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ABSTRACT 
 

Design of a Maneuverable Rocket Using Machine Learning Tuning  

William L Miller Jr 

 Aerospace engineering has brought ingenious concepts to the forefront of science and 
technology. With the foray into self-landing rockets and launch vehicles come even greater 
challenges. This project seeks to expand upon the novel challenges of controls. Designing and 
implementing a PID controller that serves as a foundation for greater innovation to come. The 
work of this project accomplished the design of a viable control system. After which the 
controller was then tuned by linear regressive methods in Python using the Scikit learn 
package. A comparison between computer automated controller tuning, hand tuning, and the 
machine learning algorithmic tuning was then made. The results concluded that specialized 
machine learning methods for specific situations can lead to overall better performance gains 
when implemented. The maneuverable rocket in flight is proof of concept and design, which will 
lead to greater control innovation in the future. 
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Chapter 1-Introduction 
 

1.1  Motivation 
 

Rockets have become increasingly advanced as the passage of time progresses. Although 
the purpose for a rocket aerial vehicle has steadily remained the same, technology has not. 
However, until as of late there has not been an effort to mobilize rocket vehicles while in flight. 
That is until the 21st century, with the advent of a new space age maneuverable rockets have shot 
to the forefront. A prime example of an advanced maneuverable rocket is the reusable rocket the 
Falcon 9.  

 With the introduction of new more maneuverable rockets unfamiliar problems, and 
solutions have surfaced within the aerospace industry. This thesis seeks to apply the 
maneuverability of a rocket in active flight not just during the landing phase. This is to combat 
certain problems such as collision avoidance, tracking detection, and/ or flight trajectory 
corrections. Extending the maneuverability of rockets into real time flight corrections could 
potentially solve problems that have yet to arise within the aerospace field. To achieve 
maneuverability of a rocket there are existing solutions that can be implemented that would work 
in a novel way.  

 The most common types of controls rocket use as stated NASA are movable fins, vernier 
thrusters, and thrust vectoring [1]. Using these three types of rocket controls and integrating them 
together could create a unique solution to this maneuverability problem. That is exactly what this 
project sets out to achieve. Most modern rockets of this era use primarily thrust vectoring for 
rocket control and stability [2]. The main type of thrust controls will also be thrust vectoring, 
with Vernier thrusters providing secondary support. Movable fins will be of the least importance 
and the last option to be explored within this project. 

 Exploring these options and integrating them within a control system can solve the issue 
of rocket maneuverability within flight. In doing so this could potentially solve problems that 
have not yet been recognized or presented in today’s aerospace landscape. Solving tomorrow’s 
problems now. 

1.2  Literature Review 
 

This section will introduce the governing equations of motion of an airframe, as well as 
rocket body aerodynamics and the types of controls used. These topics will include the following 
points: 

• Governing Equations of Motion for an Air Frame 
• Aerodynamic Considerations & Estimation 
• Gravity Considerations 
• Propulsion consideration 
• Falcon 9 Rocket Characteristics 
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These points are critical to the implementation and design of the proposed rocket control system 
of this project. Without understanding these topics beforehand and having a firm grasp of the 
material proper design and mathematical modeling cannot be readily achieved. 

 The first and the most nontrivial step to any dynamical system modeling and design is the 
mathematical model. Many papers cover the dynamical system of a rocket, or airframe and its 
motion through the air. This model is the six degree of freedom (6dof) equations of motion. 
These sets of mathematical equations describe both the translational motion of the airframe, as 
well as the rotational motion of the airframe [3]. Each set of these equations has three variables 
associated with them, to obtain the coordinates desired. These variables in the translational case 
are U, V, W. These three variables are the velocity components specified with respect to the 
body coordinate axis. The next three variables needed to describe the rotational motion are R, P, 
Q. These are associated with roll, pitch, and yaw about the body principal axis of the airframe as 
well. These 6 variables come together to structure six differential equations that describe the 
nonlinear motion of an airframe of motion through the air. In this case these three variables will 
describe the motion of the simulated Falcon 9 rocket through the atmosphere. The six equations 
of motion that govern motion are as follows below: 

 

              U̇    = &!'&"'&#
(

− (𝑞𝑤 − 𝑟𝑣), m/s2                                                          (1.1) 

 

              V̇   = &!'&"'&#
(

− (𝑟𝑢 − 𝑝𝑤), m/s2                                                          (1.2) 

 

               Ẇ    = &!'&"'&#
(

− (𝑝𝑣 − 𝑞𝑢), m/s2                                                         (1.3) 

 

                 Ṗ = )!')$*+,(%%*%&)
%'

 , rad/s2                                                                        (1.4) 

 

                          Q̇ = /!'/$*,0(%'*%%)
%&

 , rad/s2                                                                     (1.5) 

 

                          Ṙ = 1!'1$*0+(%&*%')
%%

 , rad/s2                                                                      (1.6) 

 

These six equations together represent the true motion through which an airframe moves 
through the air. Within these equations contain the force contributions from several different 
outside factors of which need to be either accurately estimated or tested for. Due to budget 
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constraints and the realistic nature of the project actual testing of for the rocket’s aerodynamics 
were not done. Instead, software was used to estimate the aerodynamic effects of the Falcon 9 
rocket. To estimate the aerodynamics of the Falcon 9 rockets multiple papers pointed to the 
direction of the software “Digital Datcom” [4]. This software was used by the USAF (United 
States Airforce) for the exact same reason, fast and accurate aerodynamic estimations. Although 
intended primarily for Aircraft, searching through references revealed that an accurate estimation 
can be obtained for a rocket. Normally one would want to use the missile related software 
“Missile Datcom” for such purposes but due to the military restrictions and nature of the 
software it is very restricted in distribution to say the least [5]. The Digital Datcom software was 
used to estimate the aerodynamic coefficients of the Falcon 9 rocket at angles of attack varying 
from -.07 rads (- 4 degrees) to .17 rads (10 degrees), and a Mach speed from one to five. This 
approach was taken from reference [5]. Where Digital Datcom was used to obtain the 
aerodynamic coefficients for a rocket, by using a technique where the rocket was broken into 
parts. These parts were the rocket body, and the rocket fins. After which the aerodynamic 
coefficients were compared to tested data to validate the results [6]. To maintain the approach 
and keep the accuracy obtained the same method was used for this project. 

 Obtaining the aerodynamic coefficients are an integral part of modeling and simulating 
the rocket flight through the air. As seen in the previous equations above the rocket will 
experience different forces through many different means. A huge contributing factor to these 
forces is the aerodynamic forces which will act on the rocket body [7]. These aerodynamic forces 
will affect the stability and control input needed to control the rocket through its long flight and 
will affect the attenuation needed by the rocket control system itself. All these factors will be 
seen in the mathematical modeling of the rocket system within the MATLAB and SIMULINK 
model itself as contributing factors. Next, after the aerodynamic forces are to be considered the 
gravity acting upon the rocket itself must also be attended to. 

 Gravity does not enact the same force at every height [8]. In fact, as you get further away 
from the center of earth gravity tends to weaken. This needs to be molded into the nonlinear 
model of the rocket to accurately represent the real-world physics of the problem. To do this 
many papers were read about the varying effects of gravity upon airframes, and the gravity 
model used within MATLAB itself. This ended with the following equation to model gravity 
being used within this project: 

 

�⃗� = 𝐺2𝚤̂ + 𝐺3𝚥̂ + 𝐺4𝑘8                                                            (1.7) 

𝐺2&&&&⃗  = 5
,(

 91 + 6
7
𝐽7 <

8)
,
=
7
>	1 − 5 <4

,
=
7
@A <2

,
=                             (1.8) 

𝐺3&&&&⃗  = 5
,(

 91 + 6
7
𝐽7 <

8)
,
=
7
>	1 − 5 <4

,
=
7
@A <3

,
=                              (1.9) 

𝐺4&&&&⃗  = 5
,(

 91 + 6
7
𝐽7 <

8)
,
=
7
>	1 − 5 <4

,
=
7
@A <4

,
=                                (1.10) 
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These equations make up the gravitational force including the affect from the Earth's center and 
will be used within the gravity model of this thesis. 

 The next consideration while researching rocket controls and their effects on rockets 
came to thrust vectoring, and the contributions of propulsion. While the rocket will not be 
vertical the while flight and the thrust will not always be in line with the axis of the body, thrust 
vectoring will cause a moment upon the body of the rocket. While researching about thrust 
vectoring it was also noted that in modern rocketry, thrust vectoring is one of the major controls 
of a rocket [11,12]. An example of this is the rocket used in this project, the Falcon 9. The 
Falcon 9 does not deploy fins in the launch stage. Only during landing does the Falcon 9 use its 
capable grid fins to stabilize the rocket. While in the launch phase and flight phase thrust, 
vectoring is primarily used to keep the rocket stable. Thrust vectoring will be the main 
component of control for this project as the entire flight envelope for this vehicle will be in 
flight, and not landing. The contribution of the propulsion to the added moments upon the rocket 
is easily remedied using the equation. 

 

         𝑀&&⃗ 0 = 𝑅&⃗ 	𝑥	𝐶9&&&&⃗                                            (1.11)    

 

With the equation above the propulsive force contributions to the force acting upon the rocket is 
solved and ready to be implemented into the mathematical model of the rocket itself. 

 Finally, the researched topic of the Falcon 9 rocket characteristics itself was found. 
Although all the test and flight data are classified or at least not readily available public 
information, the characteristics of the actual rocket are well published. The data for the rocket 
was easily found in the Falcon 9 handbook that could be found for download [9,10]. Here all the 
available information for the rocket is published by the parent company SpaceX. This was 
hugely helpful as it added validity and accuracy to the mathematical model and simulation of the 
proposed control system for the rocket. 

 With the characteristics of the Falcon 9 rocket and the basic equations needed to start the 
modeling and exploration of a control system for the project can commence with the utmost 
certainty of validity and accuracy. 

 

1.3  Project Outline 
 

Although a prototype version of the proposed control system will not be made, the problem 
and simulations are still of utmost importance. An outline of the problem and solution follows 
below. 
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1. Dynamic System Modeling: Before a control system can be designed, the dynamics of a 
system must first be investigated. To do this, a mathematical model of a rocket in motion 
will be derived, simulated, and verified. This model will mimic the real-world system; 
therefore, analysis of the derived mathematical model will also pertain to its real-world 
counterpart. This step is the foundation of any control system. 
 

