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Abstract 
 

Machine Learning Based Sensor Selection for Modal Testing 
Todd W Kelmar 

 
 Modal testing is a common step in the aerostructure design process and is often 

conducted to verify natural frequencies and mode shapes predicted by computational techniques. 

When conducting this testing, sensor placement is crucial to being able to measure the desired 

natural frequencies. Existing methodologies for sensor placement can be time consuming and 

require an iterative approach. Using machine learning techniques like those being developed for 

structural health monitoring may offer a more optimal sensor selection methodology. This work 

contains a description of three machine learning based sensor selection methodologies and 

compares their performance with current techniques. Performance is evaluated with a simple 1D 

numerical model, a more complex 2D model, and finally through physical experimentation. 

Although not conclusive, initial results are promising and show a random forest regressor based 

model is at least as effective at estimating natural frequencies as the current effective 

independence technique. 
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1 Introduction 

1.1 Motivation 

Whether looking at pogo oscillation on a rocket or ground resonance in a helicopter, 

vibration analysis is crucial when designing aerospace structures. In industry, modal analysis 

typically begins with computational methods such as finite element analysis (FEA or FE) which 

are then followed by experimental vibration testing [1,2]. Real world analysis is constrained by 

the need to use a finite number of sensors and exciters to determine the modal response of a 

given system. In experimental setup, the location of the excitation(s) and the location of the 

sensor(s) can have dramatic impacts on observed modal response of the structure [3]. These 

errors can lead to mischaracterizations of the system and as such the placement of both sensors 

and excitation must be carefully determined [4].  

Existing methodology for sensor placement typically relies on developed knowledge and 

established best practices. When developing novel aerostructures where best practices cannot be 

relied on, multiple rounds of testing may be required with different sensor placements to 

determine the most effective experimental setup [5]. This process is both time consuming and 

labor intensive and may still not result in an optimal configuration [5].  

Finding patterns within large datasets is an ideal application for machine learning and may 

yield more optimal configurations with fewer sensors than traditional approaches. Machine 

learning (ML) is not magic however, and care must be taken to ensure that optimal sensor 

placement in one case can be replicated reliably. Additionally, the ML model is only as accurate 

as the starting FE model, which must be verified through additional testing for more complex 

geometries. While there are established methodologies for measuring the success of machine 

learning models, there is some understandable apprehension about using results that were 

derived through a nontransparent function. Therefore, the ML derived sensor placement will be 

compared against current best practices. 
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1.2 Literature Review 

1.2.1 Overview 

The following literature review is divided into three main sections for the sake of clarity. 

The first subsection describes the process and uses of modal testing as it relates to structural 

dynamics in general and aerostructures in particular. In the second section, an overview is 

provided of the current state of the art in determining sensor placement for modal testing. The 

third section describes current trends and techniques in the application of machine learning 

structural dynamics. As the field ML is rapidly evolving, this section attempts to provide a 

general picture of current methodologies and techniques. The specific techniques to be used in 

this paper will be described in more detail in the relevant section(s).  

1.2.1.1 Modal Testing and Analysis 

All structures are subject to vibrations either internal, such as engine vibration, external 

such as turbulence, or a combination of both. Characterizing the behavior of a system under 

vibration or other dynamic forces is crucial to good engineering design [1,2]. The main objective 

of most modal testing is to determine the natural frequencies and vibrational modes of the 

structure being tested[1,2]. While the accessibility and speed of modern computers and FEA 

solvers may seem to obviate the need for physical modal testing, the results are only as accurate 

as the model being tested [5]. The results of modal testing can be compared to those of the 

theoretical model and used establish if the model accurately describes the structure being 

analyzed [1]. Additional uses of modal testing include creating mathematical models of 

structures for integration into other analyses or developing models for structural health 

monitoring [1]. 

Modal analysis can be conducted on data acquired in laboratory conditions or from data 

acquired while the structure is in regular use [6]. This work concentrates on the former, as 

laboratory testing allows the inputs to be more precisely controlled and allows for experimental 

variables to be controlled to a greater extent. In modal testing, sensors placed on the structure 

being tested—typically accelerometers and/or strain gauges—are measured to record their 

response to an excitation. The input can be provided by a modal shaker—a device which takes a 

signal as an input and applies that signal to the structure under test or a modal hammer, where an 
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impact is made against the structure to represent an instantaneous excitation [6]. In more 

complex tests or for large structures, multiple modal shakes may be used to induce a measurable 

excitation in the structure [1]. The output of the sensors are then post processed, with the exact 

methodology dependent on the excitation signal [1]. These data may then be analyzed with a 

frequency response function in order to derive the natural frequencies and mode shapes of the 

structure under test [1].  

Placing the sensors on the structure must be done with care, as it can substantially 

influence the results of a modal test. The goal of optimizing sensor placement is to determine the 

most information about the structure’s behavior while minimizing the required number of 

sensors [7]. Large numbers of sensors increase the cost of testing in both equipment and labor 

required to set up the test. As modal testing is principally concerned with structural dynamics, an 

ideal sensor selection would result in the least number of sensors where each sensor’s individual 

contribution to the analysis is greatest [7].  

1.2.2 Current Methodologies in Sensor Selection 

Early modal testing relied on engineering judgement and institutional knowledge derived 

from fundamentals of vibration [8]. While this may still be used in certain situations, such as 

with a well understood structure or for simple geometries, novel structures present difficulties for 

this approach [1]. Additionally, tight timelines due to budget constraints or limited access to 

testing facilities reduce the time available to refine sensor placement during testing [5]. As such, 

determining efficient methodology for sensor placement has real implications for increasing 

efficiency. As a result, several methodologies have been developed to assist engineers in 

determining appropriate sensor placement for modal testing and structural health monitoring. 

Some of the current methodologies include the Effective Independence Method (EIM) and 

Iterative Residual Kinetic Energy approach (IRKE) [9]. Other techniques, such as those using 

information entropy, have also been developed [10]. A brief overview of these techniques will be 

provided below. Detailed methodology for each technique will be provided in later sections.  

1.2.2.1 Effective Independence Method (EIM) 

The Effective Independence Method, also known as the effective independence 

algorithm, begins with a set of target mode shapes that encompass the set of candidate sensor 
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locations derived from experimental results or an FE model [11]. The algorithm attempts to 

predict the independence of each node based on the expected measured mode shape, with higher 

values indicating increased independence [11]. In this method, it is required to know both the 

expected mode shape as well as have candidate sensor locations located. These candidate 

locations are then ranked according to the algorithm, removing the lowest ranking sensor and 

recalculating [11]. As potential locations are eliminated, the relative independence of the 

remaining solutions increases, and the process is repeated until the required number of sensor 

locations is reached [11]. This methodology does not assist in determining the number of sensor 

or the initial placements of those sensors [12]. Were the structure divided into a coarse enough 

grid, it is theoretically possible to iterate through all possible sensor locations. When operating 

this way, some research suggests that more optimal results may be produced compared to kinetic 

energy methods, although at the cost of less ability to measure unexpected modes [3,11].  

1.2.2.2 Mass Weighted Effective Independence (MEIM) 

A drawback to non-mass-weighted EIM is that it selects only for linear independence of 

the points and neglects orthogonality [13]. When MEIM is used, modes that contribute least to 

self-orthogonality are removed in each iteration as opposed to purely focusing on linear 

independence when selecting features [13]. Cross-orthogonality checks are used to determine 

how analytical and empirical modal testing results correlate [13]. There are several different 

methods for calculating the decomposition of the mass matrix needed for this process. Using the 

Guyan reduced mass matrix appears to result in the best performance computationally as well as 

producing the most optimized output with respect to other mass weighting techniques [13].  

1.2.2.3 Residual Kinetic Energy Method (RKE)  

The RKE method, which also has several sub methods based on it, is a technique used by 

NASA to determine sensor placement for modal testing based on detailed FEA models [14]. The 

principle concept is to ensure residual kinetic energy is minimized in all degrees of freedom and 

modes under consideration [15]. When this is computed, DOFs with high residual kinetic energy 

indicate that additional refinement is needed in order to measure the corresponding degree of 

freedom in a given mode [15]. After another sensor is added to cover that degree of freedom, the 

residual kinetic energy is recomputed [15]. This process is repeated until the solution is suitably 
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orthogonal. This methodology works well when applied to existing analysis points to identify 

additional DOFs that are undermeasured by the initial sensor placement, and has been adopted 

by NASA and others to meet NADA and Department of Defense standards for modal testing 

[16]. 

1.2.3 Machine Learning Feature Selection 

Machine learning (ML) techniques are a promising approach for determining sensor 

placement in modal analysis. In supervised machine learning, an input dataset is provided 

consisting of both the input data and the output. In this case, the input would be data derived 

from a finite element model and the output would be the mode shapes and natural frequencies. 

Based on this information, the model is then trained to be able to predict outputs based on new 

input data. As many of the previously discussed methods for sensor placement are iterative 

approaches, the problem of solving for sensor placement seems to be one to which machine 

learning is well suited [17].  

There are a wide range of different machine learning techniques available, although not all 

are suitable for all tasks. Most supervised learning algorithms rely on large datasets to allow 

correlation of inputs to outputs. Typically more inputs require larger datasets to ensure that the 

data is not overfitted [17,18][18]. Based on prior work done in the field of structural health 

monitoring, the focus will be on neural networks.  

One of the limitations of neural networks is the requirement for a large amount of data for 

training and testing the network. In this case, with an input derived from a finite element model, 

the data acquisition can also be time consuming and computationally expensive. Introducing 

physical laws into the algorithm of a neural network can help reduce the needed size of the 

training dataset and improve overall performance compared to a traditional neural network 

technique [18].  

In the field of structural health monitoring, research has been conducted to use neural 

networks, trained on FEA models, to predict stresses and strains on a structure from a finite 

number of sensor inputs [19]. Additional work has also been done using neural networks to 

extract mode shapes and natural frequencies from data gathered when the input signal is 

unknown (output-only modal testing) [20].  
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1.3 Objective 

The objective of this project is to develop sensor placement methodology for modal 

analysis using machine learning and finite element analysis and compare the results to those 

obtained using traditional sensor placement techniques. Prior work in machine learning as 

applied to structural health monitoring and feature selection for stress prediction makes modal 

testing sensor selection a promising avenue of research. The ideal outcome of the project is the 

development of a methodology for sensor selection using machine learning that can be applied to 

arbitrary structures and produce results equivalent with or better than current methodologies. The 

problem of sensor selection is by no means trivial, this project may reveal information about 

applying ML to the problem of modal testing sensor selection even without developing a general 

methodology.  

1.4 Methodology 

The proposed methodology can be split into two primary parts. The first part will consist of 

initial testing of machine learning techniques for feature selection on a simple geometry with 

established best practice sensor placement. This is likely to be an iterative process as different 

methodologies are explored and tested. Once an established methodology or methodologies have 

been developed, they will be applied to an aircraft wing for comparison with existing sensor 

selection techniques. The anticipated steps of the project are outlined below:  

1. ML Model Development & Preliminary Verification 

a. Conduct a modal analysis of a 2D Beam using FEA 

b. Determine which features should be selected for by the ML model 

c. Develop ML model using training data derived from the 2D Beam and verify 

performance against the test dataset.  

2. Complex Geometry Verification 

a. Conduct a modal analysis of a 2D plate modeled in FEA.  

b. Train ML model on new geometry using methodology developed in step 1 

c. Compute sensor placement based on current best practices  

d. Conduct physical modal testing with the different sensor placements  
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2 Modal Testing Theory 

2.1 Chapter Summary 

Modal testing is the process of determining the natural frequencies, damping ratios, and 

mode shapes of a given structure through physical experimentation. This chapter presents a brief 

overview of the theoretical basis and key principles of modal testing as will be applied to this 

project. For theoretical modal analysis, the mass, stiffness, and damping matricies are used to 

create a spatial model [1]. This spatial model allows the modal model, which describes the 

natural frequencies, damping ratios, and mode shapes, to be computed [1]. From the modal 

model, the response model of the structure can then be determined [1]. For experimental modal 

testing, the inverse process must be applied. The response model is recorded from sensors on the 

structure, and experimental modal analysis allows the modal model of the structure to be 

estimated [1]. From the modal model, if needed, a spatial model of the system can then be 

calculated. In this paper, the focus will be on improving the estimation of the modal model from 

the measured response and therefore the primary area of interest is the process of experimental 

modal analysis.  

In modal testing, an instrumented structure has an excitation applied to it, and the 

excitation and response of the structure is measured and recorded. The process of modal testing 

typically involves [1]: 

1.  selecting sensor types and locations 

2.  selecting an appropriate excitation or excitations 

3.  exciting the structure in one or multiple places 

4. Measuring the response of the structure 

5. Processing the recorded response 

6. Analyzing the response to extract the desired information.  

As the goal of this paper is to develop a novel methodology for sensor placement, discussion of 

step 1 will be reserved for Chapter 4. Additionally, this chapter will focus on Single Input 

Multiple Output (SIMO) Multiple Degree of Freedom (MDOF) systems. MDOF systems were 

chosen as the process of sensor selection on a single degree of freedom system is trivial, and 

SIMO measurement was chosen due to constraints in available testing equipment. The model 

applied here for modal testing assuming linear behavior of the structure.  
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2.2 Frequency Response Function 
 

The frequency response function, or FRF, is a function that represents the response of the 

system based on the modal model. This equation allows translation from stiffness and natural 

frequency to the response: either an acceleration, velocity, or displacement. It is a ratio of the 

response of a system to the harmonic excitation [1].It can be represented in its simplest form for 

displacement of an undamped SDOF system as 

 

 H(ω) = 1
(k−ω2m)  (2.1) 

 
This equation represents the displacement of a SDOF system based on the mass 𝑚𝑚 the natural 

frequency 𝜔𝜔, the stiffness 𝑘𝑘[1].  

 In modal testing, the displacement, acceleration, or velocity are known, as is the applied 

excitation, and the FRF must be approximated to fit the known data. Due to the periodicity of the 

excitation signal, a Fourier transform of the input allows the periodic input, even if not sinusoidal 

to be related to the Fourier transform of the response function. The FRF can then be defined as a 

ratio of the response Fourier series to the excitation Fourier series.  

 As the complexity of estimating the FRF function grows rapidly as the degrees of 

freedom in the system increase, a preexisting estimator in MATLAB, modalfrf, is used to 

calculate the FRF for the SIMO system. This function allows the estimation of the FRF of a 

vibrational system by taking the excitation, response signals, and sample rate as inputs and 

providing the FRF, frequencies, and coherence as outputs [21]. This existing implementation 

also allows for easy implementation of windowing, which is important for isolating leakage from 

the response signals. 

2.3 Excitation Signals 

Choosing an appropriate excitation signal is crucial to modal analysis, and the choice of 

signal can vary depending on the geometry, available equipment, and time constraints. No matter 

which signal type is chosen, the signal must excite the beam at double the highest desired 

frequency [1]. Although it is possible to excite a structure individually at each frequency of 

interest, this is often inefficient, although it may be useful for examining structures with multiple 
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modes at similar frequencies. Using more complex excitation signals and leveraging modern 

signal processing tools, it is often more efficient to use one of the following methods of 

excitation:  

2.3.1 Periodic Chirp Excitation 

A periodic chirp function is transient function with an initial burst covering a range of 

frequencies, followed by an amount of time where there is no applied load. This has the 

advantage of allowing a single input to measure multiple frequencies. With slower sweeps, a 

measurement is taken at each frequency of interest after allowing the structure to stabilize at that 

frequency [1]. While this allows for testing of particular modes of interest with high resolution, 

the ability of modern signal processing makes that methodology less efficient when determining 

overall structural properties[1]. Using a chirp function allows for the capture of a broad range of 

frequencies with a single measurement process. This also makes computing the FRF much 

easier, at it is simply the discrete Fourier transform of the input over the discrete Fourier 

transform of the output in the following form: 

 

 H(ω) =
X(ω)
F(ω) (2.2) 

 

where 𝐻𝐻(ω) is the FRF, 𝑋𝑋(ω) is the DFT of the response signal and 𝐹𝐹(ω) is the DFT of the 

excitation signal [1]. Since the excitation signal and the response signal can both be 

approximated by a DFT and are recorded, the FRF can be easily computed.  

 Additionally, the use of a consistent chirp function allows for the averaging of the 

response for repeated samples, which can help eliminate experimental error. It is crucial that the 

maximum frequency expected is at least double the sample rate in hertz [22]. Failure to ensure 

this can lead to aliasing, which may cause distortion of the results in the high frequency range. 

Application of an anti-aliasing filter can mitigate the impact of aliasing but does not allow for 

frequencies higher than half the sample rate to be determined. In physical testing, combinations 

of excitation signals can be used to allow for detailed isolation of specific natural frequencies. 

