and   the   max   gate   as   the   gradient   
router   (determines   which   nodal   value   will   cause   a   greater   impact   to   updated   weights   during   back   
prop).[12]   



  

In   section   3.1.2   the   basic   flow   of   how   an   aNN   works   and   the   primary   elements   that   make   up   that   
architecture   was   graphically   discussed,   including   the   role   back   prop   plays   on   weight   update   and   
how   error   (or   loss)   is   calculated   and   considered   in   the   overall   process.   Error   is   calculated   after   
the   output   node   and   is   the   comparison/difference   between   the   estimated   calculated   value   to   a   
sampled   data   called   the   target   or   expected   output.   There   are   two   general   branches   of   error   
calculations,   and   they   are   :   classification   and   regression   loss   (as   shown   below).   Thus,   in   training   
the   NN,   depending   on   the   data   type   and   what   the   NN   model   is   expected   to   predict,   either   the   
classification   or   regression   loss   type   will   be   used   to   calculate   the   error   between   the   output   result   
and   the   targeted   (or   referenced)   value.   The   error   found   determines   the   way   the   back   prop   process   
will   flow   and   which   weights   are   largely   or   less   likely   impacted   to   mitigate   it   (that   error).   

The   commonly   used   types   of   error   for   classification   data   are:   SVM,   hinge   loss,   softmax   (also   
called   log   loss).   Since   this   project   is   using   a   regression   data   type   for   analysis,   the   squared   mean   
error   loss   was   selected   (as   will   be   evident   later   in   Chapter   5   and   the   associated   Appendices).   
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 Figure   54 :    List   of   the   different   types   of   classification   and   regression   loss   used   in   NN   error   calculation.   
Note   that   the   terminology   used   is   the   same   with   respect   to   the   data   type   categorization   where   
classification   refers   to   discrete,   qualitative   data   types   (such   as   images)   and   regression   refers   to   
continuous   ,   quantitative   data   types   (such   as   numerical).   [31]   
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 Figure   55 :   List   of   error   functions   (or   data   loss   functions)   for   a   classification   data   type   set   .   Note   that   
the   linear   ‘sum’   function   discussed   in   an   earlier   section,   where   f=   W*x   (W=weight,   x   =   input),   is   
also   called   the   score   function,   and   that   the   last   function   labeled   as   ‘Full   loss’,   is   called   as   such   due   
to   the   Regularization   loss   term   (R(W)).   The   Regularization   term   prevents   the   NN   model,   during   
training,   from   overfitting   to   the   data,   thus   ensuring   flexibility   in   the   overall   prediction   curve   of   the   
model.    [12]   
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 Figure   56 :   Block   diagram   of   how   SVM   differs   from   Softmax.   Note   that   both   are   data   loss   functions   
with   respect   to   the   activation   function’s   output   result.   ‘W’   is   the   weight   matrix,   ‘ ’   is   the   input   (in   this   x i  
case   flattened   vector   of   an   image’s   pixels),   and   ‘b’   is   the   bias.    Note   that   SVM   loss   calculations   go   by   
the   maximum   score   values   per   feature   while   softmax   is   a   log   function   that   uses   probabilities;   thus   a   
probability   that   is   closer   to   1   indicate   that   the   machine   (or   NN   model)   estimates   that   class   to   be   the   
targeted,   while   a   probability   of   ‘0’   indicates   that   the   model   ‘thinks’   that   class   is   not   the   targeted   label.   
Example   for   SVM   is   shown   later   in   section   3.2.[12]   

  

 Figure   57 :   Full   loss   equation   includes   the   regularization   loss   term.   This   term   prevents   the   NN   model   
from   overfitting   (predicting   only   what’s   given   instead   of   trying   to   come   to   different   conclusions,    or   
‘learning’).   Note   that     is   a   hyperparameter   defined   as   the   regularization   strength   (thus,   can   be  λ  
modified).   There   are   L1,   L2   and   L1   +   L2   regularizers   that   can   be   used.    [12]   



  

  
  

Besides   the   regularization   term   to   modify   the   way   the   NN   ‘learns’   the   data,   there   are   other   
methods   where   the   data   is   modified   in   efforts   to   ‘tune   up’   the   learning   process,   such   as:   batch   
normalization   (is   done   within   the   model   where   it   re-normalizes   the   data   -   recreating   that   
Gaussian   distribution   -   after   a   layer   that   uses   a   nonlinear   activation   function,   during   the   training   
process),   max-pooling   (downsampling   an   input   by   only   considering   the   max   values),   and   
dropout   (certain   nodes   that   end   up   having   zero   results   or   very   little   impact   after   the   back   prop   are   
dropped   from   the   overall   architectures   during   both   forward   and   back   prop,   or   nodes   removed   by   
operator   to   limit   the   type   of   features   that   the   NN   uses   to   ‘learn’   from   the   given   data   sample   to   
reduce   training   time   and   memory   usage).     
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 Figure   58 :   Example   of   dropout   in   a   NN   model   that   has   images   as   inputs,   and   in   this   case   the   input   is   a   
cat.   Note   that   some   of   the   features   that   make   up   the   cat   image   are   removed   to   improve   training   
efficiency.    [12]   

  

 Figure   59 :   Batch   normalization   (BN)   layer   usually   occurs   after   a   fully   connected   (or   dense)   layer   



  

  
To   visualize   the   error   calculation   process,   besides   the   back   prop   examples,   a   colored   gradient   of   
local   minimas   is   often   used   to   offer   visual   aid   of   the   way   the   NN   ‘learns’   as   the   weights   are   
updated   during   the   training   process.   The   behavior   in   the   way   the   NN   converges   to   a   target   value,   
through   the   reduction   of   the   data   loss   (error)   and   weight   updates,   is   called   optimization,   and   
there   are   several   types   of   this   that   are   used   to   train   a   NN   (and   gradient   descent   is   one   of   them).   
The   hyperparameter   for   any   optimizer   is   the   learning   rate   (which   will   be   evident   in   the   compiled   
code).    The   other   types   of   optimizers   are:   
  

● Stochastic   Gradient   Descent   (SGD)   
● 1st   Order   Optimization   (instantaneous   linear   slope)   
● 2nd   Order   Optimization   (parabolic   slope,   very   handy   in   finding   local   minima   and   saddle   

points)   
● SGD   +   Momentum   (because   SGD   happens   to   be   a   very   noisy   optimizer   as   it   tries   to   

reach   the   ideal   point   of   convergence   for   every   data   sample   point,   this   is   because   it   has   a   
tendency   to   get   ‘stuck’   at   local   minimas   and   saddle   points   along   the   way.)   

● Adagrad   
● RMSProp   
● Nesterov   Momentum   
● Adam    (most   ideal   for   it   embodies   Adagrad,   RMSProp,   bias   corrections,   and   Nesterov   

Momentum   attributes)   
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(FC),   or   a   CNN   layer,   but   before   a   layer   that   uses   nonlinear   activation   function   (tanh).   [12]   

  

 Figure   60 :   SGD   +   Momentum   Optimizer   [12].   Note   that   although   the   Momentum   update   prevents   the   
SGD   optimizer   from   getting   stuck   in   local   minimas   and   saddle   points,   it   still   is   noisy.   This   is   due   to   the   
behavior   of   the   SGD   as   it   completes   an   iteration   (   1   forward   pass   +   1   backward   pass)   for   each   data   
point.     
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 Figure   61 :   Visual   comparison   between   the   optimizers.   Note   that   Adam   and   the   SGD   +   Momentum   
optimizers   share   similar   characteristics   -   less   noise   as   it   converges.   The   full   Adam   formulation   contains   
the   three   optimizers   and   a   bias   correction.   [12]   
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 Figure   62 :   Full   batch   (or   Vanilla)   gradient   descent.   Gradient   descent   uses   the   concept   of   ‘local   
derivative’   (or   ‘slope’)   at   every   particular   ‘step’   or   interval   in   time   to   converge   to   a   desired   minima;   as   
visually   expressed   via   the   varying   ‘slopes’   of   a   valley   or   the   color   plot   where   the   training   curve   travels   
to   the   minima   that’s   displayed   in   red.   Remember   that   a   gradient   ( ),   in   mathematics,   is   the   
vector   that   sums   all    the   partial   derivatives   along   each   dimension,   and   that   a   slope   is,   in   any   direction,   
the   dot   product   of   the   direction   with   the   gradient   (or   in   short,   the   derivative).   The   direction   of   steepest   
descent   is   the   negative   gradient   [12].   

  

  

 Figure   63 :   Numerical   calculations   behind   SGD   and   Momentum.   [12]   



  

  
  

As   one   is   training   the   NN   model,   certain   plots   are   expected   to   be   embedded   in   the   code   to   ensure   
that   the   model   is   indeed   learning   properly.     
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 Figure   64 :   SGD   (batch   size   =   1),   Mini-   batch   (gradient   descent   where   batch   size   >1),   and   Batch   (also   
called   Vanilla   or   Full   gradient   descent   where   batch   size   =   0).   Note   that   noise   is   reduced   with   either   
Full   batch   and   Mini-   batch   as   the   NN    model   converges   to   the   actual   or   desired   minima.[32]   

 

 Figure   65 :   The   training   loss   (error)   curve   indicates   whether   or   not   the   model   is   learning   appropriately   
with   respect   to   the   learning   rate.   As   the   plot   on   the   far   left   suggests   that   the   ideal   learning   rate   is   the   
red   curve,   where   it   is   a   negative   exponential   curve   that   eventually   (gradually)   plateaus;   unlike   the   
green   curve   where   it   plateaus   early   or   the   blue   curve   where   it   is   linear   or   the   yellow   parabolic   curves   
are   high,   low   and   very   high   learning   rates   respectively.   The   accuracy   plot,   on   the   far   right,   compares   
the   training   and   validation   accuracy   values;   typically   it   is   ideal   to   have   the   validation   curve   larger   
than   that   of   the   training   curve   for   the   loss,   but   vice   versa   for   the   accuracy);   however,   if   the   gap   between   
the   two   curves   is   large   than   that   is   a   case   of   overfitting   and   thus   a   regularizer   or   the   regularization   
term’s   strength   ( ),   if   used,   needs   to   be   strengthened   (increase   its   value).   Also,   overfitting   occurs   when  λ  
there’s   a   gap   between   the   training   and   validation   curves   in   the   loss   plot   and   underfitting   occurs   when   
the   training   is   below   the   validation   curve   in   the   accuracy   plot.   Either   case,   the   data   needs   to   be   
re-evaluated   (reshaped   differently   or   include   more   features),   the   NN   model   needs   to   be   simplified   (less   
number   of   layers   and   less   number   of   neurons),   learning   rate   adjusted,   more   data   needs   to   be   presented   
for   all:   training,   validation   and   test,   and   regularizers   (may)   need   to   be   added.    [12]   



  

  
  

Be   aware   that   oftentimes   there   are   applications   that   can   be   solved   using   classical   ML   algorithms   
(such   as   linear   regression,   HMM,   Monte   Carlo,   SVM...etc.),   and   ,   as   useful   as   they   are   in   
predicting   the   expected   outcomes,   these   models   don’t   ‘learn’.    Classical   ML   algorithms   have   laid   
the   foundation   for   NN’s,   as   will   be   discussed   in   the   next   section.     
  
  
  

3.2   Other   Architectural   NN   Models   vs.   RNNs   
  

3.2.1   Background   
  

Understanding   the   different   types   of   NN   models,   as   well   as   the   backbone   of   its   architecture,   will   
allow   the   operator   to   create   a   NN   model   that   will   meet   the   objective   of   their   study.     
  

Popular   classical   machine   learning   models   that   laid   the   foundation   for   NNs:   
  

● Linear   regression:   Similar   to   that   of   the   linear   trendline   regression   tool   used   in   data   
plotting   in   excel,   and   in   the   context   of   NN   a   perceptron   (where   its   activation   function   is   a   
linear   equation,   y   =   m*x   +   b   or   f   =   W*x   +   b,   and   has   no   hidden   layers   -   so   just   input   and   
output   nodes).   

  

  
  

● Decision   Trees   :   Split   complex   datasets   into   a   tree   like   structure   and   can   be   used   for   both   
regression   and   classification   type   of   problems.   Decision   trees   can   work   with   many   
variables   but   have   issues   with   overfitting.     
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 Figure   66 :   Linear   Regression;   can   be   used   for   either   classification   or   regression   problems   [33].   



  

  
  

● SVM:   Type   of   classification   error   calculation   where   the   score   (or   activation   function’s   
result)   is   compared   to   the   target   value.   It   is   embodied   by   NNs   specifically   for   supervised   
learning   models   that   use   classification   (or   image)   based   data.   (Not   to   be   confused   with   
support   vector   regression)   It   is   also   referred   to   as   the   ‘hinge   loss’.     
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 Figure   67 :   Decision   Tree   modeling.   Alternative   to   decision   tree   modeling   are   random   forests,   Naive   
bayes   and   linear/polynomial   regression   modeling.   [33]   

  

 Figure   68 :   Grid   displaying   how   SVM   works   with   classification   type   of   data   (images).   The   class   labels   
on   the   far   left   (cat,   car,   frog)   are   the   labels   the   NN   model   predicts   the   input   (top   images)   to   be.   SVM   is   
a   classification   error   (‘Losses’   in   blue   at   the   bottom   far   left   corner)   used   for   supervised   learning   NN   
models.   Note   that   the   score   value   ( )   calculated   from   the   NN   (in   this   case,   f=   W*x   +   b)   for   each   class   s j  



  

  
  

● HMM   :   Hidden   Markov   Model,   is   the   precursor   to   RNN’s   and   Autoencoders.   This   
introduced   the   idea   of   maintaining   the   sequential   order   of   data,   thus   time   series   data   were   
the   inputs   and   outputs.     
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image   presented,   are   all   the   values   except   for   those   that   are   bolded.   The   values   that   are   bolded   are   the   
true   label   values   ( ),   or   score   values   that   are   also   calculated   by   the   NN   model   but   with   respect   to   the   s yi  
image   that’s   fed   as   an   input   (images   at   top)   and   the   expected   correct   label.   All   the   score   values,   
calculated   per   class,   are   compared   at   every   run   (column)   to   find   the   max   score   value.   If   the   max   score   
value   coincides   with   the   label   that   the   NN   predicted   and   it   matches   to   the   input   image,   then   the   SVM   
loss   value   ( )   will   equate   to   0.   If   it   is   completely   opposite,   however,   where   the   max   value   isn’t   the   L i  
expected   true   label   value   ( )    then   the   SVM   loss   value   ( )   will   be   higher   than   the   ideal   0.   Looking   s yi  L i  
at   the   grid,   the   third   run,   or   third   column,   the   NN   gave   a   negative   value   for   the   frog   label   when   the   
input   was   actually   a   frog,   thus   the   SVM   loss   calculated   was   pretty   high.    This   is   an   indicator   that   the   
weights   need   to   be   updated   and   so   back   prop   will   update   the   weights   so   that   the   NN   model   will   make   
better   predictions   (score   values).   Note   that   the   second   run   (or   column),   the   SVM   loss   is   0,   this   is   
because   the   max   score   value   happens   to   be   the   actual   true   label   of   the   input   image.    [12]   

  

 Figure   69 :   Hidden   Markov   Model   (HMM)   diagram;   where   ‘O’   is   the   observable   outputs,   ‘B’   is   the   
matrix   that   connects   the   hidden   observations   to   probabilities   (or   the   observation   probability   matrix),  
‘A’   is   the   state   transition   probabilities,   and   ‘X’   is   the   hidden   state   sequence.   The   Markov   process   is   
hidden   behind   the   dashed   line   and   is   determined   by   the   current   state   and   the   ‘A’   matrix.   The   term   
‘observation’   is   akin   to   that   of   ‘variables’   or   ‘features’   as   in   a   NN   model.   ‘N’   is   the   number   of   hidden   
states   in   the   model,   however   it   is   important   to   keep   in   mind   that   ‘hidden   states’   in   a   HMM   model   does   
not   equate   to    ‘hidden   layers’   in   a   NN   model.   The   term   ‘hidden’   in   the   context   of   HMMs   means   that   the   
state   is   not   directly   observable   because,   in   most   cases,   they   are   values   pertaining   to   past   data.   Also,   the   
matrices   for      are   row   stochastic,   meaning   that   the   values   within   the   matrices   are   all  , A and Bπ   
probabilities   and   each   row   sums   up   to   a   total   value   of   ‘1’;   and   they   behave   as   ‘weights’   are   in   a   NN   



  

  
An   example   of   a   HMM   at   work:   
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model   (especially   to   that   of   a   LSTM).    [34]   

   equals   to        

  equals   to       

  is   the   initial   state   distribution.   

 Figure   70 :   For   example   the   A   matrix   is   the   hidden   state   matrix,   where   in   this   situation,   is   the   
temperature   of   the   environment,   where   ‘H’   =   hot   and   ‘C’   =    cold.   The   ‘B’   matrix   has   both   hidden   
(H,C)   and   observable   states   (Small   =   ‘S’,   Large   =   ‘L’,   and   Medium   =   ‘M’,   which   are   attributes   of   tree   
rings),   thus   indicating   the   correlational   relationship   between   two   distinguishable   states,   in   this   case,   
temperature   and   tree   ring   sizes,   to   predict   hidden   states   in   the   near   future.     is   the   initial   state   matrix,  π  
also   row   stochastic,   for   the   hidden   states.    [34]   

  

 Figure   71 :   Another   way   of   visually   explaining   the   Markov   process.   These   diagrams,   (a)   and   (b),   are   
called   Markov   chains   where   the   hidden   states   (similar   to   that   of    the   ‘H’   and   ‘C’   shown   in   the   prior   
figure)   and   the   transitions   (similar   to   ‘A’   matrix   in   earlier   example)   are   displayed   as   balls   and   chains,   
respectively.   The     matrix   is   not   presented   in   the   diagram   and   should   be   a   given   1x3   matrix,   since  π  
there   are   a   total   of   3   states   in   either   diagram   (   (a)   and   (b)).   The   values   along   the   chains   are   the   row   
stochastic   probabilities   that   would   be   found   on   a   3x3   ‘A’   matrix.   The   parameters   of   the   HMM   are   the   A   
and   B   matrices   and   can   be   trained   via   the   Baum-Welch   or   the   forward-back   prop   algorithms.   The   
process   of   finding   the   sequence   of   hidden   states   from   the   observable   states   is   called   decoding   or   
inference   and   the   Viterbi   algorithm   is   usually   used.   [35]   



  

  
● K-Nearest   Neighbor   (K-NN):   Classification   method   of   multivariate   data,   where   

especially   in   applications   containing   object   detection   (a.k.a   images),   the   machine   is   able   
to   better   classify   different   types   of   pictures   during   the   training   process   by   increasing   the   
number   of   k-fold   validations.   K   is   the   hyperparameter   and   can   be   adjusted   and   is   
attributed   to   the   number   of   validation   folds   the   training   data   set   is   tested   against.     
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 Figure   72 :   K-NN,   where   ‘k’   (or   the   number   of   validation   folds)   is   the   hyperparameter.   ‘L1’   and   ‘L2’   
are   the   different   distance   calculations   (between   pixels   within   an   image)   that   are   done   when   classifying   
certain   pixels   for   each   image   category   (or   class).   L2   tends   to   create   smoother   divisions   amongst   the   
data   set’s   categories/classes.   Cross-validation   is   where   there   is   more   than   one   validation   set   (k   >1)   to   
test   the   training   data   against   before   comparing   it   with   the   final   test   set.   k=1   is   where   there   is   only   one   
validation   set   for   the   training   data   set   to   compare   against.   [12]   



  

3.2.2   CNN   

   CNNs,   or   Convolutional   Neural   Networks,   is   a   NN   model   that   extracts   features,   using   a   filter   
layer   -   or   convolutional   layer,    from   an   input.   The   inputs   are   typically   an   image   or   text   because   
such   data   can   be   presented   in   grid   form   so   that   the   filter   layer   can   easily   slide   (or   convolve)   over   
and   conduct   vector   and   matrix   multiplication   (or   element-wise   dot   products).   CNNs   are   found   to   
be   used   in   a   variety   of   applications   (such   as   object   and   anomaly   detection   and   image   captioning)   
and   are   at   times   used   in   combination   with   RNNs   or   Transformers.   AlexNet   and   VGG-16   are   
such   examples   of   CNNs.   Furthemore,   their   hard   code   flexibility   in   parallel   computations,   ability   
to   work   with   other   NN   models   and   backend   engines   (i.e.   Theano,   Pytorch,   TensorFlow)   and   the   
capabilities   to   have   split   branches   to   train   on   several   types   of   features   is   what   makes   them   the   
‘go   to’   tool   to   be   used   for   multiple   applications.   
  

However,   in   order   to   fully   understand   the   internal   operations   of   how   a   CNN   operates,   an   
introduction   to   how   a   typical   fully   connected   (or   ‘dense’)   layer   computes   is   necessary.     
  

First   off,   any   NN    model   that   isn’t   specified   (such   as   CNN,   RNN,   GAN,   GRU,   
Autoencoder...etc)   is   typically   a   linearly   activated   fully   connected   layer.     
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Although   this   study   uses   a   regression   NN   model,   CNNs   are   a   great   segway   for   beginners   to   
visually   understand   how   a   NN   model   processes   data.     
  