2. Open loop system analysis: To begin the design of a control system the open and closed 
loop characteristics of a rocket in flight will be needed. This event will then be modeled 
in Simulink and simulated. Using this data, a control system for each of the three types of 
thrust control can then be implemented separately to analyze how each individual system 
affects rocket flight, rocket stability, and rocket maneuverability. 
 

3. Linearization of system: To implement a simple controller the system must be 
linearized. After linearization, this new linear system should be validated and compared 
to the nonlinear system. This will ensure proper control design as well as system 
dynamics. 

 

4. Controller Design: After the system has been linearized and simplified a control scheme 
should be implemented and tested. The system should also be checked for controllability 
to make sure all states, or at least the states that are in testing, can be controlled. Once 
verified a simple PID controller can be designed and implemented laying the foundation 
for future controls work to be done later with the same system. 
 

5. Performance & Tuning Optimization: The final step will be to apply analysis and 
machine learning to tune the controller. This tuning will be benchmarked against 
MATLAB’s performance, and hand tuning performance. This tuning process will prove 
or disprove whether better performance can be gained through using self-developed, 
specialized machine learning techniques. Versus the esoteric had tuning procedure that is 
usually followed when tuning common PID controllers. 
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Chapter 2-Nonlinear Dynamics of Rocket Airframe 
 

 Any simulation or model needs a valid mathematical model to support its validity. In this 
chapter the nonlinear dynamics of an airframe, specifically the Falcon 9 rocket, will be derived. 
These equations will be derived with respect to the following assumptions used: 

• Constant mass. Although in real life the rocket will experience a center of gravity shift 
due to propellant (mass) being used as fuel this will not be a consideration in this project. 
A constant mass model will be used not a variable mass model.  

• Rigid body. The rocket in this case will have non-variable inertial properties.  
• The rocket has a cruciform geometry. 
• Rocket is aligned among its principal axis of inertia. 

These assumptions are important to note because a model is only as good as the assumptions 
you make. The more assumptions made the less accurate the model will be. Although these two 
assumptions will be made the model itself will still retain a large degree of accuracy, while also 
simplifying a lot of the calculations at hand. 

 

2.1 Reference Frames  
 

An established coordinate system and frames of reference are needed to transform forces 
acting in separate frames can be resolved onto the rocket body properly. Here we will define the 
earth centered inertial frame which is in respect of the center of the earth. This will be named the 
ECI frame from now on. Another reference frame that will need defining will be the Earth 
centered fixed frame. This can be seen clearly below. The vectors 𝚤,̂ 𝚥̂, and 𝑘8 are given in the ECI 
frame. While the vectors , �̂�: , 		𝚥G: , 𝑎𝑛𝑑	𝑘8:  are the same vectors in the ECI frame translated into 
the ECF frame. 
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Figure 2.1: ECI to ECF reference frame through angle 𝛀 [11] 
 

The relationship between both reference frames can be seen in Figure 2.1 above. The ECI 
frame rotated about the angle (Ω) yields the ECF reference frame. To do get this transformation 
between reference frames we use the transformation matrix expressed as 𝑇;<%;<&. The matrix of 
transformation is given as: 

 

                              𝑇;<%;<& =N
cos	(Ω) sin	(Ω) 0
−	sin	(Ω) cos	(Ω) 0

0 0 1
U                                      (2.1) 
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To describe the position of the launch vehicle or rocket anywhere on the earth’s surface 
the Earth Geographic Reference frame is used [11]. This reference frame uses longitude and 
latitude to describe the position of the rocket. Using the rocket body on the launch pad as the 
origin for this frame the calculations are simplified. This frame is referred to as EG.[11] 

 

Figure 2.2: E.G Reference frame from ECF frame through angle 𝚽 [11]  
 

The EG reference frame is a transformation from the ECF reference frame through the 
angles Φ	𝑎𝑛𝑑	𝜆. These rotations yield the vectors 𝚤=G , 𝚥=G , 𝑎𝑛𝑑	𝑘8=. Representing the basis vectors 
in the EG frame [ reference bachelor thesis paper 14]. The transformation matrix is represented 
as 𝑇;<&;9 . The complete transformation matrix is shown as: 

 

   𝑇;<&;9  =       X
cos	(λ)cos	(Φ) sin	(λ)cos	(Φ) sin	(Φ)
−	sin	(λ) cos	(λ) 0

−cos	(λ)cos	(Φ) −sin	(λ)sin	(Φ) cos	(Φ)
Z                                     (2.2) 
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After now that the Earth’s reference frames have been satisfied, the rocket body frame 
needs to be defined. Traditionally in the aerospace industry the body frame basis vectors are 
defined as the 𝚤>G	, 𝚥>G , and 𝑘>[	[11]. These are rotated about the bodies yaw pitch and roll angles 
Φ,Θ, 𝑎𝑛𝑑	Ψ. Using this notation, we arrive at the body basis vectors in the body reference frame 
transformed from the EG frame. An illustration of the body frame can be found below. 

 

Figure 2.3: Rocket body frame [12] 
 

With these angles of rotation, the transformation matrix is expressed as 𝑇;9? . The 
complete transformation matrix is known as: 

𝑇;9?  
=

X
𝑐𝑜𝑠	(𝛩)𝑐𝑜𝑠	(𝛹) 𝑐𝑜𝑠	(𝛩)𝑠𝑖𝑛	(𝛹) −𝑠𝑖𝑛	(𝛩)

𝑠𝑖𝑛(𝛩) 𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝛷) − 𝑐𝑜𝑠(𝛷) 𝑠𝑖𝑛	(𝛹) 𝑠𝑖𝑛(𝛷) 𝑠𝑖𝑛(𝛹) 𝑠𝑖𝑛(𝛩) + 𝑐𝑜𝑠(𝛷) 𝑐𝑜𝑠	(𝛹)) 𝑐𝑜𝑠	(𝛩)𝑠𝑖𝑛	(𝛩)
𝑠𝑖𝑛(𝛩) 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝛷) + 𝑠𝑖𝑛(𝛷) 𝑠𝑖𝑛	(𝛹) 𝑠𝑖𝑛(𝛩) 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝛷) − 𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛	(𝛩) 𝑐𝑜𝑠	(𝛩)𝑠𝑖𝑛	(𝛩)

Z                                        

(2.3) 

 

These reference frames define the rocket and its given position at any given time with 
respect to the earth. The forces experienced by the rocket are all resolved into the body frame 
then used to calculate the effects on the body. It is pertinent to note that one can transform 
between these reference frames at any given time given these transformation matrices. This 
concludes the discussion on reference frames next will be the kinematics of the rocket itself.  
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2.2 Rotational Kinematics 
 

The rocket body undergoes rotation throughout the course of its flight. To resolve this 
rotational motion the angular rate is needed. This can be easily expressed as a vector (𝜔	&&&&⃗ ). This 
vector is composed of the roll, pitch, and yaw rates of the airframe expressed in the body frame. 
Shown as: 

          𝜔	&&&&⃗ = 9
𝑝
𝑞
𝑟
A	                                                                                              (2.4) 

                         = X
1 0 −𝑠𝑖𝑛	(𝛩)
0 𝑐𝑜𝑠	(𝛷) 𝑠𝑖𝑛	(𝛷)𝑐𝑜𝑠	(𝛩)
0 −𝑠𝑖𝑛	(𝛷) 𝑐𝑜𝑠(𝛷)𝑐𝑜𝑠	(𝛩)

		Z h
�̇�
�̇�
�̇�
j                                            (2.5) 

 

Although the above mathematical statement is true the reverse is usually seen more often 
in literature. Where the angular rates are expressed in respect to the roll, pitch, and yaw. This is 
expressed below to maintain coherence with literature results. 

 

   h
Φ̇
Θ̇
Ψ̇
j = @

ABC!
N
cos	 𝜃 sin	Φ𝑠𝑖𝑛Θ 𝑐𝑜𝑠Φ𝑠𝑖𝑛Θ
0 cosΦ𝑐𝑜𝑠Θ −𝑠𝑖𝑛ΦcosΘ
0 sin	Φ 𝑐𝑜𝑠Φ

Ul
𝑝
𝑞
𝑟
m                                    (2.6) 

 

This would be the usual implemented result as seen in literature and the model simulation [11]. 

 

The above equations are using the Euler angles of rotation. Although this is what is used 
in the simulation of rocket flight within this project, there are some major drawbacks. At a given 
point there is a phenomenon named gimbal lock. This is a point of singularity which cannot be 
resolved, to avoid this quaternion can be used. However, quaternions were not used in this phase 
of the project in future worth quaternions will be implemented. The next topic to tackle will be 
the equations of motion in six degrees of freedom for this rocket model. 

2.3 Equations of Motion 
 

The equations of motion were derived in accordance with references [11-14] as guides.  

Using Newton’s second law seen below: 

�⃗�= @
(
�⃗�                                      (2.7)  
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The position of the air frame is given by the previously discussed reference frames as: 

𝑟 = 𝑥𝚤̂ + 𝑦𝚥̂ + 𝑧𝑘8                   (2.8) 

Taking the second derivative of the position yields the equation: 

�⃗� = 	 �̈�𝚤̂ + �̈�𝚥̂ + �̈�𝑘8                     (2.9) 

This satisfies the left side of Newtons second law. Now the right side must be satisfied. 
All forces acting upon the rocket body must be considered. These forces are broken into three 
subcomponents. The force from the atmosphere, force of gravity, and the propulsive force. As 
gravity acts within the ECI frame the other two forces must be transformed from the body frame 
to the Earth centered inertial frame. Once this is done simply summing the forces and 
substituting in for the F in equation 2.3.1 is enough to satisfy the translational kinematic 
equations. This is shown below: 

�⃗� = @
(
[𝑇?;<% 	r�⃗�DE(BC0F:,GA + �⃗�#,B0HICGJ:s + �⃗�=]      (2.10) 

Where: 

      �⃗� = �̇⃗� = �̈�                                                                    (2.11) 

The next three sets of equations that need to be resolved are the Rotational motion of the 
aircraft. This will be covered in the next section. 