For example, an initial modal analysis conducted using a chirp signal can identify the natural 

frequencies of a structure which can then be studied in detail with a high-resolution slow sine 

sweep to identify the mode more accurately.  
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2.3.2 Gaussian White Noise Excitation 

Compared with the period chirp excitation, a gaussian white noise excitation has the 

advantage of exciting all the frequencies relatively equally and at the same time. This allows for 

a theoretically shorter test period, although it required more advanced signal processing to 

extract the responses [1]. With modern computers the processing time is trivial, and the built in 

modalfrf MATLAB function is capable of automatically extracting the natural frequencies and 

mode shapes from either type of excitation. 

While it may seem to be an ideal excitation signal, the real difficulties appear in real world 

testing. To excite a structure with gaussian white noise, the shaker chosen must be both strong 

enough to accurately impart the excitation frequency onto the physical structure as well as 

responsive enough to frequency shifts in the excitation signal. For this reason, while useful for 

computational testing, it is not always practical or physically possible to use in real world testing.  

2.4 Modal Extraction 

Extracting modal properties requires fitting a curve to describe the measured FRF at each 

given point. The FRF, as its name suggests, is in the frequency domain and as such any curve 

fitting must also occur in the frequency domain. As a different FRF is generated for each 

recorded point on the structure, the combination of these FRFs can allow for the global behavior 

the structure to be interpreted [1]. While the natural frequencies and the damping ratios can be 

extracted from the individual FRFs, combining the FRFs allows for a more accurate fit than any 

single individual curve fitting algorithm. This process can be broadly described as global modal 

analysis and is well suited to SIMO systems, as each output generates a discrete FRF.  

 The natural frequencies and damping ratios of any given structure are inherent properties 

of the material and geometry. In an ideal world, these parameters would be identical at every 

point where the FRF is calculated, and as a result the natural frequency could be calculated from 

a single point; however, when multiple FRFs are calculated from a SIMO test, the natural 

frequencies may not align exactly [1]. The sum of each FRF may be taken to yield a function 

𝐻𝐻(𝜔𝜔) that represents the average natural frequency and damping ratio for the structure.  
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2.4.1 Peak Picking 

The most basic form of modal extraction is peak picking. As the name suggests, in this 

method the FRF is plotted on the frequency domain with each resonance peak taken as the 

natural frequency ω𝑟𝑟 of the given mode[1]. The damping ratio is determined by taking the 

amplitude of the peak 𝐻𝐻� and dividing by √2 to identify two points on either side of the peak, ω𝑏𝑏 

and ω𝑎𝑎 [1]. The damping ratio can then be calculated by the following equation [1]. 

 

 2ζ =
ωa
2 − ωb

2

2ωr
2 ≅

𝐻𝐻�

𝜔𝜔𝑟𝑟√2
 (2.3) 

 

This method allows for easy estimation of natural frequencies from the output of a single 

FRF and can assist in checking to see if the natural frequencies are in the expected range; 

however, it has several serious drawbacks that limit its utility. It depends highly on the accuracy 

of the amplitude of the FRF, which can be subject to error during data collection both from 

experimental error but also due to other factors such as the type of excitation frequency being 

used [1]. Additionally, the peak picking method assumes that the resonant peaks are fully 

independent of each other and are not influenced by adjacent resonances, which cannot be 

assumed to be the case [1]. The limitations of this methodology make it useful for estimation and 

for checking if the behavior of the FRF is as expected, but it doesn’t take advantage of more 

advanced computational techniques.  

2.4.2 Least-Squares Complex Exponential Method (LSCE) 

The modalfit function in MATLAB implements the LSCE algorithm to allow for modal 

parameter extraction from multiple FRF functions. As implemented, this algorithm uses the 

individual FRFs to fit a response using Prony’s method [23]. As implemented, this algorithm 

also generates a reconstructed FRF, allowing the actual FRF to be compared to the FRF 

estimated by the fit curve. Comparison of the two FRFs allows for visual identification of 

regions where the fit curve may not align well with the actual system behavior. This allows for 

comparisons of the accuracy of the various sensor placements to be compared to each other.  
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2.4.3 Least-Squares Rational Function (LSRF) 

The modalfit function in MATLAB also implements the LSRF estimation method. Although 

broadly similar in terms of practical uses to the LSCE method, this algorithm has the advantage 

of performing better when there is less data available for fitting the FRF. Like the LSCE method, 

it also allows the FRF to be reconstructed for visual comparison. 

2.5 Experimental Considerations 

When conducting physical experiments, there are several additional considerations that 

must be considered. These can broadly be separated into hardware considerations and signal 

processing considerations.  

2.5.1 Experimental Configuration 

 When it comes to hardware, it is important that the physical model matches the FEA 

model as closely as possible to ensure the results are comparable. This means that the article 

under test must be physically constrained in such a way to match the boundary conditions 

established in the FEA model. Connections must be of sufficient rigidity to allow the article 

under test to be excited appropriately.  

 In addition to ensuring the article under test is appropriately constrained, a mounting 

system for the modal shake must be sufficiently sturdy such that the excitation is imparted into 

the test article and not into the support structure for the shaker. It is also important that the modal 

shaker not influence the natural response of the structure under test [1]. A thin stinger rod can be 

used to attach the modal shaker to the test structure. By allowing axial forces from the modal 

shaker to pass but being flexible in all other directions, the stinger reduces the impact attaching 

the shaker can have on modes that are not purely axial in relation to the direction of the 

excitation force [1].  

2.5.2 Signal Processing 

Data collected from the accelerometers, strain gauges, and force transducers during 

testing will invariably contain some level of noise. Although shielded cables and minimizing 

cable length can reduce signal noise, it is generally not feasible to eliminate it. Similarly, 

Although an ideal excitation frequency is fed into the driver for the modal shaker, the analog 
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output may contain noise not present in the original digital signal. Furthermore, this analog 

signal may not be perfectly translated into physical excitation in the modal shaker due to 

inefficiencies in the physical system. For these reasons, it is important that the output to the 

modal shaker be recorded in addition to the sensor inputs.  

 All the data recorded from the system should be recorded with a sampling rate of at least 

double that of the highest desired natural frequency (Nyquist frequency). To prevent aliasing 

from occurring, where high frequency components above the Nyquist frequency can be 

interpreted as lower frequencies—anti-alias filtering must be applied to the signal [24]. Typically 

an analog low pass filter is sufficient, although more complex filters are available with digital 

signal processing equipment [1]. 
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3 Sensor Selection Methodologies 
3.1 Chapter Summary 

Before an ML model can be developed, a methodology must be established to extract the 

natural frequencies and mode shapes from sensors such as those used during physical testing. 

Modal analysis is used process data recorded from sensors to determine the natural frequencies, 

mode shapes, and damping ratios of the structure under test. To ensure the methodology used for 

modal analysis is accurate, an initial test of the modal analysis will be conducted using data 

derived from an FEA simulation of a beam. Using FEA based data ensures the data is free of 

noise and allows comparison of the extracted modes to those calculated in FEA. The method 

chosen for modal analysis will then be applied to the various sensor selections so that the 

differences in modal analysis methods cannot influence the extracted natural frequencies.  

3.2 Experimental Models 

The following sections outline the material properties and geometries to be used for 

numerical and experimental testing. 

3.2.1 1D Cantilever Beam 
To demonstrate and verify the techniques to be used for modal extraction, a simplified 1D 

cantilever beam will first be considered. The properties of the beam are outlined in the following 

table. The properties of this beam are based on a physical beam that is in the lab to enable 

experimental verification of the modes determined by the sensor selection as described in the 

next sections.  

Table 3.1 1D Cantilever Beam Properties 

Property Value 

Length 0.242 m 

Width 0.032 m 

Thickness 0.00305 m 

E 70 GPa 

ν 0.33 

ρ 2700 kg/m3 
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A finite element model of the beam under consideration was implemented in MATLAB, 

building on existing code used for 1D beam analysis [19]. This code was modified to extract the 

data needed for modal analysis so it could be used to test different techniques for sensor 

selection.  

 The use of a finite element model allows for rapid iteration when trialing different 

techniques as sensors do not need to be physically repositioned. Instead, the load type, point of 

application, and sensor locations can be selected easily in software. This methodology should 

allow for a reasonable estimation of the behavior of the various sensor selection techniques, 

which can then be verified through physical experimentation. Additionally, the finite element 

method provides a numerical computation of the modes for the structure, which allows the real 

modes to be directly compared modes derived from sensor data.  

3.2.2 2D Cantilever Plate 

To allow testing to be expanded to more complex geometry, a 2D Plate with a large hole 

through the center will be tested. This geometry will contain more complex vibrational modes, 

but is still relatively easy to analyze, model, and physically implement for experimental 

verification. Plate dimensions are show in Fig.  3.1 Plate GeometryThe plate was composed of 

A36 structural steel with the following shown in Table 3.2. 

Table 3.2  Plate Properties  

Property Value 

Height 54.72 cm 

Width 30.48 cm 

Thickness 0.61 cm 

E 200 GPa 

ν 0.3 

ρ 7850 kg/m3 

Hole diameter 10.16 cm 

 

 The plate was modeled in ANSYS mechanical 2023 R1. The plate was meshed with hex 

dominated quadratic elements in a single layer. The mesh contained a total of 17106 nodes and 

2910 elements. The FEA mesh is visible in Fig.  3.2. To account the fact that sensors mounted to 
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the flat plate can primarily measure acceleration in bending, the first 13 primary bending modes 

were identified. The natural frequencies and mode numbers are as follows:  

Table 3.3 Bending Modes of 2D Plate 

Mode Frequency (Hz) 

1 24.057 

3 147.39 

6 420.73 

9 843.47 

15 1343.8 

16 1433.1 

18 1518.1 

21 1973.6 

24 2231.9 

25 2458.8 

30 2998.9 

44 4405.4 

 

 
Fig.  3.1 Plate Geometry 
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Fig.  3.2 Plate Mesh 

3.3 Modal Extraction 

During physical experimentation, input and response signals will be recorded digitally, 

processed, and analyzed in MATLAB. Therefore, the techniques described here to process the 

FEA data will also be applicable to processing real world data. It is important to note, however, 

that real world signal data often includes some level of noise, and additional pre/post processing 

may be needed to compensate. Further discussion of noise rejection methodology is discussed in 

section Error! Reference source not found..  

For validation of the modal extraction methodology, a concentrated chirp load was applied 

to the end of the beam. The chirp load is summarized in Table 2 and was described by the 

MATLAB expression chirp(t,20,0,20000), where t is a vector of times from 0 to 5 seconds 

sampled at 44100 Hz.  
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Table 3.4 FEA Concentrated Load 

Property Value 

Duration 5s 

Frequency Range 20-20000 Hz 

Frequency Sweep Linear 

Magnitude 10 N 

Sampling Frequency 44100 Hz 

 

To begin the modal analysis process, a table of the displacement, velocity, and acceleration 

at each node for each time step is extracted from the FEA results. Likewise, the magnitude of the 

load is also extracted for each time step. Each node is considered as a potential sensor location. 

While the data collected both in FEA and in physical testing is in the time domain, to extract the 

natural frequencies from the system, the data must be transformed into the frequency domain. 

After selecting the number of sensors, the input and output data are processed with the frequency 

response function modalfrf in MATLAB. The frequency response function (FRF) takes the input 

excitation signal and the response signals from the time domain into the frequency domain [1]. 

For periodic excitation, the FRF is the ratio of the Fourier transform of the excitation to the 

Fourier transform of the response [1]. Thus, the number of FRFs should match the number of 

sensors used. The modalftf function in MATLAB provides outputs in the form of the FRFs and 

coherence, which is a measure of how accurate the FRF is for the given data, with a coherence of 

1 representing the best case.  

After determining the FRF, it is fed into modalfit which calculates the natural frequencies, 

damping ratio, mode shapes, and reconstructed FRF. While the natural frequencies are of 

principle interest in this work, the mode shapes can also be compared to ensure that the 

reconstructed mode shapes accurately reflect the real system. A large divergence between these 

results indicates that the frequencies calculated may not reflect real-world natural frequencies.  

Using this technique, it should be possible to extract natural frequencies that match those 

determined using FEA. In practice, however, this has proven substantially more difficult. Minor 

changes in signal windowing, even for an idealized numerical signal, can have dramatic results 

in the ability of the algorithms implemented in modalfit. Multiple algorithms are built into 

modalfit. Of those, peak-picking is least accurate, with least-square complex exponential coming 
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in second and least square rational function giving the best results. Unfortunately the lsrf method 

is the most computationally expensive and has limitations on the number of modes it can output 

depending on the input data. With experimentation, proper windowing allows modalfit to 

achieve a relatively high degree of accuracy at least for the first seven natural frequencies of the 

simple 1D beam.  

As seen in Fig.  3.3, the prediction of natural frequencies is accurate for the first seven 

natural frequencies, but the 8th natural frequency is not captured. The 8th  natural frequency 

captured by the lsrf algorithm matches closely the 9th natural frequency calculated by the FEA 

model (not picture below).  

 

Fig.  3.3 Comparison of natural frequencies determined using FEA and modalfit ‘lsrf’ 

The second function, modalsd, produces a stabilization diagram, shown below in Fig.  

3.4. This figure represents the estimated natural frequencies and damping ratios for the first 50 

modes. The fit methodology used for the stabilization diagram is the same algorithm as used for 

the modalfit algorithm; however, the stabilization diagram appears to represent the real modes of 

the system more accurately when compared to the estimates provided by the modalfit function.  
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Fig.  3.4 Stabilization diagram for chirp excitation and 10 response 

 . The average response function, plotted in orange, displays peaks at each of the 

system’s natural frequencies. The crosses represent predicted modes that are stable in both 

frequency and damping, and it is these frequencies that represent the natural frequencies of the 

system. Nonphysical modes—those that exist as artifacts in the data—and unstable poles can be 

eliminated this way. A comparison of the frequencies determined by the various modal 

extraction methodologies, as well as the real natural frequencies of the system, are presented in 

the following table.  
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Table 3.5 Estimated natural frequencies of a 1D cantilever beam 

Natural 
Frequency 
Number 

FEA 
Natural 

Frequency 
(Hz) 

Modalfit 
lsrf 

Natural 
Frequency 

(Hz) 

% 
Error 

modalsd 
Natural 

Frequency 
(Hz) 

% 
Error 

1 42.83 55 28% 44.06 3% 
2 268.26 263.92 2% 264.59 1% 
3 750.45 749.41 0% 749.83 0% 
4 1468.6 1463.3 0% 1466.35 0% 
5 2423.4 2401.6 1% 2403.2 1% 
6 3612.5 3534.3 2% 3544.3 2% 
7 5033.1 4773.4 5% 4839.5 4% 

As shown in Table 3.5, the derived natural frequencies for the first seven modes of 

modalsd align well with the real natural frequencies. Additionally, the first 7 modes from the 

modalfit algorithm are also relatively close. From the stabilization diagram, it is apparent that the 

peaks at higher frequencies are substantially less pronounced compared to the initial 5 

frequencies. Even then, the divergence is within 10%. This is similarly able to be confirmed by 

looking at the ideal FRF.  

To compute the ideal FRF function of the 1D beam, the FRF is directly calculated using 

the mass matrix M, damping matrix C, and stiffness matrix K derived from the FEA model. An 

idealized force vector of 1 is applied to the end of the beam. For each frequency from 1 to 10 

kHz the FRF is calculated according to the following equation: 

 

 𝐻𝐻(ω) = (−[𝑀𝑀]ω2 + j[C]ω + [K])−1[F] (3.1) 

 
Where 𝐻𝐻(ω) is the FRF function, ω is the frequency in rad/s, and [F] is the force vector. Plotting 

H for each degree of freedom yields the ideal FRF represented in Fig.  3.5. From the plotted 

FRF, it is evident that modes 1 through 4 exhibit clearly defined peaks. The code used to 

generate the ideal FRF function may be found in Appendix G: Ideal FRF MATLAB Code. Mode 

5 through 7 show clear peaks, but they are not as well defined as the first modes. Modes above 

the 7th mode are much less well defined, potentially due to damping in the structure. Due to this 

limitation, the analysis here will principally focus on the first 7 modes.  
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Fig.  3.5 Idealized FRF to unit excitation  

Attempts to rectify this issue have occupied the majority of the semester, although several 

different estimators have been tried. One feature that has recently been identified that may solve 

the difficulties in extracting the natural frequency is that all these estimators seem highly 

sensitive to the type, magnitude, and duration of the excitation function.  