  

  

 Figure   73 :   CNNs   are   a   series   of   activation   maps   created   by   weight   matrices   that   act   as   filters.   These   
filters,   or   activation   maps,   extract   certain   features   of   the   overall   input,   and   are   then   connected   to   
fully   connected   layers   and   eventually   to   an   output   layer   (which,   also,   happens   to   be   a   dense   layer).   
[12]   
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 Figure   74 :   Fully   connected   (or   dense)   layer.   Note   how   the   labeling   of   a   NN   is   done,   the   input   layers   
are   not   considered   when   calling   out   the   number   of   layers   in   a   NN   model.   The   dense   layer   has   a   linear   
activation   function   (f   =   W*x   +   b)   [12]   

  

 Figure   75 :   Dense,   or   fully   connected,   layer   operates   by   the   linear   activation   function,   f   =   W*x   +   b,   
and   looks   at   the   input   volume   as   a   whole.    The   far   upper   left   image   depicts   the   size   of   the   W,   x   and   b   
matrices   when   an   input   image,   such   as   a   cat,   is   used.   Note   that   ‘x’   is   the   flattened   vector   of   the   overall   
input   dimensions,   where   32   x   32   x   3   =   3072.   Since,   in   that   particular   problem,   there   are   10   images   or   
classes,   and   each   input   must   have   its   designated   weight,   W.   Thus,   there   are   a   total   of   10   weights   used,  
in   which   each   has   a   size   of   1x3072.    Therefore,   able   to   complete   the   matrix   multiplication   or   element   
wise   dot   product   before   adding   the   bias,   which   is   a   10x1,   b/c   there   are   10   inputs.   The   picture   on   the   
upper   right   hand   corner   has   the   input   image   of   a   cat,   and   it’s   4   pixel   values   have   been   flattened   to   
create   the   ‘x’   vector   that’s   multiplied   to   the   initialized   ‘W’   (weight)   matrix,   and   it’s   added   to   the   bias   
vector.   The   lower   left   hand   corner   image   depicts   how   the   10   categories   of   images   are   classified   in   a   
linear   fashion   when   using   the   linear   activation   function   (very   similar   to   the   ‘color’   plot   of   the   K-NN   
algorithm.   At   the   lower   right   hand   corner   is   how   the   fully   connected   layer,   graphically,   processes   the   
element-wise   dot   product,   of   the   whole   input   volume,   and   equates   each   ‘W’   *   ‘x’   to   a   node.   Thus,   at   the   
end   of   the   dot   product   for   the   1st   dense   layer,   there   will   be   a   total   of   10   nodes.   [12]   



  

  
  

  
  
  

80   

  

 Figure   76 :   The   CNN   layer   is   created   by   a   filter,   weight   ( ),   of   smaller   size   that   is   multiplied   to   the  ω  
input.   Note   that   the   filter   depth   is   the   same   as   the   input   image’s   depth   size.   One   activation   map,   is   
created   by   said   filter,   and   equates   to   a   node.   [12]   

  

 Figure   77 :   The   two   top   images   show   how   two   different   activation   maps   are   created   by   two   filters.   The   
lower   left   picture   shows   an   example   of   one   convolutional   layer   that   has   6   filters   (activation   maps).   
Remember   that   1   convolutional   weight   =   1   filter   =   1   activation   map   =   1   node,   all   within   a   
convolutional   layer;   as   indicated   in   the   image   at   the   lower   right   hand   corner.   Note   that   in   this   example,   
there   are   5   nodes   within   a   convolutional   layer,   thus,   there   are   5   filters   extracting   the   same   region   of   an   
image   but   analyzing/capturing   different   features/aspects   (of   that   region).   [12]   
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 Figure   78 :    3x3   filter,   ,   slides   over   the   overall,   7x7,   input   image.   Note   that   the   first   row   has   a   stride  ω  
of   1   and   the   second   row   has   a   stride   of   2.   Stride   means   the   amount   of   columns   the   filter   moves   across   
one   set   of   rows   that   the   filter   covers.   In   the   first   row   the   overall   output   is   5x5   (has   a   total   of   5   slides)   
and   the   second   row   has   a   3x3   output   (because   it   has   a   total   of   3   slides).   Note   that   3   strides   would   not   
work   for   the   given   input   image.   The   last   image   shows   the   calculations   for   the   overall   activation   map   
output   due   to   the   filter   size,   input   image   size,   and   the   number   of   strides   selected   [12]     

  

 Figure   79 :   Zero   padding   is   a   technique   to   ensure   that   the   overall   output   size   equates   to   that   of   the   
original   input   image   size,   despite   the   filter   size   and   number   of   strides   selected.   [12]   
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 Figure   80 :   Overall   calculation   of   the   output   convolutional   layer.    The   total   number   of   filters,   the   filter  
size,   and   the   amount   selected   for   strides   and   pads   are   given.   Note   that   the   calculation   of   parameters   
(weights   +   bias   for   the   linearly   activated   and   convolutional   networks)   is   different   for   each   NN   
model.[12]   

 

 Figure   81 :   Summary   of   CNNs   with   respect   to   the   hyperparameters   and   outputs.   [12]   



  

  

  
 
 
3.2.3   RNN   
  

RNNs   (or   Recurrent   Neural   Networks)   are   NN   models   that   are   typically   used   for   regression   
time-series   type   of   data,   or   text-by-text   language   and   temporal/audio   processing,   that   follow   a   
sequential   order.   RNNs   have   outputs   that   loop   back   to   prior   nodes,   as   well   as,   to   future   nodes;   
hence,   the   ‘recurrence’   term   used   [36].    The   purpose   of   a   RNN   is   to   make   informed   decisions  
and   better   prediction   models   from   previous   data   [36].   
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 Figure   82 :   Typical   layering   of   a   CNN.   The   top   image   shows   a   nodal   and   branch   CNN   architecture   
[36].   The   bottom   image   depicts   the   CNN   architecture   layering   [12]    via   actual   visuals   that   the   model   is   
rendering   as   inputs   and   outputs   at   each   layer.   ‘POOL’   =   max   pooling,   ‘RELU’   =   ReLU   activation   
function   based   nodal   layer,   ‘CONV’   =   Convolutional   layer,   ‘FC’   =   Fully   Connected   layer.     
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 Figure   83 :   RNN   nodal   and   branch   architecture   [36].   

  

 Figure   84 :   Internal   spatial   process   of    a   RNN   model   as   it   learns   the   word   ‘dog’.   Note   that   ‘L’   =   losses   
calculated,   ‘w’   =   weights,   ‘H’   and   ‘h’   =   hidden,   and   ‘t’   =   time.   Note   that   the   model   is   showing   3   
hidden   layers   and   each   hidden   layer   is   processing   a   letter   from   the   word   ‘dog’.[37]   

  



  

  
Other   types   of   RNNs   are:   LSTMs,   GRU,   ResNet   and   ESN,   and    just   like   CNNs,   can   be   
combined   with   other   NNs,   such   as:   C-RNN-GAN   (Continuous   Recurrent   Neural   Network   with   
Generative   Adversarial   Networks.   

  
  

3.2.3   Other   Types   of   NN’s   &   LSTM   
  

Comparing   and   contrasting   different   types   of   NN   models   with   respect   to   their   contextual   use.     
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 Figure   85 :   Equations   used   within   the   RNN   processes   and   their   dimensions.   Note   the   equation   ‘ ’   is   a t  
the   transitional   linear   calculations   that   take   place   on   the   branches   in   between   nodes,   ‘ ’   is   the  h t  
activation   function   within   the   hidden   layer   and   takes     as   its   input.   ‘ ’   is   the   output   loss   function  a  ′ t′  y t  
-   in   this   case   it   is   the   softmax   logarithmic   function.   In   the   right   hand   image,   ‘k’   is   the   dimension   of   the  
input   vector   and   ‘d’   is   the   number   of   the   hidden   nodes.    Inputs   tend   to   be   in   flattened   vector   form.    [37]   

  

 Figure   86 :   Other   types   of   NN   models   and   their   typical   ball   and   stick   architecture.   Note   that   ‘kernel’   
means   weights.    [21]     
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 Figure   87 :   Echo   State   Networks   (or   ESN)   are   a   type   of   RNN   that   have   sparse   connections   in   between   
their   hidden   layers   due   to   temporal/audio   learning.   [36]   

  

 Figure   88 :   The   Deconvolutional   Neural   Network   (DNN).    As   the   title   suggests,   DNN   is   opposite   to   that   
of   CNN   in   that   it   takes   ‘noise’   or   ‘bare   foundation’   as   input,   and   creates   the   whole   context   (or   image)   
rather   than   deconstructing   that   image.   For   instance,   it   creates   the   whole   plot   of   a   story   based   on   just   
three   sentences.    [36]   

  

 Figure   89 :   Autoencoders   (AEs)   are   a   combination   of   encoders   +   decoders,   where   it   operates   
oppositely   to   that   of   a   CNN,   where   it   takes   an   image,   compresses   it,   and   then   produces   a   somewhat   
replica   of   it   or   it   predicts   a   set   of   outcomes   (such   as   for   sequence   to   sequence   prediction   LSTM   
modeling).   The   replication   only   embodies   the   critical   core   of   the   original   image   -   in   other   words   it   is   
low   dimensionality   but   high   information   and   is   also   called   the   ‘learning   representation’   of   the   model.   
AEs   are   primarily   used   for   decompressing   images,   de-noising,   and   image   generation,   and   
recommendation   (or   prediction)   systems   for   time   series   or   regression   based   data.   There   are   also   VAEs   
(or   Variational   Auto-Encoders).[36]   
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 Figure   90 :   LSTMs   (or   Long-Short   Term   Memory)   are   RNNs   (as   shown   in   image   at   the   left   hand   corner   
[38])   that   solve   the   vanishing   and   exploding   gradient   problems   found   in   other   RNNs   (except   for   Gated   
Recurrent   Units   or   GRUs).   LSTM   cells   in   the   hidden   layers   have   unique   gate   configurations   that   decide   
what   to   store   and   what   to   let   go   with   respect   to   the   hidden   inputs   and   outputs.   Each   layer   is   connected   
to   a   memory   channel   (   c-   channel)   and   a   hidden   state   (h   channel).   LSTMs   are   most   popularly   used   for   
applications   that   have   time   series   based   data   because   they   are   not   affected   by   retaining   information   
and   learning   from   large   volumes   of   time   steps   (like   1,000).   [36]   

  

 Figure   91 :   Spatial   descriptions   on   vanishing   and   exploding   gradients.   [38]   



  

  
  
  

  
  

Once   the   data   has   been   collected,   typically,   it   will   be   normalized   or   scaled   (depending   on   how   
the   raw   data   is   distributed)   and   then   split   into   training   and   testing.   The   way   LSTMs   work   is   that   
it   requires   a   3D   input,   as   can   be   graphically   presented   below.   Thus,   the   data   input   must   be   
defined   (or   reshaped   from   2D   to   3D)   as   follows:   (number   of   samples,   number   of   timesteps,   
number   of   features),   where   ‘number   of   features’   =   input_dim   (in   the   diagram   below).   
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 Figure   92 :   Composition   of   a   LSTM   cell   and   its   key   components   (or   gates)   that   control   the   flow   of   
inputs   and   outputs.   Note   the   memory   channel   (   C   channel)   runs   across   the   cell’s   gates.   [38]   

  

 Figure   93 :   LSTM   cell   and   equations   for   each   gate   and   channel.   W   is   the   LSTM   weights   (for   each   gate)   
and   U   is   the   weights   for   the   RNN   part   of   the   LSTM   layer.   The   C   channel   is   activated   when   setting   

statefulness   and   return_state   =   True,   and   the   H   channel   (or   the   hidden   states)   is   turned   on   -   
return_sequences   =   True,   when   stacked   LSTM   (more   than   one   LSTM   layer   and   are   atop   one   another)   is   
used.   Also,   when   using   stacked   LSTM,   the   last   layer,   right   before   a   Dense   layer,   should   be   set   to   False.   

[38]   



  

  
Keep   in   mind   that   the   number   of   samples   does   not   equate   to   batch_size   as   shown   in   the   diagram   
in   Figure   94,   but   rather   the   overall   number   of   samples   defined   can   affect   what   the   batch_size   will   
be.   Batch_size   is   defined   in   the   model.fit   line   in   the   code   and   is   dependent   on   the   overall   number   
of   samples   in   both   inputs   and   outputs.   Thus,   shaping   the   data   affects   both   the   number   of   samples   
and   batch_size.   
  

More   on   how   the   data   shape   plays   a   role   in   training   the   model   is   presented   in   the   next   section.   
  

Chapter   5   will   provide   a   more   in   depth   look   at   the   finalized   version   of   the   NN   model   and   the   
thought   processes   that   went   on   in   establishing   it.     
  
  

3.3   Basic   Setup   in   Training   a   NN   
  

3.3.1   Training   Sample   of   a   NN   with   Colab   
  

The   lines   of   code   shown   below   is   the   preliminary   work   that   was   done   to   provide   proof   of   
concept,   and   will   be   used   to   demonstrate   all   that   has   been    learned   in   prior   sections   with   respect   
to   NN   modeling   in   Keras/Tensorflow   using   Google   Colab/Jupyter   Notebooks   as   the   open   
sourced   library,   backend   engine,   and   IDE,   respectively.     
  

When   using   the   Google   Colab,   where   Jupyter   Notebook   is   the   default   blank   space   for   code,   it   is   
important   to   select   Edit   →   Notebook   Settings   →     and   select   either   CPU   or   GPU   as   the   source   
for   all   computations.   The   setting   selected   was   GPU.   
  

Keep   in   mind   that   since   the   snippets   of   code   are   long,   only   the   critical   parts   are   shown;   and   the   
code   shown   is   actually   the   eight   trial   run   in   a   continual   series   of   trial   runs.     
  

The   steps   are   as   follows:   
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 Figure   94 :   LSTM   input   3D   size   spatially   defined   [18].   



  

  
● List   and   import   all   libraries   that   are   necessary   for   the   study:   

  

  
  
  

Note   the   brackets   on   the   left   hand   corner   of   each   set   of   code.   Each   section   is   called   a   cell,   and   
one   must   select   that   bracket   to   run   each   section   of   code.   
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● If   curious,   can   check   out   the   version   and   amount   of   GPUs   that   are   in   use:   

  
  
  
  

● Next,   is   to   upload   the   data.   In   this   study,   since   Google   Colab   is   used,   the   data   is   saved   in   
a   .csv   format   in   a   separate   folder   in   google   drive.   (It   is   also   important   to   note   that   if   one   is   
using   Google   Colab,   one   must   have   only   folders   in   their   drive   (Google   Colab’s   server   is  
sensitive   to   files   that   are   not   in   folders).     
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● Next,   are   a   series   of   codes   that   serve   to   verify   the   data   and   create   statistical   inferences   
(only   some   are   shown).   Data   is   collected   from   the   orbital   simulator:   GMAT.   Panda   
library   is   used.   :   

  

  
  
  

U.X   =   Unperturbed   input   in   the   x   direction   (position   of   spacecraft   without   solar   perturbations)   
U.Y   =   Unperturbed   input   in   the   y   direction   (position   of   spacecraft   without   solar   perturbations)   
U.Z   =   Unperturbed   input   in   the   z   direction   (position   of   spacecraft   without   solar   perturbations)   
P.X   =   Perturbed   output   in   the   x   direction   (position   of   spacecraft   with   solar   perturbations)   
  

(In   later   runs   planning   to   use   three   outputs   instead   of   just   one,   and   maybe   eventually   six   where   
both   position   and   velocities   are   considered   in   every   run/iteration.)   
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● Next,   make   sure   there   are   no   anomalies   in   the   data:   

  
  

● Reshaping   the   data   -   to   clarify   what   is   input,   X,   and   output,   Y:   

  
  
  
  
  
  
  
  

● Next,   is   normalizing   or   scaling   the   data.   Now   usually   most   libraries   (such   as   scikit-learn)   
conduct   normalization   or   scaling   on   each   feature    (also   called   feature   scaling),   but   due   to   
the   nature   of   the   data,   this   was   not   an   option;   thus   classical   scaling/normalization   tactic   
was   used.   (There   is   a   distinct   difference   between   scaling   and   normalization   when   
cleaning   the   data.   Scaling   uses   the   min/max   values   to   reduce   the   overall   range   of   values   
between,   for   instance,   0   and   1   ,   while   normalization   changes   the   overall   distribution   of   
the   data   to   a   Gaussian   bell   curve.   Either   case,   the   title   of   this   process   was   labeled   as   

94   



  

normalization   even   though   scaling   was   actually   used.   This   was   in   part   due   to   the   
ambiguity   of   either   term   used   in   mathematics   and   in   data   science   and   ML   articles.)   :   
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● Next,   is   dividing   the   scaled   data   to   training   and   test,   and   reshaping   the   data   (from   2-D   to   
3-D)   so   that   the   LSTM   model   would   accept   it.     
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● Next,   is   creating   the   sequential   API   of   the   NN   model   (one   can   also   use   functional   API,   it   
is    a   matter   of   preference   and   if   one   needs   to   hard   code   more   -   which   functional   is   more   
flexible   towards):   

  
  
  
  

Note   that   all   the   green   texts   are   comments.   The   value   for   metrics   in   the   model.compile   line   can   
be   changed   to:   metrics   =   [‘accuracy’].   (It   was   not   initially   used,   but   will   later   be   in   Chapter   5).   
The   image   below   is   an   extension   of   the   model   that   is   created,   this   is   because   there   are   a   lot   of   
attributes   for   the   LSTM   cell.     
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(Note   that   for   the   first   layer,   return_sequences   =   True,   which   shouldn’t   be   the   case   if   using   a   
non-stacked   LSTM   model.   Since,   only   one   LSTM   layer   is   used   and   a   dense   layer   right   after,   
return_sequences   =   False.)   
  

Note   the   type   of   optimizer   (Adam)   and   learning   rate   (lr),   as   well   as   the   type   of   loss   function   for   
the   output   (mse   =   mean   squared   error)   selected.     

  
Note   that   parameters   (total   number   of   weights   +   biases)   are   calculated   under   model.summary.     
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Note   that   when   using   Keras,   biases   are   defined   as   part   of   the   weights   and   when   using   the   
get_weights[]   command,   biases   are   the   last   array   in   each   layer.   LSTM   layers   will   generally   yield   
three   arrays   when   the   get_weights[]   command   is   issued:   weights   per   gate   (W),   recurrent   weights   
per   gate   (U)   and   biases   per   gate   (b).     
  

This   model   has   only   an   input   layer,   hidden   layer   (LSTM)   and   an   output   (dense)   layer.   The   
number   of   parameters   calculated   is   via   the   LSTM   cell   based   formula:   4*[(#of   features   +   1)*#of   
units)   +   (#of   units)^2],   or   can   also   be   defined   as   follows:   4*[(n   x   n)   +   (n   x   m)   +   n].   Note   that   the   
number   4   in   the   formulas   constitutes   as   gates   for   the   LSTM   cell   (as   explained   in   section   3.2.3   
LSTMs   have   four   gates.   Units   designates   the   number   of   nodes   or   cells   that   the   operator   defines   
for   a   particular   LSTM   layer,   and   in   this   case,   it   is   three.   The   ‘n   x   m’   is   the   matrix   of   rows   x   
columns   or   timesteps   x   features   of   the   input   shape   defined   in   the   LSTM   layer,   which   in   this   case   
is   ‘   1   x   3’.     

  
Note   this   is   where   the   actual   training   is   done   (cmd   line:   model.fit),   and   the   batch   size   (#   of   
samples),   epoch   and   validation   split   is   specified.     
  

  
Can   use   the   above   line   of   code   to   view   what   the   attributes   are   to   the   variable   ‘history’;   which   
will   be   later   used   for   the   plots:   
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Note   that   the   validation   curve   is   higher   than   that   of   the   training   curve   (in   the   loss   plot)   so   the   NN   
model   is   learning.   The   last   line   tests   the   NN   model’s   level   of   loss   and   accuracy   by   using   the   
scaled   test   samples   created   earlier.   Since     the   model   is   not   yet   ready   to   use.  0  10 1 6− >  10−  
Remember   that   the   expected   evaluation   metric   for   accuracy   was   an   error   (or   loss)   with   a   
minimum   of   .   (The   accuracy   plot   is   not   shown,   but   will   be   elaborated   on   in   Chapter   5.)  0 1 10−  
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Chapter   4   -    GMAT   and   Data   Collection   
  

4.1   GMAT   Runs   and   Setup     

4.1.1   Background   

Chapter   4   discusses   the   setup   of,   and   data   collection   from,   GMAT.   The   Cassini   mission   
example   was   primarily   used   to   determine   the   time   ranges   for   the   overall   propagation   towards   
Saturn.   The   overall   GMAT   setup   is   divided   into   three   different   categories   of   analysis:   changing   
the   initial   position   and   velocity   vectors,   perturbed   vs   unperturbed   data   (within   a   range   of   157   
days),   and   the   different   delta   v   requirements   after   a   two   year   mark   (as   the   spacecraft   travels   from   
Venus   to   Saturn).   The   spacecraft   is   modeled   at   a   certain   distance,   in   transit,   before   it   enters   the   
sphere   of   influence   of   Venus   and   does   a   swingby   about   the   sun   as   it   is   hyperbolically   propelled   
towards   Saturn.   This   particular   type   of   trajectory   is   unique   to   analyze   the   impact   of   the   solar   
perturbations   on   the   correctional   burn   (TOI)   at   the   two   year   mark,   especially   since   the   swingby   
will   be   where   the   sun’s   perturbations   are   at   its   strongest.   
  