2.4 Rotational Equations of Motion 
 

 Just as Newton’s Second Law was used for the derivation of the first the sets of equations 
of motion, Euler’s Second Law. These three new degrees of freedom will be derived in the EG 
frame to keep the yaw, pitch, and roll angles well defined. This is different from the first three 
degrees of freedom for translation which were derived with respect to the ECI frame. 

 Euler’s Second Law states that the sum of external moments or torques acting on a body 
is equal to the angular momentum rate. This can be shown as: 

𝑀&&⃗ = 	 𝐿&⃗ ̇                                                                        (2.12) 

The rocket body is assumed to be aligned to its principal axis meaning the simplest case. This 
leads to: 

𝐿&⃗ ̇ = 	𝐽	u ∙ 𝜔&&⃗                                                                      (2.13) 

With 𝐽w representing the moment of inertia of the rocket body where in a symmetric body aligned 
with its principal axis is simply: 

𝐽w = N
1 0 0
0 1 0
0 0 1

	U x
𝐽@@
𝐽77
𝐽66
x                                                        (2.14) 
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Where 𝜔&&⃗ , represents the total angular velocity of the body as well. This leads to the rotational 
motion of equations assuming a rigid body can be written as: 

𝑀&&⃗ = 𝐽w 	 ∙ 	 �̇�&&⃗ + 𝜔&&⃗ 		× 	 [	𝐽	&&⃗ ∙ 	𝜔&&⃗ ]                                             (2.15) 

Just as the forces acting on the rocket were broken into subcomponents the same can be done for 
the moments. As there are several factors contributing to the external forces on a rocket these 
moments will be broken into two parts. 𝑀&&⃗  will be broken into 	𝑀&&⃗ 0,B0HICGJ: , 𝑎𝑛𝑑		𝑀&&⃗ DE(BC0F:,GA. 
Using this equation 2.4.4 can be solved for the angular velocity �̇�&&⃗ .  

�̇�&&⃗ = 	 𝐽w*@[	𝑀&&⃗ DE(BC0F:,GA +		𝑀&&⃗ 0,B0HICGJ: − 𝜔	&&&&⃗ × z	𝐽w ∙ 𝜔&&⃗ {	]      (2.16) 

Combining the above equation with the translational equations of motion yield six 
equations which when solved give the position and angular rates of the airframe. These equations 
are highly nonlinear. The next step is to simulate and verify these equations implemented into the 
model of Simulink are correct and in line with benchmark data. 

2.5 Simulation of Nonlinear Equations of Motion 
 

 Next a couple of simulations were running to verify that the implemented mathematical 
equations were done properly and accurately. Benchmarked data was of immense importance to 
this step, references [11,15] had clear and accurate graphs of a 6dof rocket simulation. These 
were used as a benchmark to verify the given mathematical relations and equations. The 
downside to this approach was the input data was not specified therefore complete matching of 
the benchmark data would be impossible. The benchmark data in this case was meant to show 
the behavior of a rocket system and how it should vary overtime. Although the input data was 
not explicitly stated within the paper, the rocket was said to be cruciform and have many similar 
characteristics of the Falcon 9 rocket. Below is the benchmark data taken from reference [15].  

 

 

Figure 2.4: Position data of rocket reference data [15] 
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Figure 2.5: Angular rates of rocket from benchmarked data [15] 
 

 In figure 2.5.1 the main variable of interest is the red line representing the height in 
meters (feet). This simulation initial conditions were not known however the paper did state the 
rocket was at rest on the ground leading to zero height in the z-direction or height. This should 
be reproduceable within the simulation at hand. In figure 2.5.2 the main interest is to show the 
angular rates are divergent leading to an unstable system. This too should also be reproduced in 
the results obtained from the simulation and model. Before presenting the results, the Simulink 
model can be shown below. Using reference [11] as a guide this Simulink model was made to 
simulate the same rocket in reference [11] as simulated in this paper.
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Figure 2.6: Maneuverable rocket (6-Dof) 
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Figure 2.7: Thrust vectoring control  
 

Figure 2.8: Gravity force subsystem 
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Figure 2.9: Atmospheric forces subsystem 
 

 The above systems make up the entirety of the six degree of freedom system needing to 
be simulated. With this system and a similar simulation time the results came to be: 

 

 

Figure 2.10: Altitude of rocket over time of flight 
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Figure 2.11: Euler angular rates 
 

Comparing the benchmark figure 2.5.1 “Position Data of Rocket Simulation,” with that 
of figure 2.5.7 Altitude of Rocket. The behavior of the two graphs is in line. Although it takes 
longer for the Falcon 9 to start to reach its peak at around one minute and thirty seconds versus 
the benchmark data of 15 seconds. This can be attributed to different propulsion systems, mass, 
or other outside factors. The response and altitude of the Falcon 9 rocket is in line with 
expectations. This verifies the translational motion of the rocket.  

 

Next in comparing the figure 2.5.2 “Angular Rates of Rocket” benchmark data to figure 
2.5.8 “Euler Angle Rates.” Here the two graphs are significantly different, however this can be 
due to initial conditions and the response to a given stimulus. Here the Falcon 9 rocket is not 
reacting to any stimulus to the rocket. This is just a simple test to determine whether the Falcon 9 
is stable or unstable. At first the angular rate seeks stability by oscillating, however as time 
continues to pass there is exponential growth of the angular rate. This leads to the airframe being 
highly unstable. This is in line with what is expected of the rocket airframe. All rockets have an 
onboard computer-controlled control system, this means that without an implemented control 
system the general response of the airframe is unstable. The Falcon 9 simulation done here is in 
accordance with this statement. Without a control system, the Falcon 9 is an unstable system. For 
further confirmation of this point a control input was used to excite the Falcon 9 system. The 
goal being to confirm whether the system is stable, unstable, oscillatory, or exponentially 
unstable. The thrust vectoring input can be seen below. This is a deflection of .00054 radians 
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from time 20 seconds to time 30 seconds and a negative .00054 radians from 30 seconds to 40 
seconds. 

 

 

 

Figure 2.12: Thrust vectoring input for Falcon 9 rocket 
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With the control input the responses of the Falcon 9 rocket are as follows: 

 

 

Figure 2.13: Euler angle rates response to thrust vector input 
 

 

Figure 2.14: Angular velocity response to thrust vector input 
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Figure 2.15: Moments of airframe in response to thrust vectoring input 
 

From the above figures the initial analysis stating the Falcon 9 airframe is unstable holds 
when a control input of thrust vectoring is introduced. Above in figure 2.5.10 all angular rates 
are exponentially divergent as time increases; this leads to exponentially unstable behavior. Next 
in figure 2.5.11 the angular velocities grow in magnitude for however long the input is 
introduced into the system. This is another divergent behavior of the system that leads to 
instability, a stable system would seek back to zero after an input is introduced. Here the system 
grows in response for as long as the response is present, this is another unstable behavior. Lastly, 
analyzing the moment forced produced by the thrust vectoring also indicates the structure itself 
would not be able to physically maintain structural integrity if a control input of thrust vectoring 
is introduced due to the growth of the magnitude of the moments produced during thrust 
vectoring. The longer thrust vectoring is introduced the greater the moment generated, eventually 
this growth would reach the theoretical limiting load of the system, leading to catastrophic 
failure. This is the final indication that an uncontrolled Falcon 9 is indeed unstable. 

Now that the Falcon 9 system has been verified as unstable, simplification, and 
linearization about an operating point is next. This will be explored in the next chapter. 
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Chapter 3-Linearization and Simulation 
 

3.1 Linearization 
 

As the Falcon 9 rocket has been identified as unstable without a control system 
simplifying and linearizing the system to evaluate for controllability is next. Linearizing the 
system will decouple the lateral and longitudinal planes of the rocket [15]. Linearizing will also 
“…allow for the implementation of simple and systemic linear control design techniques” [13]. 
This is especially useful when first designing a control system for any vehicle, in this case the 
Falcon 9 rocket. The methodology of linearization used here can be seen in references [12, 
13,14]. This is also known as the perturbation method in the aerospace industry. Along with the 
perturbation method Simulink was used to yield the state space linear formulation for the, A, B, 
C, D matrices. Next the derivation of the linearized equations will be walked through as derived 
from the perturbation method. 

The linearization point at which the perturbation will be done will be in steady state 
flight. This is at a velocity of 1,200 m/s which was picked as the average speed of a rocket within 
the atmosphere. During steady state flight the following assumptions can be made which have 
been summarized in a table below. 

Table 3.1: Zero and non-zero quantities at steady flight conditions 
Zero Quantities Non-Zero Quantities 

𝑌K 𝑋K=Operating Longitudinal Position in Meters  
𝐿K �̇�K = 1,200 m/s (3,937 ft/s) 
𝑀K 𝑍K = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒	𝑖𝑛	𝑀𝑒𝑡𝑒𝑟𝑠	(𝐹𝑒𝑒𝑡) 
𝑁K  
𝑣K  
𝑤K  

 

From the above information we take and add a small disturbance of ∆(∗), which is a 
slight perturbation in each of the axis forces, moment, velocity, and rates with respect to time. 
This will look like the table of information below, with guidance from reference [12-14]. 
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Table 3.2: Perturbation variables and effects 
 

 

With these new perturbed variables, the six degrees of freedom motions of equations are 
substituted with the new perturbed terms. Using small angle approximations and eliminating 
small terms such as two derivatives multiplied by each other. Doing so for such a huge system 
such as a Falcon 9 rocket is not handedly done by analytical methods. This is where the 
computational tools take over and derive the linearized model in Simulink. Using reference [17] 
the model inputs are designated as the thrust vectoring inputs both 𝛿L, 𝑎𝑛𝑑	𝛿M. While the model 
outputs are All of the above variables included in the table, and in the future the quaternions of 
the system. This leads to measuring in total 13 states of the system, with 2 inputs to the system. 
As one could see, doing this by hand would be an analytical nightmare. 

With the help of the model linearizer in MATLAB the following sate space matrices are 
generated and can be tested against the nonlinear system to verify accuracy.  