While theoretically the magnitude of the excitation function and type of excitation should 

not matter so long as the frequencies of interest are captured, increasing the magnitude and duration 

of the chirp function has improved the fit of the function to better capture the real natural 

frequencies. Until the past week, the closest predicted mode was within 10Hz of the real natural 

frequency. Compared with the current closest predicted natural frequency, which is within 1hz, 

this is a major improvement. Further adjustment to the excitation frequency may improve the 

ability of the modalfit algorithm to better fit the high frequency range.  
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4 Sensor Selection Techniques 

4.1 Chapter Summary 

The following chapter summarizes two different methodologies that will be examined in 

detail and implemented for comparison with the novel machine learning approach. Both the EIM 

and the RKE methodologies are currently used in industry due to their relative speed and 

accuracy. RKE methodologies are considered the gold standard for modal analysis 

instrumentation selection by NASA and the US Department of defense [16]. Both methodologies 

require identifying the expected modal behavior of the structure through analytical or numerical 

methods. Based on prior knowledge of structures, an initial estimation of sensor placement is 

made, and then EIM or RKE methods are used to test the effectiveness of the selection provide 

feedback on how to improve the sensor placement. In each methodology, an iterative aspect is 

involved where the algorithm is slightly changed and rerun. With large arrays of possible sensor 

locations, such as those derived from detailed FEA models, even these methods can be 

computationally expensive to run for large structures. A summary of the two current 

methodologies is presented below.  

The effective independence method (EIM) was implemented in MATLAB and is presented 

with a description of the implementation algorithm, followed by a verification of the 

implementation. After verification has been verified, EIM is then applied to several example 

structures to demonstrate the operation of the algorithm and how current sensor positions can be 

determined algorithmically using data derived from finite element analysis. Demonstrating the 

variation in selected locations on a cantilevered beam for different targeted mode shapes, the 

methodology is then expanded to a more complex geometry, a 2D cantilevered plate.  

  

4.2 Current Methodology 

4.2.1 Effective Independence method (EIM) 

By maximizing the independence of each sensor—i.e. ensuring data collected is different 

from sensor to sensor—duplicate data is not included in the response dataset allowing the largest 

amount of information to be collected with the lowest amount of replication [11]. This method 
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relies on the identification of mode shapes for a given structure. As the purpose of modal testing 

is to identify the natural frequencies and mode shapes, these are not known; therefore, the mode 

shapes must be identified through modal analysis conducted in FEA [11]. The use of known or 

estimated mode shapes in the algorithm allows the reasonable assumption that the results will not 

converge to non-representative mode shapes [12] This is one of the principle drawbacks to EIM, 

as sensor selection cannot account for unknown modes that may occur in the real world but do 

not appear in FEA. If there are specific modes in the FEA results that are of more interest, EIM 

can provide targeted sensor selection for those modes which may require less sensors than 

needed to capture the full behavior of the structure.  

The algorithm used to implement EIM is derived from that developed by Kammer in 

“Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures” 

[25]. A summary of the method is presented here for reference, although a more comprehensive 

description can be found there. Equation 3.1 represents the sensor output, where 𝑢𝑢𝑠𝑠 represents 

the sensed modal coordinate vector, Φ𝑠𝑠 represents the mode shape vector for a given sensor 

location, and 𝑞𝑞 is the target modal coordinates based on the FEA analysis [25].  

 {us} = [Φs]𝑞𝑞 (4.1) 

 The effective independence vector 𝐸𝐸𝐸𝐸𝐸𝐸 can be represented by the diagonal of the matrix 

calculated in equation 4.2 [25]. 

 {𝐸𝐸 𝐸𝐸 𝐸𝐸} = � �[Φ][Γ][Λ]−
1
2� � [Φ][Γ][Λ]−

1
2 � �   (4.2) 

The higher the 𝐸𝐸𝐸𝐸𝐸𝐸 score of a node, the more important a given location is for calculating the 

independence of the modal vectors [11].  

 In the 𝐸𝐸𝐸𝐸𝐸𝐸 method, sensor locations with the lowest value are eliminated, and the 𝐸𝐸𝐸𝐸𝐸𝐸 is 

then recalculated from the subset of candidate locations [11]. The process is complete when the 

desired number of sensors is reached or when all remaining sensor locations have similar 𝐸𝐸𝐸𝐸𝐸𝐸 

values.  
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4.2.2 Residual Kinetic Energy Methods 

The RKE method is an alternate method for sensor selection which may offer improved 

performance over EIM. The goal of the RKE method is to ensure all recorded modes are fully 

orthogonal and therefore independent from each other [16]. The selected points for sensor 

placement can be tested by predicting the orthogonality of the test modes [16].  

 [𝑂𝑂𝑂𝑂] = [Φ𝑎𝑎]𝑇𝑇[𝑀𝑀𝑎𝑎𝑎𝑎][Φ𝑎𝑎]  (4.3) 

OR is the estimated orthogonality, Φ𝑎𝑎 is the instrumented mode, and Maa is the Test analysis 

matrix which is defined on degrees of freedom for the sensor placement, usually determined by 

the FEA model [16]. The simulated modes are then used to computer an error matrix [R] [16].  

The error matrix is defined as  

 [R] = [Φf] − [Φfa] = [Φf] − [Ψfa][Ψa] (4.4) 

The error matrix is a subtraction of the free DOF modes from the free sensor DOF modes [16]. 

In this case �Φ𝑓𝑓� is determined through FEA or other analytical methods, and is then compared 

against the instrumented free mode �Φ𝑓𝑓𝑎𝑎� [16]. The error matrix [R] is then used with the free 

mass matrix augmented by the error matrix [Mff R][14]. In the following equation, ⨂ represents 

element-wise matrix multiplication.  

 [RKE] = [MffR]⨂[R] (4.5) 

The RKE is a scaled value, with each column in the RKE matrix representing a mode and the 

each DOF in the column sums to 1 [16]. The RKE matrix indicates which DOFs should have 

sensors placed on them as they will have higher values in the column [16]. The RKE matrix 

column will add to much less than 1 if that mode is already appropriately instrumented [16]. By 

iterating through this matrix you can determine if enough degrees of freedom are covered, as 

well as identifying DOFs where additional sensor placement is needed.  
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4.3 Effective Independence Method Implementation 

4.3.1 EIM Implementation 

Using the form of the EIM matrix EfI as described previously, a MATLAB script was 

written to implement the algorithm on the modal analysis results produced by a finite element 

modal. While this script was integrated into the finite element analysis code for the beam as 

described in Chapter 2, the code can be used on data derived from any modal analysis, so long as 

the natural frequencies and mode shapes are provided.  

The script, found in Appendix A: Effective Independence Code, takes as an input a 

matrix of the target mode shapes (eigenvectors) Φs. Each row in the matrix represents a node, 

and each column in the matrix is a mode shape for the corresponding degree of freedom. The 

input matrix is also augmented by the addition of a leading index column, which identifies the 

individual node. The effective independence of each node is then calculated by the diagonal 

following equation [25]: 

 

 𝐸𝐸𝐸𝐸𝐸𝐸 = Φ𝑠𝑠[Φ𝑠𝑠
𝑇𝑇Φ𝑆𝑆](−1)Φ𝑆𝑆

𝑇𝑇 (4.6) 

  

This diagonal vector E yields a value between 0 and 1. A row with a value of 0 indicates 

that node cannot be used to sense the target modes, while a value of 1 indicates that node is 

required to observe the target modes [25]. Where the values of E are equal, either node could be 

removed from the set of sensors without impacting the linear independence of the target modes 

[25].  

The lowest ranking row of E and the corresponding row in Φs are eliminated, and the 

new Φs is then input into equation (4.6. The process is repeated until the desired number of 

sensors is reached. The sum of the column vector E must always be equal to the number of target 

modes and as result E must be recomputed whenever a node is removed as irrelevant [25]. As 

such, it is optimal to remove only one node per iteration. Additionally, it is impossible to have 

fewer sensors than target modes.  

The determinate of the fisher information matrix 𝐴𝐴0 as calculated below can be used to 

measure how much information is covered by a given sensor set [25].  
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 𝐴𝐴0 = Φ𝑠𝑠
𝑇𝑇Φ𝑠𝑠 (4.7) 

 

The determinate of 𝐴𝐴0 provides a quantitative value representing the amount of information 

covered by a given sensor set [25].  

4.3.2 EIM Verification 

In the paper by Kammer, a brief example of the EIM is provided for a case with three 

sensors and two target modes [25]. The matrix Φ𝑠𝑠 is given as [25]: 

 
Φ𝑠𝑠  = � 

2 1
1 1
1 1

� 
(4.8) 

This given value was used to test the algorithm implemented in MATLAB. Both the effective 

independence vector, and the eigenvalues and eigenvectors of the Fischer information matrix 𝐴𝐴0 

match the values given. This simple example serves to validate the methodology as implemented 

in MATLAB.  

4.3.3 EIM Applied to a Cantilever Beam 

The following sections apply the methodology outlined above to the same cantilever beam used 

previously for modal analysis. First, an 11-node version of the beam is used to select 5 sensors to 

identify the first three bending modes. Although theoretically it is possible to identify three 

modes with only three sensors, signal noise, variations in sensor placement, and imperfect 

conditions require additional sensors. For all the following cases, additional sensors were 

selected such that 150% of the theoretical minimum required sensors were present. 

4.3.3.1 11 Node Cantilever Beam 

Further qualitative validation was conducted by examining an 11-node finite element 

model of a cantilever beam. The fixed end of the beam was placed at node 1, and the free end at 

node 11 For the beam, the first three bending modes at  𝐸𝐸1 = 42.83 Hz and 𝐸𝐸2 = 268.28 Hz, and 

𝐸𝐸3 = 750 Hz. The mode shapes are plotted in the figure below. 
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Fig.  4.1 Mode shapes for the first three bending modes (11 DOF) 

The EIM algorithm was then run to select 5 of the 11 nodes for sensor placement. The results of 

the column vector E representing effective independence are tabulated for each iteration in Table 

4.1. Eliminated nodes are indicated by ‘-‘.  

Table 4.1  Nodal effective independence for cantilever beam 

 Iteration Number 
Node 1 2 3 4 5 6 

1 0 - - - - - 
2 0.023 0.023 - - - - 
3 0.176 0.176 0.180 - - - 
4 0.339 0.339 0.346 0.421 0.485 0.503 
5 0.318 0.318 0.323 0.352 0.476 0.478 
6 0.242 0.242 0.244 0.258 - - 
7 0.291 0.291 0.291 0.292 0.352 0.424 
8 0.342 0.342 0.344 0.356 0.383 0.511 
9 0.268 0.268 0.270 0.281 0.287 - 
10 0.291 0.291 0.291 0.292 0.292 0.349 
11 0.709 0.709 0.710 0.719 0.725 0.735 

 In the first iteration, node 1 is removed as it is located at the support condition where a 

sensor would be fixed. As node 1 is zero, and the sum of the effective independence must equal 

the number of target modes—three in this case—the effective independences in the second 

iteration are the same. This provides an opportunity to improve the algorithm because in cases 

where a node or nodes are 0, both those nodes and the next lowest node may be removed in the 

same iteration without any loss in fidelity of the results.  
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 Initially, the nodes being removed are those closest to the support condition of the beam. 

Logically, this makes sense as nodes closest to the support condition will experience smaller 

accelerations and displacements than nodes closer to the end of the beam. Indeed, the most 

important node in all 6 iterations is the node at the free end of the beam. The pattern of removing 

nodes near the support condition is broken in the 5th iteration where node 6 is removed before 

node 4 and 5. Examining the mode shape plots reveals that node 6 is located near a node of the 

third mode shape. In the 6th iteration, node 9 is removed because it is also near a node of the 2nd 

and 3rd mode shape.  

4.3.3.2 101 Node Cantilever Beam 

Expanding on the prior case, the model of the beam is expanded to be comprised of 100 

elements with a length of 1.27 cm each. During early experimentation, an FEA mesh of this 

density was used when attempting to determine if increasing mesh density and therefore the 

corresponding number of FRFs available for the modalfit command would increase the accuracy 

of that command. Although it did not substantially change the modes predicted by the modalfit 

command, the larger dataset is used here to illustrate a simple structure with many DOFs. The 

first 10 bending modes are the target modes for this analysis for prediction with 15 sensors. The 

first 5 bending modes are plotted Fig.  4.2 along with their corresponding natural frequencies.  
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Fig.  4.2 The first 5 bending mode shapes for a 101 DOF system.  

The selected sensor positions illustrated in Fig.  4.2 correspond to the points shown in 

Table 4.2. The effective independence of each node is either very close to 0.5 or 1, indicated that 

all the remaining sensors maintain similar levels of importance compared to each other. Node 79 

and node 101 are the nodes with the highest effective independence. Node 101, being located at 

the free end of the beam, logically, is an important point. Node 79 is the only other node which 

appears by itself. This node is again located close to the end of the beam.  
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Table 4.2 Effective independence of selected sensor positions to predict the first 10 bending modes 

Node 
Effective 

Independence 
12 0.500 
13 0.501 
23 0.502 
24 0.500 
34 0.501 
35 0.499 
45 0.500 
46 0.500 
56 0.499 
57 0.501 
67 0.498 
68 0.506 
79 0.992 
90 0.500 
91 0.504 

101 1.000 
  

 
4.3.4 EIM Applied to a Flat Plate 

The method outlined above will now be applied to the flat plate with a hole located in the 

center. The dataset is derived from a FEA model as described in Chapter 2. The modes and 

natural frequencies of the plate were exported from ANSYS after conducting a modal analysis 

for the first 50 modes. The target mode shapes were identified as the first 13 transverse bending 

modes. The selected modes and natural frequencies are outlined in Table 3.3. The following 

figures illustrate the selected modes. These modes were chosen as the exhibit the largest 

deflections in the +/- Y direction as established by the model, and as such are the modes that are 

easiest to excite and measure with the experimental equipment available. The dataset was then 

further reduced to only encompass those nodes which were located on the surface of the plate, to 

ensure all possible sensor locations are physically accessible. An ANSYS APDL script found in 

Appendix B was used to export the nodal coordinates, node number, and mode shape for each 

surface node at the chosen natural frequencies. After export, the dataset was imported to 

MATLAB for postprocessing.  
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Fig.  4.3 Mode 1: 24.057 Hz 

 
Fig.  4.4 Mode 3: 147.39 Hz 
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Fig.  4.5 Mode 6: 420.73 Hz 

 

 
Fig.  4.6 Mode 9 843.47 Hz 
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Fig.  4.7 Mode 15: 1343.8 Hz 

 
Fig.  4.8 Mode 16: 1433.1 Hz 
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Fig.  4.9 Mode 21: 1973.6 Hz 

 
Fig.  4.10 Mode 24: 2331 Hz 
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Fig.  4.11 Mode 30: 2998 Hz 

 
Fig.  4.12 Mode 44: 4405 Hz 

 
 Using the EFI algorithm implemented previously in the chapter, the dataset was 

processed to identify the optimal locations for 20 sensors. As the EfI algorithm implemented is 

iterative, with only one node removed per iteration, sensor selection for the plate is more 

computationally expensive, taking on average 200 seconds to process the 6839 by 14 array of 

DoFs and mode shapes. The resulting selected sensors are illustrated below in Fig.  4.13.  

 Inspecting the sensor placement and the mode shapes, the sensors seem likely to capture 

most of the mode shapes. However, the EFI algorithm favored points on the left side of the plate 
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much more heavily. This should not impact the observability of the chosen natural frequencies as 

the out-of-plane modes are expected to be symmetric.  

 
Fig.  4.13 EfI selected plate sensor locations 
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5 Machine Learning Sensor Selection 

5.1 Chapter Summary 

Emerging methodologies in machine learning present an opportunity to improve on exiting 

methodologies for sensor selection. Regression models, such as the random forest regressor, 

have been shown to effectively select sensor locations for structural health monitoring (SHM) 

[19][26]. Similar methodologies can be applied for sensor selection that must be conducted prior 

to physical modal testing.  

 Compared with traditional techniques, ML methodologies may improve fidelity and 

improve results compared to effective independence methods. For the following techniques, only 

accelerometer data was considered.  

5.2 Random Forest Regressor 

The random forest regressor (RFR) was selected for sensor placement based on performance 

in SHM sensor selection applications [19]. The RFR is an ensemble learning method in the 

averaging method family. Averaging ensemble methods combine the results from multiple 

estimators and average the predicted results to reduce variance [27].  

The estimators in this algorithm use decision trees (DTs) to predict the chosen output 

variable. The RFR method splits the main dataset into several subsets, and generates a DT for 

each of the new training data sets [27]. Splitting the data into these random smaller datasets and 

then averaging the results of the individual DTs decreases the variance of the results, as DTs by 

themselves can overfit the data [27]. In addition to the randomness introduced by varying the 

input data for each DT, random perturbations in the DTs are also introduced [27]. Once the 

model has been run, the R squared value and mean squared error (MSE) can be used to evaluate 

performance. 

The random forest regressor algorithm was implemented as found in the scikit-learn python 

library. The code for the implementation of this algorithm can be found in Appendix C, and is 

based on prior code written for structural health monitoring as found in Choppala et al. [26].  