GMAT   is   an   orbital   simulator   that   allows   an   operator   to   give   certain   initial   inputs,   either   
via   Keplerian   elements   or   position   and   velocity   vectors.   The   latter   option   was   selected   since   the   
former   option   would   require   timely   efforts   in   hand   calculations   to   determine   energy   (velocity)   
and   phasing   requirements   within   different   reference   frames.   The   initial   position   and   velocity   
vector   coordinates   are   found   via   a   combination   of   JPL’s   Horizons   ephemeris   data   and   Lambert's   
problem   solver   in   Matlab.   Since   Lambert's   problem   is   reference   frame   agnostic,   it   is   important   to   
configure   the   ephemeris   data,   in   JPL’s   Horizons   website,   within   a   sun   centered   reference   frame.   
The   Horizons   web   interface   has   six   settings:   ephemeris   type,   target   body,   coordinate   origin,   time   
span,   table   settings   and   display/output.     
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 Figure   95 :   Ephemeris   settings   for   Venus   to   Saturn   Transfer   on   JPL’s   Horizons   web   interface.   
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 Figure   96 :     Target   body   settings   forVenus   to   Saturn   transfer   on   JPL’s   Horizons   web   interface.   If   the   
number   of   the   designated   body   is   unknown,   please   select   the   ‘display   list’   option,   underlined   in   red,   
and   it   will   take   you   to   the   target   body   lists   within   the   category,   ‘Sun   and   Planets’.   Notice   that   Venus   has   
a   designated   number   of   299   and   Saturn   is   699.   Then   click   ‘Select   indicated   Body’.     

  

 Figure   97 :   The   first   category   in   specifying   the   coordinate   origin   via   JPL’s   Horizons   web   interface.   The   
other   categories   below   it   are   :   choosing   from   a   list   of   predefined   sites   on   Earth,   specifying   origin   
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coordinates   via   latitude   and   longitude,   or   specifying   global   reference   frame   via   an   earth   orbiting   
spacecraft.   Fortunately,   the   first   category,   shown,   is   all   that   is   necessary.   Typing   ‘@sun’   in   the   white   
box   next   to   the   option   ‘Search’,   underlined   in   red,   automatically   the   system   understands   that   a   sun   
reference   frame   is   expected   for   the   data   collected.   For   instance,   this   project   required   a   sun   centered   
reference   frame   so   Sun   (body   center)[500@10]   was   what   the   system   yielded   after   typing   ‘@sun’ .     

  

 Figure   98 :     Time   span   settings   on   JPL’s   Horizons   web   interface.   The   start   time   was   selected   at   random   
and   stop   time   was   based   on   the   5   year   span   that   the   Cassini   mission   had   between   Venus   and   Saturn   
transfer.   Step   size   is   kept   for   a   day.     
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 Figure   99 :   The   table   settings   configured   on   JPL’s   Horizons   web   interface.     

  

 Figure   100 :   The   display/output   settings   configured   on   JPL’s   Horizons   web   interface.     



  

  

  
  

Note   that   JPL’s   Horizons   generates   ephemeris   data   one   planet   at   a   time.     
  

Once   this   data   has   been   retrieved,   the   initial   position   vector   (at   Venus   on   Jan   01,   2022)   and   the   
final   position   vector   (at   Saturn   on   Jan   01,   2027)   are   used   as   inputs   in   the   main   Lambert’s   
problem   code   below   (note   that   the   code   below   is   calling   the   Lambert’s   problem   function,   and   
that   the   function   itself   has   eight   code   files   attached   to   it.   This   information   can   be   viewed   in   the   
Appendix   section   of   this   report.):   
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 Figure   101 :   Final   configuration   of   JPL’s   Horizons   settings   before   selecting   the   option   to   ‘Generate   
Ephemeris’.   Since,   the   display/output   and   table   settings   were   configured   to   be   a   download   and   csv   
format,   then   by   selecting   the   ‘Generate   Ephemeris’   option,   a   download   will   appear   that   is   in   csv   
format.     



  

  
  

Lambert's   problem   is   reference   frame   agnostic   and   all   it   cares   about   are:   the   two   positions   and   
duration   of   flight   (TOF).   Thus,   it   is   important   to   remain   consistent   with   the   coordinate   system,   
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 Figure   102 :   Calling   Lambert's   problem   function   in   Matlab.   Line   33   is   the   function   itself   being   called.   
Note   that   the   required   variables   are   Pos1   (initial   position   or   start   position   vector   -   which   is   at   some   
random   offset   from   the   center   of   Venus),   Pos   2   (final   position   or   end   position   vector   -   which   is   at   some   
random   offset   from   the   center   of   Saturn),   TOF   (time   of   flight   or   the   total   duration   of   the   flight   between   
the   two   positions   (here   5   years   was   selected   due   to   the   time   span,   between   Venus   and   Saturn,   from   the   
Cassini   mission),   and   Mu   (which   is,   ,   or   the   gravitational   acceleration   of   a   body   (G)  Mμ = G  
multiplied   by   its   mass   (M)   ).   The   output   of   the   solver   are   the   velocities   at   position   1   (Pos   1)   and   
position   2   (Pos   2),   in   which   the   Pos   1   will   be   an   input   to   GMAT’s   initial   spacecraft   conditions.     



  

for   instance:   sun   reference   frame,   when   generating   data   from   JPL’s   Horizons,   and   inputting   into  
Matlab   and   GMAT.   
  
  

4.1.2   GMAT   Setup   for   Sun   Centered   Elliptical   Transfer   (to   and   from   Saturn)   

This   section   (and   the   upcoming   ones   within   chapter   4)   is   visually   instructed   to   guide   a   beginner   
to   navigate   through   GMAT.   Thus,   modifications   and   explanations   for   each   particular   setup   and   
how   it   affects   results   will   all   be   shown   and   discussed.    
  

It   is   critical   to   note   that   it   is   advisable   to   not   use   other   applications,   nor   to   even   click   on   anything   
in   GMAT,   when   a   simulation   is   running   in   GMAT.   Also,   F2   key   will   allow   the   operator   to   
rename   any   file;   which   is   handy   if   the   right-click   menu   does   not   have   that   option.     
  

Upon   starting   GMAT,   there   are   three   main   tabs   :   Resources,   Outputs   and   Mission.   This   section   
will   delve   into   the   options   selected,   per   tab,   for   the   complete   transfer   (to   and   from   Saturn).   This   
transfer   will,   also,   have   an   initial   back   propagation   (of   10   days)   configured,   due   to   initial   
expectation   that   the   spacecraft   is   modeled   mid   transit   as   it   approaches   Venus,   rather   than   starting   
at   a   parked   orbit   about   Venus.     
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 Figure   103 :     Resources,   Output   and   Mission   tabs.   Resources   is   where   one   defines   the   spacecraft   



  

  
  

There   were   a   total   of   two   coordinate   systems   and   two   propagators   for   the   hyperbolic   trajectory  
between   Venus   and   Saturn,   as   well   as,   the   full   elliptical   trajectory   back   to   Venus.     
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trajectory,   burns   (and   even   type   of   burns),   fuel,   planetary   bodies,   orbital   views   during   propagation,   
propagators,   coordinate   systems,   solvers...etc.   ‘Output’   tab   has   the   ‘Outputs’   defined   under   Resources   
and   allows   the   operator   to   view   (after   a   mission   run   is   complete)   the   report   file(s)   and   the   orbital   
views,   as   well   as   ephemeris   data   (uploaded   files   from   an   accredited   planetary   database).   Right   clicking   
on   outputs   allows   an   operator   to   select   what   type   of   output   to   add.    

 Figure   104 :     Spacecraft   settings.   Note   the   name   is   modifiable   (just   press   F2   or   right   click).   UTC   
Gregorian   time   is   selected   to   make   time   input   easier.   Coordinate   system   is   defined   as   sun   centered   and   
the   cartesian   coordinates   have   been   used.   Note   that   X,   Y,   and   Z   are   the   initial   POS   1   vector   defined   via   
Matlab   and   VX,   VY,   and   VZ   are   the   velocity   components   of   POS   1   (one   of   the   outputs   of   Lambert’s   
solver).     



  

  
The   ecliptic   plane   is   the   central   plane   of   an   orbit,   while   the   equatorial   plane   is   the   plane   at   the   
center   of   any   space   body   (such   as   a   planet,   sun,   asteroid..etc.).   Every   space   body   tilts   and   
wobbles   along   its   central   axis.   For   this   project,   the   ecliptic   plane   is   defined   with   respect   to   the   
sun’s   orbit.   Thus,   the   trajectory   in   a   sun   centered   view   is   unaffected   by   a   mass   bodies’   
movements   and   will   have   a   constant   reference   frame.     
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 Figure   105 :   Sun   ecliptic   coordinate   system   (used   during   initialization   of   spacecraft)   defined   in   GMAT.   

  

 Figure   106 :   The   second   coordinate   system   is   with   respect   to   the   central   body   of   Saturn.   Note   that   there   



  

  
  

The   propagators   are   defined   once   the   spacecraft’s   parameters   for   its   initial   position   and   
velocity,   as   well   as   the   coordinate   systems   have   been   defined.   Note   that   the   amount   of   
propagators   is   determined   by   the   number   of   TOIs   (regardless   if   the   burns   done   are   free   or   not).   
There   will   be   a   total   of   two   distinct   propagators.   The   first   propagator   is   the   hyperbolic   transfer   
between   Venus   and   Saturn,   while   the   second   propagator   is   a   Saturn   flyby.   Since   Saturn's   
potential   field   changes   the   spacecraft’s   initial   trajectory   to   a   leading   flyby   about   itself,   another   
propagator   with   its   respective   coordinate   system   must   be   created.     
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is   a   difference   between   body   fixed   (the   central   reference   frame   remains   fixed   as   the   body   rotates)   and   
body   inertial   (the   reference   frame   rotates   with   the   body).Understand   that   these   reference   frames   affect   
the   orbital   views,   so   the   type   of   orbital   view   one   needs   will   play   a   part   in   what   type   of   coordinate   
system   one   selects.     

 Figure   107 :     First   propagator   :   Venus   to   Saturn   hyperbolic   transfer.   Note   that   RungeKutta   89   is   defined   
as   well   as   its   corresponding   accuracy   (which   is   usually   between   ).   The   more   accurate  0  and 101 9− 12−  
the   propagator   is,   the   more   computational   power   it   takes   to   complete   a   full   run.   Error   control   is   kept   at   
default   but   the   central   body   was   changed   to   the   Sun,   and   the   point   masses   (critical   potential   
influence(s))   are   Sun   and   Venus.     



  

  
  

Note   that   ‘SolarSystem’   (contains   data   for   planets,   Sun   and   its   bary   center)   and   ‘Solvers’   were   
not   used   for   this   analysis.   The   latter   will   be   used   when   calculating   the   delta_v   requirement   after   
the   two   year   mark   and   will   be   used   for   unperturbed   trajectories   (since   without   it   will   cause   the   
spacecraft   to   continuously   loop   in   a   normal   trajectory   after   a   stopping   point   once   it   leaves   Venus’   
sphere   of   influence).     
  

It   is   critical   to   note   that   the   orbital   views   will   not   show   the   complete   trajectory   if   the   number   of   
points   it   is   expected   to   plot   is   less   than   what   the   trajectory   requires.   A   rule   of   thumb   is   to   
increase   the   default   value   of   20,000   (in   the   max   number   of   data   points   to   plot,   shown   below)   to   
150,000.   Also,   the   console   at   the   very   bottom   of   the   user   interface   will   indicate   any   potential   
errors   it   encounters   while   the   simulation   is   running.   Thus,   once   the   simulation   is   done,   the   
operator   can   scroll   up   or   down   to   check   the   receipts   of   the   operation.     
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 Figure   108 :   Second   propagator:   Saturn   flyby.   Note   that   only   Saturn   was   selected   as   the   point   mass.   



  

  
  

The   ‘DefaultGroundTrackPlot’   is   only   necessary   if   conducting   closed   orbits   about   a   celestial   
body   (preferably   a   planet).   Thus,   it   is   not   discussed   nor   shown   for   any   of   the   trail   runs   within   the   
scope   of   this   project.     
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 Figure   109 :     Sun   centered   Orbital   view   configured   in   GMAT.   The   critical   considerations   are:   the   max   
number   of   data   points   (if   this   is   not   correctly   set   up   there   will   be   an   error   message   indicating   there   are   
not   enough   data   points   and   no   trajectory   will   be   plotted),   what   celestial   objects   to   view,   and   view/up   
definitions.   It   is   ideal   to   define   a   view   point   vector   so   that   you   do   not   end   up   zooming   out   of   the   center   
of   the   celestial   object   for   quite   some   time.     



  

  
Sun   centered   orbital   view   is   for   the   hyperbolic   swing   by   trajectory   between   Venus   and   Saturn.   
Saturn   flyby   orbital   view   is   the   leading   edge   flyby   with   respect   to   Saturn.   The   next   orbital   view   
is   the   most   critical   and   is   with   respect   to   the   spacecraft   itself.   This   orbital   view   allows   the   
operator   to   see   the   whole   mission   regardless   of   coordinate   system   and   trajectory   type.     
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 Figure   110 :   Saturn   flyby   orbital   view   configuration   in   GMAT.   



  

  
‘Outputs’   option   has   more   than   one   type   of   output   to   add   (right-clicking   on   it   will   give   a   list   to   
select   from).   The   other   type   added   is   the   report   file   itself   (Note   to   rename   any   item   press   the   ‘F2’   
key).     
  

115   

 Figure   111 :   Spacecraft   orbital   view   configuration   in   GMAT.     

  

 Figure   112 :   Report   file   configuration   in   GMAT.   Note   that   the   file   is   saved   in   .csv   format,   and   the   
operator   can   edit   the   contents   of   the   report   file.   Also,   note   that   the   Parameter   can   be   empty   if   the   



  

  
Once   the   attributes   of   the   mission   have   been   defined,   the   mission   sequence   (or   the   steps   the   
script   is   expected   to   follow   as   it   completes   the   simulation’s   iterations)   is   to   be   configured.   The   
overall   mission   sequence   was   earlier   displayed   in   Figure   103.   
  

  
  
  

Mission   tab   allows   the   operator   to   insert   anything   after   or   before   by   right   clicking   any   object   
type   within   it.   For   instance,   right   clicking   on   ‘Toggle1’   allows   ‘Back_Propagate4’   the   option   to   
be   inserted   after   it.   The   purpose   of   back-propagating   was   to   go   backwards   in   time   so   as   to   grab   
the   actual   initial   conditions   of   the   spacecraft   (preferably   10   days   before   the   offset   point   at   
periapsis   defined   in   Matlab   as   Pos   1)   as   it   is   in   transit   towards   Venus.   This   is   to   fit   the   narrative   
of   having   the   spacecraft   in   transit   as   it   approaches   Venus   rather   than   start   at   a   parked   orbit   
(where   a   burn   -TOI   -   would   have   been   considered).   The   ‘Toggles’   in   the   ‘Mission’   sequence   
gives   the   operator   control   over   what   to   switch   on   or   off   throughout   the   script   (or   sequences   of   
actions   the   simulator   is   expected   to   complete).   The   processes   above   and   below   present   how   to   
conduct   such   interference.     
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‘ReportFile’   is   considered   as   an   action   item   in   the   mission   sequence   (under   ‘Mission’   tab).   An   example   
of   such   can   be   found   in   section   4.1.5.     

 Figure   113 :   Mission   sequence’s   Toggle   1   configuration   in   GMAT.   Toggle   is   exactly   what   its   name   
implies   :   a   switch   to   turn   report   files   or   views   on   or   off.   The   first   toggle   turns   on   the   report   file,   
spacecraft   and   sun   centered   orbital   views.   The   spacecraft's   orbital   view   remains   on   throughout   the   
whole   mission   run.     
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 Figure   114 :   Back   propagation   configuration   in   GMAT.   Note   the   three   dots   before   each   white   text   box.   
Those   three   dots   are   the   menu   lists   for   each   designated   column.   Thus,   the   operator   can   select   the   
preferred   propagator,   spacecraft,   parameter   and   conditions.   Conditions   tend   to   be   a   numerical   data   
type.   The   parameter   selected   is   ‘ElapsedDays’   with   respect   to   the   spacecraft   with   the   Saturn   transfer   
propagator   selected.     



  

  
  
  

Since,   the   purpose   of   the   sun   centered   elliptical   transfer   is   to   collect   the   initial   velocity   and   
position   vectors   after   the   10   day   back   propagation   (as   well   as,   to   ensure   that   the   spacecraft   
reaches   Saturn   and   how   its   trajectory   looks   as   it   comes   back   towards   Venus)   the   report   file   output   
was   toggled   off   after   the   back   propagation   in   the   mission   sequence.     
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 Figure   115 :   ‘Toggle2’   turns   the   output   for   data   generation   for   a   particular   report   file   off.   The   toggles   
turn   on/off   any   of   the   outputs   defined   under   the   Resources   tab.     



  

  
  

It   is   advisable   to   use   different   colors   for   each   propagation   defined   under   the   ‘Missions’   tab,   for   it   
will   help   distinguish   between   different   trajectories   or   TOIs.    
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 Figure   116 :   After   the   back   propagation   is   done,   the   spacecraft   is   expected   to   propagate   towards   
Saturn’s   periapsis.   Note   that   although   Pos   2   was   defined   for   Lambert's   problem   in   Matlab,   it   is   not   
necessary   to   define   it   in   GMAT   -   instead   it   is   expected   to   indirectly   solve   that   value   for   the   operator.   
Thus,   under   the   column   parameter,   ‘SaturnPeriapsis’   has   been   selected   and   after   it   a   parameter   that   
dictates   the   duration   of   achieving   such   a   parameter   (which   is   1825   days   or   5   years).   Another   way   for   
GMAT   to   achieve   certain   parameters   is   through   setting   up   targets   in   the   mission   sequence   or   solvers   
under   the   ‘Resources’   tab.     
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 Figure   117 :   After   the   spacecraft   transfers   to   Saturn,   before   propagating   the   flyby   about   Saturn,   must   
turn   on   the   Saturn   centered   orbital   view   and   keep   the   sun   centered   view   on   via   ‘Toggle3’.     

 Figure   118 :   Saturn   flyby   propagation,   for   one   year,   under   the   ‘Missions’   tab   in   GMAT.     
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 Figure   119 :   ‘Toggle4’   turns   off   the   Saturn   flyby   and   sun   centered   orbital   views,   after   the   Saturn   flyby   
propagation   is   done.     

  

 Figure   120 :   The   last   propagation   brings   the   spacecraft   back   towards   Venus   and   an   assumed   time   of   
flight   (TOF)   was   set   at   five   years.     



  

Note   that   scripts,   located   after   ‘Output’   under   the   ‘Resources’   tab,   can   be   selected   and   is   the   code   
version   of   the   mission   sequences   defined   under   the   ‘Missions’   tab.   Scripts   are   modifiable   and   are   
automatically   generated   from   the   beginning   to   the   end   of   the   overall   setup   before   running   a   
mission   (one   script   per   file).   Double   clicking   on   the   script   file   leads   the   operator   to   a   window   
where   manual   modification   of   the   script   can   be   done.   However,   it   is   strongly   advised   to   do   all   
modifications   via   ‘Resources’   and   ‘Mission’   tabs,   and   then   make   sure   to   synchronize   (save)   the   
GUI   before   each   run.   Thus,   any   changes   made,   under   the   ‘Resources’   and   ‘Mission’   tabs,   are   
saved   to   the   script   file   as   well.     
  
  
  

  
  

In   GMAT,   the   orbital   views   created   (under   ‘Resources’   tab)   will   pop   up   while   the   mission   is   
running   and   will   have   incremental   time   stamps   shown   as   it   runs   to   completion.   There   is   an   
animation   toolbar   (shown   in   the   above   figure)   that   can   be   used   to   play   back   the   trajectories   once   
the   simulation   is   complete.   
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 Figure   121 :   Sample   of   a   script   once   opened   in   GMAT.   Note   the   blue   play   button   on   the   top   task   bar,   
which   is   the   ‘Run’   button.   The   ‘Synchronized’   text   highlighted   in   green   indicates   that   the   script   is   up   to   
date   (basically   the   file   has   been   saved).   Close   the   script   file   before   running   the   mission.   Once   it’s   done   
successfully,   the   console   will   have   text   stating   that   the   ‘Mission   run   completed’   and   the   total   time   it   
took   for   it   to   be   completed   (it’s   shown   at   the   bottom).     
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 Figure   122 :   Sun   centered   ,   Saturn   flyby   and   spacecraft   orbital   views,   respectively   from   left   to   bottom,   
in   GMAT.   Note   the   swing   by   about   the   sun   (the   lime   trajectory)   in   the   sun   centered   view   (the   blue   orbit   
is   Mercury’s,   the   white/beige   orbit   is   Venus’   and   the   dark   orange   trajectory   up   top   is   Saturn’s).   Note   in   
the   ‘SaturnFlyby’   orbital   view,   the   over-exaggerated   coordinate   system   shown   is   centred   at   Saturn   and  
what   is   shown   is   the   spacecraft’s   projectile   as   it   begins   a   leading   edge   flyby   (yellow)   about   Saturn.   The   
orbital   view   pops   up   automatically   once   the   simulation   starts   running.     



  

  
A   leading   edge,   near-light   or   sun   side   ,   flyby   about   Saturn   and   back   towards   Venus   are   the   last   
two   parts   that   make   up   the   complete   mission   for   the   elliptical   sun   centered   orbit.   (The   first   two   
parts   are   the   back   propagation   from   Venus’   boundary   and   the   hyperbolic   trajectory   -   in   lime-   
towards   Saturn.)   The   ‘SaturnFlyby’   orbital   view   is   a   close   up   of   the   spacecraft’s   projectile   as   it   
reaches   Saturn’s   periapsis   before   it   commits   to   a   free   TOI   (flyby   in   yellow)   about   Saturn.   The   
‘SunCentered’   and   spacecraft   orbital   views   are   consistent   that   a   leading   edge   flyby   has   taken  
place.   As   the   spacecraft   conducts   a   second   swingby   about   the   Sun   (the   aqua   trajectory),   it   ends   
up   closer   to   the   Sun   than   the   previous   (lime)   trajectory.   Since   the   flyby   about   Saturn   was   a   
leading   edge,   the   momentum   (on   the   spacecraft   by   Saturn)   was   not   as   strong   as   a   trailing   edge   
(or   dark   side)   would   have   been,   and,   thus,   ended   up   flying   closer   to   the   Sun   than   its   initial   
trajectory.     
  