Usually, the expected C matrix would be an identity matrix of the number of states being 
measured. However, due to the model linearizer in MATLAB there is an option to order states. 
The states were ordered in a way not normally seen, this was done for ease signal tracking and 
state recognition. Another important note, the model was linearized with alpha as an output state 
as well. This leads to one state being dependent on another as alpha can be derived from the 
position states. This was done again for ease of state space variable measurement and tracking. 
The consequence of this is that the state space system is not fully controllable when using all 14 
states, due to one state not being linearly independent which is alpha in this case. To remedy this 
issue alpha must be removed as a state then the controllability and observability must be 
observed for the system. The complete linear state space formulation for this model will be 
shown in the next sub section along with an analysis and plots. 

  

Variable Perturbed Variable 
u 𝑢(𝑡) = 𝑢K + Δu(t) 
v 𝑣(𝑡) = 𝑣K + Δv(t) 
w 𝑤(𝑡) = 𝑤K + Δw(t) 
p 𝑝(𝑡) = 𝑝K + Δp(t) 
q 𝑞(𝑡) = 𝑞K + Δq(t) 
r 𝑟(𝑡) = 𝑟K + Δr(t) 
X 𝑋(𝑡) = 𝑋K + ΔX(t) 
Y 𝑌(𝑡) = 𝑌K + ΔY(t) 
Z 𝑍(𝑡) = 𝑍K + ΔZ(t) 
L 𝐿(𝑡) = 𝐿K + ΔL(t) 
M 𝑀(𝑡) = 𝑀K + ΔM(t) 
N 𝑁(𝑡) = 𝑁K + ΔN(t) 
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3.2 State Space Representation 
 

 After linearizing the six degree of freedom system into a linear state space system using 
MATLAB, analysis of the linearized system can be done. The state space matrices for the linear 
system are shown below: 

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

3.4305𝑒 − 04 1.0459𝑒 − 9 2.9176𝑒 − 11 −.0054 0 0 0 0
−9.1995𝑒 − 08 2.9837𝑒 − 07 0 0 0 0 0 0
2.9175𝑒 − 11 0 2.9336𝑒 − 07 0 0 −.6982 23.4346 0

0 0 0 0 0 0 0 . 500
0 0 0 0 0 −.0040 0 −.3751⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (3.1) 

B = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0 0

. 0067 0
13.3420 0

0 13.3420
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                              (3.2) 

The C and D matrix is a 14x8 identity matrix and a 14x2 zero matrix. These will not be 
displayed here. The state variables, inputs, and outputs are designated as: 

x = [�̇� 𝑥 𝑦 𝑧 �̇� �̇� �̇� 𝛼]                      (3.3) 

u = [𝛿! 𝛿"]                                                        (3.4) 

y=x                                                                      (3.5) 

It should be noted as stated earlier this is a unique state space formulation designed for 
the ease of measurement and handling for this specific case. This formulation and state space 
variables are different from what may be seen in literature and other sources. The complete state 
space system is to be represented as the following system: 

�̇� = Ax + Bu                           (3.6) 

y= Cx + Du                            (3.7) 

With this complete state space formulation and linearization of the nonlinear rocket 
model validation, confirmation, and analysis of the system is needed now. This will be shown in 
the next subsection to follow. 
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3.3 State Space Analysis of Linear System 
 

 3.3.1 Controllability  
 

 Now that a linear state space model has been obtained the controllability and 
observability must be checked. This will either confirm or deny that the system can be 
controlled. Ignoring state alpha because it is dependent upon the position states of the system. 
After which MATLAB is used to obtain the controllability matrix for the system. From there it 
can be seen the controllability matrix is full rank, meaning the system is fully controllable. The 
same can be done for observability of the system leading to the system being fully observable as 
well.  

 These are expected results as most rockets, and airframes of the modern era employ some 
type of control system. If these states were not controllable, then that would present a problem 
with modern aerospace practices. 
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3.3.2 Stability of State Space System 
 

 From earlier analysis of the nonlinear system, it was seen that the system was not 
stable, having an exponentially divergent response after a disturbance was introduced. To 
confirm this the poles and zeros of the system must be obtained. These values are simply the 
eigenvalues of the state space A matrix. Computing the eigenvalues of a 14x8 matrix analytically 
is very tedious and should not be attempted. Since the model is already present in MATLAB the 
computational approach was used. The poles of the system as well as a poles-zero map was 
generated as seen below. 

 

 

Figure 3.1: Poles-Zero Map of Linear System 
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Figure 3.2 Poles values of linear system 
  

Although the system has many poles that are negative there are two that are slightly in the 
positive, this immediately leads to the system being characterized as unstable. The system is 
fully controllable as well as unstable, a controller is needed for this system. Before moving into 
controller design. Verification of the linear model is needed which will be done in the next 
section. 
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3.3.3 Linear Versus Non-Linear Model Response 
 

 This system has been identified as needing a controller. With a linearized model 
generated, and stability analysis performed controller design can begin immediately. Before this 
validation of the linear model compared to the non-linear model should be done. This is done by 
using reference [11] as benchmark data to be reproduced here. The benchmark data needing to be 
reproduced is shown below from reference [11]. 

 

 

Figure 3.3: Benchmark data of pitch angle response over time [11] 
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Figure 3.4: Linear vs non-linear pitch angle response over time 
 

The two sets of data mimic each other via response and peak amplitudes. Although there 
is no oscillation after the peak amplitude is achieved in this model. This can be attributed to 
different linear model linearization parameters, and operating points. As well as using state 
ordering as well. Although there seems to be a slight error of .025 degrees difference between the 
linear and non-linear response this is only a percentage difference error of approximately .5%. This 
linear model accurately reproduces the non-linear dynamics of the system analyzed. Next is 
designing and implementing a simple PID controller. This will build the basis of this system’s 
control law and allow further advanced control design in the future. 
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Chapter 4-Basic PID Controller Design 
 

4.1 PID Controller Design 
 

 The first proposed controller to design was a simple PID controller. This controller is 
most used in different industries and can serve as a basis for more advanced controller design in 
the future.  

 Designing a PID controller first began in MATLAB by introducing state feedback, and 
the PID controller block. Once introduced, tuning the gains of the PID controller was next. 
Reference [18] was used as a guide on how to tune the PID controller as well as what each part 
of the controller is best at. From reference [18]. The general approach to tuning a PID controller 
is as followed from the excerpt below: 

• Obtain an open-loop response and determine what needs to be improved. 

• Add proportional control to improve the rise time. 

• Add a derivative control to reduce the overshoot. 

• Add an integral control to reduce the steady state error. 

• Adjust each of the gains KN, KO, and	KP until you obtain a desired overall response.  
Using this approach tuning the PID controller to a superior performance was obtained. The 

closed loop system used in designing the PID controller can be seen below as a state space 
representation. 

 

 

Figure 4.1: Closed loop PID controller system 
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Using the system pictured above the controller was tuned. This would result in controller 
inputs of the gimbal angles 𝛿Q , 𝑎𝑛𝑑	𝛿M. These two inputs which control the pitch angle and 
heading of the rocket would then in turn direct the propulsive forces of the rocket in the desired 
direction thus “maneuvering” in midair. This would accomplish a rudimentary maneuverability 
model that was set out to be achieved. The inputs were replaced with a general step function to 
model the response of the system. Later after a satisfactory response was obtained from the just a 
step function, noise was introduced into the signal. This was done to test the robustness of the 
simple PID controller. 

The gains of the PID controller were set using the methods stated above, which were 
simply trial and error. In the future when designing a more advanced controller this technique 
would not suffice, however that is one of the strengths of the simple PID controller. This type of 
controller is simple, easy to use, and effective. The control settings of the PID block can be seen 
below. 

 

 
Figure 4.2: PID controller gains setting 

 
Through trial and error these settings give the best performance, as well as error 

reduction. This can be seen in the next section when discussing stability. 
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4.2 PID Controller Performance 
 

 Although the PID controller is simple the performance is undeniable. The PID controller 
quickly matches the step input functions with a minimum overshoot value [17-19]. The 
controller and negative feedback loop as well keep the percentage error to a minimum as well. 
This can be seen in the following two response plots below: 

 

 

Figure 4.3: Desired vs achieved response of the system, α 
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Shown here is the step response or the desired heading the system needs to achieve. This 
is represented as a step function as the rocket system would need to match this gimbal angle and 
apply thrust to change its heading. The yellow line is the achieved gimbal angle. The rise is very 
quick with minimal amount of overshoot that is quickly reduced to the desired value. Although 
not very visible at first the error is also within acceptable range as well. To check this the 
percentage error was plotted. This can be seen below. 

 

 

Figure 4.4: Absolute error between thrust vector input and desired 
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The percentage error spikes correlate to exactly when the step response was introduced. 
The asymptotic spike is when the step response was introduced, analyzing this in comparison to 
the response plot above. It can be seen this is where the gimbal angle was trying to correct for the 
desired alpha. In doing so the applied gimbal angle overshot the desired angle needed, but then 
quickly declined to match the desired results. The absolute error was only about 3.5% this much 
is acceptable. 

 Next, the robustness of the controller was tested by introducing some noise to the system 
[20-22]. The response of noise present in the system can be seen below. 

 

Figure 4.5: Gimbal response with noise present 
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As seen here the PID controller by itself cannot filter the noise and achieve a steady 

response as needed to match the step response [24,25]. This also shows that this controller is not 
robust enough to handle such complications. Although a P.I.D controller is fine for most industry 
practices, for an expensive technological piece of hardware a P.I.D by itself will not suffice. The 
designed P.I.D controller performs poorly in the presence of noise, to remedy this issue a method 
of filtering was introduced into the system. This filter filters out most of the noise from the 
feedback loop. 

 



46 
 

Chapter 5-Noise and Filtering 
 

5.1 Noise Implementation 
 

As seen in the previous section, introducing noise into the system reduces the 
performance of the controller. A poor performing controller when noise is introduced means that 
the controller is not robust enough. This could lead to catastrophic failure when implemented in 
prototyping and flight-testing phase. As noise in a system is omnipresent no matter where 
implemented. Whether that nose be an ambient signal, motor spool time, or even just noise of the 
measuring instruments such as sensors. A controlled system needs to be able to not only respond 
to a noisy signal but respond well. 