5.2.1 Dataset Creation 

The dataset for the RFR was extracted from FEA models and reformatted as specified in  
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Table 5.1. Each row in the dataset is a frequency for which the FRF of each node is 

calculated. Each row in this case represents the operational deflection shape (ODS) for a given 

frequency f for every node in the FEA model. The frequency is used primarily for tracking and is 

not input into the RFR. The output column in this table represents the value the model should 

attempt to select. The model will output a table of all the features (nodes) input and their 

corresponding importance when attempting to predict the output value.  

 

Table 5.1 RFR input data formatting 

Freq (Hz) Node 1 Node 2 … Node n Output 
f Node 1 FRF(f) Node 2 FRF(f) Node n FRF(f) Output (f) 

 
 As a result of this method, choosing a parameter for the output is crucial to producing 

results that reflect an optimal sensor placement. Three distinct values were chosen to be 

examined: raw ODS, normalized ODS, and average FRF.  

 In the case of the raw ODS, to produce a scalar: 

 𝑂𝑂𝑂𝑂𝑆𝑆ω𝑇𝑇𝑂𝑂𝑂𝑂𝑆𝑆𝜔𝜔 (5.1) 

is computed, which results in a distinct value for each ODS at each frequency. The ODS and 

therefore this value is dependent on the load condition of the beam and will change depending on 

the magnitude of the load applied to the beam. 

 To decrease the sensitivity of the output to the load conditions, a normalized form was 

computed: 

 𝑂𝑂𝑂𝑂𝑆𝑆𝜔𝜔𝑇𝑇𝑂𝑂𝑂𝑂𝑆𝑆𝜔𝜔
|ODS|2  (5.2) 

   

Dividing the ODS product by the magnitude of the ODS at that frequency eliminates the effect of 

loading magnitude on the beam. The last output chosen was the average FRF at a given 

frequency, where n is the number of nodes and the sum of the FRF at a given frequency is taken 

across all nodes n. 

 ∑𝐹𝐹𝑂𝑂𝐹𝐹(𝐸𝐸)
𝑛𝑛

 (5.3) 

 
The results of selecting for these different values are presented in the following section.  
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5.3 RFR Applied to a Cantilever Beam 

A 100-element cantilever beam identical to the beam presented in Chapter 5.2.3 was 

created. The beam was subjected to a broadband gaussian white noise excitation from 0 to 50 

kHz as shown in Fig.  5.1.   

 
Fig.  5.1 Excitation spectrum of load applied to a 100-element cantilever beam 

The FRF for each DOF was then computed using the MATLAB modalfrf function, with a 

Hanning window of size 500 with 0 overlap. Four distinct tables were created in the format 

outlined in Table 5.1 with the ODS, normalized ODS, average FRF, and all three output 

functions. Each table was exported as a .csv file before being imported into python for the ML 

algorithm.  

 While the error values in Table 5.2 appear excellent, with R2 values approaching 1 and 

MSE that are effectively 0, this may represent overfitting of the model. This may result in the 

RFR being unable to generalize. As the algorithm is being trained directly on the data and is not 

expected to generalize, this does not necessarily invalidate the methodology.  

Table 5.2  Errors of RFR for 100 element cantilever beam 

 ODS Normalized 
ODS 

Avg. FRF 

R2 - 0.950 0.985 
MSE - 3E-11 7.40E-14 

 
 The 10 most important features from each element were then taken as candidate sensor 

locations. A table of the 10 selected sensor locations is presented along with the candidate sensor 



52 
 

locations determined in Chapter 5.2.3 using the effective independence method in Table 5.3. It is 

important to note that the sensor locations presented in this table are listed in numerical order and 

not sorted by importance. In the case of the EIM, the candidate sensors are all equally important 

whereas for the RFR derived sensors, the features are ranked by importance.  

 The first 10 features of the normalized ODS account for 28.80% of the variance, while 

the first 10 features of the RFR Avg. FRF account for 32% of the variance. The first 10 features 

of the ODS RFR account for 31% of the variance. In all cases, approximately 20 features are 

needed before at least 50% of the variance is accounted for; however, the ODS RFR features 

exhibit slightly higher individual variance in the first 3 features, dropping off substantially to 

importance more in line with the other selection methods. In this example case adjacent nodes 

are not eliminated. 

Table 5.3  Most important sensor locations on a 100-element cantilever beam in numerical order based on different 
modal sensor selection approach. 

Effective 
Independence 

Method 

RFR  
ODS 

RFR Normalized 
ODS 

RFR  
Avg. FRF 

9 12 16 33 
16 43 35 34 
25 44 39 38 
32 53 43 42 
39 69 59 56 
48 70 73 73 
63 83 80 82 
70 86 86 86 
78 87 91 93 
94 96 99 101 
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Fig.  5.2 Variance as a function of number of features for a 100-element cantilever beam 

 To estimate the mode shapes the RFR derived methods may predict, value of the actual 

mode shape was taken at each candidate sensor selection. While not representing the actual FRF 

and modal extraction it allows a prediction to be made for which modes may not be able to be 

captured by a given sensor set.   
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Fig.  5.3 First 10 predicted mode shapes for a 100-element cantilever beam 

 As shown in Fig.  5.3, all three sensor sets can predict the first four modes with relative 

accuracy. However, the RFR derived sensor sets favor the free end of the beam, and so are 

unable to capture the behavior of the beam closer to the fixed end. This weakness becomes 

apparent as soon as the 3rd mode, when the Avg FRF method linearizes the mode shape from the 
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30th node to the origin. As mode number increases, the predictions made by the ML derived 

techniques fail to capture the behavior of the first third of the beam, and all methods weight the 

free end of the beam more heavily.  

 Initially this behavior was suspected to be a result of the excitation frequency, as a 

frequency chirp was used which produced a higher excitation at lower frequencies; however, this 

behavior remains despite changing the excitation frequency to a broadband gaussian white noise 

which excites all frequencies between 0 and 50 kHz equally. In the next chapter, the selected 

sensors will be run through the modal extraction technique developed in Chapter 2 to further 

characterize the effectiveness of the ML based sensor selections. 
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6 Comparison of Sensor Selection Techniques 

6.1 Chapter Summary 

To compare the impact of the various sensor selection methodologies, a methodology was 

developed to test sensor configurations using FEA derived data. The use of computational data 

for this initial comparison allows for the comparison between ‘ideal’ cases. All the datasets are 

free of error introduced by noise, variability in experimental configuration, inaccuracies in 

sensors, etc.   

The dataset is still sensitive to changes in sampling rate, signal windowing, and mesh 

density; however, these are all able to be directly controlled in software, enabling direct 

comparisons to be made between the various sensor selection options. The details for each 

analysis are contained in the following sections, but the process is similar for both geometries: 

1. A FEA analysis is conducted to extract the data needed for sensor selection: modal 

analysis in the case of the effective independence and transient excitation for the machine 

learning dataset.  

2. The sensor selection algorithms are run, and the sensed nodes are identified for the 

different selection methodologies. 

3. Sensor data is extracted from the nodes for the test condition.  

4. The FRF is extracted from the sensor data. 

5. Natural frequencies and mode shapes are extracted from the FRF function.  

There are only minor differences in the process between the 1D plate and the 2D plate, mainly 

due to the different software used to conduct the FEA analysis.  

The number of sensors and excitation frequencies chosen were constrained by available data 

acquisition equipment in the lab for physical verification in the next chapter.  

6.2 1D Beam 

For the 1D beam sensor selection, 2 different excitation frequencies were chosen for 

comparison. Although traditional methods should select sensors independently of the excitation 

frequency, the RFR based method is sensitive to the chosen excitation frequency. The first 

excitation is a linear chirp, and the second excitation case uses a gaussian white noise input 

signal.  
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6.2.1 Gaussian White Noise Excitation 

Now, the same procedure as in the previous section is repeated, with the only difference 

being the excitation signal. In this case, a gaussian white noise signal was generated. The 

excitation had a duration of 2 seconds and a sample rate of 44100 Hz. The single-sided 

amplitude spectrum is show in Fig.  6.1.  

 

Fig.  6.1 Gaussian white noise excitation signal 

 As before, the sensor locations on the various mode shapes are show in  Fig.  6.2 and Fig.  

6.3. Examining the plots, the ODS sensor selector appears to perform worse, with almost all the 

sensors placed at inflection points for the 7th natural frequency. The FRF data computed for the 

RFR function was windows with a Hamming window of size 1000 and 600 overlap; however, 

during modal extraction a Hamming window of size 500 and 200 overlap was found to produce 

better results. Again, this illustrates the sensitivity of modal extraction to windowing, and with a 

different excitation signal and duration, a different window can be more optimal.  
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Fig.  6.2 Sensor locations from gaussian white noise excitation for mode 1 through 4 
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Fig.  6.3 Sensor locations from gaussian white noise excitation for mode 5 through 7 

 
The modal extraction from the given sensor sets was conducted identically to that in the 

prior excitation signal, with the exception that a Hamming window of size 500 with 200 overlap 

was used. This window was chosen through an iterative process and appeared to yield 

frequencies closest to the FEA derived frequencies. Again, the EIM and ODS sensor selection 

methodologies yield results that closely match the FEA derived frequencies; however, all sensor 

configurations are poor predictors of the lowest natural frequency, with percent error ranging 

from 15% to 30% as seen in Table 6.1. In the mid-range frequencies, both the EIM and ODS 

method again perform best, beginning to diverge above the 6th mode. The lsrf algorithm as 

implemented in MATLAB is dependent on window size and in this case, the window is too small 
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to estimate more than the first 6 natural frequencies; however, increasing the window beyond 

this has the effect of increasing error of all sensor selection methodologies by up to 100%.  

 
Table 6.1 Natural frequencies, 1D beam, gaussian white noise excitation 

FEA EIM ODS norm ODS FRF 
f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err 

42.8 – 100% – 100% 54.3 27% – 100% 
– 84.1 – 118.1 – – – 107.6 – 
– 192.2 – – – 198.9 – 200.3 – 

268.3 278.9 4% 277.5 3% 281.6 5% 278.0 4% 
– – – – – 385.0 – – – 
– 649.7 – 650.3 – 661.3 – 655.6 – 

750.5 755.6 1% 755.7 1% 757.5 1% 751.7 0% 
– – – – – – – 911.3 – 
– 1398.5 – 1348.9 – – – – – 

1468.7 1482.5 1% 1471.0 0% 1462.8 0% 1462.6 0% 
– – – – – – – – – 

2424.1 2396.0 1% 2397.1 1% 2395.1 1% 2398.2 1% 
3614.8 3523.6 3% 3526.0 2% 3531.6 2% 3499.3 3% 

– – – – – – – – – 
5039.1 4837.4 4% 4834.3 4% 4747.1 6% – – 
5261.4 – – – – – – 5470.3 4% 
6696.0 – – – – – – – – 
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6.2.2 Linear Chirp Excitation 

The 1D beam described in Table 3.1 was modeled with 20 elements in a MATLAB FEA 

script. The beam was excited with a linear chirp signal with the properties described in Table 3.4. 

The single-sided amplitude of the excitation frequency is plotted in Fig.  6.4.  

 

Fig.  6.4 Single-sided amplitude of linear chirp from 20 Hz to 20 kHz 

The sensor selection process was conducted using the effective independence method, 

ODS based RFR, normalized ODS RFR, and FRF RFR selection methodologies. To better 

visualize the locations of the sensors and to visualize the potential for the sensors to capture the 

desired mode shapes, each selected sensor location was plotted on the FEA derived mode shape 

for the first 7 modes. This is illustrated in Fig.  6.5. Each column of charts represents a mode, 

and the rows display the different sensor locations. Sensor locations do not change in each mode 

but are plotted on top of the different mode shapes. By examining where the sensors are placed, 

the ability of the sensors to measure a given mode shape can be approximated visually. The 

errors for the RFR method are displayed in Table 6.2. 

Table 6.2 RFR errors for sensor selection 

 ODS ODS Norm FRF 

R2 0.979 0.973 0.987 

MSE 2.249 1.98 2.77 

 

Examining the sensors, all the selection methodologies appear to track the first two mode 

shapes adequately; however, the normalized ODS and FRF based RFR sensor selection 
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methodologies miss more peaks than the EIM and ODS methods, especially at higher 

frequencies. This suggests that placing sensors at those locations may cause misidentification of 

the mode shapes. Both the normalized ODS and FRF based methods place sensors at higher 

frequency inflection points and so will not be able to capture those frequencies.   

 
Fig.  6.5 Sensor locations from chirp excitation for mode 1 through 4 

When the mode extraction methodology developed in Chapter 2 is applied, the first seven 

natural frequencies are extracted using the modalfit function with the lsrf curve fitting 

methodology. The H1 FRF function is calculated for the given sensor set and filtered with a 

Hamming window of size 1000 with 600 overlap using the MATLAB modalfrf function. The 

extracted modes were then plotted against the FEA derived natural frequencies for comparison. 

The calculated natural frequencies are also available in Table 6.3.  
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Fig.  6.6 Sensor locations from chirp excitation for mode 5 through 7 

It is interesting to note that although the FRF method had the best R2 score and the 

normalized ODS method had the lowest MSE, the ODS method performed best when estimating 

the natural frequencies. Additionally, it was observed that the average FRF based sensor 

selection was highly reliant on the windowing being used. Since a FRF must be computed before 

exporting the FRF data to the RFR script, changing the windowing can impact the sensor 

locations returned when using the FRF based sensor selections. In this case, the same windowing 

was used for all signals.  
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Table 6.3 Natural frequencies, 1D beam, chirp excitation 

FEA EIM ODS norm ODS Avg FRF 

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err 

42.8 49.4 15% 49.5 16% 52.0 21% 51.1 19% 

– 230.1 – 230.1 – 239.2 – 230.6 – 

268.3 279.7 4% 279.7 4% 291.8 9% 280.1 4% 

– 724.8 – 724.8 – 723.6 – 724.5 – 

750.5 767.3 2% 767.4 2% 765.8 2% 767.3 2% 

1468.7 1463.0 0% 1463.0 0% 1463.3 0% 1463.5 0% 

– – – – – – – 2098.9 – 
2424.1 2401.0 1% 2401.0 1% 2400.7 1% 2399.8 1% 
3614.8 3539.1 2% 3539.1 2% 3537.1 2% 3525.5 2% 
5039.1 4833.1 4% 4832.8 4% – – – – 
5261.4 – – – – – – – – 
6696.0 6317.7 6% 6317.1 6% 6306.8 6% 6459.3 4% 

6.3 2D Plate 

For the case of the 2D plate, a linear chirp excitation was applied to the FEA model of the 

plate. This excitation was conducted as a transient analysis in ANSYS. The location of the load 

applied, and the corresponding points where acceleration data was exported were chosen such 

that the conditions could be replicated in the lab for physical verification of the sensor selection. 

After conducting the transient analysis, acceleration data was exported from ANSYS and 

reformatted for input into the same RFR algorithms outlined in the previous section.  

6.3.1 FEA Transient Analysis 

The FEA model used for this analysis is identical to the plate used in Chapter 4 for the 

modal analysis, with the same geometry, material properties and mesh parameters. A chirp signal 

with the characteristics shown in Table 6.4 was used to excite the plate at a node located at 

(151.97 mm, 0 mm, 441.2mm). This coordinate was chosen to match the real-world plate and 

load cell most closely as set up in the lab.  
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Table 6.4 Chirp excitation characteristics for 2D Plate  

Property Value 

Duration 0.5s 

Frequency Range 20-15000 Hz 

Frequency Sweep Linear 

Magnitude 10 N 

Sampling Frequency 20 kHz 

  

 
Fig.  6.7 Chirp Excitation Signal imported into ANSYS 

The load as applied to the plate is shown in Fig.  6.8 overlayed on the FEA model. The 

transient analysis was run with a timestep frequency of 20 kHz to match the excitation signal. A 

20 kHz sampling rate was chosen so that Nyquist frequency of 10 kHz would be large enough to 

capture the previously selected modes for the plate.  

After completing the analysis in ANSYS, the acceleration data in the Y direction was 

exported for each node on the Y=6.1 mm plane. This plane represented the face of the plate 

opposite the point of load application where the accelerometers would be placed on the physical 

plate. This data was exported using an APDL script (Appendix D: Transient Analysis APDL 

Export Script); however, technical issues either with the script or ANSYS prevented the entire 

time-history of accelerations from being extracted. The dataset up to the last completed time step 

was then imported into MATLAB and processed for input into the RFR sensor selection script.  
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Fig.  6.8 Point transient load as applied to plate. Note the bottom edge is fully constrained.  

6.3.2 FEA Data Processing 

After importing the data into MATLAB, the data was processed according to the code 

found in Appendices E and F. The data was formatted for use with the modalfrf function. The 

FRF was calculated using a Hamming window of size 100 and 50 overlap. The small window 

size was chosen due to the FEA exported dataset containing only 200 time steps. The calculated 

FRF function is shown in Fig.  6.9.  