  

  
The   report   file   has   captured   the   end   conditions   (position   and   velocity   vectors)   of   the   back   
propagation,   which   will   be   used   (for   both   unperturbed   and   perturbed   trajectories)   as   the   initial   
points   within   the   data   for   the   NN   modeling.   However,   before   using   this   data,   the   next   two   
sections   will   discuss   the   setups   of   the   unperturbed   trajectory,   as   well   as   the   delta_v   solver   at   the   
end   of   the   two   year   mark.     
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 Figure   123 :   Trailing   edge   flyby   about   Saturn   in   GMAT.   Backpropagation   was   set   at   180   days   from   the   
same   initial   conditions   in   this   section’s   setup.   The   mission   sequence   was   also   the   same   shown,   for   the   
leading   edge   setup,   earlier.   This   means   that   if   the   actual   full   forward   propagation   started   on   28   
December   2022,   a   leading   edge   flyby   would   have   occurred.     



  

4.1.3   GMAT   Setup   for   Unperturbed   Trajectory   with   Burn   

The   unperturbed   trajectory   does   not   include   the   potential   influence   of   the   Sun   as   the   spacecraft   
attempts   to   re-enact   the   same   swingby   introduced   in   section   4.1.2.   This   section   will   cover   the   
setup   of   the   unperturbed   trajectory   in   GMAT.     
  

The   ‘Resources’   tab   conditions   are   the   same   as   the   complete   elliptical   Sun   centered   orbit,   with   
the   exception   for   the   script   and   file   names,   as   well   as,   inserting   a   burn   (TOI)   and   modifying   the   
propagators.   (This   burn   will   later   on   be   removed   since   the   current   case   scenario   involves   a   
spacecraft   in   transit   as   it   arrives   at   Venus   rather   than   starting   from   a   parked   orbit   as   was   initially   
presumed.)   The   mission   sequence   under   the   ‘Missions’   tab   is   quite   different   from   what   was   
shown   in   section   4.1.3.   Thus,   more   effort   will   be   spent   on   the   ‘Missions’   tab   rather   than   the   
‘Resources’   tab   for   this   section   (and   the   upcoming   ones   as   well).   
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 Figure   124 :   Burn   defined   via   VNB   (velocity   -   normal   -   binormal   vector)   local   coordinate   system   about   
Venus.   This   coordinate   system   is   at   the   center   of   the   spacecraft   and   is   with   respect   to   the   planet   (or   
celestial   body)   selected.   There   are   other   options   besides   VNB,   but   since   the   critical   body   of   \influence   is   



  

  
  

Note   that   there   are   many   propagators   in   the   above   figure;   this   is   due   to   the   many   trial   runs   and   
are   not   necessary   for   this   mission.   The   only   required   propagators   are   the   ‘SaturnTransf_Prop’   
and   ‘Venus_Centered_Prop’.     
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Venus,   using   a   Sun   centered   coordinate   system   is   not   necessary.   Note   that   ‘Delta-V’   vector   is   set   at   zero   
for   each   3-D   element,   and   this   is   because   a   solver   is   expected   to   find   the   value   for   any   (or   all   -   
depending   on   what   is   expected   to   be   achieved   in   the   mission   sequence   under   the   ‘Missions’   tab)   of   the   
three   elements.     

  

 Figure   125 :   ‘SaturnTransf_Prop’   for   the   spacecraft   as   it   attempts   to   commit   to   a   trajectory   towards   
Saturn   as   it   escapes   Venus’   sphere   of   influence   without   the   aid   of   the   Sun.   Note   that   the   only   point   mass   
selected   is   Saturn.     
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 Figure   126 :   ‘Venus_Centered_Prop’   propagator   in   GMAT.     

  



  

  
  
  

Since,   a   TOI   has   been   defined   with   a   value   of   zero   for   each   of   its   elements,   under   the   
‘Resources’   tab,   then   in   the   mission   sequence,   under   the   ‘Mission’   tab,   it   needs   to   be   set   up   to   
solve   it.   This   will   require   ‘Target’   and   ‘Achieve’   markers   as   will   be   shown   in   the   following   
figures.     
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 Figure   127 :   The   solver   is   kept   at   a   default   but   the   computational   power   has   been   reduced   from   the   
original   50   to   25   iterations.   This   differential   solver   will   be   used   to   solve   for   the   value   of   the   TOI   and   
stops   the   spacecraft   from   spiraling   normally   at   a   stopping   point   due   to   the   absence   of   the   Sun’s   
influence.     

  

 Figure   128 :   It   is   always   handy   to   start   with   a   toggle   for   a   mission   sequence   in   GMAT.   ‘Toggle1’   is   
turning   on   the   ‘Sun_centered’   orbital   view.     



  

  
The   purpose   of   ‘Target’   is   to   use   the   solver   to   find   the   value(s)   for   the   burn’s   element(s).   
However,   in   order   for   it   to   work   certain   items   need   to   be   appended   as   shown   below.   
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 Figure   129 :   Establishing   a   ‘Target’   in   GMAT   is   where   the   solver   is   used.   Keep   in   mind   that   in   order   to   
insert   action   items   within   ‘Target’,   one   must   right-click   and   select   ‘Append’   first.     

  

 Figure   130 :   ‘Vary’   must   be   used   to   let   the   solver   know   its   maximum   and   minimum   constraints,   with   
predetermined   maximum   steps,   as   it   determines   the   burn   value,   in   this   case,   with   respect   to   only   
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Element   1   of   the   TOI.   Keep   in   mind   that   GMAT   follows   the   mission   sequence   in   order,   so   the   burn   is   
done   at   the   very   beginning   since   ‘Vary’   is   the   first   action   item.     

  

 Figure   131 :   Insert   a   ‘Maneuver’   action   item   after   a   ‘Vary’   under   ‘Mission’   tab   in   GMAT.     

  

 Figure   132 :   Insert   ‘Propagate’   after   ‘Maneuver’   in   GMAT.   Note   the   propagator   used   (which   was   
initially   defined   under   the    ‘Resources’   tab),   the   parameters   and   the   associated   condition.     
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 Figure   133 :   ‘Achieve’   marker   after   ‘Vary’   and   ‘Maneuver’   action   items.   The   ‘Achieve’   marker   is   for   
the   solver   to   determine   what   is   the   goal   and   at   what   tolerance   value.   The   ‘B   dot   R’   and   ‘B   dot   T’   
planes   have   been   selected   due   to   ease   of   constraints   concerning   a   flyby   -   also   called   B-plane   targeting.   
The   B   plane   is   composed   of   the   vectors   :   R   and   T   ;   where   T   vector   is   the   radial/tangential   vector   from   
the   center   of   mass   of   the   celestial   body   and   R   vector   is   the   vector   perpendicular   to   it.   ‘R’   and   ‘T’  
determine   the   position   of   the   spacecraft,   with   respect   to   Saturn,   as   it   conducts   a   flyby   about   Saturn.     

  

 Figure   134 :   ‘Achieve’   marker   for   time   it   takes   to   transfer   to   Saturn   in   GMAT   under   the   ‘Mission’   tab.     



  

  
Note   that   an   operator   may   use   multiple   ‘Achieve’   markers   after   ‘Vary’   and   ‘Maneuver’   action   
items   have   been   defined.     
  

  
Note   that   the   spacecraft   stops   before   the   expected   two   year   mark.   Thus,   the   solver   gives   an   
output   of   non   convergence   since   the   desired   output   was   at   720   days   and   the   spacecraft   can   not   
reach   the   desired   distance   along   Saturn’s   periapsis.   However,   the   non   convergence   is   mainly   due   
to   the   non   existent   presence   of   the   Sun’s   influence;   the   spacecraft   stops   after   an   initial   TOI   of   4.8   
km/s   and   180   days.   If   the   solver   was   not   used   for   this   analysis,   the   spacecraft   would   have   
spiraled   continuously   normal   to   where   it   had   stopped.     
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 Figure   135 :   Sun   centered   orbital   view   of   the   unperturbed   swingby   trajectory   of   the   spacecraft.   

  

 Figure   136 :   Solver   window   in   GMAT.   A   solver   has   been   defined   under   the   ‘Resources’   tab.   Note   the   
TOI   (burn   or   magnitude   of   the   burning   rate   of   the   thruster)   value   for   Element   1   that   has   been   
calculated   after   25   iterations,   and   the   actual   days   it   has   achieved   (180   days)   in   contrast   to   what   was   



  

  
  

The   NN   will   require   data   from   the   unperturbed   and   perturbed   trajectories   between   the   final   time   
stamp   of   the   back   propagation   and   end   of   the   180   day   mark   (as   shown   in   this   section).   This   setup   
will   be   discussed   in   section   4.1.5,   and   the   burn   will   not   be   necessary.     
  
  
  

  
  
  

4.1.4   GMAT   Setup   for   Trajectory   with   Burn   at   Two   Year   Mark   

The   purpose   of   this   analysis   is   to   determine   how   the   Sun’s   perturbations   (for   the   same   swingby   
trajectory   about   the   Sun   towards   Saturn)   affects   a   correctional   burn   at   the   end   of   the   two   year   
mark.   Some   of   the   setup   is   the   same   as   what   was   defined   in   the   prior   sections   of   this   chapter,   
while   others   have   been   modified.   The   Sun,   as   a   point   mass   of   potential   influence,   is   considered   
throughout   this   study.     
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desired   (720   days).     

 Figure   137 :   Experimental   comparison   when   incorporating   more   than   one   element   to   vary   in   the   
mission   sequence.   Note   that   the   limits   have   changed,   and   the   trajectory   remains   the   same.   The   no   
convergence   warning   is   not   critical   since   the   analysis   is   not   dependent   on   a   particular   distance   along   
Saturn’s   periapsis   and   the   Sun’s   influence   is   not   considered.   Thus,   no   convergence   is   expected.     



  

Note   that   the   contents   of   this   setup   are   susceptible   to   changes   throughout   the   duration   of   the   
project   (and   will   be   documented).     
  
  

Most   of   the   ‘Resources’   tab   conditions   are   similar   to   what   has   been   used   in   prior   sections   of   this   
chapter.   The   spacecraft,   propagators,   coordinate   systems   (with   the   exception   of   a   ‘VenusInertial’)   
and   orbital   views   (with   the   exception   of   a   Venus   centered   view)   are   all   the   same   as   discussed   in   
section   4.1.1.   The   DC   solver   setup   is   the   same   as   discussed   in   section   4.1.2   and   4.1.3   (with   six   
instead   of   25   iterations).   The   report   file   outputs   have   the   same   setup   as   discussed   in   section   4.1.1   
but   with   different   file   names.     
  

  
  

Note   the   multiple   ‘ReportFiles’   as   outputs   under   the   ‘Resources’   tab.   Each   report   is   responsible   
for   capturing   data   within   a   particular   time   interval   of   the   mission   sequence.   This   helps   capture   
the   position   and   velocity   vectors   at   the   two   year   mark,   as   well   as,   scope   out   the   maximum   radial   
magnitude   (RMAG)   that   makes   up   the   boundary   of   the   sphere   of   influence   of   Venus.   There   are   
two   methods   to   find   the   delta_v   (burn)   :   manually   calculating   the   difference   between   the   
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 Figure   138 :   Since   the   Sun   is   the   central   body   at   which   the   correctional   burn   is   to   take   place,   the   
spacecraft’s   thrusters   (VNB   or   Velocity-Normal-Binormal   axis   or   X-velocity,   Z   -   up   or   down   and   Y-   left   
or   right   of   the   spacecraft’s   central   body)   are   with   respect   to   a   non-inertial   and   local   Sun’s   coordinate   
system   instead   of   a   planet’s.     



  

magnitudes   of   two   velocity   vectors   at   a   particular   time   stamp,   or   using   a   solver   to   determine   the   
burn   value   at   a   particular   point   in   time.   This   study   started   with   the   former   then   ended   up   using   
the   latter   due   to   time   constraint.   Thus,   multiple   file   outputs   were   used   to   capture   such   data   and   
can   be   seen   under   the   ‘Outputs’   branch   under   the   ‘Resources’   tab.   However,   only   the   latter   
method   (using   a   solver   to   determine   the   burn   value)   will   be   shown.     
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 Figure   139 :   Venus   centered   orbital   view   settings   in   GMAT.     



  

  
The   upcoming   figures   for   this   section   will   cover   the   action   items   for   the   mission   sequence   under   
the   ‘Mission’   tab.     
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 Figure   140 :   Venus   inertial   coordinate   system   setup   in   GMAT.     

 Figure   141 :    'Toggle1'   under   'Mission'   tab   in   GMAT   for   perturbed   swingby   with   target.   ‘ReportFile1’   
and   the   sun   centered   orbital   view   have   been   turned   on.   
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 Figure   142 :   Back   propagation   to   Venus’   end   boundary   in   GMAT.   (This   was   just   an   exploratory   part).   

  

 Figure   143 :   Second   toggle   is   to   turn   ‘ReportFile1’   off.     
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 Figure   144 :   ‘Toggle3’   turns   on   ‘ReportFile2’   and   the   sun   centered   orbital   view.     

 Figure   145 :   Forward   propagating   to   the   other   end   of   Venus’   boundary.     
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 Figure   146 :   ‘Toggle5’    turns   on   ‘ReportFile3’   and   sun   centered   view.     

 Figure   147 :   Propagating   to   the   two   year   mark,   from   Venus   to   Saturn .     
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 Figure   148 :   Turned   ‘ReportFile3’   off.    

  

 Figure   149 :   Turning   on   ‘ReportFile4’   and   sun   centered   orbital   view.     



  

The   target   part   of   the   mission   sequence   (under   ‘Mission’   tab)   has   been   modified   (from   what   is   
previously   shown   in   the   figure(s)   above)   and   will   be   shown   following   this   statement.   However,   it   
is   important   to   note   that   the   target   tends   to   have   a   common   pattern   of   :   ‘Vary’   (varies   the   variable   
-   in   this   case   it   is   the   burn   -   with   stated   limits   and   step   size),   ‘Maneuver’(applies   or   performs   the   
burns   or   whatever   stated   as   a   variable),   and   ‘Achieve’   (basically   stating   the   variable   [in   this   case   
it   was   Element   1   of   the   burn),   and   its   associated   desired   value   with   allowable   tolerances).   It   is   
also   critical   to   note   that   the   Keplerian   elements   can   be   considered   as   variables   (when   doing   the   
‘Vary’   command)   before   applying   a   burn   through   a   ‘Maneuver’.   Keplerian   elements   can   also   be   
used   as   variables   to   be   achieved   (under   the   ‘Achieve’   command).     
  

B-plane   targeting’s   elements   are   used   as   the   method   of   choice   for   the   ‘Achieve’   stage   of   the   
mission   sequence.   This   is   because   B-plane   targeting   is   ideal   for   gravity-assisted   flybys.   The   
B-plane   consists   of   three   vector   components:   ‘T’,   ‘R’   and   ‘S’.   ‘T’   and   ‘R’   make   up,   visually,   the   
‘X’   and   ‘Y’   axis   on   a   2D-cartesian   coordinate   plane,   while   ‘S’   is   pointing   in   or   out   of   the   page   -   
just   like   the   ‘Z’   axis   in   a   3D-cartesian   coordinate   system.    Thus,   when   doing   the   B-plane   
targeting,   the   operator   has   the   option   to   use   ‘BdotT’   and   ‘BdotR’   as   variables   to   be   achieved.     
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 Figure   150 :   Vary   action   item   for   the   first   element   of   the   correctional   burn   (at   the   two   year   mark).   Note   
the   lower   and   upper   limits.   It   is   critical   to   first   start   with   a   wide   range   to   allow   the   solver   not   be   too   
constrained.   It   is   advisable   to   use   max   steps   between   0.2   and   0.5.   No   need   to   specify   coordinate   axes   

for   burns.   



  

  

  
  

142   

  

 Figure   151 :   Applying   the   ‘Maneuver’   (or   burn)   that   has   just   been   varied.   

 

 Figure   152 :   Propagate   from   the   stop   marker   (two   year   time   stamp)   and   continue   onwards   towards   
Saturn’s   periapsis.   Although,   in   MATLAB,   when   using   the   Lambert’s   solver,   a   POS   2   was   defined.   

Understand   that   POS   2   is   defined   for   the   sole   purpose   of   ensuring   that   the   two   velocity   outputs   that   the   
solver   gives   does   indeed   cause   a   rendezvous   to   happen   between   the   spacecraft   and   Saturn.   In   GMAT,   it   
is   sufficient,   since   only   the   burn   is   critical,   to   just   define   the   expectant   parameter   as   Saturn’s   periapsis.    
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 Figure   153 :   ‘Achieve’   action   item,   which   was   switched   from   a   desired   RMAG   to   the   two   elements   that   
make   up   B-plane   targeting.   B-plane   targeting   is   an   ideal   method   to   use   for   flybys.   It   consists   of   two   

vectors   :   ‘T’   (tangential)   and   ‘R’   (normal   component   to   ‘T’).   Started   off   with   a   value   of   ‘0’   but   changed   
it   to   the   value   stated   in   the   figure   after   the   first   run   achieved   it.     

  

  



  

  
  
  

Below   are   the   results   of   the   perturbed   swingby   with   a   two   year   correctional   burn   setup.   A   no   
convergence   warning   is   due   to   the   large   difference   between   the   desired   versus   the   achieved   
variable   values   that   the   solver   calculates   at   the   end   of   the   prescribed   iterations.   If   unsure   what   
desired   value   is   to   be   expected,   the   operator   may   leave   it   at   ‘0’   at   the   ‘Achieve’   setup,   then   use   
the   value   at   what   the   solver   achieves   for   the   next   run   to   get   the   solver   to   converge   (within   the   
same   number   of   iterations).   This   method   is   acceptable   only   if   the   desired   value   is   not   critical   to   
the   analysis,   as   is   such   in   this   study;   where   the   spacecraft   is   expected   to   achieve   some   arbitrary   
coordinate   point   along   Saturn’s   periapsis.   It   is   important   to   note   that   the   ‘Pos1’   value   calculated   
via   Matlab   was   without   burns   considered.   Lambert’s   problem   gives   the   velocities   that   the   
spacecraft   is   expected   to   be   at   ‘Pos1’   and   ‘Pos2’   only   (it   is   burn   and   reference   frame   agnostic).     
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 Figure   154 :   ‘BdotT’   component   to   be   achieved   in   GMAT.   Also,   started   off   with   a   value   of   ‘0’,   then   
after   the   first   run   changed   it   to   the   value   the   solver   has   achieved.     

  



  

  
The   solver,   for   this   problem,   is   adjusting   the   thrusters   in   the   VNB   (Velocity   -   Normal   -Binormal)   
directions   of   the   spacecraft,   with   respect   to   the   non-inertial   Sun’s   coordinate   system   (or   reference   
frame).   The   total   amount   of   iterations   needed   for   the   solver   to   calculate   the   final   burns   (thruster’s   
coordinate   system   of   X   (velocity   -   forward   or   backward   directions),   Y   (binormal   -   left   or   right)   
and   Z   (up   or   down)   to   reach   an   arbitrary   point   along   Saturn’s   periapsis   is   dependent   on   the   setup.   
It   is   a   good   rule   of   thumb   to   start   low,   such   as   10   or   25   iterations,   instead   of   the   default   50.   The   
solver   arrived   at   a   value   of   2.7e6   km   along   the   tangential   component,   ‘T’,   and   2.4   e6   km   along   
the   ‘R’   component   of   the   B-plane   within   six   iterations.   Furthermore,   due   to   time   constraint   and   
solver   being   computational   heavy,   max   solver   iterations   will   be   kept   at   25   regardless   if   it   
converges   or   not.   Note   that   only   Element   1   (   X   directional   thrust)   was   considered   for   this   
analysis   due   to   it   being   along   the   direction   of   the   spacecraft’s   velocity.   However,   the   operator   has   
the   freedom   to   select   any   combination   of   the   thrusters   (i.e   Elements   1   and   2   (X   and   Z)   or   
Elements   1   and   3   (X   and   Y)   or   Elements   1,   2   and   3   (X,   Z   and   Y).   The   type   of   combination   of   
elements   selected   is   dependent   on   the   spacecraft's   spatial   location   with   respect   to   its   target   (i.e.   
what   plane   or   thrust   axis   the   spacecraft   needs   to   be   on).   If   the   combination   selected   does   not   
work   with   operating   boundary   conditions   then   a   ‘QNAN’   error   will   be   displayed   at   the   end   of   the   
iterations   and/or   the   spacecraft   will   be   completely   off   from   its   intended   target.   To   resolve   that   
error   one   must   change   the   ‘Vary’   limit   conditions,   change   the   burn   conditions   (if   applicable   for   
instance   change   VNB   to   LVLH   [local   vertical   and   local   horizontal]   or   the   central   body   or   the   
coordinate   system...etc.)   under   the    ‘Resources’   tab,   or   the   ‘Achieve’   conditions   (for   instance   had   
to   switch   from   RMAG   [with   respect   to   Saturn]   to   ‘BdotT’   and   ‘BdotR’).     
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 Figure   155 :   Orbital   views   of   the   perturbed   target   run   in   GMAT.   The   blue   grid   is   the   sun   ecliptic   plane   
(as   initially   defined   under   coordinate   systems   and   when   setting   up   the   spacecraft   under   the   ‘Resources’   
tab).   Note   that   elements   1,   2   and   3   (burn   magnitudes   in   the   X,   Z   and   Y   directions   respectively)   may   be   
used   in   order   for   the   spacecraft   to   attempt   to   achieve   Saturn’s   periapsis.   Note   that   the   desired   value   of   
2433165   km   was   found   from   initially   running   the   setup   with   a   desired   value   of   ‘0’   for   both   ‘BdotT’   and   
‘BdotR’   'Achieve’   variables.   Thus,   allowing   the   solver   to   show   at   what   values   the   spacecraft   would   
most   likely   converge   at.   The   Venus   centered   view   captures   the   spacecraft’s   initial   back   and   forward   
propagation   to   determine   Venus’   sphere   of   influence   (one   can   also   see   it   if   zooms   into   the   sun   centered  
and   spacecraft   orbital   views).   Note   the   location   of   the   trajectory   in   the   Saturn   inertial   orbital   view.   The   
total   or   absolute   burn   magnitude   is   0.55   km/s.     