White noise was introduced into the feedback loop of the control loop to simulate a noisy 
signal that must be dealt with, while also having the system still track accurately to the desired 
flight path angle. As this project is purely computational a Simulink “white noise” block was the 
only way to model in the noise accurately. The white noise signal itself was set to a value of 
.001. The white noise block was set to this value as to not overpower the signal, but also mimic 
real life situations. By doing this real-life noise signals and situations can be simulated 
computationally. The sample of the white noise block implemented within the linear system can 
be seen below. 

 

 

Figure 5.1: Simplified linear plant 
 

To compare the reference flight path angle with noise, the two variables were plotted 
with one another. This is to give the scale of the noise introduced in the system while giving 
some expectation of how this noise will affect the system once implemented. 
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Figure 5.2: Plot of noise added to the reference signal 
 

The noise and the commanded flight path angle signals are both mixed when returning in 
the feedback loop of a control system. Therefore, the P.I.D controller from before had a 
challenging time tracking towards the commanded flight path angle. Instead of the intended 
commanded flight path angle the controller was correcting for every bit of noise introduced into 
the system giving inferior performance.  

To remedy the issue of noise introduced into the system, extensive use of Kalman filters 
is used in the aerospace industry. However, this system is a P.I.D controller and not an LQR 
controller. To implement a Kalman filter the controller must be an LQR, and once the Kalman 
filter is applied this transforms the LQR controller into a LQG controller. The solution used here 
was just a simple noise filter, much simpler than the common Kalman filter commonly used.  
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5.2 Filter Implementation 
 

Implementing the filter into the Simulink model is a simple task. There were two options 
in the implementation, either implement the filter block or adjust the noise coefficient for the 
P.I.D block. The chosen approach was to autotune the noise coefficient using Simulink. By doing 
this, the noise would be effectively filtered, and the performance of the control system should 
increase significantly. To understand the noise coefficient and where the filter is used inside the 
P.I.D block refer to the figure below of the internal workings of the P.I.D controller. 

 

 

Figure 5.3: PID inner workings 
 

From above when tunning the Filter Coefficient N, is then integrated over by the filter 
and fed back as the error state to subtract from the derivative gain. This is effectively filtering on 
the D of the P.I.D controller and the results were improved. The P.I.D parameters can be seen 
below, along with the autotuned parameters of the noise filter. 
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Figure 5.4: PID block properties 
 

The filter coefficient was automatically tuned to a value of 24. This variable will stay the 
same for future tuning of the P.I.D controller using machine learning algorithms. With the filter 
implemented the previous problem of a non-robust P.I.D controller was solved. Now this system 
can be realistically and adapt to poor signal read performance. This is a crucial step and part of 
any control system. The next step will be to tune the P.I.D controller to optimal performance. 
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Figure 5.5: Responses with and without noise for overshoot 
 

 

Figure 5.6: Responses with and without noise for rise time 
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Figure 5.7: Responses with and without noise for settling time 
 

 The above plots are the difference between the simulations when noise is introduced 
versus no noise. For the vast majority there is almost no noticeable difference when the filter is 
introduced, however for some runs there is a very noticeable difference. These are only a handful 
of runs therefore they will be discarded from the simulation design space as not to introduce 
more errors into the machine learning model when trained. From here onwards only the noise 
data set is used to train the machine learning model. This is because in practical applications 
there will always be noise present in the system that has to be filtered out. As seen above in the 
plots the difference between noise introduced and no noise is insignificant. This also means the 
filter is working properly and the controller can respond well to noisy input.   



52 
 

 

Chapter 6-Machine Learning Tuning of P.I.D Controller 
 

Manual tuning of a P.I.D controller can be considered just as much as an art, as it is a 
science. There are two common ways to tune a P.I.D controller. The first is to” ... first set 
integral constant KI and derivative constant KD values to zero. Increase the proportional constant 
KP until the output of the loop oscillates, then the KP should be set to half of that value for a 
"quarter amplitude decay" type response. Then increase KI until any offset is corrected in 
sufficient time for the process. However, too much KI will cause instability. Finally, increase KD, 
if required, until the loop is quick to reach its reference after a load disturbance. However, too 
much KD will cause excessive response and overshoot” [25]. This manual method can be seen as 
a try and fail method until you succeed, of course with such a complicated and expensive system 
such as a rocket this cannot be done.  

The next method introduced is the Ziegler-Nichols tuning method. This method can be 
summarized in the table below with instructions to follow. 

Table 6.1: Relationship table between gains and performance [25] 
Response Rise Time Overshoot Settling Time Steady State Error 

KP Decrease Increase No Trend Decrease 

KI Decrease Increase Increase Eliminate 

KD No Trend Decrease Decrease No Trend 

 

The steps for tuning a P.I.D Controller are as follows. [25] 

• Determine what characteristics of the system need to be improved 
• Use KP to decrease the rise time  
• Use KD to reduce the overshoot and settling time 
• Use KI to eliminate steady state error. 

These two methods are the most common approach to tuning P.I.D controllers. Both are 
either a heuristic model such as the Ziegler – Nichol's method or an iterative process as the 
manual tuning implies. Although these are the usual methods, by no means are these methods an 
exhaustive approach.  

Although these methods are the tried and tested approaches used in the industry. With the 
emergence of Machine Learning and Artificial Intelligence unique and novel opportunities for 
innovation have formed within the aerospace industry. With the developed P.I.D controller 
system, the tuning needs to be completed to have the optimal performance. Instead of using the 
already established methods exclusively, developing a machine learning model to tune the P.I.D 
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controller will be done. This model will use the same performance metrics such as the rise time, 
overshoot, and settling time. Therefore, when comparing the machine learning model and hand 
tuned model it will be a fair comparison. 

The proposed method of prediction for tuning the P.I.D controller will be a model based 
on the multilinear regression algorithm. The dependent variables are the controller parameters 
the proportional, integral, and derivative control gains. The independent variables will be the 
performance parameters which are the rise time, settling time, and overshoot percentage. A flow 
chart of how this subsequently works is shown on the next page. 

 

 

 

Figure 6.1: Machine learning flow chart 
 

Using this process, the predicted P, I, and D parameters should be the optimal settings 
when trained in the design space. By simulating over a large design space in Simulink, a design 
space is created. Over this design space, the subsequent model is trained using these independent 
variables. With these independent variables, assumptions about the data are made through 
statistical testing and analysis of this dataset. Once the dataset satisfies the primary assumptions 
of the linear regression framework, a model is developed within python. This regressive model is 
then trained on the independent variables that were declared at the beginning. After the model is 
trained predictions can be made about the controller parameters. These predicted parameters and 
the performance will then be compared to the hand tuned values to evaluate if the machine 
learning model provides another way to tune the P.I.D control system. 
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6.1 Design Space 
 

Before a machine learning model can be built, modeled, and implemented. The data 
needs to exist first, here the data is nonexistent specifically for this rocket model. Therefore, the 
data must then be generated, cleaned, and then implemented. The bulk of the work and 
development process of a machine learning process is the data collection, and cleaning, as this 
was the case here as well.  

The first proposed design space was a three-column vector of the Proportional, Integral, 
and Derivative control gains. This vector spanned a linear space from [0,15] with 100 points in 
between. This vector was constructed for each controller parameter setting. These three column 
vectors were then permutated to obtain all the possible combinations with no repetitions allowed 
for the first design iteration. This initial design space totaled over 100,000 different combinations 
and simulations possibilities to obtain information on. However, due to a lack of computational 
resources and the intensity of such a task this design space was quickly abandoned. 

The second iteration to improve the design space and simulation data gathering was to 
limit the design space in the amount of design and simulation points. Shortening the 100 linearly 
spaced points to 30 spaced points between the values of [0,10]. This drastically reduced the 
number of simulation and design points, however the problem here was deficient performance 
for most of the recorded datapoints. This would develop a poorly predictive model, as the model 
will be only as accurate and useful as the data that trained it. This data was thrown out and 
another iteration was needed once again. 

On the third iteration negative gains were introduced in the range from [-7,3]. The 
positive gains were limiting to be from zero to three because after this range no useful responses 
were generated. Even within the range between zero to three a lot of the performance charts, and 
variables were of no use. However, there were a few responses that performed outstandingly this 
led to this range being kept as the data could always be cleaned. The purpose of sweeping in this 
large variable space was to catch all the performance characteristics from the permutations of 
these combinations. Of course, this would generate unfavorable data as well. Generating a small 
number of unusable data points in favor of generating a vastly greater number of viable design 
points, was an acceptable action. This iteration of design space iteration also lowered the number 
of linearly spaced vectors from 100 to 11. An enormous drop in the amount of design points 
generated was experienced. Starting with over 100,000 data points to just under 300 for the final 
design space. A sample of parameters can be seen on the next page. 
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     Table 6.2: Partial representation of the permutations of p, i, d values 

 

 

  

P I D
-7 -7 -7
-7 -7 -6
-7 -7 -5
-7 -7 -4
-7 -7 -3
-7 -7 -2
-7 -7 -1
-7 -7 0
-6 -7 -7
-6 -7 -6
-6 -7 -5
-6 -7 -4
-6 -7 -3
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6.2 Data Collection & Analysis 
 

As seen in the data table the combinations are taken from the interval [-7,3] with every 
combination possible of the three variables. These values were then automatically simulated in 
Simulink to retrieve and store the performance variables. By collecting all the responses to these 
combinations of P, I and D parameters the same sized matrix of results were gathered. The 
gathered data is the independent variables needed to train a sufficient model. This matrix of 
gathered data will be referred to as the Simulation Design Space or (Sim Space) for short. The 
complete plot of Sim Space can be seen below as a contour plot. 

 

Figure 6.2: Contour of responses by magnitude 
 

The Z-axis is the norm of the responses aka the magnitude, the X- axis measures the 
number of measures or simulations, and the Y-axis is the number of dependent variables. From 
initial inspection this contour plot suggests a linear relation between the variables. Further 
analysis is needed to validate this relationship. 

Once the entire data needed was collected, the rows with a Nan (not a number) were 
dropped from the data set. This was to exclude nonrealistic values that either grew the response 
to infinity or were not captured within the period of the simulation. Both scenarios are not 
physically possible for the system or performance. A type of such response can be seen on the 
next page. 
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Figure 6.3: Full evolution of all recorded responses 
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The responses that grow to infinity and never seek back to the reference signal are the 
values that were removed from the dataset. This reduced the Sim space from 283 simulations to 
just under 270 simulations. Most of the simulations performed were successful and provided 
valuable responses.  