As the FRF function of a numerical simulation, the FRF should be relatively ideal; 

however, this is not the case. Although coherence dips as expected at resonances and anti-

resonances, it is relatively low. This is likely a direct result of the relatively low number of time 

steps able to be exported from ANSYS since coherence in the high frequency range is very good. 

The better coherence in the high frequency range may also be a result of a lack of uniformity in 

the excitation signal, as the chirp signal has a much higher amplitude in the high frequencies 

compared to the low frequencies.  
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Fig.  6.9 FRF Function for first 4 DOFs of the plate under chirp excitation 

6.3.3 Sensor Selection 

Sensor selection was conducted using the FEA modal analysis results for the EIM sensors 

and the transient FEA simulation for the RFR derived selection methodologies. For each 

selection technique, 7 sensor locations were requested. The number of accelerometers was 

constrained by equipment availability for experimental verification.  

Unlike the 1D beam case, the EIM algorithm was not near instantaneous, and speed can 

vary depending on the hardware used. For the following section, all programs were run on a 

desktop computer running  64-bit Windows 11. The computer was equipped with a 16-core 

AMD 7950X at 5.4GHz  and 64 GB DDR5 RAM. Data was stored locally on a solid state drive.  

As the algorithm eliminates only one node on each iteration, requesting 7 sensor locations 

requires n-7 iterations, where n represents the total number of nodes. The number of iterations 

and therefore time required is directly proportional to the number of nodes in the model. For this 

case, 6,839 nodes were processed out of the total 17,106 nodes, representing the nodes on the 

surface where sensors could be placed. The nodes correspond to approximately 5mm spacing 

when represented physically on the plate. The EIM algorithm for 6,839 FEA nodes and 14 

vibrational modes took 3.5 minutes to run in MATLAB R2022b , discounting data ingest time. 

Although techniques exist to improve the run time of the algorithm, such as eliminating multiple 

low ranking nodes per iteration, this can degrade the accuracy of the final result [1]. To allow for 
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a more accurate comparison between sensor selection methodologies, the best case of a purely 

iterative implementation of EIM was used.  

In comparison to the EIM method, the RFR methods were not measurably slower 

computationally compared to the 1D beam case, taking just 2.17 seconds to run all three RFRs. It 

must be cautioned that the speed of the RFR method is mitigated by the longer ANSYS transient 

analysis that must be computed before the regressor can be used. Both the algorithms and FEA 

were run on the same computer previously described. The data in Table 6.5 should be taken to be 

illustrative, and all times were typical with only minor run-to-run variance. The table below does 

not take into account data export from ANSYS or import/reformatting done in MATLAB prior to 

the algorithm run. MATLAB code was run in R2022b and the RFR was implemented using 

scikit-learn version 1.1.2 on Python 3.9.13. 

Table 6.5 Algorithm time comparison 

Algorithm 

Algorithm Time 

(s) FEA Type FEA Time (s) 

Total Time 

(Excluding FEA data 

export and Ingest) 

EIM 210 
Modal  

(60 Modes) 
6 216 

RFR-FRF 

2.17 (combined) 

Transient 

(5e-5 s timestep, 0.5s 

simulation) 

3114 3116.7 RFR-ODS 

RFR-nODS 

 

The following figures display the chosen sensor configurations. They are oriented looking 

down the Y-axis ‘through’ the plate. Looking at physical accelerometers in these configurations 

would appear flipped.  
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Fig.  6.10 Sensed nodes for EIM Method 

 
Fig.  6.11 Sensed nodes for average FRF method 
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Fig.  6.12 Sensed nodes for ODS method  

 
Fig.  6.13 Sensed nodes for normalized ODS method 

 
Visually, the average FRF and EIM method appear the most similar, with accelerometers 

distributed relatively evenly along the vertical axis, but clustered more towards the top of the 

-0.1 0 0.1 0.2 0.3 0.4
Width (m)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

He
ig

ht
 (m

)

ODS Selected Nodes

FEA Nodes
ODS Sensed Nodes

-0.1 0 0.1 0.2 0.3 0.4
Width (m)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

He
ig

ht
 (m

)

Normalized ODS Selected Nodes

FEA Nodes
ODS norm. Sensed Nodes



71 
 

plate. The normalized ODS nodes are—like the first two methods—concentrated towards the top 

of the plate; however, they align close to the central axis of the plate near the hole. The ODS 

sensed nodes are clustered around the base of the plate. Intuitively this sensor distribution is the 

least expected, as acceleration should be lowest near the base of the plate. Lower accelerations 

imply lower sensitivity to excitation and therefore would be expected to be less capable of 

measuring the excitation.  

6.3.4 Natural Frequency Extraction 

An FRF was calculated from the extracted FEA acceleration data for each set of nodes and 

the FRF and coherence was plotted for the first 4 nodes in each sensor set. Next, the natural 

frequency for each sensor selection methodology was extracted using the same lsrf algorithm in 

the modalfit function. The natural frequencies extracted from the dataset were then compared to 

the natural frequencies extracted from ANSYS, with particular attention paid to the transverse 

bending natural frequencies. The code used to generate this data is presented in Appendix E 

It is important to recall that the extracted mode shapes from ANSYS are only the mode 

shapes at the transverse bending modes. As this is the dataset used in the EIM method, the EIM 

sensors should be expected be positioned to better capture these modes.  

Overall coherence is relatively low in the low end of the frequency spectrum, with most 

sensor locations. Given the short sample time able to be extracted from the FEA model of 9.5E-3 

seconds and the high sample rate of 20 kHz, the lowest frequency that could be captured in that 

data is approximately 104 Hz, while the highest is 10 kHz. These limitations can partially 

account for the low coherence in the beginning of the FRF, and coherence there is expected to 

improve if the same sensor locations were selected with a larger dataset.  
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Fig.  6.14 EIM method FRF function (node 1-4) 

 

Fig.  6.15 ODS Method FRF function (node 1-4) 
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Fig.  6.16 Normalized ODS method FRF function (node 1-4) 

 

Fig.  6.17 Average FRF method FRF function (node 1-4) 
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Table 6.6 Natural frequencies of 2D plate. Non bending frequencies indicated with ( ) 

FEA EIM ODS norm ODS FRF 
f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err 

24.057 – – – – – – – – 
147.39 202.5 37% – – – 

 
201.0 45% 

(363.18) – – – – – – – – 
420.73 406.2 3% 419.0 1% 418.0 1% 425.0 1% 

(591.11)  654.5 11% 655.6 11% – – 656.6 11% 
843.47 916.2 9% – – 865.8 3% – – 

(917.41)  – – 902.6 2% – – 915.7 0% 
1343.8 – – – – – – – – 
1433.1 – – – – – – – – 
1518.1 – – – – – – – – 

(1881.4) – – 1837.1 2% 1715.2 9% 1818.4 3% 
1973.6 – – – – 1924.3 3% – – 
2231.9 2284.6 2% – – – – – – 
2458.8 – – – – – – – – 
2998.9 – – – – – – – – 

(4037.4) – – 4063.2 1% 3782.0 6% – – 

 
 As shown above in Table 6.5, compared with the results of the beam, all the sensor 

selection methods appear to perform worse. Across all sensor methodologies, only 5 of the first 

14 transverse bending natural frequencies are captured with less than 5% error. If we expand the 

selection criteria to include all natural frequencies, and not just those in bending, then across all 

methodologies 7 natural frequencies are captured with less than 5% error.  

 One limitation of the approach used here, as mentioned previously, is the small size of 

the time domain acceleration dataset that was able to be exported from ANSYS. Given 

limitations in the lsrf modal extraction algorithm that limit the number of frequencies capable of 

being returned with small window sizes i.e., only 5 frequencies were output despite requesting 7, 

these results are not sufficient by themselves to assess the effectiveness of the various sensor 

methodologies. The ODS methodology had the lowest combined error of the returned natural 

frequencies, while EIM returned the fewest non-bending frequencies. This is expected behavior 

for EIM as the dataset fed into the selection algorithm included only modes that were primarily 

transverse bending. 
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6.4 Discussion 

Both the ODS RFR method and the traditional EIM method appear to perform similarly for 

the 1D beam, yielding similar natural frequencies to each other in both loading conditions as well 

as having lower percent error than the FRF and normalized ODS method. An advantage of both 

methodologies over the FRF based RFR method is that they are insensitive to windowing during 

sensor selection. This reduces the amount of preprocessing that needs to be conducted and 

removes a step in the process where error could be introduced by choosing an inappropriate 

window. Additionally, conducting a transient analysis in FEA for large or complex geometries is 

non-trivial, and can greatly increase the time and computational requirements for sensor 

selection, a disadvantage the EIM method does not have. 

Windowing is sensitive to the excitation signal and therefore accuracy of the extracted 

modes is sensitive to both the excitation signal and the windowing. For the 1D beam, both the 

chirp and white noise excitation yielded similar extracted natural frequencies, although the chirp 

frequency does appear to yield more consistent results with fewer non-predicted frequencies. The 

chirp excitation yielded a more accurate first natural frequency, although accuracy was still poor 

with a best-case 28% error.  The ODS based sensors appeared to perform slightly better than the 

EIM based sensors, but this is offset by being unable to predict the 7th natural frequency.  

Due to the small dataset used for the 2D plate, it is more difficult to assess the effectiveness 

of the various methodologies. Although all appear capable of predicting some frequencies with 

greater than 5% accuracy, the sensed frequencies are scattered. Expanding the time history 

dataset would likely improve the results. 
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7 Experimental Validation 

7.1 Chapter Summary 

A physical plate identical in dimensions and material to the plate discussed in the previous 

chapter was subjected to modal testing using both traditional and machine learning derived 

sensor configurations. Six sensor configurations were tested, the four discussed in the prior 

chapter—effective independence, RFR Average FRF, RFR ODS, and RFR normalized ODS—

and two additional configurations where the sensors were placed in a simple grid pattern. The 

plate was then excited, and data recorded to determine the natural frequencies of the plate. The 

following chapter outlines the experimental methodology, presents the collected data, and 

analyzes the effectiveness of the various sensor techniques.  

7.2 Methodology 

For the experiment, the plate was welded along the boundary condition to C-channel, that 

was then bolted through the table as indicated in Fig.  7.1. The plate’s welded support structure 

and the modal shaker support structure were both attached to a steel fixturing table with bolts. 

The modal shaker was mounted to the corresponding trunnion, which in turn was bolted to the 

support structure.  

 

Fig.  7.1 Experimental configuration 

The modal shaker was attached to plate via a stinger with a force sensor mounted to the 

end of the stinger and glued to the plate. Seven accelerometers were mounted to the opposite side 

of the plate with wax.  A total of 6 different sensor configurations were trialed: 
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- Effective Independence Method (EIM) 

- RFR selecting for avg. FRF (RFR-FRF) 

- RFR selecting for ODS (RFR-ODS) 

- RFR selecting for normalized ODS (RFR-nODS) 

- Large distributed grid (LDG) 

- Small distributed grid (SDG) 

The two grid sensor configurations were chosen as representative of a non-algorithmic sensor 

placement technique, with accelerometers placed to cover half of the plate (LDG) and a quarter 

of the plate (SDG). For the LDG sensor placement, the sensors were spaced 100mm from each 

other. In the SDF configuration, sensors were placed with 50mm spacing. The placement 

configuration for the other placement methodologies can be found in the prior chapter. 

Photographs of the six sensor configurations are provided in the following figures: 

 

Fig.  7.2 EIM sensor placement 
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Fig.  7.3 RFR-FRF sensor placement 

 
Fig.  7.4 RFR-ODS Sensor Placement 
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Fig.  7.5 RFR-nODS sensor placement 

 
Fig.  7.6 LDG sensor placement 
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Fig.  7.7 SDG sensor placement 

The sensor and shaker were mounted so the force was applied at a height of 441 mm 

from the fixed plate base and at 152 mm from the edge of the plate, approximately in the center. 

The point of application for the excitation was chosen to match the FEA plate load condition as 

closely as possible, though in real world testing it is not possible to apply the excitation to a 

single node. A photograph of the modal shaker, force sensor, and plate as set up for the 

experiment is shown in Fig.  7.8. 

 
Fig.  7.8 Photograph of modal shaker as set up 
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7.2.1 Excitation Signal 

For each sensor configuration, the beam was excited with a linear chirp function. The 

chirp function was chosen due to being an easier signal to process with the modalfit and modalfrf 

in MATLAB. Time constraints prevented the collection of data from multiple excitation signals. 

The characteristics of the chirp function and single-sided amplitude spectrum are available in 

Table 7.1 and Fig.  7.9 respectively. The amplitude of the signal was chosen to ensure that the 

acquired data was not clipped, and the excitation frequency range was chosen as the primary 

frequencies that would ideally be observed were all below 2 kHz. Sampling frequency was 

determined by hardware and software constraints.  

 
Table 7.1 Excitation Signal 

Property Value 

Duration 4s 

Frequency Range 0-2000 Hz 

Frequency Sweep Linear 

Magnitude 0.1 N 

Sampling Frequency 8533 Hz 

 

 
Fig.  7.9 Experimental excitation signal 
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7.2.2 Data Acquisition 

Excitation force data was collected with a PCB Piezotronics 208C01 ICP force sensor. 

Acceleration data was collected via 7 PCB Piezotronics model 352A24/NC ICP accelerometers. 

The force sensor and accelerometers were routed through a PCB Piezotronics model 482C15 

signal conditioner before plugging into two NI 9234 4-channel analog input module, one channel 

per signal. The modal shaker used was a K2007E01 Mini SmartShaker from The Modal Shop. 

The excitation signal was output through a NI9260 analog output module. Both the sensor and 

signal modules were interfaced with a MATLAB script through a NI CDAQ-9178 over USB. 

The MATLAB script performed the signal generation and response recording. The analog signal 

was sampled at a rate of 8533 Hz. The NI9234 provides built in, automatic, anti-aliasing filtering 

for all recorded excitations.  

7.2.3 Postprocessing 

For each sensor configuration, 10 samples were acquired. Sensor data was logged for 

each sample and analyzed for any experimental error. In three cases—RFR-FRF, nODS, and 

SDG, one channel of the data in one sample was missing a value. This is potentially due to the 

actual sampling rate of the hardware being 8533.3 recurring and not being fully captured by 

MATLAB. In these cases, the data from that channel for that sample was discarded.  

 The remaining data for each channel was then averaged across the 10 samples. A low-

pass sharp cutoff filter was applied to the dataset from each sample, with a cutoff frequency of 

2000 Hz and a stopband attenuation of 100 db. The full MATLAB code for the postprocessing, 

FRF calculation, and feature extraction is presented in Appendix I 

7.3 FRF 

For the FRF calculation, modalfrf in MATLAB was again used to calculate the H1 FRF. A 

Hamming window of size  4267 with a 90% overlap was used. The window size was chosen to 

allow at least 10 cycles of the lowest target frequency (24  Hz) to be observed within each 

window. A high overlap was chosen to improve frequency resolution. The FRF and coherence 

for each of the sensors for each configuration are shown in the following figures.  
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Fig.  7.10 EIM sensor 1 through  4 

 
Fig.  7.11 EIM sensor 5 through 7 
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Fig.  7.12 RFR-FRF sensor 1 through 4 

 
Fig.  7.13 RFR-FRF sensor 5 through 7 
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Fig.  7.14 RFR-ODS sensor 1 through 4 

 
Fig.  7.15 RFR-ODS sensor 5 through 7 
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Fig.  7.16 RFR-nODS sensor 1 through 4 

 
Fig.  7.17 RFR-nODS sensor 5 through 7 
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Fig.  7.18 LDG sensor 1 through 4 

 
Fig.  7.19 LDG sensor 5 though 7 
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Fig.  7.20 SDG sensor 1 through 4 

 
Fig.  7.21 SDG sensor 5 through 7 
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approximately 150 Hz. This lack of coherence could be a result of experimental configuration 

since the shaker may not have sufficiently excited these low frequencies. Additionally, a 

stuttering behavior was observed when the excitation signal was triggered during testing, which 

may impact the low frequency response.  

 In the case of the RFR-ODS sensors (Fig.  7.14, Fig.  7.15), there is a noticeable decrease 

in coherence as sensor number increases. In the RFR method, sensors are ordered in terms of 

importance, with sensor 1 being most important and sensor 7 being the least important of the top 

7 sensors. As a result, coherence decreases as sensor number increases. This is particularly 

noticeable in RFR-ODS sensor 7 (Fig.  7.15), where coherence past 1 kHz is lower compared to 

sensors 1-6 and compared to sensor 7 on other methodologies. The RFR-FRF and RFR-nODS 

sensor selection both also exhibit this behavior, although to a lesser extent than the RFR-ODS 

method. 