  

  
The   purpose   of   this   analysis,   moving   forward,   is   to   compare   different   swingby   trajectories’   
(starting   at   different   initial   conditions,   with   respect   to   velocity   and   position   coordinates)   
correctional   burns   after   the   two   year   mark.   More   of   the   latter   will   be   observed   in   section   5.1.2.   
  
  
  
  

4.1.5   GMAT   Setup   for   Data   Used   in   NN   Model   

As   discussed   in   section   4.1.3,   since   the   unperturbed   trajectory   stopped   at   around   170   
days,   the   perturbed   data   will   also   stop   within   the   same   time   frame.   Thus,   this   section   will   delve   
into   the   setup   used   in   capturing   data,   perturbed   (with   Sun)   and   unperturbed   (without   Sun),   for   the   
NN   model.   JPL   Horizons   web   page   setup   and   Matlab   (as   shown   in   section   4.1.1)   will   be   used   for   
this   analysis.     
  

After   a   series   of   tests,   it   was   clear   that   the   simulation   should   run   for   157   days   and   that   a   burn   was   
not   necessary   (as   was   initially   shown   in   section   4.1.3).   The   NN   model   requires   three   sets   of   data:   
training,   validation   and   testing.   Since   Venus'   orbital   period   was   225   days   it   was   preferable   to   
capture   the   ephemeris   data   after   every   10   days.   Thus,   every   run,   with   the   NN   model,   will   have   
three   sets   of   data   that   have   a   time   difference   of   10   days   with   respect   to   the   initial   conditions   
(position   and   velocity).     
  

The   process,   with   data   setup   for   the   NN   model,   will   be   as   follows:   
● Use   JPL   Horizons   web   page   to   capture   ephemeris   data   for   both   Venus   and   Saturn,   at   

different   time   stamps   (10   day   difference).   
● Insert   the   position   component   values   of   Venus,   of   day   one,   into   the   ‘Pos1’   variable   in   

Matlab,   and   the   last   time   stamp’s   position   component   values   of   Saturn’s   into   the   ‘Pos2’   
variable   in   Matlab.   (Also   modify   the   comments   and   change   script   names   accordingly.)   
The   code   will   add   in   the   randomly   selected   offsets   along   Venus’   and   Saturn’s   periapsis.     

● Insert   the   ‘Pos1’   and   the   first   row   of   values   (which   are   the   initial   velocity   components   
associated   with   ‘Pos1’)   in   the   ‘temp’   variable   (solved   by   Lambert’s   problem   in   Matlab)   
to   GMAT’s   spacecraft   setup.     

● Run   the   GMAT   script   to   backprop   for   10   days.   (This   is   consistent   with   the   setting   of   the   
overall   problem,   where   the   spacecraft   is   in   interplanetary   transit   before   committing   to   the   
swingby   trajectory   about   the   Sun   and   Venus.)   

● Then   in   two   separate   scripts   (with   and   without   Sun)   use   the   position   and   velocity   values   
at   the   end   of   the   backprop   and   use   it   as   the   initial   conditions   for   the   spacecraft   setup.     

● The   data   is   captured,   split   and   titled   appropriately   to   be   fed   to   the   NN   model.     
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The   figures   below   depict   only   one   of   the   runs   (the   third   ephemeris   data   set)   of   this   repetitive   
process.   
  
  
  
  
  

  
  

Once   the   excel   files   are   downloaded   with   the   ephemeris   data,   then   the   first   time   stamp   of   Venus’   
and   the   last   time   stamp   of   Saturn’s   (from   each   data   set)   is   used   for   the   Lambert's   problem   in   
Matlab   (‘Pos1’   and   ‘Pos2’   respectively).   Keep   in   mind   that   one   script   must   be   created   for   each   
data   set,   thus   for   this   first   run,   there   are   a   total   of   three   Matlab   scripts.   Please,   refer   to   section   
4.1.1   where   Lambert's   problem   in   Matlab   has   been   discussed.   The   only   objects   that   will   be   
modified   are   the   three   values   within   the   array   for   ‘Pos1’   and   ‘Pos2’   of   that   script   (besides   the   
obvious   comments   and   title   of   the   saved   file).     
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 Figure   156 :   JPL   Horizons   web   page   complete   setup   for   Venus’   and   Saturn’s   ephemeris   data.   Note   that   
the   date   is   set   at   2022-01-20   instead   of   2022-01-01   as   stated   in   section   4.1.1.   This   is   the   third   data   set   
to   be   used   for   training   the   NN   model.   The   1st   data   set   was   between   2022-01-01   and   2027-01-01   and   
the   second   data   set   was   between   2022-01-10   and   2022-01-10.   Note   that   the   only   items   that   change   are   
the   planet   (in   ‘Target   Body’)   and   the   time   span.     



  

Next,   in   GMAT,   a   backprop   script   for   each   data   set   is   set   up   to   find   the   actual   initial   conditions   
of   the   spacecraft   before   it   enters   the   sphere   of   influence   of   Venus.   However,   due   to   time   
constraints,   only   one   of   the   runs   will   be   discussed   throughout   this   section.     
  
  
  
  
  

  
  
  

The   final   position   and   velocity   component   values,   from   the   back   propagation   run,   are   used   in   
another   GMAT   script’s   spacecraft’s   initial   conditions;   for   which   its   data   will   be   used   for   the   NN   
model   training.   There   will   be   two   scripts   for   each   of   the   backprops’   final   values   -   with   and   
without   Sun’s   influence.   Thus,   a   total   of   six   runs   will   have   been   completed   for   the   first   training   
of   the   NN   model.     
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 Figure   157 :   Backpropagation   for   the   third   data   set   (pertaining   to   the   ephemeris   dates   of   2022-01-20   to   
2027-01-20).   Sun   is   used   for   this   part   of   the   analysis   for   consistency   sake,   and   is   selected   as   a   point   
mass   in   the   ‘SaturnTransferProp’   under   the   ‘Propagators’   branch   in   the   ‘Resources’   tab.   The   
‘Toggle1’   has   the   ‘ReportFile1’,   sun   centered   and   spacecraft   orbital   views   turned   on.   
‘Back_Propagate4’   uses   the   ‘SaturnTransferProp’   as   its   propagator,   the   back   propagation   option   is   
selected,   ‘Elapsed   Days’   is   selected   as   the   parameter   and   its   associated   condition   is   ‘-10’.     



  

  
  

Don’t   forget   to   change   the   associated   date   with   the   initial   conditions   at   the   end   of   the   10   day   
back-prop.   For   example:   After   back-propping   from   01   Jan   2022   for   10   days,   the   end   date   is   22   
Dec   2021.   The   latter   will   be   the   start   date   (epoch)   for   the   initial   conditions   of   the   spacecraft   in   
the   script   presented   in   Figures   158   and   159.     
  

The   same   is   done   for   the   simulation   without   the   Sun,   but   the   only   difference   is   unselecting   the   
Sun   as   a   point   mass   (but   keeping   Venus)   in   the   ‘Venus_Centered_Prop’   propagator.     
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 Figure   158 :   Propagation   for   157   days,   with   Sun   and   Venus,   in   GMAT.   Propagator   selected   is   the   
‘Venus_Centered_Prop’.   Note   the   control   logic   (while   loop)   used   in   the   mission   sequence.   The   
condition   statement   has   ‘Elapsed   Days   <   157   days’   and   within   it   has   the   output   report   file   and   the   
propagation   set   at   ‘Elapsed   Days   =   1’.   Thus,   each   day’s   velocity   and   position   component   values   are   
documented   in   the   output   file   for   157   days.   Note   that   the   operator   must   specify   what   the   ‘ReportFile’   
must   have   as   outputs   (as   shown   in   section   4.1.2).     



  

  
  

Once   all   six   simulation   runs   are   complete   (with   and   without   Sun   simulation   runs   for   each   of   the   
three   different   initial   conditions   with   respect   to   the   ephemeris   data),   it   is   time   for   data   
pre-processing   and   NN   training.   
  
  
  
  
  
  
  
  

150   

 

 Figure   159 :   Third   simulation   run   without   Sun   in   GMAT.   This   is   after   using   JPL   Horizons   web   page   to   
gather   ephemeris   data   on   2022-01-20   to   2027-01-20   (for   both   Venus   and   Saturn),   incorporating   
Lambert’s   solver   in   Matlab,   and,   eventually,   backpropagating   (for   10   days)   in   GMAT   to   gather   the   
actual   initial   conditions   for   this   simulation.   Note   that   the   spacecraft   starts   at   some   point   outside   the   
sphere   of   influence   of   Venus.   Note   the   animation   panel   in   the   taskbar   above    -   can   be   used   to   run   the   
trajectory   in   real   time   after   the   simulation   run   is   complete.     



  

Chapter   5   -    NN   Training   and   Burn   Analysis   
  

5.1   GMAT   Data   and   NN   Setup   and   Training   

5.1.1   Background   

Chapter   5   presents   the   revised   setup   of   the   NN   model   prematurely   established   in   Chapter   
3,   section   3.3.1.   The   final   setup   of   the   NN   model   was   divided   into   the   following   sections   (also   
visibly   structured   as   such   in   the   .ipynb   files.):   

● Importing   all   necessary   libraries   
● Mounting   Google   Colab   to   Google   Drive   to   upload   data   (data   was   stored   as   .csv   

files   in   Google   Drive’s   folders)   
● Describing   and   visualizing   data   (used   Panda   and   plotting   libraries)   
● Splitting   data   between   input(X)   and   output(Y).   (There   are   three   datasets,   so   each   

was   split   accordingly   to   represent   :   unperturbed   (X)   and   perturbed   (Y).)   
● Normalizing   (or   scaling,   depending   on   application)   data’s   features.   (There   are   

many   techniques   so   choose   with   respect   to   whether   or   not   covariance   of   each   
feature   must   be   preserved   and/or   whether   or   not   a   gaussian   distribution   is   
necessary).   

● Reshaping   the   split   data   from   2D   to   3D   (due   to   LSTM   layers   in   model).   
● Creating,   training,   and   evaluating   the   model.   
● Interpreting   the   weights   
● Plotting   the   weights   
● Plotting   the   perturbations   (   for   both   position   and   velocity)   

  
Chapter   5   includes   a   more   thorough   discussion   of   scaling   and   normalizing   data,   as   well   

as   the   optimization   techniques   used   to   enhance   the   overall   performance   of   the   LSTM   model.   For   
example,   due   to   contradicting   articles,   there   was   a   misunderstanding   that   there   was   no   difference   
between   normalization   and   scaling   of   data.   A   thorough   description   is   provided   in   section   5.1.2,   
of   how   based   on   data   visualization   and   whether   preserving   co-variance   is   critical,   can   one   select   
between   the   two   options.   Another   misunderstanding   was   the   irreproducibility   of   the   NN   model   
using   a   Keras   wrapper.   This   is   because   Keras’s   backend   engine   (Tensorflow)   has   a   random   seed   
initializer   that   affects   the   training   process   of   the   kernels   (weights).   Initially,   it   caused   a   lot   of   
frustration   and   anxiety   but   once   it   was   understood   that   as   long   as   the   model   retained   90th   
percentile   accuracy   for   training,   validation   and   testing,   a   precise   and   robust   model   was   preferred.   
Using   an   API,   like   Keras,   may   seem   convenient   at   first   when   starting   out,   but   proves   to   be   
constraining   depending   on   the   problem.   For   instance,   a   sequential   model   lacks   the   flexibility   that   
a   functional   model   has   (also   further   discussed   in   section   5.1.2),   and   stating   the   activation   
functions   of   an   LSTM   model   only   affects   the   input   gates.   Fortunately,   other   means   were   
discovered   to   improve   the   performance   results   of   the   NN   model,   but   such   considerations   were   
stated   under   section   6.1.2   as   future   works.   

  
   Chapter   3   provided   an   initial   setup   of   the   model,   however   many   changes   have   been   

done   due   to   the   further   understanding   of   certain   concepts.     
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5.1.2   Modifications   and   Considerations   done   for   NN   model   

Many   changes   have   been   made   since   the   first   trial   run   in   the   last   section   of   chapter   3;   
they   are   as   follows:   

● The   addition   of   data   visualization   techniques   (to   better   understand   whether   the   data   has   a   
Gaussian   shape   or   not).   Skewed   and   Gaussian   distributions   are   analyzed   via   the   central   
tendency   and   median,   respectively.   Most   ML   algorithms   and   NNs   prefer   data   to   be   
Gaussian   distributed.   It   is   also   a   good   indicator   on   which   normalization   or   scaling   method   
to   use   based   on   how   the   data’s   spread   displays   after   the   use   of   such   tools.     

● Introduced   accuracy   for   the   regression   model.   (Using   the   default   accuracy   in   Keras;   
which   is   fine   for   both   categorical   or   regression   based   data.   This   is   determined   by   
investigating   its   formulation.)   

● Tested   various   optimizers   (Adam,   SGD   -   with   momentum   and   velocity   aspects,   cosine   
decay,   exponential   decay   and   inverse   time   decay)   and   found   it   was   effective   to   stick   with   
Adam.   Adam   combines   RMSProp,   Momentum,   AdaGrad,   and   bias   corrections   to   prevent   
the   convergence   of   the   learning   model   to   a   local   minima   instead   of   the   desired   minima.   
Furthermore,   the   conclusion   of   the   tests   proved   that   the   optimizer   did   not   significantly   
improve   the   performance   of   the   model,   but   rather   introducing   a   drop   rate   regularizer,   
reshaping   the   data   (one-to-one   versus   many-to-many),   introducing   a   ‘Time-Distributed’   
layer,   and   reducing   the   number   of   LSTM   stacked   layers   and   cells   did.   The   later   sections   
of   this   chapter   will   look   into   the   performance   of   the   model   with   different   conditions   and  
when   more   features   are   added.   

● Keras/Tensorflow   algorithms   have   random   seed   initialization   for   the   weights   after   
resetting   the   Jupyter   notebook.   Thus,   every   run,   despite   the   same   conditions,   would   
produce   a   slightly   different   variation   than   its   predecessor.   Since   a   robust   model   is   
preferred,   it   was   kept   as   is.   

● Scaling   the   data   between   -1   and   1   instead   of   between   0   and   1.   (This   is   because   the   
LSTM’s   forget   gate   will   toss   values   that   render   the   weights   0;   for   they   are   perceived   as   
uncritical   to   the   overall   learning   process.   Also,   the   raw   values   of   positions,   and   velocities,   
do   go   in   the   negative   range.)   

● Normalizing   the   data   instead   of   just   scaling   it.   (It   was   initially   perceived   that   the   
formulation   used   for   the   ‘Normalization’   section   of   the   first   code,   shown   in   section   3.3.1,   
was   for   normalization.   This   confusion   was   due   to   the   fact   that   oftentimes   in   mathematics,   
normalization   and   scaling   formulations   were   used   interchangeably.   Oftentimes,   certain   
ML   articles   would   place   normalization   and   scalers   under   one   umbrella   called:   ‘Scaling   
Tools’.   However,   in   data   science   and   statistics,   they   are   different   and   are   selected   per   the   
data’s   visuals.   For   instance,   if   the   data   had   a   Gaussian   shape,   then   a   normalization   
technique   was   used.   However,   in   this   study,   regardless   of   the   data’s   shape,   it   will   end   up   
normalized.   This   is   because   the   kernel   (weight)   initializers   are   Gaussian   shaped   and   
co-variance   within   each   feature   needs   to   be   preserved.   One   of   the   sklearn   tools   for   
centralized   ‘feature   scaling’   is   normalization   via   Z-score   (or   standard   score)   [39].   Popular   
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forms   of   feature   scaling   data,   from   sklearn   library,   are:   StandardScaler   (or   standard   
normalization   per   feature),   MinMaxScaler   (scales   every   feature   between   any   specified   
range   -   usually   (0,1)   and   (-1,1))   and   RobustScaler.   Furthermore,   normalization   changes   
the   overall   shape   of   the   data,   while   scaling   it   adjusts   the   range   of   the   domain   (and   
dataset).   Features   that   contain   a   higher   magnitude   of   variance   tend   to   dominate   the   
learning   process;   hence,   it   is   ideal   to   ensure   that   all   the   features’   covariance   is   preserved   
even   when   scaled   within   a   range   of   (-1,1).   Regularizers   and   initializers   within   any   ML   
package   assume   that   the   data   given   has   undergone   some   form   of   normalization   or   scaling   
in   order   to   speed   up   the   convergence   and   learning   process.   Due   to   the   activation   
functions   used   (especially   since   LSTM   gates   have   tanh   and   sigmoid   functions),   the   
maximum   range   (of   the   normalized   values)   acceptable   is   between   -1   and   1.   The   basic   
forms   of   scaling   and   normalization   are:   

○ Standardization   (StandardScalar):   feature   based   sklearn   tool   and   it   normalizes   
with   respect   to   a   data’s   z-score.   Also,   called   standard   normalization   and   seeks   to   
centralize   the   data   set   (mean   =   0   and   unit   variance).   Thus,   the   original   variance   of   
the   dataset   may   be   altered.     

■ Formula:                                              ( 25)     [40]    x′ = σ
x  x−  

○ Mean   normalization   :    Data   distribution   will   be   transformed   to   a   gaussian   
distribution   and   a   range   of   (-1,   1).    The   covariance   of   the   features   is   preserved.     

■ Formula   :                                  ( 26)     x′ = x  x−
xmin  xmax−   

○ Min-max   scaling   (MinMaxScaler)   :   feature   based   scaling   sklearn   tool,   where   the   
feature   range   is   flexible   (such   as   between   [0,1]   or   [-1,1])   and   covariance   is   not   
preserved.   

■ Formula   :                                  ( 27)     x′ = x  xmin−
xmin  xmax−   

○ Unit   vector   :   scaling   done   with   respect   to   a   feature’s   unit   length   and   covariance   is   
preserved.     

■ Formula   :                                                   ( 28)     x′ = x 
∣x∣∣ ∣   

  
● Instead   of   dividing   a   whole   data   set   between   just   tests   and   training   with   the   scikit-learn   

tools   (as   was   shown   in   section   3.3.1).   Three   separate   data   sets   for   all:   training,   validation   
and   testing   are   used.   This   is   to   ensure   the   same   level   of   complexity   in   each,   thus   
improving   the   overall   performance   of   the   model.     

●   Initially   it   was   presumed   that,   due   to   the   seq2seq   comparisons   between   input   training   
and   label   (output   training),   and   the   result   of   the   MinMaxScalar   giving   equal   values   (per   
feature)   at   certain   time   steps,    that   normalizing   the   whole   dataset   was   the   ideal   solution.   
However,   upon   visualizing   the   different   scaling   and   normalization   techniques,   it   became   
clear   that   per   feature   normalization   was   the   correct   method   to   use.    Afterall,   the   central   
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tendency   of   each   feature   must   be   preserved   to   render   a   more   accurate   ‘understanding’   
from   the   NN   model.    

● May   have   to   forgo   the   ‘relu’   (or   ‘leaky   relu’)   activation   functions   and   replace   them   with   
the   default   activations   of   LSTMs   or   using   ‘tanh’   instead.   The   ‘activation’   and   
‘recurrent_activation’   parameters   are   the   input   gates’   activation   functions.   There   is   a   
concern   that   the   ‘relu’   and   ‘leaky   relu’   activations   will   explode   or   vanish   the   input   values   
at   an   accelerated   pace.   Thus,   preventing   the   LSTM   model   from   actually   learning.   
Furthermore,   there   is   a   growing   uncertainty   on   whether   or   not   the   LSTM   input   gates   
change   to   ‘relu’   when   using   Keras   to   modify   their   activations   (remember   there   are   four   
activation   gates   total   but   two   are   used   simultaneously   as   ‘inputs’,   and   the   other   two   are   
‘forget’   and   ‘output’).   This   will   be   further   explored   in   the   chapter.   

● Increasing   the   number   of   features   eventually   does   increase   the   performance   of   the   NN   
model.   Thus,   may   have   to   update   the   number   of   features   from   three   (position   
components)   to   six   (velocity   and   position   components).     

● May   or   may   not   end   up   using   autoencoders   to   capture   the   ‘learned   representation’   of   the   
solar   perturbations.   

● Overfitting   is   also   where   the   NN   model   successfully   learns   the   pattern   of   a   particular   
dataset   and   would   use   it   as   a   reference   when   exposed   to   other   data.   This   should   be   
avoided   since   the   NN   model   is   expected   to   be   flexible   and   have   a   more   generalized   and   
continuous   approach   when   exposed   to   different   types   of   data.     