The figure above represents all the simulations performed and logged. Taking a deeper 
look into these responses graphed there seems to be groups of responses that are remarkably 
similar. To visualize the relationship between these responses the evolution from simulation to 
simulation was summarized every 30 simulations. This can be seen below. 

 

Figure 6.4: Family of run #30 simulation graphs 
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Figure 6.5: Family of run #60 simulation graphs 
 

 



60 
 

 

Figure 6.6: Family of run #120 simulation graphs 
 

These three figures succinctly summarize all the responses seen in accordance with the 
Sim space parameters. The differences between the graphs of the responses can be broken into 
optimization of one of the performance parameters. A full graph of responses with some of the 
best graphical responses can be seen below. These were selected plots to visualize how some of 
the better values look once plotted against each other. 
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Figure 6.7: Evolutions of response with varying p.i.d parameters 
 

The data collected in these simulations were also done in two distinct categories, one 
category for the simulations ran without noise the other category for simulations ran with noise. 
It is important to note while there were differences in the end when predicting values for the 
P.I.D values. Graphically the responses did not differentiate between the two categories of 
simulations used when collecting data. However, for practicality purposes and real-life 
applications the simulation data generated with noise would be the most accurate, and the set 
generated without noise would be the most idealistic cases. 

After visualizing specific runs to get a general sense of the data, and the performance that 
could be expected from the Sim space. General data analysis was run to visualize and describe 
the data that was collected. This step was necessary to visualize any discrepancies that might 
have occurred that were not easily detectable within the simulation runs or by inspection. One 
crucial factor of the data is the distribution of the results that we are receiving from the 
simulations. The distribution of the overshoot, rise time, and settling time can be seen in the next 
three figures. 
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Figure 6.8: Distribution of measured overshoot percentage 
 



63 
 

 

Figure 6.9: Distribution of rise time measurements 
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Figure 6.10: Distribution of settling time measurements 
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From the presented plots the performance parameters can be seen to have a few outliers 
in the data set, but these outliers are low in frequency compared to the data collected. Another 
insight into the data is that the performance parameters are close to being normally distributed, 
with a long left or right tail. This can be important because some probabilistic distributions must 
be transformed depending on the machine learning algorithm applied. Now that the general 
distribution of the data can be seen, a descriptive box plot would be nice to visualize as well. 

 

Figure 6.11: Boxplot of overshoot performance 
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Figure 6.12: Boxplot of rise time measurements 
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Figure 6.13: Boxplot of settling time measurements 
 

The shown boxplots can help identify where the median lies within the values, and even 
more so how this dataset is spread in comparison. Through this visualization the outliers are 
definite standouts, however the outliers are evenly distributed on both sides of the spectrum. 
There are noticeably high outliers in each case and noticeably low outliers as well. As the 
balance in the data is kept an assumption cannot be made one way or the other. This leads to a 
correlation study needing to be done between not only the P, I, D values, but the performance 
parameters as well. The following are the results of those correlations. 
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Figure 6.14: Correlation study between p, i, d settings 
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Figure 6.15: Correlation pair plot between all variables 
 

From these correlation studies the P, I, and D values are all positively correlated to one 
another. The main thing to note is even though they are correlated to one another there still is 
enough difference to develop a model. Although these variables are correlated towards one 
another they are not correlated enough to introduce multicollinearity which is what is needed to 
avoid when using linear regression models. Moving onto the complete correlation pair plot 
between all variables, the performance parameters and Sim space, there are no variables that are 
too correlated with each other that could introduce multicollinearity besides the rise and settling 
time. Those two variables have an extraordinarily strong relationship towards one another, 
however because of the space of the simulation and the system at hand this is to be expected. 
This is a steady state system, that is time invariant and only changing due to the commanded 
flight path angle. With so many things held constant a relationship between some variables is 
unavoidable. 

With the correlation studies completed the bare minimum has been satisfied to develop a 
linear regression model. The assumptions made about the data have been confirmed to hold true 
allowing for a model to be used to predict the independent variables of P, I, and D. The next step 
is to introduce linear regression, explain the theory and assumptions behind it, build the model, 
obtain prediction, then compare the results achieved.  
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6.3 Linear Regression Modeling 
 

Linear regression “... can be used to forecast effects or impact of changes. That is, the 
regression analysis helps us to understand how much the dependent variable changes with a 
change in one or more independent variables” [26]. In this case there will be three different 
models for each dependent variable, based on the independent variables of the performance 
parameters.  

There are multiple types of linear regression. This model will take advantage of 
multilinear regression forecasting to hopefully obtain the best solution possible for tuning the 
P.I.D controller. Before diving into the model, the underlying mathematical implications, 
assumptions, and loss functions must be introduced in explored in context of this model. 

6.3.1 Linear Regression Equation 
 

The simplest form of the linear regression equation can be explained from the algebraic 
expression for a line. 

Y = c*x + b                                                           (6.3) 

Where Y is the prediction, b is a constant, x is the score of the independent variable, and c is the 
regression coefficient [26]. This is no different from the linear regression equations used to fit 
the data. Linear regression is just fitting a line through the data in the best way possible to 
minimize a certain type of error. This model used the commonly used Ordinary Least Squares or 
(OLS) approach. 

The OLS approach minimizes the Mean Squared Error from each observations distance 
from the line fitted to the data. The Mean Squared Error is just the difference between the 
predicted value and the actual value squared, the summed over the design space. An example and 
visual representation can be seen below. 
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Figure 6.16: Mean squared error example [27] 
 

The MSE for above would be the sum of all the distances of each blue dot from the red 
dotted line, then divided by the number of observations. This is how the MSE is calculated for 
models that take this approach. The MSE will be the parameter that will be minimized for when 
training the model later and optimizing the predictions. The way this model will optimize the 
cost function will be by the technique named gradient descent which will be covered in a later 
section. Now that a general understanding of the error has been introduced the next step is 
introducing the cost function for the linear regression model. 

Luckily, the cost function here is just the MSE equation applied to three different 
variables at one time. Since there will be three independent variables the MSE has to consider 
each of the observations. The equation now accounts for the error in all three measured 
instances. Another name for the MSE using the OLS approach is the cost function. Therefore, the 
cost function for this model is as follows: 

 

𝑀𝑆𝐸 = 	 4
56
∑ '𝑦7 − (𝑊4𝑥4 +𝑊5𝑥5 +𝑊8𝑥8)/

59
7:4                               (6.4) 

 

Where the variables YI is the actual value, and (W1x1+W2x2+W3x3)2 is the predicted 
value. This is the same as the MSE introduced earlier just extended to three variables. It should 
be noted the entire expression is only divided by two to make taking derivates easier, which is 
the next step.  
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After defining the cost function of the multilinear regression model, the next step would 
be of course to minimize it. By minimizing the cost function, the error would be minimized as 
well, giving the best possible prediction for that step. Applying this principle at every step until a 
global minimum for the cost function is reached would lead to the lowest possible error for the 
entire model. This technique is called gradient descent, and this is also the technique used to 
optimize the model developed here. 

 

6.3.2 Cost Function Optimization (Gradient Descent) 
 

The cost function for this model was introduced in the section before. The MSE will be 
the cost function to optimize for in this example. The way to go about this is to find the gradient 
of the cost function, when using multilinear regression which is the case here the partial 
derivatives need to be taken. Once the gradient of the cost function is found an iterative approach 
for the next prediction that will optimize the cost function can be written as follows: 

 

𝜃!"#$	&$"' = 	𝜃 − 𝜂∇(𝑀𝑆𝐸(𝜃)                                     (6.5) 

 

Where the Greek letter Etta is the learning rate, a hyperparameter to be tuned in the 
model, and theta is the cost of the next step while using the optimization method. Using gradient 
descent can optimize the cost function and improve overall performance of the machine learning 
algorithm. The pitfalls to this approach are that the algorithm itself may get stuck into a local 
minimum instead of reaching the global minimum, our desired target. However, from the data 
displayed earlier the design space contains no other minimums, there are outliers on the contour 
plot but there is only one minimum seen. On the contrary there are many local maxima contained 
in the dataset. 

After introducing the model, the cost function, the last bit to become familiar with is the 
performance of the model. Luckily enough the cost function parameter here can also tell the 
story of the performance of the developed model. Because this is a prediction model based on 
regression, the best method to evaluate the performance of this mode is none other than the MSE 
or the Cost function mentioned above. By optimizing this cost function, the performance metric 
is also maximized.  

The evaluation of this model was chosen to be based on the MSE because of this model 
needed to predict very closely the needed settings of the controller. This is well suited for MSE 
because this metric sums all the distances of the predictions and true values, then the gradient 
descent method minimizes this distance. Taking all these things into consideration the distance of 
the predictions from the actual value is minimized leading to the closest possible prediction that 
can be acquired using this type of modeling.  
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6.3.3 Model Building 
 

The actual linear regression model was built in python using 3rd party packages, and 
modules. These packages and modules included Pandas, Sci-Kit learn (SK learn), NumPy, 
Statsmodel, Seaborne, and Matplotlib. SK learn has all the parts needed to do the modeling, and 
cost optimization. After importing all the needed modules and packages, the generated 
simulation data that has been cleaned and prepped was split into training and testing data. The 
training and testing split were 80/20. 80% of the data was used for training, and 20 % was used 
for testing. A random seed of 42 was declared to keep the runs across sessions consistent. A 
small excerpt of the python code using the SK learn packages in appendix C-3 shown. 

6.3.4 Model Performance  
 

The initial model developed, without using Gradient Descent, performance was evaluated 
to establish a baseline. The model as expected performed poorly when not optimized correctly. 
The baseline performance of this model when unoptimized was calculated to have an MSE of 
1.162. This was not as bad of an error at all; however, this is just the baseline for comparison. 
Substantial improvement can be made regarding improving the MSE score. Moving forward to 
optimizing the model and its performance by adding different techniques such as gradient 
descent, random sampling and bagging known as bootstrapping, then tuning model specific 
hyperparameters. A much more acceptable MSE was achieved. The improved and optimized 
model average MSE was calculated to be close to .3. This was an amazing improvement and was 
expected when optimizing for this type of measure. After optimizing the machine learning 
model, the desired performance for the control system was entered and the model prediction was 
made. 