7.4 Feature Extraction 

Before extracting the natural frequencies, the stabilization diagrams for each of the sensor 

configurations were plotted using the modalsd MATLAB function. This function was run on the 

FRF function generated previously, but restricted to between 10 and 2000 Hz, as the frequencies 

of interest occur between those two values. The function was also generated with the default 

LSCE algorithm. Using the LSRF algorithm does improve frequency resolution, especially at the 

low end of the frequency range, but at the cost of greatly increased computation time. The LSCE 

based stabilization diagram provided a good baseline for determining the model order to use for 

the modalfit function, even if the modalfit function was used with the LSRF algorithm. The 

stabilization diagrams are presented below. Each stabilization diagram presents the averaged 

response function from all the sensor data, and the frequencies extracted from the averaged FRF. 

By following the model number across the left Y axis, the model order needed to extract the 

desired modes can be determined. Higher modes yield more frequencies, but can also identify 

frequencies that are purely computation, i.e., artifacts from curve fitting.  
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Fig.  7.22  EIM stabilization diagram 

 

Fig.  7.23 RFR-FRF stabilization diagram 
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Fig.  7.24 RFR-ODS stabilization diagram 

 
Fig.  7.25 RFR-nODS stabilization diagram 
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Fig.  7.26 SDG stabilization diagram 

 
Fig.  7.27 LDG stabilization diagram 
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7.5 Results 

Natural frequencies were extracted from the FRF data using the modalfit MATLAB 

function. In this case, the function was limited to only return frequencies between 10 and 

2000 Hz, as this frequency range is the mostly cleanly represented in the FRFs as well as 

covering the primary area of interest. See Table 7.2 and Table 7.3 for frequencies. 

Table 7.2 Natural frequencies ( EIM, RFR-FRF, RFR-ODS) 

EIM 

Closest 
FEA 
Freq 

% 
Error 

RFR-
FRF 

Closest 
FEA 
Freq 

% 
Error 

RFR-
ODS 

Closest 
FEA 
Freq 

% 
Error 

13.9   12.7   14.0   
19.7   16.1   17.2   
20.4 24.1 15.1 22.4 24.1 7.0 21.9 24.1 8.9 
30.6   27.9   29.7   
33.3   33.2   38.5   
33.7   33.9   42.0   
35.6   39.0   46.3   
38.2   41.7   49.1   
41.5   44.8   52.4   
47.2   49.2   65.1   
67.8   64.2   75.9   
76.1   68.6   80.5 78.4 2.6 
80.0 78.4 2.1 76.2   367.8 363.2 1.3 

366.5 363.2 0.9 80.2 78.4 2.3 385.5   
386.5   366.2 363.2 0.8 540.5 551.9 2.1 
601.7 591.1 1.8 384.7   601.7 591.1 1.8 
856.1 843.5 1.5 601.7 591.1 1.8 859.7 843.5 1.9 
858.0   859.0 843.5 1.8 927.1 920.8 0.7 
948.8 920.8 3.0 930.2 920.8 1.0 947.4 920.8 2.9 
950.2   950.3   951.3   

1324.5 1343.8 1.4 1168.1 1139.4 2.5 1325.4 1343.8 1.4 
1458.1 1433.1 1.7 1327.1 1343.8 1.2 1329.9 1343.8 1.0 
1462.0   1459.6 1433.1 1.9 1427.1 1433.1 0.4 
1515.6 1518.1 0.2 1515.9 1518.1 0.1 1464.5 1433.1 2.2 
1540.4 1518.1 1.5 1547.2   1515.3 1518.1 0.2 
1542.3 1518.1 1.6 1693.3   1539.9 1518.1 1.4 
1910.9 1920.3 0.5 1910.6 1920.3 0.5 1554.6 1518.1 2.4 
1912.9 1920.3 0.4 1914.6 1920.3 0.3 1736.6   
1935.9 1920.3 0.8 1950.3 1973.6 1.2 1892.8 1881.4 0.6 
1948.7 1973.6 1.3 1960.8 1973.6 0.6 1911.0 1920.3 0.5 
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Table 7.3 Natural Frequencies (RFR-nODS, LDG, SDG 

RFR-
nODS 

Closest 
FEA 
Freq 

% 
Error LDG 

Closest 
FEA 
Freq 

% 
Error SDG 

Closest 
FEA 
Freq 

% 
Error 

15.3 
  

14.1 
  

10.9 
  

17.8 
  

17.6 
  

16.2 
  

22.4 
  

20.9 
  

18.3 
  

25.2 24.1 4.6 24.2 24.1 0.6 21.6 24.1 10.1 
32.0 

  
30.1 

  
28.9 

  

36.4 
  

40.0 
  

34.1 
  

42.8 
  

44.2 
  

39.3 
  

49.8 
  

54.6 
  

42.5 
  

50.5 
  

65.0 
  

42.7 
  

64.0 
  

72.8 
  

48.8 
  

68.9 
  

75.9 
  

52.2 
  

77.9 78.4 0.7 79.5 78.4 1.4 69.0 
  

79.5 
  

144.6 147.4 1.9 76.1 
  

366.2 363.2 0.8 366.7 363.2 1.0 80.0 78.4 2.0 
386.8 363.2 6.5 601.2 591.1 1.7 366.6 363.2 0.9 
601.3 591.1 1.7 603.6 591.1 2.1 386.9 

  

604.0 591.1 2.2 858.9 843.5 1.8 602.6 591.1 1.9 
860.0 843.5 2.0 859.2 843.5 1.9 800.3 843.5 5.1 
929.6 920.8 1.0 935.3 920.8 1.6 858.6 843.5 1.8 
949.4 920.8 3.1 948.5 

  
948.9 

  

950.8 920.8 3.3 954.3 
  

1323.6 1343.8 1.5 
1162.2 1139.4 2.0 1323.2 1343.8 1.5 1331.6 1343.8 0.9 
1324.0 1343.8 1.5 1458.9 1433.1 1.8 1459.9 1433.1 1.9 
1459.0 1433.1 1.8 1460.7 1433.1 1.9 1461.7 1433.1 2.0 
1460.4 1433.1 1.9 1516.5 1518.1 0.1 1507.4 1501.8 0.4 
1515.7 1518.1 0.2 1913.1 1920.3 0.4 1509.0 1501.8 0.5 
1542.8 1518.1 1.6 1914.5 1920.3 0.3 1805.2 

  

1911.1 1920.3 0.5 1947.4 1973.6 1.3 1914.8 1920.3 0.3 
1913.8 1920.3 0.3 1950.3 1973.6 1.2 1958.9 1973.6 0.7 
1921.0 1920.3 0.0 1956.4 1973.6 0.9 1961.2 1973.6 0.6 

 

Both tables were created by extracting the natural frequencies from the FRFs, and then 

comparing each extracted frequency to the frequencies calculated using FEA. The low 

frequencies contained many extra modes compared to the FEA data, and unfortunately the FRF 

is not clear enough in this band to determine which are physical modes. The above two charts 
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have blanks where the percentage error was large and an existing predicted frequency already 

exists.  

Table 7.4 Percent error and standard deviation from all natural frequencies 

 EIM RFR-FRF RFR-ODS 
RFR-
nODS LDG SDG 

Mean 14.51 16.72 15.14 14.91 9.88 19.53 
Sdev 23.82 27.25 27.23 28.82 19.23 28.33 

 

 Examining the mean and standard deviation of the complete chart with no eliminated 

values, the LDG method was found to have both the smallest mean error as well as the lowest 

standard deviation; however, this only accounts for natural frequencies and does not consider the 

accuracy of mode shapes. A further study of the data generated is needed to more accurately 

determine the effectiveness of these techniques; however, as the sensor placement was generated 

from a comparatively low number of time steps, these results must be taken with caution.   
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8 Conclusion 

Machine learning represents an appealing solution to the issue of sensor selection for modal 

testing. Current algorithms used for sensor selection are iterative when implemented ideally, and 

for large geometries and complex models, the computational time can be substantial. The ODS 

RFR sensor selection methodology appears to compare favorably with the existing EIM sensor 

selection methodology in the case of a 1D beam.  

Unfortunately, the 2D plate analysis was inconclusive due to the smaller FEA dataset used. 

A drawback to the RFR based sensor selection techniques is that, using the current parameters of 

average FRF, normalized ODS, and ODS, acceleration data for every node must be extracted 

from a transient FEA analysis. This is very expensive computationally and does not scale well 

into models with large node counts. Although the RFR run is faster than the purely iterative EIM, 

the upfront cost cannot be ignored when comparing these techniques. If the RFR-based 

techniques can provide a better sensor selection, allowing fewer sensors, this may justify the 

cost. More experimentation is needed to prove the effectiveness of these techniques. 

Additionally, this work focused primarily on comparison of natural frequencies and predicted 

mode shapes. In future work, the Modal Assurance Criterion (MAC) should be calculated at each 

frequency for each method to allow for better assessment of the technique’s effectiveness.  

Though natural frequencies matching those of the FEA model were extracted from all of 

the sensor placements, the low number of points used to generate the sensor placements makes it 

difficult to confidently draw conclusions on the sensor placement effectiveness. Future studies 

should rerun the sensor selection method with more exported time steps to allow for better 

capturing of low frequency modes and provide a larger dataset for training. Depending on the 

sensor placements determined by adding more datapoints, physical verification should be 

conducted again. Additionally, implementing the RKE method would allow an additional point 

of comparison to be made for the RFR based sensor selection methodologies.  Alternative 

selection criteria for the RFR may also be experimented with, ideally to reduce the 

computational cost of generating the data for the RFR.  
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Appendix A: Effective Independence Code 
 
function [sensedNodes] = SensorSelector(P,numsensSel,selType,anType,supressPlots) 
% This function selects a subset of nodes (sensor locations) for a rfr 
% given dataset based on the selected method. 
% Inputs: 
% - P: matrix containing data for sensor selection 
% - numsensSel: number of sensors to be selected 
% - selType: method for sensor selection (e.g. 'effindep', 'rfrODS', 'rfrnormODS', 
'rfrAvgFRF') 
% - anType: 'beam' or 'plate' - changes how data is processed depending on 
if nargin == 4 
    supressPlots=''; 
end 
% if beam or plate is being considered.  
if strcmp(selType,'effindep') 
    %EIM Method  
    if strcmp(anType,'beam') 
    % Get only the vertical mode shapes 
    PSel=P(2:3:end,1:15); 
    %Add index to Phi for sensor selection 
    Pdexed=[(1:size(PSel,1))',PSel]; 
 
    %output full EFI table for error checking/Manual verification 
    % [Edexed,~]=efIndep(Pdexed); 
 
 
    Ait=[]; 
    %loop through EFI runs. At each run, remove the smallest contribution to 
    %the EFI matrix and then rerun. 
        if strcmp(supressPlots,'unsupressed') 
            figure 
            hold on 
        end 
        while(height(Pdexed)>numsensSel-1) 
 
            [Edexed,A]=efIndep(Pdexed); % get EFI table for current Phi Values 
            Ait=[Ait,det(A)]; 
 
            if height(Edexed) >numsensSel-1 
                [~,Idex]=min(Edexed(:,2)); 
                Pdexed(Idex,:)=[]; 
    
            end 
            % Plot the sorted effective independence values 
            if strcmp(supressPlots,'unsupressed') 
                plot(sort(Edexed(:,2),'descend')); 
            end 
            sensedNodes=sort(Edexed(:,1),'descend'); 
        end 
    % Plot the determinant of the Fisher Information Matrix (A_0) vs iteration 
%     figure 
%     title('Effective Independence (Sorted)') 
%     xlabel('Sensor Locations') 



100 
 

%     ylabel('Effective Independence') 
%     figure 
%     plot(Ait) 
%     title('Determinant of Fisher Information Matrix (A_0) vs Iteration') 
%     xlabel('Iteration') 
%     ylabel('Det(A_0)') 
    elseif strcmp(anType, 'plate') 
        % For a plate, since the Nodes are not simply linearly ordered, the 
        % index is passed from the imported ANSYS table since in this case 
        % the index corresponds to the node number and the physical 
        % location of the sensor. Additionally, the relevant data is 
        % already extracted in the ANSYS script,  
        Pdexed=P; 
    %output full EFI table for error checking/Manual verification 
    % [Edexed,~]=efIndep(Pdexed); 
    Ait=[]; 
    %loop through EFI runs. At each run, remove the smallest contribution to 
    %the EFI matrix and then rerun. 
         if strcmp(supressPlots,'unsupressed') 
            figure 
            hold on 
        end 
 
    while(height(Pdexed)>numsensSel-1) 
 
        [Edexed,A]=efIndep(Pdexed); % get EFI table for current Phi Values 
        Ait=[Ait,det(A)]; 
 
        if height(Edexed) >numsensSel-1 
            [~,Idex]=min(Edexed(:,2)); 
            Pdexed(Idex,:)=[]; 
    
        end 
        % Plot the sorted effective independence values 
        if strcmp(supressPlots,'unsupressed') 
            plot(sort(Edexed(:,2),'descend')); 
        end 
        [efSorted,I]=sort(Edexed(:,2),'descend'); 
         sensedNodes=Edexed(I,:); 
        %sensedNodes=sort(Edexed(:,2),'descend'); 
    end 
end 
    % Plot the determinant of the Fisher Information Matrix (A_0) vs iteration 
%     figure 
%     title('Effective Independence (Sorted)') 
%     xlabel('Sensor Locations') 
%     ylabel('Effective Independence') 
%     figure 
%     plot(Ait) 
%     title('Determinant of Fisher Information Matrix (A_0) vs Iteration') 
%     xlabel('Iteration') 
%     ylabel('Det(A_0)') 
 
 
elseif strcmp(selType,'rfrODS') 
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    % Random Forest Regression (RFR) method based on ODS data 
    ODS=importMLResults('FI_ODS.csv'); 
    sensedNodes=ODS{1:numsensSel,1}; 
 
elseif strcmp(selType,'rfrnormODS') 
   % RFR method based on normalized ODS data 
   ODSnorm=importMLResults('FI_ODSnorm.csv'); 
   sensedNodes=ODSnorm{1:numsensSel,1}; 
 
elseif strcmp(selType,'rfrAvgFRF') 
     % RFR method based on average FRF data 
    frfML=importMLResults('FI_frfTab.csv'); 
    sensedNodes=frfML{1:numsensSel,1}; 
 
end 
% Return the selected subset of nodal sensor locations 
end 
 
function [Edexed,A] = efIndep(pdexed,n_sensors) 
% This function computes the effective independence (EfI) of each degree of freedom. 
% Inputs: 
% pdexed-first column is an index, each subsequent column is a mode shape.  
% Outputs: 
% 'Edexed' contains the index and the corresponding EfI values for each mode shape. 
%  'A' : Fisher information Matrix  
 
 
% Extract the mode shapes  
phi=pdexed(:,2:end); 
 
EfI=diag(phi*pinv(phi'*phi)*phi'); 
A=phi'*phi; 
% Create Edexed  by concatenating the index 
% of 'pdexed' with the EfI values ('E') 
Edexed=[pdexed(:,1),EfI]; 
 
 
end 
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Appendix B: APDL Extraction Code 
! ANSYS MODE SHAPE EXPORT CODE 
! AUTHOR: TODD KELMAR 
! VERSION: 1.0 
! This code must be inserted into the solution tree after all the deformations are 
calculated.  
! This code will export the mode shapes (total deflection) into a csv file on the 
desktop.  
! Modes to be exported must be specified manually 
! Currently this code exports the mode shapes from one side of the model (All points 
with Y=0.0061) 
! The mode shape is a vector sum of the mode shape X, Y, and Z deflection 
! Last updated 3/19/2023 by Todd Kelmar 
 
! Switch to Advanced Nodal Post processor  
/POST26 
 
!Define Variables 
! Select all Nodes to check verify the total number of nodes (For troubleshooting) 
! NSLE,ALL 
! Select all the nodes on one face of the plate 
NSEL,S,LOC,Y, 0.0061 
 
! Get the number of selected nodes and store in NUM_NODES 
*GET, NUM_NODES, NODE, 0, COUNT, 
! Get lowest node number in the selected set and store it in currn 
*GET, currn, NODE, 0, NUM, MIN, 
! Set file name for easier reference 
file1 ='YNodes_mode_shapes' 
! Create an empty array Node_List of dimension NUM_NODES x 4 for storing node number, 
X, Y, and Z coord 
*DIM, Node_List, ARRAY, NUM_NODES, 4 
! Create an empty array MODES of dimension 13 x 1 
*DIM, MODES, ARRAY, 13 
! Create empty MODE_SHAPES array to store the mode shapes NUM_NODES x 13 
*DIM, MODE_SHAPES, ARRAY, NUM_NODES, 13 
! Create Natural Freq array of dim 13 x 1 
*DIM, NATURAL_FREQUENCIES, ARRAY, 13 
! Define the modes of interest (manually ID as transverse bending modes from the 
Total Deformation plots) 
MODES(1) = 1 
MODES(2) = 2 
MODES(3) = 6 
MODES(4) = 9 
MODES(5) = 10 
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MODES(6) = 15 
MODES(7) = 16 
MODES(8) = 18 
MODES(9) = 21 
MODES(10) = 24 
MODES(11) = 25 
MODES(12) = 30 
MODES(13) = 44 
 