● Can   only   use   the   ‘stateful’   or   ‘return_state’   attributes   of   a   LSTM   layer   when   using   a   
functional   model   setup   (not   a   sequential   -   as   was   done   for   this   project).   This   is   because   
the   sequential   model   only   accepts   single   array   outputs   in   between   layers   -   not   multiple.   
The   ‘return_sequences’   may   be   used   for   a   sequential   model.     

● Adding   a   layer   in   a   model   impacts   the   learning   rate   and   batch   size   for   training.   
● The   basic   steps   to   prevent   overfitting   (training   loss   much   larger   than   the   validation   loss)   

and   underfitting   (validation   accuracy   higher   than   training   accuracy)   are   the   following:   
○ Increase   the   number   of   data   points   (for   all   training,   testing   and   validation).   
○ Decrease   the   number   of   layers   and   total   number   of   cells   per   layer   (start   small   

first).     
○ Modify   the   data   structure.   For   instance,   since   LSTM   is   used,   the   data   must   be   

represented   in   3D   (number   of   samples,   number   of   timesteps,   number   of   features).   
However,   when   dealing   with   prediction   time   series   based   data   there   are   different   
ways   in   which   the   data   is   structured   that   controls   when   and   how   the   NN   is   
expected   to   predict   its   outputs.   Those   ways   are:   one-to-one,   one-to-many,   
many-to-one   and   many-to-many   [41].   Due   to   the   context   of   the   data,   the   only   
options   are   :   one   to   one   and   many   to   many.   Each   time   step   has   its   associated   
position   and   velocity   vectors,   and   are   dependent   on   one   another.   One-to-one   is   
where   every   sample   of   input   and   output   will   only   have   one   time   step   (for   
predictive   comparisons),   and   many-to-many   is   where   every   sample,   for   input   and   
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output,   has   many   time   steps.   (The   terms   input   and   output   used   in   this   paragraph   
are   X   and   Y,   respectively;   where   X   is   the   input   and   Y   is   the   label   or   desired   value   
within   all   training,   validation   and   test   datasets.)   In   section   3.3.1   the   training   
sample   shown   used   one-to-one.   This   section,   as   well   as   the   upcoming   ones,   will   
be   using   many-to-many.   This   is   because   the   NN   must   understand   that   the   time   
steps   are   dependent   on   one   another   in   every   iteration   (back   +   forward   
propagation)   it   completes   for   every   epoch.   Thus,   the   flow   of   information   will   flow   
across   the   time   steps   instead   of   just   understanding   one   particular   time   step   at   
every   epoch.   The   latter   is   the   nature   of   what   a   one-to-one   setup   is,   while   the   
former   is   the   many-to-many.   

○ Modify   the   learning   rate   and/or   optimizer   selected.   (Rule   of   thumb,   start   off   with   
Adam   (as   the   optimizer)   and   a   learning   rate   of   0.001   or   0.0009).   Increase   or   
decrease   the   learning   rate   when   the   training   loss   curves   are   linear   or   plateaus   
early,   respectively.   

○ Increase   or   decrease   the   batch   size.  
○ Introduce   a   regularizer.   There   are   many   to   choose   from   so   select   one   based   on   the   

type   of   NN   model.   LSTM   is   this   study’s   model,   so   drop   out   rate   and   kernel   
regularizers   within   the   LSTM   layers   can   be   used.   However,   start   slow   by   
introducing   one   layer   of   drop   out   and   adjust   its   hyperparameter.   Furthermore,   the   
forget   gate   in   the   LSTM   cell   behaves   as   a   regularizer.     

  
  
  

5.1.3   GMAT   Data   Preparation   

This   section   will   show   how   the   data   looks   before   being   fed   to   the   NN   model.   The   
integrated   development   environment   (IDE),   in   which   the   Keras/Tensorflow   packages   are   being   
used,   is   Jupyter   Notebooks   via   Google   Colabs.   Thus,   all   the   data   and   the   code   used   to   establish   
the   NN   model   and   its   training   are   hosted   within   one’s   own   Google   Drive.   Google   Colab   is   a   
feature   of   Google   Drive   and   uses   Jupyter   Notebooks   as   its   IDE.     
  

Note   that   there   are   three   different   sets   of   GMAT   data   that   will   be   fed   to   the   NN   model   (via   
Google   Colab   and   Google   Drive).   Each   data   set   has   perturbed   and   unperturbed   values   for   all   
cartesian   components   for   position   and   velocity.   This   setup   is   done   in   this   manner   in   hopes   of   
retrieving   the   perturbation   values   indirectly.   The   while   loop   used   in   the   mission   sequence   in   
section   4.1.5   ensures   that   data   collected   in   equal   time   steps   (which   is   important   in   LSTM   
models).     
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Each   file   will   have   all   six   features:   X-position,   Y-position,   Z-position,   X-velocity,   Y-velocity,   
and   Z-velocity,   as   well   as   time.   In   the   earlier   figures   for   GMAT   setup,   throughout   chapter   4,   the   
time   parameter,   UTC   Gregorian,   was   added   to   the   list   of   outputs   within   the   report.   The   time   
parameter   ensures   that   the   timesteps   are   consistent   and   equal   across   all   data   sets.   The   differences   
between   the   vector   components   will   be   based   on    its   initial   conditions   (of   their   associated   GMAT   
script),   and   whether   or   not   the   Sun’s   influence   is   present.   The   training,   validation   and   testing   data   
sets   require   an   input   (unperturbed)   and   output   (perturbed)   for   every   time   step   (in   an   LSTM   time   
series   sequence   to   sequence   prediction   NN   modeling).   Thus,   three   data   sets   that   have   
unperturbed   and   perturbed   values   for   each   time   step   will   be   uploaded   to   Google   Colab.     
  

Initially,   due   to   the   fear   of   exploding   and   vanishing   gradients,   position   and   velocity   components   
were   trained   separately   (as   shown   in   section   3.3.1).   However,   it   became   clear   that   the   model   
requires   more   training   data,   as   well   as   features   to   improve   performance.   Also,   normalization   
techniques,   as   well   as   LSTM   cell   gates   and   its   memory   (c-channel)   and   hidden   (h-channel)   states   
prevent   the   occurrence   of   exploding   and   vanishing   weights.     
  

Yet,   for   consistency’s   sake,   a   comparison   with   respect   to   the   NN   model’s   performance   when   
training   with   position   only   versus   position   and   velocity   will   be   done.   All   files   are   saved   and   
uploaded   (to   a   folder   in   Google   Drive)   in   .csv   format,   and   the   Google   Colab   files   (.ipynb)   are   
saved   in   a   separate   folder.   It   is   important   to   have   only   folders   at   the   opening   home   page   of   one's   
Google   Drive;   it   helps   to   reduce   complications,   in   data   retrieval,   when   running   the   NN   model.   
  

For   simplicity’s   sake,   it   is   advisable   to   use   the   same   number   of   time   steps   for   unperturbed   and   
perturbed   data   sets.   Next,   each   initial   condition,   with   respect   to   the   ephemeris   data,   will   have   its   
own   .csv   file   of   perturbed   and   unperturbed   data.   Thus,   there   will   be   a   total   of   three   datasets   (for   
every   NN   run)   to   accommodate   the   required   training,   validation   and   testing   phases   of   the   
learning   process.     
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 Figure   160 :   Files   found   in   the   ‘outputs’   folder   after   being   created   in   a   GMAT   script.   These   output   files   
can   be   found   under   the   ‘GMAT’   folder   on   one's   PC.   The   GMAT   scripts   can   be   found   under   the   
‘Reports’   folder   in   the   ‘GMAT’   directory.   Note   that   there   are   six   files   for   the   three   time   stamps   selected   
with   respect   to   the   ephemeris   data.     



  

  
  

  
Next,   save   the   files   in   .csv   format   and   upload   them   to   a   folder   in   Google   Drive.   Create   a   folder   
for   the   Google   Colab   notebooks,   and   import   all   necessary   libraries.   Before   running   the   code   
make   sure   that   the   hardware   accelerator   selected,   under   ‘Notebook   Settings’   and   ‘Edit’   tab,   is   
‘GPU’   and   not   ‘CPU’.   This   allows   the   operator   to   use   the   cloud’s   GPU   to   run   the   training   of   the   
NN   model.   After   a   run   is   complete,   an   operator   can   select   ‘Factory   Reset   Runtime’   or   ‘Restart   
Runtime’,   under   the   tab   ‘Runtime’,   and   reload/refresh   the   page   to   erase   the   previous   run’s   data.   
Also,   before   refreshing/reloading   the   page,   it   is   advisable   to   access   one’s   browser’s   settings   and   
delete   all   cache   and   cookies   (found   under   security).   This   technique   starts   over   the   training   with   a   
different   random   seed   initializer,   and   prevents   interference   from   the   previous   run’s   results.     
  

There   are   times,   due   to   high   traffic   in   the   cloud,   that   Google   Colab   cannot   use   a   GPU   on   standby.   
In   such   a   case,   it   is   acceptable   to   allow   the   Jupyter   notebook   to   select   another   source   by   default   
or   one   can   select   ‘TPU’   instead   under   the   ‘Notebook   Settings’.     
  

The   full   code   can   be   viewed   in   Appendix   B.     
  
  

5.1.4   Data   Visualization   of   the   Data   Frame   

Pandas,   seaborn,   plotly,   and   matplotlib   are   some   of   the   main   libraries   used   to   visualize   
any   parts   of   the   data.   Visualizing   the   training   and   test   datasets   determine   whether   or   not   the   data   
has   a   normal   (Gaussian)   distribution   or   not.   If   the   training   or   testing   data   sets   have   a   normal   
distribution   then   use   the   standardization   method   if   not,   then   scaling   the   data   (such   as   the   

157   

 Figure   161 :   Excel   sample   image   of   the   third   dataset   to   be   used   for   NN   training.   Only   the   first   15   points   
are   shown.   Note   the   labeling   of   (UX   =   Unperturbed   in   the   X   position,   UY   =   Unperturbed   in   the   Y   
position,   and   UZ   =   Unperturbed   in   the   Z   position,   PX   =   Perturbed   in   the   X   position,   PY   =   Perturbed   in   
the   Y   position   and   PZ   =   Perturbed   in   the   Z   position)   the   perturbed   and   unperturbed   based   data   for   
positions   only.     



  

MinMaxScalar   method)   is   advisable.   However,   the   only   way   to   determine   which   method   works   
best   is   to   test   using   all   applicable   methods   and   view   how   each   affects   the   data’s   distribution.   The   
latter   can   be   standardized   but   may   not   produce   reliable   results   [42].   Combining   scaling   and   
normalization   of   a   dataset   indicates   that   whichever   process   was   last   would   dominate   the   overall   
shape   of   the   data’s   distribution.   Sometimes   certain   features   will   have   higher   variance   than   others,   
and   those   will   dominate   the   training   process   due   to   higher   valued   weights.   For   this   study,   the   
data’s   spread   is   important   and   must   be   preserved.   Thus,   normalization,   specifically   either   mean   
or   unit   norm   normalization   became   the   ideal   choices   [43].     
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 Figure   162 :   Training   dataset   distribution   of   every   feature   using   Seaborn   library.   Note   the   skewed   
behavior   of   the   features.     

  

 Figure   163 :   Overall   distribution   of   all   the   features   in   the   training   dataset,   also   using   seaborn   library.   



  

  
  
  
  

5.1.5   Data   Scaling   and   Normalization   

The   sklearn   libraries   are   used   to   normalize   and   scale   features   of   any   numerical   based   dataset   
(keep   in   mind   that   an   ‘axis   =   0’   are   the   columns/features   and   an   ‘axis   =   1’   are   the   rows/samples   -   
only   in   this   context).    Matrices   or   multi-dimensional   arrays   and   Pandas   dataframes   have   indices   
(index   per   row)   and   so   do   lists   (non-homogenic   1-D   set   of   data).   Indices   are   what   is   used   in   ‘for’   
loops.   Scaling   and   normalizing   data   speeds   up   the   learning   process   (digestible   to   the   learning   
model)   and   promotes   convergence.   The   tricky   part   is   figuring   out   what   and   how   to   apply   the   
scale   and/or   normalization   tools.   This   dataset   is   unique   because   the   unperturbed   components   
(UX,   UY,   UZ,   UVX,   UVY,   and   UVZ)   are   interdependent   on   one   another,   and   same   with   the   
perturbed   components   (PX,   PY,   PZ,   PVX,   PVY,   and   PVZ).   The   unperturbed   and   perturbed   
components   are   input(X)   and   output/label(Y),   respectively.   Initially,   the   MinMaxScalar()   was   
used,   which   scales   each   feature   (column)   of   the   given   dataframe,   without   normalizing   the   scaled   
data   (which   was   a   mistake).   Furthermore,   it   is   advisable   to   not   normalize   and   scale   any   whole   
dataset   before   splitting   them.   For   this   analysis,   there   are   three   datasets   :   training,   validation   and   
testing,   and   each   was   mean-normalized   per   feature   after   splitting   the   data   between   input(X)   and   
output/label(Y).   The   visuals   are   shown   below   in   Table   2.   
  

The   results   for   each   can   be   viewed   after   running   code,   shown   in   Appendix   B,   in   a   Jupyter   
Notebook/Google   Colab   platform.     
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 Figure   164 :   3-D   plotting   of   the   training   dataset   using   matplotlib.   The   blue   and   orange   curves   are   the   
unperturbed   and   perturbed   trajectories,   respectively.   



  

  
Table   5.2.   Types   of   scaling   and   normalization   methods   and   sample   plots.   
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Plots   Notes   

  

● X1   (input   training   data)   
● Normalization   
● Method:   Mean   normalization   
● Not   provided   by   sklearn   
● Bi-modal   behavior   
● Range   is   within   (-1,   1)   
● Co-variance   is   preserved   
● Optimal   choice   to   use   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

● Y1   (output   training   data)   
● Normalization   
● Method:   Mean   normalization   
● Not   provided   by   sklearn   
● Bi-modal   behavior   
● Range   is   within   (-1,   1)   
● Co-variance   is   preserved   
● Optimal   choice   to   use   
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● X1(input   training   data)   
● Scaler   
● Method:   Scale   
● Offered   by   sklearn   
● Range   is   higher   than   (-1,   1)   
● Bi-modal   behavior   
● Co-variance   has   been   modified   
● Not   an   optimal   choice   

 

● X1   (input   training   data)   
● Scaler   
● Method:   MinMaxScalar   
● Offered   by   sklearn   
● Range   is   set   at   (-1,   1)   
● Co-variance   has   been   modified   
● Bi-modal   behavior   (but   more   skewed   

than   others)   
● Not   an   optimal   choice,   despite   being   

within   the   range   due   to   having   equal   
values   to   that   of   some   of   the   features   
in   Y1(output   training   data).   This   is   
due   to   its   formulation.   
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● X1   (input   training   data)   
● Normalization   
● Method:   StandardScalar   
● Offered   by   sklearn   
● Bi-modal   behavior     
● Co-variance   is   semi-preserved   
● Range   is   outside   (-1,   1)  
● Not   an   optimal   choice   

 

● X1   (input   training   data)   
● Normalization   
● Method:   PowerTransformer   

(‘yeo-johnson’   and   not   ‘box-cox’   
because   the   former   accepts   negative   
and   positive   values,   while   the   other   
only   accepts   positive   data.)   

● Offered   by   sklearn   
● Bi-modal   behavior   
● Co-variance   is   semi-preserved   (since   it   

has   a   standardization   attribute   that   is   
set   to   ‘True’   by   default.)   

● Range   is   outside   (-1,   1)  
● Not   optimal   choice   
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● X1   (input   training   data)   
● Normalization   
● Method:   Normalizer   
● Offered   by   sklearn   
● Normalizes   only   the   samples   (rows)   -   

but   study   needs   normalization   per   
feature   (columns).     

● Range   is   within   (-1,1)   
● Not   optimal   choice   

 

● X1   (input   training   data)   
● Normalization   
● Method:   QuantileTransformer   
● Offered   by   sklearn   
● Range   is   (0,1)   
● Uniform   distribution   for   all   features   
● Not   an   optimal   choice.   
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● X1   (input   training   data)   
● Normalization   
● Method:   PCA     
● Also   called   ‘data   whitening’   method,   

for   it   centralizes   data   but   loses   the   
variance   distribution   (spread)   of   the   
overall   data.   It   erases   outliers.     

● Can   be   computational   heavy   and   take   
up   a   lot   of   RAM   space.   

● Offered   by   sklearn   
● Range   is   outside   (-1,1)  
● Uniform   distribution   for   all   features   
● Not   an   optimal   choice.   

  

● X1   (input   training   data)   
● Normalization   
● Method:   Normalize   
● Also   called   ‘unit   normalization’   or   

‘unit   norm’   in   statistics.   
● Offered   by   sklearn   
● Range   is   outside   (-1,1)  
● Bi-modal   behavior   
● Co-variance   is   preserved   
● Is   an   optimal   choice.   (But   will   keep   it   

in   mind   for   future   works).   
  
  
  
  
  

● Y1   (output   training   data)   
● Normalization   
● Method:   Normalize   
● Also,   called   ‘unit   norm’   by   staticians.     
● Offered   by   sklearn   
● Bi-modal   behavior   
● Range   is   within   (-1,   1)   
● Co-variance   is   preserved   
● Optimal   choice   to   use   (But   will   keep   it   

in   mind   for   future   works).   
  



  

  
  
  

Mean   normalization   is   the   method   used   to   normalize   the   datasets.   Input   and   outputs   must   be   split   
before   normalizing.   Since,   the   sklearn   library   did   not   offer   a   mean   normalization   equivalent,   a   
‘for   loop’   was   implemented   in   code   to   ease   the   per   feature   normalization   process.     
  

The   whole   code   can   be   viewed   in   Appendix   B.   
  

5.1.6   NN   Model   and   Training   Results   of   Three   Features     

The   data,   after   normalization,   must   be   reshaped   from   2D   to   3D.   The   LSTM   model   only   accepts   
3D   shaped   data.     
  

  
  

The   activation   parameters   in   the   NN   model   were   changed   to   the   ‘tanh’   (hyperbolic   tangent).   This   
is   because   after   every   epoch,   the   training   loss   values   would   fluctuate   between   high   and   low   
values   (i.e.   600   to   0.005).   Thus,   proving   that   the   ‘relu’   (and   most   likely   ‘leaky   relu’   as   well)   
would   cause   the   gradients   to   explode   and   vanish   at   an   accelerated   pace   and   overfitting   to   occur.   
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 Figure   165 :   Sample   of   code   for   shaping   data   for   LSTM   consumption.   This   is   done   in   
GoogleColab/Jupyter   Notebook   IDE.   The   data   has   been   divided   into   79   samples.   Each   sample   has   2   

time   steps.   And   each   time   step   has   3   features.     



  

  
  

  
  

Since   this   is   a   many-to-many   seq2seq   prediction   model   using   a   TimeDistributed   dense   final   
layer,   the   ‘return_sequences   =   True’   for   every   LSTM   layer.   If   the   last   layer   did   not   have   the   
‘TimeDistributed’   wrapper   then   the   last   layer   should   have   ‘return_sequences   =   False’.   The   
‘return_states’   and   ‘stateful’   are   used   together   and   can   only   be   set   to   true   when   the   
‘batch_input_shape’   attribute,   of   the   first   layer   in   the   sequential   model,   is   used   (instead   of   the   
‘input_shape’).   The   former   (‘return_sequences)   is   responsible   for   h-state   (hidden)   while   the   latter   
(‘stateful’   and   ‘return_states’)   is   for   the   c-state   (or   memory   channel)   outputs   in   between   LSTM   
layers.     
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 Figure   166 :   NN   sequential   model   and   compiler.   Note   that   it   is   slightly   cut   off   due   to   its   length   (the   rest   
can   be   seen   in   Appendix   B   or   an   associated   github   link   -   also   found   in   Appendix   B).   The   learning   rate,   
optimizer   and   loss/accuracy   metrics   are   defined   in   the   ‘compile’   command.      

 Figure   167 :   Sample   of   code   that   dictates   the   training   process   of   the   NN   model.   Note   code   cuts   off,   full   
version   can   be   viewed   in   Appendix   B   or   in   associated   github   link).   The   ‘callbacks’   code   shown   above   
can   be   used   to   stop   the   model’s   training   when   overfitting   occurs.   Thus,   it   will   stop   at   an   earlier   epoch   
than   initially   defined   (i.e.   epoch   =   1000   but   training   stops   at   around   200   epochs   instead).      



  

Table   5.3.     Training   and   validation   accuracy   and   loss   plots   for   positions   only.     
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Accuracy   and   Loss   Plots:   Conditions   and   Notes:   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):4,   2   and   
3.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY   and   PZ   only.   
● Data   shape:(79,   2,   3).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   7   (of   the   79   samples)   
● #   of   iterations   per   epoch:   12.   
● Training   stopped   at   249   epochs.   
● Training   loss   =   0.0013   
● Training   accuracy   =   97%   
● Validation   loss   =   0.003   
● Validation   accuracy   =   94%     
● Testing   accuracy   =   92%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):4,   2   and   
3.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY   and   PZ   only.   
● Data   shape:(79,   2,   3).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   1000   epochs.   
● Training   loss   =   2.95e-05   
● Training   accuracy   =   100%   
● Validation   loss   =   0.0012   
● Validation   accuracy   =   96%     
● Testing   accuracy   =   90%   
● Exact   match   between   predicted   and   

true   labels   :   82%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):4,   2   and   
3.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY   and   PZ   only.   
● Data   shape:(79,   2,   3).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   17   
● #   of   iterations   per   epoch:   5.   
● Training   stopped   at   588   epochs.   
● Training   loss   =   9.96e-04   
● Training   accuracy   =   97%   
● Validation   loss   =   0.0015   
● Validation   accuracy   =   97%     



  

 

 

One   can   evaluate   the   accuracy   of   the   algorithm   (NN   model’s   weights)   using   the   testing   data   via   
the   following   code:   
  

  

  

  

Objective   of   the   training   of   the   NN   model   for   3   features   has   been   achieved:   attaining   the   90th   
percentile   for   training,   validation   and   testing   accuracies.     
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 Figure   168 :   Evaluating   the   accuracy   of   the   model   using   Testing   data .     