The main attribution to making such an improvement in the MSE was SK learns 
Stochastic Gradient Descent package combined with the Grid Search package. Gradient Descent 
has been covered previously, the grid search package does exactly what its name implies. Grid 
Search allows you to automatically iterate over a list of parameters while recording the model's 
performance, then at the end the model with the best score can be retrieved. This allows you to 
optimize the algorithm as much as possible to get the best performance possible. A snippet of the 
code implemented can in appendix C-4. 

Culminating all these different techniques and practices the best model was selected. As 
such the model building for the predictive model was completed. The next step was to use the 
trained model to predict the optimal settings based on the performance that could be achieved 
with the controller. 
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6.4 Results & Conclusion 
 

Before diving into the results of the model prediction a few things need to be reviewed. It 
should be noted that some performance must be sacrificed to achieve the best overall model. As 
seen in previous sections there are tradeoffs for each performance parameter, minimizing 
overshoot may increase the rise time, optimizing the rise time may increase the rise and settling 
time. From previous data analysis of this system in its performance the rise and settle time are 
very correlated so increasing one will increase the other in this specific model. These tradeoffs 
cannot be accounted for in this linear model, as all this model performs is a linear regressive 
prediction based on the performance parameters entered. This model cannot differentiate 
between parameters that cannot be made physically possible. Therefore, it is up to the engineer 
to use sound engineering judgement and principles to discern when specific performance points 
are not tangible.  

Keeping performance restraints in mind the desired performance of the tuner was decided 
to prioritize rise time, overshoot, while settling time was of the least importance. Looking back 
to figures 40 there is no shortage of optimal rise and overshoot performance parameters within 
the acceptable range that is needed for this controller system. The desired point of operation for 
this rocket to obtain its commanded flight path angle as dictated by the inflight controller was set 
to be as close to the following, 10 seconds or less rise time, and less than 10% overshoot. This 
would lead to quick maneuvers as intended by the controller design in earlier sections. With the 
operation point specifics identified the prediction and comparison of the machine learning tuned 
controller and hand tuned controller could be compared. 
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6.4.1 Results & Comparisons 
 

The hand tuned controller settings from earlier barely met the requirements needed for 
the performance of the system. Tuning the controller came with more complications than initially 
thought, lowering rise and overshoot time to a range within tolerance was soon found to be 
extremely hard to achieve. The repetitive process of simulating and changing the setting was 
difficult, especially not having an idea of the design space available. The settled upon hand tuned 
parameters and response graph can be seen below. 

 

 

Figure 6.17: Hand tuned controller response 
 

Although in theory this response is stable as it seeks back to the commanded point. The 
viability of this in a physical space is not the best performance that we can achieve. Simply by 
inspecting the design space and the response graphs shown there are far better performance 
points than this graph but due to hand tuning and the repetitiveness of it this point was settled 
upon. This point gave a satisfactory performance at the time of conception. 

All of this was remedied with the machine learning model built, that then covered an 
expansive design space to encompass most viable solutions. Using the regressive model 
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developed and entering the wanted performance parameters the closest possible response that 
satisfies the performance requirements can be seen below. 

 

 

Figure 6.18: Machine learning tuned response 
 

The machine learning tuned response has an obvious advantage over the hand tuned 
response. The machine learning model meets all the performance requirements and performs 
remarkably better than the hand tuned response. Not only did the overshoot keep minimized and 
the rise time meet requirements, but the settling time exceeded expectations. This was explored 
earlier the rise and settling time are highly correlated so minimizing the rise time was expected to 
have this effect. Next let us go even further and compare this to a general automatically tuned 
block using the built-in features of MATLAB. 

Another viable option was to auto tune the controller settings in MATLAB. Using the 
tune option in the PID block itself, MATLAB will tune the controller to your liking. However, 
this is remarkably like using machine learning and other A.I models to do the tuning for you just 
as was implemented here. The automatically tuned response for the best optimized performance 
of overshoot, rise time, and settling time can be seen below. 
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Figure 6.19: MATLAB tuned response of pid controller 
 

Although the MATLAB tuned response is not optimal, the derived gains were found in 
under five minutes. These results are also only the preliminary response. An engineer can tune 
with respect to the optimization point even further to obtain a better response. This has its 
advantages over both hand tuning and machine learning tuning as well. 

The best performance for this time seems to come from the made machine learning 
model. Although this is the best method for this specific situation, the difficulties, assumptions, 
and methods employed should also be considered. There may be cases where spanning an entire 
design space is not computationally efficient. This design concept was simplified into its bare 
components to prove a design solution exists and can be implemented into a physical system. In 
other situations, these simplifications may not exist, or a linear relationship may not exist at all.  

Another consideration to keep in mind is the time spent developing the machine learning 
model itself. The data collection took the better half of three months while the model building 
took less than two weeks itself. Scaling this solution to bigger systems could exponentially 
lengthen the development and data collection time. When compared to both the hand and 
MATLAB tuning this is the obvious disadvantage to the machine learning method.  

The last reason to consider when deciding to apply which method would be better for 
your proposed situation is the relationships between variables. Here the variables were very 
linear, the independent variables were not very strongly correlated, and the cost function was 
able to reach a global minimum easily. This may not be the case for every situation, physical 
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systems have large numbers of dimensions and complex relationships. These relationships may 
be much more complex than linear, or even polynomial, in these cases using a linear model will 
not suffice. As the complexity of the relationships of variables graduate so does the model 
complexity and run time. At some point using a supervised model may not even be viable, an 
unsupervised neural network may need to be used to evaluate the relationships between 
variables. As with all engineering practices the tradeoffs need to be well documented and 
considered before traversing a path to a solution. 
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Chapter 7-Conclusion and Future Work 
 

In conclusion the proposed maneuverable control system was successfully designed, 
implemented, and met performance benchmarks. The Falcon 9 rocket control system designed 
here achieved a rise time of less than ten seconds, an overshoot of less than ten percent, and a 
comparably fast settle time. This will lead to a highly maneuverable rocket. 

After the design of the maneuverable rocket with a PID control system. The established 
PID tuning status quo was challenged. While tuning the designed PID controller by hand, 
MATLAB’s automatic controller, and linear regression model. The clear winner was the 
machine learning model tuned parameters. Although tuning by hand and MATLAB did give 
quicker results that were satisfiable, the machine learning tuner gave the best possible 
performance. This can be due to the specific nature of the tuned model versus the general 
algorithm used in MATLAB, and the not so accurate iterative methods used by hand tuning.  

The drawbacks to the machine learning tuner however are; long development time, 
assumptions about data must be correct, a known design space must be known, and you need to 
have knowledge of software development with advanced programming skills. All these 
drawbacks can be quite costly when implemented via industry practices. Such as an engineer 
with advanced programming skills and knowledge of machine learning techniques coupled with 
an advanced aerospace engineering background would need to be compensated much more than 
a regular aerospace engineer. Therefore, the machine learning tuning of controllers would only 
be possibly advantageous depending upon the situation. 

Overall, this project set out to propose a solution to make a maneuverable rocket in 
steady state flight. After this stage was completed, optimizing performance was the main goal, 
along the way different methods were compared. This eventually led to the conclusion that if 
applicable to the engineering application, a custom designed machine learning algorithm can 
provide the best tuning results. 

 

7.1 Improvements  
 

 There are a few improvements that could be made to make a better performing controller, 
and machine learning tuner. These improvements are: 

1. More advanced control method: A more advanced controller such as an LQG controller 
could in fact perform better than the implemented PID with filter. Although the PID 
controller meets the design parameters, and performance metrics. Setting cost functions 
for fuel, thrust, and other parameters in an LQG controller may obtain better function and 
optimization. This could be a point of improvement and design further in the future. 
 

2. Neural-Networks: Along the same lines of thinking a Neural Network machine learning 
model is much more robust than the linear regressor used. Although the linear regressor 
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achieved satisfactory optimization, there were assumptions that had to be made and 
confirmed. If the data collected did not have the qualities that were shown, then a linear 
regressive model could not be implemented. Conversely a Neural Network exceeds 
looking into data that may not have any correlations or assumptions and finding those 
patterns. By implementing a Neural Network, the machine learning tuner could be more 
robust and apply to more situations than the flight conditions specified here. This could 
lead to faster tuning, over wider areas of the flight envelope, and better performance as 
seen in previous sections. 

This project’s work met its goal, and performance metrics. However, there can 
always be improvements made, with knowledge to gain and use further in the future. 
Here it is no different. 

 

7.2 Possible Extension & Future Work 
 

 The next step after the completion of the computational modeling would be to prototype. 
A full-scale prototype of the Falcon 9 rocket would of course be cost inefficient, a scale model 
would be best. If the aerodynamic properties are similarly scaled and reproduced. Once the 
rocket body is prototype, the designed controller here could be implemented. Given the 
computational models are a success, flight testing in a real environment should also be a success. 

 However, if the prototyped rocket and control system behave unexpectedly, failure 
analysis would need to be done. After which it would be back to the computational model to 
pinpoint what went wrong, how to change it, and where fixes need to be implemented. Design is 
an iterative process that must be repeated. There is no difference with this design.  