! Select all Nodes to check verify the total number of nodes (For troubleshooting) 
! NSLE,ALL 
! Select all the nodes on one face of the plate 
NSEL,S,LOC,Y, 0.0061 
 
! Get the number of selected nodes and store in NUM_NODES 
*GET, NUM_NODES, NODE, 0, COUNT, 
! Get lowest node number in the selected set and store it in currn 
*GET, currn, NODE, 0, NUM, MIN, 
 
! Loop through each frequency of interest 
*DO, i, 1, 13, 1 
! Get the natural frequency of the current mode, and store in NATURAL FREQUENCIES 
*GET, NATURAL_FREQUENCIES(i), MODE, MODES(i), FREQ, 
*ENDDO 
! Enter the basic postprocessor 
/POST1 
! Select lowest node in the subset as the active node 
NODE = currn 
! LOOP through all nodes in the subset, for each node store the node ID, NODE X< Y< Z 
Coord in Node_List 
*DO, k,1,NUM_NODES,1 
ncx = nx(currn) 
Node_List(k,1) = currn 
Node_List(k,2) = nx(currn) 
Node_List(k,3) = ny(currn) 
Node_List(k,4) = nx(currn) 
!Loop through all 13 frequencies and extract the modal displacement (vector sum) and 
store in mode shapes for the current node 
*DO, l,1,13,1 
SET,1,MODES(l), 
 *GET, MODE_SHAPES(k,l), NODE, currn,U,SUM 
*ENDDO 
!Increment to next node 
*GET, currn, NODE, currn, nxth, 
!Select next node 
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NODE = currn 
*ENDDO 
 
! Write data to CSV file 
 
FILE, file, 
/CWD,'C:\Users\Todd\Desktop' 
*CFOPEN, file1, csv 
*VWRITE, 'Node', 'NODE X','NODE Y','NODE Z', 'Mode 1', 'Mode 2', 'Mode 6', 'Mode 9', 
'Mode 10', 'Mode 15', 'Mode 16', 'Mode 18', 'Mode 21', 'Mode 24', 'Mode 25', 'Mode 
30', 'Mode 44' 
%C, %C,%C,%C,%C, %C, %C, %C, %C, %C, %C, %C, %C, %C, %C, %C, %C 
*VWRITE,'Frequency','','','', NATURAL_FREQUENCIES(1), NATURAL_FREQUENCIES(2), 
NATURAL_FREQUENCIES(3), NATURAL_FREQUENCIES(4), NATURAL_FREQUENCIES(5), 
NATURAL_FREQUENCIES(6), NATURAL_FREQUENCIES(7), NATURAL_FREQUENCIES(8), 
NATURAL_FREQUENCIES(9), NATURAL_FREQUENCIES(10), NATURAL_FREQUENCIES(11), 
NATURAL_FREQUENCIES(12), NATURAL_FREQUENCIES(13) 
%C, %C, %C, %C, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G 
*CFCLOS 
 
*CFOPEN, file1,csv, ,append 
*VWRITE, Node_List(1,1),Node_List(1,2),Node_List(1,3),Node_List(1,4), 
MODE_SHAPES(1,1), MODE_SHAPES(1,2), MODE_SHAPES(1,3), MODE_SHAPES(1,4), 
MODE_SHAPES(1,5), MODE_SHAPES(1,6), MODE_SHAPES(1,7), MODE_SHAPES(1,8), 
MODE_SHAPES(1,9), MODE_SHAPES(1,10), MODE_SHAPES(1,11), MODE_SHAPES(1,12), 
MODE_SHAPES(1,13) 
%G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G 
*CFCLOS 
 
 
/EXIT 
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Appendix C: RFR Sensor Selection 
#Random Forest Regressor for modal sensor selection 
#By Todd Kelmar 
import time 
 
from sklearn import metrics 
start_time=time.time() 
import pandas as pd 
import numpy as np 
import joblib as jl 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split,GridSearchCV 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import mean_squared_error 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.datasets import make_regression 
from sklearn.metrics import r2_score 
#import seaborn as sns 
import matplotlib.pyplot as plt 
 
import os 
from scipy.stats import pearsonr 
from sklearn.decomposition import PCA 
from sklearn.model_selection import cross_val_score,cross_val_predict,KFold 
from sklearn.ensemble import RandomForestRegressor 
 
#set up plot font sizes 
SMALL_SIZE = 10 
MEDIUM_SIZE = 20 
BIGGER_SIZE = 30 
 
plt.rc('font', size=MEDIUM_SIZE)          # controls default text sizes 
plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title 
plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels 
plt.rc('xtick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels 
plt.rc('ytick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels 
plt.rc('legend', fontsize=MEDIUM_SIZE)    # legend fontsize 
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title 
print('Changing Directory') 
#Change directory 
os.chdir("X:/Onedrive/.SJSU/AE295 - Masters Project/Code/beam_Matlab_files/Current 
Code") 
 
stdf=pd.DataFrame(columns=['Dataset','R2','MSE']) 
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#loop through the folder to process each file individually 
for filename in os.listdir(r"X:/Onedrive/.SJSU/AE295 - Masters 
Project/Code/beam_Matlab_files/Current Code"): 
    if filename.endswith(".csv"): 
        print('Importing data...') 
        rf=pd.read_csv(filename) 
        print("loading %s"%(filename))  
 
        set_name=filename[:-4] 
         
        #set_name=['New_Plate_indiv'] 
        optVal= rf['OPT'] 
        rf.drop(columns=['OPT', 'Freq'],inplace = True)         
         
               
        print("rfr running for %s"%(set_name)) 
        # applying random forest for getting feature importance plots  
        model_sens = RandomForestRegressor(n_estimators = 100, n_jobs=16) 
 
        model_sens.fit(rf,optVal) 
 

        print("plotting %s"%(set_name)) 
        sorted_index_optVal = model_sens.feature_importances_.argsort() 
        plt.figure(figsize=(60,30)) 
        plt.barh(rf.columns[sorted_index_optVal], 
model_sens.feature_importances_[sorted_index_optVal]) 
        plt.xlabel('Feature Importance') 
        featDF=pd.DataFrame(rf.columns[sorted_index_optVal]) 
        featDF.insert(1,'Importance',model_sens.feature_importances_[sorted_index_opt
Val].tolist()) 
        featDF.to_csv("./impCols/FI_%s.csv"%set_name) 
        plt.title(filename) 
        print("Saving figure...") 
        plt.savefig('./graphs/%s.png'%(set_name)) 
       # plt.show() 
        rf_imp_cols=rf.columns[sorted_index_optVal] 
     
 

        spred=model_sens.predict(rf) 
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        mse = metrics.mean_squared_error(optVal,spred) 
        score=model_sens.score(rf,optVal) 
        stdf.loc[len(stdf.index)]=[set_name,score,mse] 
 
        new_rf_df = rf[rf_imp_cols] 
        new_rf_df.shape 
        print("Writing important columns...") 
        new_rf_df.to_csv("./outputs/imp_cols_%s.csv"%set_name) 
        print("Writing Random Forest Model....") 
        jl.dump(rf, "./models/%s.joblib"%(set_name)) 
        time.sleep(5) 
    else: 
        continue 
stdf.to_csv("./errors/errors_%s.csv"%set_name) 
print((time.time()-start_time)/60) 
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Appendix D: Transient Analysis APDL Export Script 
! ANSYS Transient Analysis Acceleration Export 
! Author: Todd Kelmar 
! Version: 1.2 
! Last modified: 4/25/23 
! Changlog: 
! Reodered file write operations for speed 
! Modified to run in batch mode from APDL terminal, must be placed in same working 
directory as ANSYS results file. 
! This script Exports only Y acceleration data, Node number, and nodal coordinates 
for nodes on the Y=6.1mm plane.  
! Get all nodes on the Y =6.1mm plane 
RESUME 
NSEL,S,LOC,Y, 0.0061 
*GET, NUM_NODES, NODE, 0, COUNT, 
*GET, NUM_STEPS, ACTIVE, 0, SOLU, NCMSS 
!Insert Signal Filename here 
filename = 'CHIRP_TEST' 
!FILE, filename 
*CFOPEN, filename, csv 
!Set up file and write headings 
*VWRITE, 'T', 'NODE', 'X','Y', 'Z', 'AY' 
%C, %C, %C, %C, %C, %C 
*CFCLOS 
*CFOPEN, filename, csv, , append 
! For each time step, loop through the selected nodes and write node number, X, Y, Z 
coordinate and Y acceleration to CSV file 
*DO, i, 1, NUM_STEPS, 1 
 
/PREP7 
NSEL,S,LOC,Y, 0.0061 
*GET, currn, NODE, 0, NUM, MIN 
NODE = currn 
 
*DO, j, 1, NUM_NODES, 1 
 
NODE_NUM = currn 
NODE_X = nx(currn) 
NODE_Y = ny(currn) 
NODE_Z = nz(currn) 
/POST1 
SET, 1, i 
*GET, NODE_TIME, ACTIVE, 0, SET, TIME 
*GET, NODE_AY, NODE, currn, A, Y 
! Write Data to CSV File 
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*VWRITE, NODE_TIME, NODE_NUM, NODE_X, NODE_Y, NODE_Z, NODE_AY 
%e, %i, %e, %e, %e, %e 
 
/PREP7 
!Increment to next node 
*GET, currn, NODE, currn, nxth, 
!Select next node 
NODE = currn 
 
*ENDDO 
 
*ENDDO 
! Close the CSV File 
*CFCLOS 
 
FINISH 
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Appendix E: 2D Plate Natural Frequency Extraction Code 
%The following script imports data from ANSYS, calculates the EIM method, formats the 
plate data for export to python ML script, and then reimports the data to calculate 
the FRF and fn for various methods.  
 
ansysExport='YNodes_mode_shapes.dat'; 
sensorCount=7; 
[Ptab,ftab]=importANSYSModeShapes(ansysExport); 
 
%extract Matrix of Mode Shapes 
P=table2array(Ptab(:,[1,5:end])); 
tic 
[sensedNodes] = SensorSelector(P,sensorCount,'effindep','plate'); 
toc 
sensedidex=ismember(Ptab.Node,sensedNodes(:,1)); 
 
%% Import Data from FEA (Uncomment if using new FEA Data) 
% FEA_DATA_Reformat 
load formatted_Plate_Ac 
load chirp_signal.mat 
%% Plot All Possible Nodes on Plate 
figure 
hold on 
scatter(Ptab{:,"NODEX"},Ptab{:,'NODEZ'},'.'); 
scatter(Ptab{sensedidex,"NODEX"},Ptab{sensedidex,'NODEZ'},'filled'); 
legend('FEA Nodes', 'EFI Sensed Nodes'); 
xlabel('Width (m)') 
ylabel('Height (m)'); 
axis equal 
%% Process Plate Data for ML 
 
sampleRate=20e3; 
winSize=100; 
overlap=50; 
 
sensDat=outputNDB{:,2:end}; 
input=chirp_signal; 
 
[fullfrf,f,~]=modalfrf(input,sensDat,sampleRate,hamming(winSize),overlap); 
modalfrf(input,sensDat,sampleRate,hamming(winSize),overlap); 
fullfrf=abs(fullfrf); 
% Combine the frequency and FRF data into a matrix for input into the 
% python script 
MLinput=[f,fullfrf]; 
% Calculate the Operational Deflection Shape (ODS) and ODS normalization 
ODS=zeros([size(f,1),1]); 
ODSnorm=zeros([size(f,1),1]); 
for i=1:size(fullfrf,1) 
ODS(i)=fullfrf(i,:)*fullfrf(1,:)'; 
ODSnorm(i)=ODS(i)./norm(fullfrf(1,:)); 
end 
% Calculate the average FRF for all nodes 
frfAvg=sum(fullfrf,2)./nodeCount; 
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% Create headers for the resulting tables 
 
nodeLab=  nodes; %add index to keep track of the node number 
header=["Freq",nodeLab']; 
% Convert the data to tables and add variable names to the columns 
% Create a seperate table for each of the different types of analysis 
MLTabODS=array2table([MLinput,ODS], 'VariableNames',[header, "OPT"]); 
MLTabODSnorm=array2table([MLinput,ODSnorm],'VariableNames',[header, "OPT"]); 
MLTabAvFrf=array2table([MLinput,frfAvg],'VariableNames',[header, "OPT"]); 
% Write the tables to separate .csv files 
writetable(MLTabAvFrf,'frfTabPlate.csv') 
writetable(MLTabODSnorm, 'ODSnormPlate.csv') 
writetable(MLTabODS, 'ODSPlate.csv') 
 
 
 
%% 
 
numsensSel = 7; 
 
    ODS=importMLResults('FI_ODSPlate.csv'); 
    sensedNodesODS=ODS{1:numsensSel,1}; 
odsNodes=getcord(sensedNodesODS) 
figure 
hold on 
scatter(Ptab{:,"NODEX"},Ptab{:,'NODEZ'},'.'); 
scatter(odsNodes(:,2),odsNodes(:,4),'filled'); 
legend('FEA Nodes', 'ODS Sensed Nodes'); 
xlabel('Width (m)') 
ylabel('Height (m)'); 
axis equal 
title('ODS Selected Nodes') 
 
   % RFR method based on normalized ODS data 
   ODSnorm=importMLResults('FI_ODSnormPlate.csv'); 
   sensedNodesODSnorm=ODSnorm{1:numsensSel,1}; 
   odsnormNodes=getcord(sensedNodesODSnorm); 
 
figure 
hold on 
scatter(Ptab{:,"NODEX"},Ptab{:,'NODEZ'},'.'); 
scatter(odsnormNodes(:,2),odsnormNodes(:,4),'filled'); 
legend('FEA Nodes', 'ODS norm. Sensed Nodes'); 
xlabel('Width (m)') 
ylabel('Height (m)'); 
axis equal 
title('Normalized ODS Selected Nodes') 
    frfML=importMLResults('FI_frfTabPlate.csv'); 
    sensedNodesfrf=frfML{1:numsensSel,1}; 
frfNodes=getcord(sensedNodesfrf) 
 
figure 
hold on 
scatter(Ptab{:,"NODEX"},Ptab{:,'NODEZ'},'.'); 
scatter(frfNodes(:,2),frfNodes(:,4),'filled'); 
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legend('FEA Nodes', 'Avg. FRF Sensed Nodes'); 
xlabel('Width (m)') 
ylabel('Height (m)'); 
axis equal 
title('Avg. FRF Selected Nodes') 
 
 
%% Plate Mode Extract 
% The section manually extracts the nodes used in lab experimentation for 
% consistency. It can be rewritten to extract acc data automatically if 
% needed.  
EIMsensdat=[outputNDB.Node16990_AccY,outputNDB.Node17037_AccY, 
outputNDB.Node4540_AccY, outputNDB.Node12798_AccY, outputNDB.Node17029_AccY, 
outputNDB.Node4648_AccY,outputNDB.Node4500_AccY]; 
ODSnormsensdat=[outputNDB.Node14426_AccY,outputNDB.Node13080_AccY,outputNDB.Node14155
_AccY,outputNDB.Node15116_AccY,outputNDB.Node15468_AccY,outputNDB.Node14430_AccY,outp
utNDB.Node14090_AccY]; 
ODSsensdat=[outputNDB.Node4384_AccY,outputNDB.Node4163_AccY,outputNDB.Node13412_AccY,
outputNDB.Node16034_AccY,outputNDB.Node16766_AccY,outputNDB.Node17072_AccY,outputNDB.
Node13262_AccY]; 
FRFsensdat=[outputNDB.Node15136_AccY,outputNDB.Node15615_AccY,outputNDB.Node3548_AccY
,outputNDB.Node15896_AccY,outputNDB.Node13877_AccY,outputNDB.Node3358_AccY,outputNDB.
Node4055_AccY]; 
time=outputNDB.Time; 
signal=chirp_signal; 
sampleRate=20e3; 
winSize=100; 
overlap=50; 
 
% EIM 
figure 
[EIMfrf,EIMf,EIMcoh]=modalfrf(signal,EIMsensdat,fs,hamming(winSize),overlap); 
modalfrf(signal,EIMsensdat,fs,hamming(winSize),overlap); 
[EIMfn]=modalfit(EIMfrf,EIMf,sampleRate,7,FitMethod="lsrf" ); 
% ODS 
figure 
[ODSfrf,ODSf,ODScoh]=modalfrf(signal,ODSsensdat,fs,hamming(winSize),overlap); 
modalfrf(signal,ODSsensdat,fs,hamming(winSize),overlap); 
[ODSfn]=modalfit(ODSfrf,ODSf,sampleRate,7,FitMethod="lsrf" ); 
% ODSNORM 
figure 
[normODSfrf,normODSf,normODScoh]=modalfrf(signal,ODSnormsensdat,fs,hamming(winSize),o
verlap); 
modalfrf(signal,ODSnormsensdat,fs,hamming(winSize),overlap); 
[normODS]=modalfit(normODSfrf,normODSf,sampleRate,7,FitMethod="lsrf" ); 
% AVG FRF 
figure 
[FRFfrf,FRFf,FRFcoh]=modalfrf(signal,FRFsensdat,fs,hamming(winSize),overlap); 
modalfrf(signal,FRFsensdat,fs,hamming(winSize),overlap); 
[FRFfn]=modalfit(FRFfrf,FRFf,sampleRate,7,FitMethod="lsrf" ); 
 