  

5.1.7   NN   Model   and   Training   Results   of   Six   Features     

This   section   examines   NN   training   of   all   six   states   features   (position   and   velocity)   instead   
of   just   three   (position).   The   data   used   can   be   viewed   in   Appendix   C.   Data   was   also   
mean-normalized   per   feature.   The   goal   is   to   attain   training,   validation   and   testing   in   the   90th   
percentile.    (Note:   Testing   accuracy   was   between   55   and   65%   for   any   output   where   the   testing   
accuracy   was   not   mentioned.)   
  
  

Table   5.4.     Training   and   validation   accuracy   and   loss   plots   for   position   and   velocity.     
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Accuracy   and   Loss   Plots:   Conditions   and   Notes:   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):4,   2   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   874   epochs.   
● Training   loss   =   0.0031   
● Training   accuracy   =   80%   
● Validation   loss   =   0.0067   
● Validation   accuracy   =   75%     



  

171   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):5,   4   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   505   epochs.   
● Training   loss   =   0.0010   
● Training   accuracy   =   94%   
● Validation   loss   =   0.008   
● Validation   accuracy   =   84%     
● Testing   accuracy   =   72%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):7,   2   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   541   epochs.   
● Training   loss   =   0.0040   
● Training   accuracy   =   80%   
● Validation   loss   =   0.0068   
● Validation   accuracy   =   74%     
● Testing   accuracy   =   75%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   7   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   (of   the   79   samples)   
● #   of   iterations   per   epoch:   9.   
● Training   stopped   at   227   epochs.   
● Training   loss   =   0.0012   
● Training   accuracy   =   92%   
● Validation   loss   =   0.0047   
● Validation   accuracy   =   88%   
● Testing   accuracy   =   68%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   7   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   232   epochs.   
● Training   loss   =   0.0023   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0080   
● Validation   accuracy   =   85%   
● Testing   accuracy   =   72%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   7   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   361   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0080   
● Validation   accuracy   =   82%   
● Testing   accuracy   =   71%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   6   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   224   epochs.   
● Training   loss   =   0.0024   
● Training   accuracy   =   84%   
● Validation   loss   =   0.0064   
● Validation   accuracy   =   83%   
● Testing   accuracy   =   84%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   (of   the   79   samples)   
● #   of   iterations   per   epoch:   9.   
● Training   stopped   at   191   epochs.   
● Training   loss   =   0.0038   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0083   
● Validation   accuracy   =   83%   
● Testing   accuracy   =   74%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   248   epochs.   
● Training   loss   =   0.0022   
● Training   accuracy   =   88%   
● Validation   loss   =   0.0063   
● Validation   accuracy   =   77%   
● Testing   accuracy   =   67%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):9,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   392   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   92%   
● Validation   loss   =   0.0052   
● Validation   accuracy   =   86%   
● Testing   accuracy   =   77%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   356   epochs.   
● Training   loss   =   0.0013   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0058   
● Validation   accuracy   =   90%   
● Testing   accuracy   =   78%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   441   epochs.   
● Training   loss   =   0.0012   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0061   
● Validation   accuracy   =   82%   
● Testing   accuracy   =   70%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   4   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   313   epochs.   
● Training   loss   =   0.0018   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0068   
● Validation   accuracy   =   87%   
● Testing   accuracy   =   66%   



  

177   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   6   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   356   epochs.   
● Training   loss   =   0.0018   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0063   
● Validation   accuracy   =   85%   
● Testing   accuracy   =   72%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   7   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   372   epochs.   
● Training   loss   =   0.0018   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0058   
● Validation   accuracy   =   88%   
● Testing   accuracy   =   70%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):8,   7   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   406   epochs.   
● Training   loss   =   8.014e-04   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0052   
● Validation   accuracy   =   87%   
● Testing   accuracy   =   77%   

  
[Predictive   accuracy   =   51%]   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):7,   4   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   400   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0059   
● Validation   accuracy   =   84%   
● Testing   accuracy   =   68%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):7,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   (of   the   79   samples)   
● #   of   iterations   per   epoch:   9.   
● Training   stopped   at   271   epochs.   
● Training   loss   =   0.0024   
● Training   accuracy   =   88%   
● Validation   loss   =   0.0085   
● Validation   accuracy   =   78%   
● Testing   accuracy   =   66%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):7,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   481   epochs.   
● Training   loss   =   0.001   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0073   
● Validation   accuracy   =   85%   
● Testing   accuracy   =   72%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):7,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   (of   the   79   samples)   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   387   epochs.   
● Training   loss   =   9.13e-04   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0063   
● Validation   accuracy   =   85%   
● Testing   accuracy   =   66%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):6,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   232   epochs.   
● Training   loss   =   0.0036   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0077   
● Validation   accuracy   =   85%   
● Testing   accuracy   =   75%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):6,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   16   (of   the   79   samples)   
● #   of   iterations   per   epoch:   5.   
● Training   stopped   at   607   epochs.   
● Training   loss   =   0.0011   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0059   
● Validation   accuracy   =   91%   
● Testing   accuracy   =   72%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):10,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ    UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   (of   the   79   samples)   
● #   of   iterations   per   epoch:   6.   
● Training   stopped   at   431   epochs.   
● Training   loss   =   0.0011   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0051   
● Validation   accuracy   =   87%   
● Testing   accuracy   =   75%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   
● #   of   iterations   per   epoch:   7   .   
● Training   stopped   at   228   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0052   
● Validation   accuracy   =   83%     

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   
● #   of   iterations   per   epoch:   6   .   
● Training   stopped   at   257   epochs.   
● Training   loss   =   0.0025   
● Training   accuracy   =   85%   
● Validation   loss   =   0.0077   
● Validation   accuracy   =   81%     
● Testing   accuracy   =   72%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):18,   10   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   197   epochs.   
● Training   loss   =   0.0015   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0059   
● Validation   accuracy   =   82%     

  

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   12   
● #   of   iterations   per   epoch:   7.   
● Training   stopped   at   271   epochs.   
● Training   loss   =   8.35e-04   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0068   
● Validation   accuracy   =   84%     
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).(for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   15   
● #   of   iterations   per   epoch:   6   .   
● Training   stopped   at   240   epochs.   
● Training   loss   =   0.0018   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0051   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   69%   

  

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   333   epochs.   
● Training   loss   =   4.55e-04   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0052   
● Validation   accuracy   =   84%     
● Testing   accuracy   =   60%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   224   epochs.   
● Training   loss   =   0.0012   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0056   
● Validation   accuracy   =   85%     
● Testing   accuracy   =   74%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   10   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   136   epochs.   
● Training   loss   =   0.0023   
● Training   accuracy   =   94%   
● Validation   loss   =   0.0066   
● Validation   accuracy   =   88%     
● Testing   accuracy   =   72%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   12   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   111   epochs.   
● Training   loss   =   0.0028   
● Training   accuracy   =   92%   
● Validation   loss   =   0.0078   
● Validation   accuracy   =   87%     
● Testing   accuracy   =   73%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   16   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   130   epochs.   
● Training   loss   =   0.0023   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0064   
● Validation   accuracy   =   87%     
● Testing   accuracy   =   68%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   30,   16   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   101   epochs.   
● Training   loss   =   0.0024   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0064   
● Validation   accuracy   =   88%     
● Testing   accuracy   =   76%   

  

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   30,   22   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   107   epochs.   
● Training   loss   =   0.003   
● Training   accuracy   =   87%   
● Validation   loss   =   0.0087   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   81%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   30,   23   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   107   epochs.   
● Training   loss   =   0.0031   
● Training   accuracy   =   88%   
● Validation   loss   =   0.009   
● Validation   accuracy   =   88%     
● Testing   accuracy   =   79%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   36,   18   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   127   epochs.   
● Training   loss   =   0.0026   
● Training   accuracy   =   93%   
● Validation   loss   =   0.0078   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   73%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   36,   21   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   105   epochs.   
● Training   loss   =   0.0025   
● Training   accuracy   =   90%   
● Validation   loss   =   0.0085   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   76%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   36,   22   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   106   epochs.   
● Training   loss   =   0.0024   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0094   
● Validation   accuracy   =   88%     
● Testing   accuracy   =   69%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   36,   24   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   106   epochs.   
● Training   loss   =   0.0030   
● Training   accuracy   =   91%   
● Validation   loss   =   0.012   
● Validation   accuracy   =   86%     
● Testing   accuracy   =   73%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   42,   26   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   90   epochs.   
● Training   loss   =   0.0029   
● Training   accuracy   =   90%   
● Validation   loss   =   0.0069   
● Validation   accuracy   =   91%     
● Testing   accuracy   =   73%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   42,   28   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   71   epochs.   
● Training   loss   =   0.005   
● Training   accuracy   =   81%   
● Validation   loss   =   0.0103   
● Validation   accuracy   =   83%     
● Testing   accuracy   =   77%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   42,   30   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   90   epochs.   
● Training   loss   =   0.0049   
● Training   accuracy   =   84%   
● Validation   loss   =   0.0091   
● Validation   accuracy   =   91%     
● Testing   accuracy   =   82%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   48,   26   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   50   epochs.   
● Training   loss   =   0.0101   
● Training   accuracy   =   82%   
● Validation   loss   =   0.0197   
● Validation   accuracy   =   79%     
● Testing   accuracy   =   80%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   48,   24   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   72   epochs.   
● Training   loss   =   0.0072   
● Training   accuracy   =   84%   
● Validation   loss   =   0.0097   
● Validation   accuracy   =   93%     
● Testing   accuracy   =   84%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   48,   22   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   123   epochs.   
● Training   loss   =   0.0031   
● Training   accuracy   =   94%   
● Validation   loss   =   0.011   
● Validation   accuracy   =   87%     
● Testing   accuracy   =   66%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   54,   30   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   101   epochs.   
● Training   loss   =   0.0032   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0107   
● Validation   accuracy   =   82%     
● Testing   accuracy   =   76%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   54,   42   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   108   epochs.   
● Training   loss   =   0.0032   
● Training   accuracy   =   89%   
● Validation   loss   =   0.0135   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   78%   

 

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   54,   34   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   9   
● #   of   iterations   per   epoch:   9   .   
● Training   stopped   at   67   epochs.   
● Training   loss   =   0.0104   
● Training   accuracy   =   82%   
● Validation   loss   =   0.0159   
● Validation   accuracy   =   85%     
● Testing   accuracy   =   87%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   6,   6   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   251   epochs.   
● Training   loss   =   0.0024   
● Training   accuracy   =   92%   
● Validation   loss   =   0.0057   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   72%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   6,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   449   epochs.   
● Training   loss   =   0.0016   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0048   
● Validation   accuracy   =   85%     
● Testing   accuracy   =   70%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):   7,   5   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(79,   2,   6).   (for   both   input   

and   output,   so   many-to-many)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   398   epochs.   
● Training   loss   =   0.0011   
● Training   accuracy   =   91%   
● Validation   loss   =   0.0065   
● Validation   accuracy   =   84%     
● Testing   accuracy   =   70%   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   9   (of   the   158   samples)   
● #   of   iterations   per   epoch:   18   .   
● Training   stopped   at   1000   epochs.   

(removed   callbacks)   
● Training   loss   =   2.5e-04   
● Training   accuracy   =   98%   
● Validation   loss   =   0.0072   
● Validation   accuracy   =   80%     
● Testing   accuracy   =   63%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   12   
● #   of   iterations   per   epoch:   14   .   
● Training   stopped   at   1000   epochs.   

(removed   callbacks)   
● Training   loss   =   1.10e-04   
● Training   accuracy   =   97%   
● Validation   loss   =   0.0063   
● Validation   accuracy   =   80%     
● Testing   accuracy   =   62%   

  
  

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   15   
● #   of   iterations   per   epoch:   11   .   
● Training   stopped   at   1000   epochs.   

(removed   callbacks)   
● Training   loss   =   7.24e-05   
● Training   accuracy   =   99%   
● Validation   loss   =   0.0067   
● Validation   accuracy   =   84%     
● Testing   accuracy   =   60%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):12,   8   and   
6.    

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   422   epochs.   
● Training   loss   =   4.74e-04   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0056   
● Validation   accuracy   =   84%     
● Testing   accuracy   =   71%   
  

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   16   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   213   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   92%   
● Validation   loss   =   0.0056   
● Validation   accuracy   =   91%     
● Testing   accuracy   =   83%   
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):24,   16   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   211   epochs.   
● Training   loss   =   9.62e-04   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0049   
● Validation   accuracy   =   89%     
● Testing   accuracy   =   75%   

  
[Note   despite   the   same   parameters,   
performance   is   different.   This   is   due   to   the   
inbuilt   random   seed   initializer   in   Keras.]   

  

● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):30,   22   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   325   epochs.   
● Training   loss   =   7.65e-04   
● Training   accuracy   =   96%   
● Validation   loss   =   0.0113   
● Validation   accuracy   =   77%     
● Testing   accuracy   =   65%   



  

 

 

 

5.1.8   Weight   Interpretation     

The   weights   retain   the   NN’s   inclinations   when   processing   the   data   and   is   what   is   
transferred   from   one   script   to   another.   The   weights   define   what   the   NN   algorithm   is   based   on   
how   each   neuron   processes   and   ‘learns’   from   the   data   given.   The   LSTM   has   four   gates   and   each   
gate   has   its   associated   weight,   along   with   overall   LSTM   weight   and   a   RNN   (recurrent)   weight   
(or   kernel)   for   each   neuron.   The   weights   are   updated   through   back   and   forward   propagation   
along   each   iteration   in   every   epoch   of   the   training   process.   Thus,   the   final   updated   weights   are   
the   last   arrays   at   the   final   epoch   once   the   NN   has   stopped   training.     
  

The   following   examples   visually   depict   the   LSTM   calculations   that   are   used   in   Keras   when   
determining   the   total   parameters.   The   total   parameters   are   weights   +   biases.     
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● Order   of   layers:   2   LSTM   layers   and   1   
TimeDistributed   Dense   layer.   

● #   of   cells   (in   order   of   layers):45,   16   
and   6.     

● Learning_rate   =   0.0009.  
● Data   has   been   mean-   normalized   per   

feature.   
● UX,   UY,   UZ,   PX,   PY,   PZ,   UVX,   

UVY,   UVZ,   PVX,   PVY   and   PVZ.   
● Data   shape:(158,   1,   6).   (for   both   input   

and   output,   so   one-to-one)   
● Batch_size   =   21   
● #   of   iterations   per   epoch:   8   .   
● Training   stopped   at   152   epochs.   
● Training   loss   =   0.0014   
● Training   accuracy   =   90%   
● Validation   loss   =   0.0064   
● Validation   accuracy   =   96%     
● Testing   accuracy   =   83%   
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 Figure   169:    Keras   model   of   LSTM   cell   [44].   Note   the   hidden   state   and   the   memory   state   output   
dimensions   equal   to   that   of   the   output   layer   (2).   While   input   is   the   number   of   features   within   the   input   
shape.   Keep   in   mind   that   there   is   a   distinction   between   dimensionality   and   features.   Dimensionality   
refers   to   the   number   of   elements,   like   a   2-D   or   3-D,   in   a   matrix   or   tensor   respectively.   Unfortunately,   in   
most   documentation   they   are   often   used   interchangeably.     

  

 Figure   170:    LSTM   parameter   calculations   [44].   Note   the   similarities   between   the   table   shown   and   the   
one   in   the   actual   script   for   this   study.   The   model.summary()   command   is   used   to   create   this   table.   It   
calculates   and   displays   the   total   number   of   parameters   (weights   +   bias)   per   layer.   Remember   that   the   
LSTM   has   two   different   weights,   U   and   W,   and   has   four   gates   (hence,   the   multiplied   four).     



  

  

  
  

Thus,   it   stands   to   reason   that   the   last   epoch’s   weights   or   a   ‘learned   representation’   matrix   created   
by   an   encoder   are   possible   options   to   ‘decode’   the   perturbations.   Due   to   the   time   constraints,   
only   the   former   was   looked   into.     
  

Table   5.5.   Parameters   for   three   features.   
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 Figure   171 :   Getting   the   parameters   in   Keras   [44].   Note   that   [0]=W,   [1]=U   and   [2]   =   b;   where   ‘W’=   
LSTM   weights,   ‘U’=   recurrent   weights,   and   ‘b’   =   biases.   A   similar   process   was   done   in   this   study’s   
script.   LSTM   uses   the   same   ‘W’,   ‘U’   and   ‘b’   for   all   time-steps   [44].   Every   back-prop   will   produce   a   
new   set   of   parameters   and   the   last   epoch   is   considered   the   final   version.   The   final   epoch’s   parameters   
is   what   is   shown   in   the   model.get_weights   command.   

Visuals   Notes   

  

● Model   summary   for   
many-to-many   and   3   features.     

● There   are   4   total   layers,   input   
(sequential   models   don’t   show   
it),   LSTM_0   (1st   hidden   layer),   
LSTM_1   (2nd   hidden   layer),   
and   output   (time-distributed   
dense).    

● Input   shape:   (None,   2,   3),   
where   None   refers   to   all   the   
samples,   which   in   this   case   is   
79;   2   is   the   number   of   timesteps   
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per   sample   and   3   is   the   number   
of   features   per   timestep.   

● LSTM_0:   (None,   2,   4),   b/c   it   
has   4   units/cells   and   2   time   
steps   per   sample.   None   =   All=   
79.   

● LSTM_1   :   (None,   2,   2);   b/c   it   
has   2   units/cells   and   2   time   
steps   per   sample.   None   =   All   =   
79.   

● Output:   (None,   2,   3);   b/c   it   has   
3   units/cells   (it   has   to   b/c   the   
total   number   of   features   for   the   
label   or   Y   dataset   is   3)   and   2   
time   steps   for   every   sample.   
None   =   All   =   79.   

 

● Topology   of   the   NN   model   that   
was   summarized   by   the   table   
presented   in   the   previous   row.   

● model.get_weights()   results   
visualized.   

● Note   that   ‘W’   weights   is   a   
relationship   or   branches   
between   the   nodes/cells/units   of   
each   layer;   while   ‘U’   is   the   
recurrent   weight   for   each   node   
within   the   layer   itself.     

● Only   the   hidden   layers   have   
biases.   



  

  
  

Thus,   the   final   conclusion   is   that   a   generalized   weight   distribution   is   calculated   through   every   
epoch   and   the   final   (weight   distribution)   is   per   layer   at   the   last   epoch   and   not   per   timestep.   It   is   a   
final   generalization   of   all   the   time   steps   rather   than   a   distribution   presented   for   every   timestep.   
This   can   be   seen   in   the   sections   ‘Create   Model’   and   ‘Weight   Interpretation’   in   the   .ipynb   scripts.   
Weights   are   just   the   slopes   (or   inclinations   of   each   node   with   respect   to   the   inputs)   of   the   
learning   process   (as   was   discussed   earlier   in   Chapter   3)   and   do   not   give   information   on   what   the   
solar   perturbation   matrix   is.   Thus,   the   Encoder’s   ‘learned   representation’   matrix   may   be   the   
solution   to   capture   such   information.   Another   plausible   alternative   are   the   biases.   (Note:   for   all   
plots   in   Table   6,   the   X-axis   is   the   indices   and   the   Y-axis   is   the   data   (slope)   values.   These   values   
can   be   viewed   in   the   associated   script   (.ipynb)   files   in   Appendix   B.)   
  
  

Table   5.6.   Parameter   line   plots   for   3   features.   
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Parameter   Plots   Notes   

  

● 1st   hidden   layer’s   parameters   
● ‘W1’   are   the   weights   between   the   

input   and   1st   hidden   layer.     
○ Shape:   (3,16)   
○ There   are   16   different   plots     
○ Plots   per   column   
○ Each   column   has   3   data   points,   

b/c   3   refers   to   the   number   of   
units   in   the   input   layer.   Which   
happens   to   be   3   (b/c   there   are   3   
features).   

○ X-axis   is   index   :   0,   1,   2    ..etc.   
(since   there   are   3   data   points   
per   column,   max   index   value   is   
2)   

○ Y-axis   is   the   data   point   value.   
(slope   value).   

● ‘U1’   is   the   recurrent   weights   within   
the   4   unit   LSTM   layer.   

○ Shape:   (4,16)   
○ There   are   16   different   plots   
○ Plots   per   column   
○ Each   column   has   4   data   points,   

b/c   4   refers   to   the   number   of   
units   within   that   layer.   
Remember   that   a   recurrent   
weight   only   loops   between   the   
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nodes   within   a   layer.     
  
  

● ‘Biases1’   are   the   biases   of   this   layer.   
○ Shape:   (16,)   
○ Plots   one   whole   array   or   vector   

column.     
○ There   are   16   points   within   that   

column.   
○ The   16   points   are   due   to   the   

4(4),   where   the   1st   ‘4’   =   #   of   
units   in   this   layer   and   the   2nd   
‘4’   =   #   gates.   Remember,   that   
in   a   LSTM   cell,   each   unit   has   4   
gates.   

  

● 2nd   hidden   layer’s   parameters   
● ‘W2’   are   the   weights   between   the   1st   

and   2nd   hidden   layers.     
○ Shape:   (4,8)   
○ There   are   8   different   plots     
○ Plots   per   column   
○ Each   column   has   4   data   points,   

b/c   4   refers   to   the   number   of   
units   in   the   1st   hidden   layer.   
And   ‘8’   refers   to   2(4),   where   
‘2’   =   #   units   in   the   2nd   hidden   
layer   and   ‘4’   =   #   gates   in   each.   

● ‘U2’   is   the   recurrent   weights   within   
the   2   unit   LSTM   layer.   

○ Shape:   (2,8)   
○ There   are   8   different   plots   
○ Plots   per   column   
○ Each   column   has   2   data   points,   

b/c   2   refers   to   the   number   of   
units   within   that   layer.   
Remember   that   a   recurrent   
weight   only   loops   between   the   
nodes   within   a   layer.     
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● ‘Biases2’   are   the   biases   of   this   layer.   
○ Shape:   (8,)   
○ Plots   one   whole   array   or   vector   

column.     
○ There   are   8   points   within   that   

column.   
○ The   8   points   are   due   to   the   

2(4),   where   ‘2’   =   #   of   units   in   
this   layer   and   ‘4’   =   #   gates.   
Remember,   that   in   a   LSTM   
cell,   each   unit   has   4   gates.   

  

● Output   layer’s   parameters   
● ‘W3’   are   the   weights   between   the   2nd   

hidden   and   output   layers.     
○ Shape:   (2,3)   
○ There   are   3   different   plots     
○ Plots   per   column   
○ Each   column   has   2   data   points,   

b/c   2   refers   to   the   number   of   
units   in   the   1st   hidden   layer.   
And   ‘8’   refers   to   2(4),   where   
‘2’   =   #   units   in   the   2nd   hidden   
layer   and   ‘4’   =   #   gates   in   each.   

● ‘U3’   is   the   recurrent   weights   within   
the   output   dense-time-distributed   
layer.   

○ Shape:   (3,)   
○ There   is   1   plot   
○ Plots   per   column   
○ Column   has   3   data   points,   b/c   

3   refers   to   the   number   of   units   
within   that   layer.   Remember   
that   a   recurrent   weight   only   
loops   between   the   nodes   within   
a   layer.     

● The   output   layer   has   no   biases   (nor   
does   the   input   layer).   



  

  
In   the   meantime,   the   vector   plotting   of   the   solar   perturbation   is   done   via   quiver   matplotlib   tools.     
  

Table   5.7.   Perturbation   vector   plots.   
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Vector   Plots   Notes   

 

● Position   only   

 

● Position   only   

 

● Position   only   



  

5.2   Burn   Analysis   at   Two   Year   Mark   

5.2.1   Results   

This   section   will   display   the   burn   results   at   the   two   year   mark   of   different   GMAT   runs,   
with   respect   to   the   three   different   initial   state   vectors,   of   the   perturbed   swing-by   trajectory.   The   
initial   state   vectors   are   defined   as   ‘VMAG’   and   ‘RMAG’   in   the   table   below.   RMAG   is   the   
position   magnitude   of   the   ‘Pos1’   (in   Matlab   as   discussed   in   Chapter   4)   vector   that   is   along   
Venus’   periapsis   and   VMAG   is   the   associated   velocity.   
  
  

Table   5.8.   Two   Year   Burn   Results   
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Visuals   Notes   

  

● Start   Date:   01   Jan   2022   
00:000   

● Initial   VMAG   =   47.78   km/s   
● Initial   RMAG   =   1.076e8   km   
●  v .55 km s  Δ tot = 0 /  
● B-plane   targeting   
● BdotR   =   2,433,164   km   
● BdotT   =   2,689,196   km   
● The   B-vector   lies   in   the   

positive   region   in   the   
TR-plane.   (4th   quadrant)   
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● Start   Date:   10   Jan   2022   00:00   
●  v .8 km s  Δ tot = 0 /  
● Initial   VMAG   =   47.82   km/s   
● Initial   RMAG   =   1.075e8   km   
● B-plane   targeting   
● BdotR   =   1,539,692   km   
● BdotT   =   3,699,737   km   
● The   B-vector   lies   in   the   

positive   region   in   the   
TR-plane.   (4th   quadrant)   

● Lies   farther   away   from   
Saturn   compared   to   the   
previous   run.     

  
  

● Start   Date:   20   Jan   2022   00:00   
●  v .32 km s  Δ tot = 1 /  
● Initial   VMAG   =   47.86   km/s   
● Initial   RMAG   =   1.0748e8   km   
● B-plane   targeting   
● BdotR   =   -1,370,071   km   
● BdotT   =   5,273,111   km   
● B-vector   lies   in   the   1st   

quadrant   in   the   TR-plane.     
● Is   the   farthest   from   Saturn,   in   

comparison   to   the   previous   
runs.     



  

Chapter   6   -    Conclusions   and   Future   Works   
  

6.1.Conclusions   and   Future   Works   

6.1.1   Conclusions   

● For   the   two   year   burn   targeting,   the   further   the   spacecraft’s   initial   condition   was   from   the   
sun,   the   higher   the   burn   required   to   achieve   (some   point)   along   Saturn’s   periapsis.     

● Achieved   testing,   validation   and   training   accuracy   in   the   90th   percentile   for   the   3   features  
in   many-to-many.    Ideal   cell   and   batch_size   combinations   were:   4,   2   and   3,   and   
batch_size=12.   The   cell   numbers   are   in   order   of   the   layers.   

● Achieved   training   and   validation   accuracies   in   the   90th   percentile   but   testing   accuracy   in   
the   80th   percentile   for   the   6   features   in   many-to-many   (and   one-to-one).   The   ideal   
combinations   for   cells   and   batch_size   were   not   found   due   to   the   fact   that   more   data   was   
needed   to   reach   there.   Appendix   D   sheds   some   light   on   cell   number   calculations   that   may   
lead   to   the   optimal   cell   combinations.   

● A   successful   NN   model   is   one   that   does   not   overfit   and   acquires   accuracies   for   all:   
training,   validation   and   testing   to   be   in   the   90th   percentile.     

● Ideal   NN   model   (for   either   3   or   6   features   and   158   data   points)   consists   of   2   hidden   
(LSTM)   layers   and   1   TimeDistributed   Dense   layer.     

● The   testing   accuracy   is   dependent   on   the   size   of   the   gap   between   the   accuracy   and   
training   curves   in   the   accuracy   plot;   the   bigger   the   gap   the   less   of   a   testing   performance   
and   vice   versa.     

● Callbacks   are   used   to   stop   the   training   to   continue   once   overfitting   (gap   between   training   
and   validation   accuracy   curves   is   huge)   occurs   steadily   over   3   to   5   epochs.   This   is   
important   because   the   operator   should   not   want   the   NN   model   to   over-familiarize   with   
the   training   data.     

● LSTM   input   gates’   activations   do   change   based   on   user   input.     
● Should   have   started   the   training   process   using   the   formula   produced   in   Appendix   D.   
● Objective   was   to   have   loss   at     but   was   only   able   to   achieve,   so   far   at   .  01 10− 01 5−  

However,   upon   closer   inspection,   loss   may   not   be   the   same   as   precision.   Thus,   there   is   a   
predictive   accuracy   code   that   has   been   added   to   the   script   which   gives   the   operator   an   
idea   of   how   well   the   algorithm   predicts   in   comparison   to   the   actual   labels.   When   the   
training,   accuracy   and   testing   values   are   in   the   90th   percentile   the   predictive   accuracy   
ranges   between   60   %   -   90   %.   

● More   often   than   not,   needed   to   clear   cache   settings   after   every   reload   of   a   NN   model   to   
reduce   chances   of   inaccuracies   in   different   runs.   

● More   features   require   more   data   (time   steps)   and   more   cells   per   hidden   layer.   However,   
there   is   a   formula   that   can   be   used   to   calculate   the   number   of   necessary   neurons   by   the   
number   of   input   and   output   cells.   This   calculation   can   be   viewed   in   Appendix   D.   
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Remember,   due   to   the   flexible   and   abstract   nature   of   the   NN,   these   calculations   can   aid   as   
a   starting   basis   only.   There   is   a   lot   of   trial   and   error   in   figuring   out   the   right   combination   
of   neurons   and   batch   sizes.     

● Overfitting   occurs   when   there   is   a   large   gap   between   training   and   validation   curves   in   the   
accuracy   plot.   An   early   stopping   callback   is   used   to   prevent   the   training   from   continuing   
once   overfitting   occurs.   It   is   ideal   to   have   the   accuracy   values   for   training,   validation   and   
testing   to   be   as   closely   equal   as   possible.     

● One-to-one   and   many-to-many   model   performances   improved   with   the   addition   of   a   
TimeDistributed(Dense)   layer,   turning   return_sequences   =   True,   keeping   the   input   gates’   
activation   functions   =   tanh,   having   three   separate   datasets   for   training,   validation   and   
testing,   normalizing   every   feature   appropriately,   and   adjusting   batch   size   and   cell   
numbers   (once   datashape   has   been   finalized).     

● The   ideal   number   of   iterations   for   158   data   points   is   between   6   and   9.   (Batch   size   =   9,   12   
and   15   for   many-to-many   but   batch_size=21   for   one-to-one.)   

● The   ideal   number   of   hidden   layers   for   158   data   points   is   2.   (The   smaller   the   datasets   the   
fewer   hidden   layers   it   will   need.   Usually   2   hidden   layers   is   enough   for   most   ‘small’   
models.)   

● Number   of   ideal   iterations   remains   consistent   with   the   total   number   of   data   points.     
● LSTM   doesn’t   need   additional   regularizers.   (The   fewer   the   layers   and   cells,   the   better)   
● Selecting   between   one-to-one   vs   many-to-many   for   improvement   in   performance   really   

depends   on   the   data.   But   many-to-many   has   more   flexibility.     
● Back-end’s   random   seed   initializer,   as   well   as   GPU   traffic   and   incomplete   reloading   of   

.ipynb   file,   impedes   reproducibility   of   training   results.   However,   may   that   be,   there   still   is   
a   similarity   to   the   values   running   within   the   same   conditions.   If   the   results   happen   to   be   
completely   different,   then   either   the   .ipynb   was   not   completely   reloaded   or   needs   to   be   
reloaded   again.     

● Make   sure   to   collect   the   total   number   of   time   steps   for   any   data   set   to   not   be   a   prime   
number.   That   way   the   operator   has   flexibility   in   shaping   the   data   and   improving   the   
performance   of   the   model.     

● Increasing   batch_size   for   one-to-one   models,   along   with   all   the   aforementioned   
parameters   in   the   previous   bullet,   helps   decrease   the   noise/fluctuations   in   the   training   
process.     

● Having   different   data   sets   for   training,   validation   and   testing   proved   to   have   better   
performance   results   than   using   the   splitting   tool   provided   by   sklearn.   This   splitting   tool   is   
meant   to   divide   a   dataset   by   a   certain   ratio:   one   for   training   and   another   for   
testing/validating.     

● Data   shaping   and   normalization   techniques   had   a   bigger   impact   than   any   other   elements   
in   improving   model   accuracy.   (with   Adam   as   optimizer   and   learning_rate   =   0.0009)   

● It   is   advisable   to   keep   the   learning_rate   and   choice   of   optimizer   constant   throughout   the   
training   process.    
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● Appendix   D   lists   some   calculations   that   one   can   use   to   find   the   optimal   combinations   of   
hidden   layer   cells   and   perhaps   even   for   a   selected   batch_size.   

● Adjusting   the   number   of   parameters   (weights   +   biases)   affects   the   overall   model’s   
performance   in   regards   to   over   or   under   fitting.   (Hint   :   biases   =   #   of   units   x   gates   for   
LSTMs   only   and   generally   are   found   within   the   hidden   layers.)   

● If   prefer   one-to-one   it   is   advisable   to   have    a   batch_size   >   1.   So,   as   to   have   a   certain   
number   of   iterations   done   within   that   batch   at   every   epoch.   However,   keep   in   mind   that   
one-to-one   has   limited   flexibility   (in   data   shaping)   when   compared   to   many-to-many   
models.     

● The   type   of   data   and   what   the   model   is   expected   to   predict   impacts   all   parameters   
involved.     

● Increasing   the   number   of   features   affects,   in   direct   proportionality   to,   the   number   of   cells   
per   layer.   

● There   is   an   inverse   correlation   between   the   number   of   hidden   cells   with   the   number   of   
epochs   the   NN   model   takes   before   overfitting   occurs.     

● Hidden   and   cell   states’   output   shapes   in   LSTMs   are   equal   to   the   number   of   output   units.   
(Remember,   that   what   is   input   or   output   changes   with   respect   to   which   layer   the   
magnifying   glass   is   on.)   

● Testing   accuracy   is   directly   related   to   the   behavior   of   the   validation   accuracy.     
● Can   use   GPU   or   TPU   (especially   when   high   cloud   traffic   prevents   operators   from   using   

GPU)   to   train   NN   models.   (Can   select   from   ‘Notebook   Settings’)   
● Sometimes   when   the   NN   model   outputs   unusual   results   in   the   training   process   (after   

hitting   the   run   button   for   the   ‘model.fit’   cell   command),   it   is   best   to   do   ‘factory   reset’   or   
‘restart   runtime’,   clear   all   cache,   reload   the   .ipynb   file   and   re-run   the   file.   Re-doing   it   
twice   as   a   sanity   check   is   advisable.   If   after   all   that,   the   training   results   are   still   funky,   
then   the   combination   of   cells   and   batch_size   aren’t   satisfactory.   It   is   best   to   change   
batch_size   before   changing   the   number   of   cells   per   hidden   layer.   

● An   indicator   that   an   .ipynb   file   has   been   successfully   re-loaded   is   the   ‘Connect’   on   the   
upper   left   hand   corner.   (Make   sure   it   does   not   have   Re-connect   before   running   another   
model.)   

● Dimensions   do   not   equal   features.   Dimensions   is   the   shape   of   the   data’s   tensor   (for   
instance   LSTM   requires   3D   data   shaped   tensors,   so   input_dim   =   3),   while   features   are   the   
number   of   classes   (in   this   case   it   was   either   3   or   6).     

  
  
  

6.1.2   Future   Works   

● Run   a   NN   analysis   for   the   velocity   only   using   the   position   only   (3   featured)   model.     
● Achieve   the   90th   percentile   for   testing,   training   and   validation   accuracy   curves   for   the   6   

features.     
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● Verify   whether   ensemble   (bagging   technique)   or   SDM   can   enhance   performance   of   the   
NN   model   for   6   features.   

● Investigate   how   training   and   validation   loss   should   be   interpreted   differently   than   
precision   (tolerance).   (Which   was   initially,   mistakenly,   perceived   to   be.)  

● Functional   model   instead   of   sequential   modeling.   
● Investigate,   further,   perturbation   readings   thru   weight   and   bias   plots.   
● Training   with   batch_shape   instead   of   input_shape   to   turn   on   stateful   and   return_state.   

(requires   functional   modeling   set   up).   It   also   aids   in   bringing   in   more   trajectories   to   train   
within   a   single   epoch.   (Basically   every   batch_size   will   have   batch_shape)   

● Improve   the   overall   accuracy   of   the   model   during   the   testing   phase   (not   just   in   the   
training   section   of   the   learning   process).     

● Introduce   more   data   for   the   six   features   analysis   to   improve   accuracy   scores   and   its   
consistency   regardless   of   seed   initializer.   

● Model   needs   to   be   proven   robust   regardless   of   random   seed   initializers.     
● Comparison   between   unit   and   mean   normalization   of   data   with   respect   to   performance.   
● Uploading   more   of   the   3-set   trajectories   (training,   validation   and   testing)    to   the   NN   

model   to   improve   accuracy.   This   can   be   achieved   by   replacing   input_shape   with   
batch_shape.     

● Investigating   whether   bidirectional   LSTM   layers   and   encoder-decoder   (or   LSTM   
Autoencoders)   will   impact   performance.     

● NN   burn   optimization   of   flybys.   
● Extending   the   focus   of   the   NN   and   space   to   alternative   areas   and   using   other   variables   

within   orbital   dynamics   as   features.   
● Burning   NN’s   weights   to   a   SD   card   or   another   flash   memory   to   a   computer’s   

microprocessor   and   its   memory   chips.   (Nelson   Wong’s   thesis,    “On   Clustering   Low-Cost   
SoC   FPGA   Devices   for   Deep   Learning   Inference   Applications ” ,   delves   specifically   into   
this   topic.   An   introductory   abstract   of   this   can   be   viewed   in   Appendix   E.)   

● Infusing   NN   to   an   automated   controller   aboard   a   spacecraft.     
● Testing   spacecraft’s   NN   controller   using   reinforcement   or   unsupervised   learning.   
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APPENDICES   
  

Appendix   A   -   Matlab   Scripts   for   the   Lambert’s   Problem   :   CODE   
Github   repository   link:    https://github.com/tbejaoui1/AE_Master_Thesis_Matlab_Code.git   

Appendix   B   -   NN   Model   Training   via   Google   Colab   -   Jupyter   Notebook   :   CODE     

Github   repository   link:    https://github.com/tbejaoui1/AE_Master_Google_Colab.git   

Appendix   C   -   Datasets   used   for   NN   Model   Training   via   Google   Colab   -   Jupyter   Notebook   :   
SPREADSHEETS   
Github   repository   link:     https://github.com/tbejaoui1/AE_Masters_Datasets.git   

Appendix   D   -   Calculating   Number   of   Neurons   per   Layer   :   LINK   &   FORMULAS   

  
  
  

https://www   
f.researchgate.net/post/How-to-decide-the-number-of-hidden-layers-and-nodes-in-a-hidden-laye 
r        (make   sure   you   are   logged   out   to   access   all   questions)   
  
  

Example:   
Since,   this   model   has   two   hidden   layers,   we   will   use   the   2nd   equation,   which   is:   
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      ;    ( )r =  # input cells
# output cells

(1 3)/   
Where:   

●   #input   cells   :   Isn’t   specified   when   using   Keras   sequential   modeling.   But   the   rule   of   
thumb   is   that   the   number   of   units   in   the   input   layer   is   equal   to   the   number   of   features   in   
the   input   training   data.   Thus,   in   this   study,   it   was   either   3   or   6.     

● #output   cells   :   It   is   equal   to   the   number   of   features   in   the   output   dataset.   In   this   study,   it   
was   either   3   or   6.     

  
To   determine   number   of   cells   in   1st   hidden   layer:   

 cells in 1st hidden layer (# output cells)(r )# =  2  
  

To   determine   number   of   cells   in   2nd   hidden   layer:   
 cells in 2nd hidden layer (#output cells)(r)# =   

  
However,   despite   these   formulations,   there   is   a   lot   of   controversy   and   most   state   that   the   right   
combination   of   neurons   and   batch_size   is   usually   determined   through   trial   and   error.     

   
Also,   I   have   tweaked   the   above   formulation   where   the   #input   cells   did   not   just   equal   the   features   
of   the   input   dataset,   but   rather   the   input_shape   itself.   For   example:   if   input_shape=(2,3),   then   #of   
input   cells   =   2   x   3   =   6.   And   when   calculating   the   #cells   in   the   2nd   hidden   layer   would   have   a   (-1)   
in   there.   Thus,   for   example,   for   the   many-to-many   option   for   the   3   features,   if   using   this   theory:   
  

● r   =   (6/3)^(⅓)=   1.26,     
● #1st   hidden   layer   =   (3)[(1.26^(2))]=4.76   and     
● #   2nd   hidden   layer   =   (3)(1.26)=3.76   -   1   =   2.76.   

Thus,   the   number   of   cells   would   be   4,   2   and   3   for   the   two   LSTM   layers   and   output   layer,   
respectively.     
  

There’s   even   another   plausible   theory   that   batch_size   can   be   included   in   the   calculations,   where   
if   the   batch_size   for   the   above   example   was   12,   then   #of   input   cells   =   12   x   2   x   3   =   72.   However,   
judgement   is   more   in   favor   of   just   input_shape.     
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Appendix   E   -   Nelson   Wong’s   Thesis   :   ABSTRACT   
  

   Tentative   Title:   " On   Clustering   Low-Cost   SoC   FPGA   Devices   for   Deep   Learning   Inference   
Applications ."     
Nelson   Wong’s   description:   
The   thesis   investigates   the   efficacy   of   linking   multiple   sub-$100   system-on-chip   field   programmable   
gate   array   devices   to   perform   inferencing.   This   exploration   involves   Xilinx's   XC7Z020   and   
XC7Z010,   which   contain   block   RAM   (BRAM)   and   DSP   slices   scattered   across   their   programmable   
logic   fabric.   The   DSP   slices   are   leveraged   for   their   multiply-accumulate   to   efficiently   perform   
vector-matrix   multiplication,   while   block   RAM   slices   cache   network   parameters   to   achieve   
sub-millisecond   multi-layer   inference   (results   pending).   
I'm   still   far   from   the   end   of   this   thesis   but   the   above   should   still   hold   true   by   the   end.   The   SD   card   in   
the   [SD   card   ->   DDR   memory   ->   BRAM   cache]   pipeline   has   been   adjusted;   attaching   the   cluster   to   
network-attached   storage   and   managing   parameter   loading   over   Ethernet   made   for   a   more   flexible   
architecture.   The   XC7Z010   was   especially   targeted   due   to   its   popularity   in   previous-generation   
crypto   currency   miners;   the   Chinese   online   retail   service   AliExpress   has   been   flooded   with   
refurbished   boards   that   use   this   chip   and   are   very   affordable   (currently   $16.50   each).     
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