 
%% 
function[selNodeCords]= getcord(selNodes) 
% Helper function to associate node names with their respective 
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% coordinates. Uses prebuilt Coordinate Table  
load CoordTab 
selNodeCords=zeros([length(selNodes),4]) 
for i =1:length(selNodes) 
match=ismember(CoordTab(:,1),selNodes(i)); 
selNodeCords(i,:)=CoordTab(match,:) 
end 
end 
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Appendix F: Modal Extraction MATLAB Code 
 
% %Extract Data and Format for ML from main_beam output table 
   
%  clear all 
  
 
%load ref data from FEA 
%  load T.mat 
%  load F.mat 
%  load w.mat 
markers=["o","+","*","X","square"]; 
sensedNodes=[Edexed,ODS,ODSnorm,frfML]; 
figure  
hold on 
% Loop through different sensed nodes and plot natural frequencies. 
for i=1:size(sensedNodes,2) 
sensLoc=unique(T.x); 
nNodes=size(sensLoc,1); 
 sens_pos=sensLoc(sensedNodes(:,i)); 
% sens_pos=sensLoc(linspace(1,nNodes,nNodes)); 
for j=1:length(sens_pos) 
tempTab=T(ismember(T.x,sens_pos(j)),:); 
    sensDat(:,j)=tempTab.acc; 
    clear tempTab 
end 
 
sigLength=size(sensDat,1); 
 
 
%  
%  figure  
%  
% plot(F(122,:)) 
whz=w/2/pi; 
 
%% 
 t=unique(T.time); 
 
 %% Windowing for Random 
winSize=600; 
 overlap=190; 
%% Windowing for Chirp 
% winSize=1000; 
%  overlap=600; 
 
sampleRate=1/mean(diff(unique(T.time))); 
 
[Pxx, freqs] = pwelch(sensDat, hamming(winSize), overlap, [], sampleRate); 
% figure 
% plot(Pxx,freqs) 
%     figure  
% modalfrf(F(end-1,:)',sensDat, sampleRate,hamming(winSize),overlap) 
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 [frf, f,coh]=modalfrf(F(end-1,:)',sensDat, sampleRate,hamming(winSize),overlap); 
%figure 
%sdm= modalsd(frf,f,sampleRate); 
%modalsd(frf,f,sampleRate) 
%figure 
% xline(w) 
%[fnlsce, drlsce, ms,ofrf]=modalfit(frf,f,sampleRate,10 ... 
%   ,FitMethod="lsce"); 
%modalfit(frf,f,sampleRate,24,FitMethod="lsrf") 
%[fnpp, drpp, mspp,ofrfpp]=modalfit(frf,f,sampleRate,10 ... 
%    ,FitMethod="pp"); 
 
[fnlsrf]=modalfit(frf,f,sampleRate,10 ... 
    ,FitMethod="lsrf" ); 
% [fnlsce]=modalfit(frf,f,sampleRate,7 ... 
%     ,FitMethod="lsce" ); 
 
scatter(1:length(fnlsrf),fnlsrf,100,markers(i)) 
end 
plot(whz(1:10), "-square") 
xlabel('Natural Frequency Number') 
ylabel('Freqency (Hz)') 
% title("Natural Frequencies Window Size"+ winSize+" Overlap:"+overlap) 
title('Natural Frequencies') 
legend('f EIM','f ODS', 'f normODS','f FRF', 'f FEA') 
 
 
 
%% Plot Ideal FRF From Matricies  
%  H=idealFRF(w,M,C,K); 
 
% Plot ideal FRF 
 
% main_modefit 
%% 
Pvert=P(2:3:end,1:7); 
 
 
 
%% Sensor Selctor 
sensorNum=8; 
tic 
Edexed=SensorSelector(P,sensorNum,'effindep','beam'); 
toc 
ODS=SensorSelector(P,sensorNum,'rfrODS','beam'); 
ODSnorm=SensorSelector(P,sensorNum,'rfrnormODS','beam'); 
frfML=SensorSelector(P,sensorNum,'rfrAvgFRF','beam'); 
 
 
%% Sensor Selector Plotting 
%Plot Sensor Selection output 
   figure 
hold on 
numcharts=7; 
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for k=1:numcharts 
     
subplot(numcharts,1,k) 
hold on 
plot(Pvert(:,k)) 
title("Mode  \omega = " +wHz(k)+" Hz") 
xlabel("Node") 
ylabel("Mode Shape") 
xlim([1 size(Pvert,1)]) 
xline(Edexed(:,1), ':b','LineWidth',3.5) 
xline(ODS(:,1),'--r','LineWidth',2) 
xline(ODSnorm(:,1),'g','LineWidth',2) 
xline(frfML(:,1),'-.m', 'LineWidth',2) 
end 
figure 
hold on 
numcharts=7; 
% for m=1:numcharts 
% subplot(numcharts,1,m) 
% hold on 
% plot(Pvert(:,m)) 
% title("Mode  f = " +wHz(m)+" Hz") 
% xlabel("Node") 
% ylabel("Mode Shape") 
% xlim([1 size(Pvert,1)]) 
% plot(Edexed(:,1),Pvert(Edexed(:,1),m), '-s','LineWidth',2) 
% plot(sort(ODS(:,1)),Pvert(sort(ODSnorm(:,1)),m),'--r','LineWidth',2) 
% plot(sort(ODSnorm(:,1)),Pvert(sort(ODSnorm(:,1)),m),'-x','LineWidth',2) 
% plot(sort(frfML(:,1)),Pvert(sort(frfML(:,1)),m),'-o', 'LineWidth',2) 
% legend('FEA Mode Shape', 'EFI Sensor Mode Shape', 'ODS Sensor Mode Shape', 
'Normalized ODS Sensor Mode Shape', 'FRF Sensor Mode Shape', 
'Location','eastoutside') 
% end 
ODSnormplot=sort(ODSnorm(:,1)); 
for m=1:7 
subplot(4,7,m) 
hold on 
plot(Pvert(:,m)) 
title("Mode  f = " +wHz(m)+" Hz") 
xlabel("Node") 
ylabel("Mode Shape") 
xlim([1 size(Pvert,1)]) 
scatter(Edexed(:,1),Pvert(Edexed(:,1),m)) 
 
subplot(4,7,m+7) 
hold on 
plot(Pvert(:,m)) 
title("Mode  f = " +wHz(m)+" Hz") 
xlabel("Node") 
ylabel("Mode Shape") 
xlim([1 size(Pvert,1)]) 
scatter(sort(ODS(:,1)),Pvert(sort(ODS(:,1)),m)) 
 
subplot(4,7,m+14) 
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hold on 
plot(Pvert(:,m)) 
title("Mode  f = " +wHz(m)+" Hz") 
xlabel("Node") 
ylabel("Mode Shape") 
xlim([1 size(Pvert,1)]) 
scatter(sort(ODSnorm(:,1)),Pvert(sort(ODSnorm(:,1)),m)) 
 
subplot(4,7,m+21) 
hold on 
plot(Pvert(:,m)) 
title("Mode  f = " +wHz(m)+" Hz") 
xlabel("Node") 
ylabel("Mode Shape") 
xlim([1 size(Pvert,1)]) 
scatter(sort(frfML(:,1)),Pvert(sort(frfML(:,1)),m)) 
 
 
% legend('FEA Mode Shape', 'EFI Sensor Mode Shape', 'ODS Sensor Mode Shape', ... 
%     'Normalized ODS Sensor Mode Shape', 'FRF Sensor Mode Shape', 
'Location','eastoutside') 
end 
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Appendix G: Ideal FRF MATLAB Code 
function [H] = idealFRF(w,M,C,K) 
% Calculates the frequency response function (FRF) for a system 
% with natural frequencies w, mass matrix M, damping matrix C, 
% and stiffness matrix K. 
 
% Set up frequency vector 
% f = logspace(0,4, 10000); % 1000 logarithmically spaced frequencies from 1 to 
10,000 H 
f = linspace(1,10000,100000); 
w = 2 * pi * f; 
% Initializing an ideal force vector with zeros 
% except for the second to last element which is set to 1 
idealF=zeros([length(M),1]); 
idealF(end-1)=1; 
% Calculate num degrees of freedom 
n_dof = size(M, 1); 
%Initialize FRF Matrix H 
H = zeros(n_dof, length(w)); 
 
%For each frequency: Calculate the A matrix and then the FRF matrix 
for i = 1:length(w) 
    A=(K-w(i)^2*M+1i*w(i)*C); 
     H(:,i)=A\idealF; 
end 
 
% Plot FRF 
figure 
hold on 
colors = lines(n_dof); 
% Loop through each dof and plot it's FRF 
%for i = 1:n_dof 
 
i=n_dof; 
plot(f, db(abs(H(i, :))), 'LineWidth', 1, 'Color', colors(i, :)); 
    
%end 
 
 
xlabel('Frequency (Hz)') 
ylabel('Amplitude') 
title('Frequency Response Function (FRF)') 
legend(arrayfun(@(i) sprintf('DOF %d', i), 1:n_dof, 'UniformOutput', false), 
'Location','eastoutside') 
grid on 
end 
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Appendix H: MATLAB Import/Export Functions 
% This function imports the data from the RFR Python output 
% and removes the first column since it is just an index 
function [fileTab] = importMLResults(filename) 
 
% Read the data from the file and assign it to fileTab 
fileTab=readtable(filename, 'ReadVariableNames',true); 
 
% Remove the first column from the table since it is assumed to be a row index 
fileTab(:,1)=[]; 
 
% Sort the rows by feature importance.  
fileTab=sortrows(fileTab,2,'descend'); 
 
% Return the sorted table to the calling function 
end 
 
function [modeShape,modeFreq]=importANSYSModeShapes(filename) 
% import data from CSV generated by ANSYS APDL script.  
% Reads table and outputs two tables, one of nodes with their corresponding 
% numbers, locations, and mode shapes for the exported frequencies. 
% The second table ModeFreq contains the natural frequencies for the 
% exported mode shapes and is stored seperately for ease of retreival.  
 
%Suppress warning about table header names. Does not impact data 
warning('off','MATLAB:table:ModifiedAndSavedVarnames') 
 
% Read CSV file 
imptab=readtable(filename,'ReadVariableNames',true); 
 
%Split table by removing frequencies to a seperate table.  
modeFreq=imptab(1,5:end); 
modeShape=removerows(imptab,1); 
end 
 
 
function FEA_DATA_Reformat() 
load CHIRP.MAT 
 
inputNDB=CHIRP; 
nodes=unique(CHIRP.NODE); 
nodeCount=length(nodes); 
tNodeStep=unique(CHIRP.T); 
tstepcount=length(tNodeStep); 
%  
% outputNDB=zeros(tNodeStep,nodeCount+1); 
 
outputNDB=array2table(tNodeStep, 'VariableNames', {'Time'}); 
 
 
 
for node = nodes' 
    nodeData=inputNDB(inputNDB{:,2} == node, :); 
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    nodeAcc=nodeData{:,6}; 
     if length(nodeAcc) ~= tstepcount 
        error('Data is not uniformly sampled or missing for some nodes'); 
     end 
 
     outputNDB{:,end+1}=nodeAcc; 
     outputNDB.Properties.VariableNames{end} = sprintf('Node%d_AccY',node); 
 
 
end 
 
save formatted_Plate_Ac outputNDB 
 
%% 
CoordTab=CHIRP{1:nodeCount,2:5}; 
end 
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Appendix I: MATLAB Plate Experimental Data Processing  
 
clear 
clc 
load TestData.mat 
 
%% Import and format Data for processing.  
[tfrf,frfsig]=expDat(avgFRFdata); 
[tlgrid,lgridsig]=expDat(largeGriddata); 
[tsgrid,sgridsig]=expDat(smallGriddata); 
[tods,odssig]=expDat(ODSdata); 
[tnods,nodssig]=expDat(normODSdata); 
[teim,eimsig]=expDat(EIMdata); 
fs=8533; 
 
%% PreProcess 
% Apply lowpass filter to signals 
frfsigp=preprocessPlate(frfsig,fs); 
lgridsigp=preprocessPlate(lgridsig,fs); 
sgridsigp=preprocessPlate(sgridsig,fs); 
odssigp=preprocessPlate(odssig,fs); 
nodssigp=preprocessPlate(nodssig,fs); 
eimsigp=preprocessPlate(eimsig,fs); 
%%  
fs=8533; %sample rate in hz 
winsize=round((fs/20)*10,0); 
 
%% 
%Generate FRFs 
[fn(:,2),~,~,~,~]=frfPlate(frfsigp,fs,winsize,'RFR-FRF'); 
[fn(:,5),~,~,~,~]=frfPlate(lgridsigp,fs,winsize,'LDG'); 
[fn(:,6),~,~,~,~]=frfPlate(sgridsigp,fs,winsize,'SDG'); 
[fn(:,3),~,~,~,~]=frfPlate(odssigp,fs,winsize,'RFR-ODS'); 
[fn(:,4),~,~,~,~]=frfPlate(nodssigp,fs,winsize,'RFR-nODS'); 
[fn(:,1),~,~,~,~]=frfPlate(eimsigp,fs,winsize,'EIM'); 
 
 
 
function [fn,dr,ms,frf, f] = frfPlate(sig,fs,winsize, selectionname) 
%Helper function to computer frf function using a hann window, 90% overlap. 
 
[frf, f] = modalfrf(sig(:,1),sig(:,2:end), fs, hann(winsize),round(winsize*.9,0)); 
figure 
modalfrf(sig(:,1),sig(:,2:end), fs, hann(winsize),round(winsize*.9,0)); 
% sgtitle(['FRF for sensor 1, 2, 3, 4 of ' selectionname]) 
set(gcf,'position',[0,0,1920,1080]) 
fontsize(gcf,scale=1.5) 
saveas(gcf, [selectionname '1.fig']) 
saveas(gcf,[selectionname '1.svg']) 
figure 
modalfrf(sig(:,1),sig(:,6:end), fs, hann(winsize),round(winsize*.9,0)); 
% sgtitle(['FRF for first four sensors of ' selectionname]) 
set(gcf,'position',[0,0,1920,1080]) 
fontsize(gcf,scale=1.5) 
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saveas(gcf, [selectionname '2.fig']) 
saveas(gcf,[selectionname '2.svg']) 
figure 
modalsd(frf,f,fs,"FreqRange",[10,2000]) 
title(['Stabilization Diagram for ' selectionname]) 
set(gcf,'position',[0,0,1920,1080]) 
fontsize(gcf,scale=2) 
legend('Location','northoutside','Orientation','horizontal') 
saveas(gcf, [selectionname 'stab.fig']) 
saveas(gcf,[selectionname 'stab.svg']) 
figure 
[fn,dr,ms,ofrf]=modalfit(frf,f,fs,50,'FitMethod','lsrf','FreqRange',[10,2000]); 
 
end 
 
 
 
function y = preprocessPlate(x,Fs) 
%  Preprocess input x 
%    This function expects an input vector x and a vector of time values 
%    tx. Fs is the sample rate in Hz 
%    Applies lowpass filter with stopband of 2000Hz, cutoff steepness of .9999 
%    and stopband attenuation of 100db 
 
% Generated by MATLAB(R) 9.13 and Signal Processing Toolbox 9.1. 
% Generated on: 01-May-2023 12:51:03 
 
y = lowpass(x,2000,Fs,'Steepness',0.9999,'StopbandAttenuation',100); 
end 
 
%% Import Lab Data 
function [t, avgSig] = expDat(sigdat) 
 
%Extract Averaged Data from 10 sets 
 
t=sigdat.Time; 
channels=fieldnames(sigdat); 
 
for i = 2:numel(channels) 
     
  avgSig(:,i-1) = meanFromStruct(sigdat.(channels{i})); 
 
end 
 
end 
%  
function [Average] = meanFromStruct(channel) 
% Extract Signals from the given Channel 
%Get the channel Subfield names. This assuems the last four fields are the 
%Average, Avg Mean, std dev, and stdev mean, which can be ignored.  
 
    fields=fieldnames(channel); 
 
    %Loop through the signals and store in sigTab, then compute the mean of the 
    %rows of the signal.  
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    for i = 1:numel(fields)-4 
 
        sigTab(:,i)=channel.(fields{i}); 
    end 
Average=mean(sigTab,2); 
end 
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