 This design has moved from the conceptual phase, such as asking, defining, designing, 
and implementing a solution to the problem. To the prototyping, testing, and improving phase. 
There is much more work in the future that will need to be done to optimize this system. With 
the help of the machine learning algorithm designed, tuning should go much faster as shown in 
this work.   
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Appendix 
 

Appendix A - MATLAB Scripts 
 

A.1 Importing Digital Datcom Aerodynamic Coefficients  
 

aero = datcomimport('referencemach.dat'); 

aero1 = datcomimport('for006mach1.dat'); 

aero2 = datcomimport('mach2.dat'); 

aero3 = datcomimport('mach3.5.dat'); 

aero4 = datcomimport('mach3.dat'); 

aero5 = datcomimport('mach5.dat'); 

A.2 Initial Conditions for Earth Frame Data 
%%% Earth Data 
  
omega_Earth = 7.2921e-5;      % angular velocity of Earth [rad/s] 
  
phi_c_init = 0;           % initial geocentric latitude [deg] 
lambda_c_init = 0;       % initial geocentric longitude [deg] 
r_pos_intial = [6378137; 0; 0]; % initial LV position vector r [m] 
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A.3 Falcon 9 Rocket Properties 
  
%Rocket Properties 
area=21; % m^2 
  
Cg=26.52; % Center of Pressure Calculated  
  
Cp=Cg; % Cp set to Cg for early preliminary results not used in the final model 
  
Mass=570000; %Kg 
  
Mass_inverse= 1/Mass; %Kg 
 
Length=70; % Meters 
  
Ixx=1.4*10^5; %Principal axis of inertia 
  
Iyy=3.2*10^7; %Principal axis of inertia 
  
Izz=3.2*10^7; %Principal axis of inertia 
  
Inertial=[Ixx;Iyy;Izz]; %Inertial Matrix 
  
J=Inertial; % Moment of Inertial Matrix Used in Simulink 
  
Sref=21; %Meters^2 Aerodynamic Ref Area 
  
Lref=3.24; %Meters 
  
burn=162; %seconds 
  
gimbal_pos=[-21 0 0]; %meters 
A.4 Simulink initial Conditions for 6dof Flight Block 
 

initial_pos=[6378137; 0; 0];   % initial LV position vector r [m] 

  

intial_omega=[.0000727;0;0]; % initial angular velocity 

  

initial_euler=[0;0;0]; %rocket at rest 
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initial_velocity=[0;0;0]; %Rocket at rest 

A.5 Frame Transformations  
 

% Initialization of transformation matrices. 

EGtoB = eye(3); 

ECFtoEG = ECF2EG(phi_c_init, lambda_c_init); 

ECItoECF = eye (3); 
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A.6 Falcon 9 Engine Data 
 

% Merlin 1D engine (9x) from Falcon 9 used as a reference 

engines = 9;               % 9 Engines are used 

Isp = 282;                  % specific impulse at sea level [s] 

ve = 251;                  % exit velocity [m/s] 

mdot = 280;                 % mass flow rate [kg/s] 

pe = 9e5;                  % exit pressure [Pa] 

Ae = 0.97;                 % nozzle exit area [m^2] 
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A.7 Aerodynamic Coefficients - All estimated data due to lack of published data used for 
Falcon 9 were used in steady state flight conditions for ease of state estimation. 
%Steady state flight at Mach 3.5, 1200 m/s 

C_A=.2; %Axial Coefficients 

C_A=.05; %Axial Coefficients of alpha 

C_A=.05; %Axial Coefficients of beta 

CS=0; % Side force Coefficient 

CS_b=.9; %Side force coefficient of beta 

CN=0; %Normal force coefficient  

CN_a=.9; %Normal force coefficient of alpha 

CM_rp=.8; %Roll moment for p  

CM_Pa=.05; %Pitch moment coefficient for  

CM_Pq=.8;%Pitch moment coefficient for q  

CM_YB=.05;   %yaw moment coefficient for beta 

CM_Yr=.8;   %yaw moment coefficient for r 

C_A_0 = 0.2; 

C_A_alpha = 0.05; 

C_A_beta = 0.05; 

C_N_0 = 0; 

C_N_alpha = 0.9; 

C_S_0 = 0; 

C_S_beta = 0.9; 

C_Mr_0 = 0; 

C_Mp_alpha = 0.09; 

C_My_beta = 0.05; 

C_Mr_p = 0.8; 

C_Mp_q = 0.8; 

C_My_r = 0.8; 
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A.8 State Space from Simulink model to calculate Poles. 
 

[A, B, C, D] = linmod("manueverablerocket"); 

sys=ss(A,B,C,D); 

eig(A); 

%% Design Space For PID Controller, and Initializations 

 A.9 Simulation Space Initialization 
 

v=linspace(-7,3,11); 

Sim_space=nmultichoosek(v,3); 

PID=array2table (Sim_space,'VariableNames',{'P', 'I', 'D'}); 

P_controller=Sim_space(:,1); 

I_controller=Sim_space(:,2); 

D_controller=Sim_space(:,3); 

Overshoot=zeros(size(Sim_space)); 

rise_time=zeros (size (Sim_space,1)); 

settling_time=zeros (size (Sim_space,1)); 

Overshoot=Overshoot (:1); 

rise_time=rise_time(:,1); 

settling_time=settling_time(:,1); 

peak_mat=zeros(size(rise_time)); 

  

A.10 Simulink model Automation Simulation 
%model=('missle_modle_with_noise.slx'); 

%open(model) 

tolerance = .05; 

%% Looping Simulations and Logging Data 

for repeat = 1: len(Sim_space) 
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     %if repeat==30 || repeat ==60 || repeat == 90|| repeat==150 || repeat== 180 || repeat == 210|| 
repeat == 240 % Used For evolutions of plots at every 30 intervals 

    P_sim=P_controller(repeat); 

    I_sim=I_controller(repeat); 

    D_sim=D_controller(repeat); 

    model=('missle_modle_with_noise.slx'); 

    sim(model) 

    Flight_path=Flight_Path_angle.signals.values(:,1); 

    FPA_cmmnd=Flight_Path_angle.signals.values(1,2); 

    upper_band=FPA_cmmnd+(FPA_cmmnd*tolerance); 

    lower_band=FPA_cmmnd - (FPA_cmmnd*tolerance); 

     

    Time=Flight_Path_angle.time; 

    peak=max(abs(Flight_path)); 

    peak_mat(repeat)=peak; 

    over= ((peak - FPA_cmmnd) / FPA_cmmnd) *100; 

    Overshoot(repeat)= over; 

     

 

A.11 Logging the Rise and Settle Time for Every Simulation 
    %%% Rise Time 

    rise_time_index=find(Flight_path==peak); 

    if isempty(rise_time_index) 

        rise_time(repeat)= NaN; 

    else 

    rise_time(repeat)=Time(rise_time_index); 

    end 

    %% Settling Time 
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    %for I=1: length(Flight_path) 

    %    If Flight_path(i) > 0  

     %       If (Flight_path(i) >= lower_band & Flight_path(i) <= upper_band) 

      %          settle_point_data(i)=Flight_path(i); 

       %     Else 

        %        settle_point_data(i)=NaN; 

         %   End 

        %Else 

         %   Continue 

        %End 

A.12 Saving and Graphing of all Simulation Variables 
    %% Simulation Information and Plots 

        fprintf("Run number %d:'\n' ", repeat) 

        fprintf("P_sim for this run is %d: '\n' ", P_sim) 

        fprintf("I_sim for this run is %d:'\n' ",I_sim) 

        fprintf("D_sim for this run is %d:'\n' ",D_sim) 

       filename=sprintf('Run_number%d',repeat); 

      %% Evolution Plots 

        figure (1); 

        hold on 

        Y= Flight_path; 

        X=Time; 

        plot (X, Y) 

        yl1=yline(upper_band,'-.m','LineWidth', .5); 

        yl2=yline(lower_band,'-.m','LineWidth', .5); 

        yl=yline(4,'-. r','LineWidth',2); 

        title ('Flight Path Response Seeking Required Flight Path Angle') 
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        subtitle(sprintf('Up to Simulation Number: %d With Control Variables P value: %d I value: 
%d D value: %d',repeat, P_sim,I_sim,D_sim)) 

        ylabel('Flight Path Angle') 

        xlabel('Time in Seconds (s)') 

        legend ('Response', 'Upper Error Band', 'Lower Error Band', 'Desired Flight Path Angle') 

        ylim padded 

        %saveas(gcf,filename,'pdf'); 

        hold off 

   %Else 

   %    Continue 

    %End 

end 

%Training_param=[Overshoot,rise_time,settling_time]; 

%% Write Design Space For Machine Learning Use 

%writematrix(Sim_space,'Design_Space_with_noise.xls') 

%writematrix(Training_param,'Regular_data.xls'). 
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Appendix B - Simulink Diagrams 
 

B.1 Equations of Motion Subsystem 
 

 

 

B.2 Transformation Between Frames 
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B.3 Thrust Vectoring Subsystem 
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B.4 PID Control System Feedback Loop 
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B.5 Thrust Vectoring Moment Calculations 
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B.6 Atmospheric Subsystem Model 
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B.7 Earth Position Calculation Subsystem 

 

 

  



99 
 

 

B.8 Aerodynamic Forces Calculations Subsystem 
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B.9 Simplified Linear Diagram 
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Appendix C – Python Scripts 
 

C.1 Differences Between Noise and No Noise Plots 
import seaborn as sns 

import matplotlib.pyplot as plt 

import pandas as pd 

noise_df=pd.read_excel(r'C:\Users\broth\Documents\Master's Degree\Finished Results 
pics\noise_data.xls',names=['overshoot','rise_time','settling_time']) 

no_noise_df=pd.read_excel(r'C:\Users\broth\Documents\Master's Degree\Finished Results 
pics\regular_data.xls',names=['overshoot','rise_time','settling_time']) 

noise_df.dropna(inplace=True) 

no_noise_df.dropna(inplace=True) 

overshoot_diff=((abs(noise_df.overshoot - no_noise_df.overshoot)) / noise_df.overshoot) *100 

rise_diff=((abs(noise_df.rise_time - no_noise_df.rise_time)) / noise_df.rise_time) *100 

settle_diff=((abs(noise_df.settling_time - no_noise_df.settling_time)) / noise_df.settling_time) 
*100 

fig=plt.gcf() 

plt.scatter(overshoot_diff.index,overshoot_diff) 

plt.xlabel('Simulation Number') 

plt.ylabel('Percent Difference') 

plt.title('Overshoot-Percent Difference between Noise and No Noise Responses') 

fig.savefig('Overshoot Difference.jpg',dpi=800) 

plt.show() 

fig=plt.gcf() 

plt.scatter(rise_diff.index,rise_diff) 

plt.xlabel('Simulation Number') 

plt.ylabel('Percent Difference') 

plt.title('Rise Time-Percent Difference between Noise and No Noise Responses') 

fig.savefig('Rise Time Difference.jpg',dpi=800) 
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plt.show() 

fig=plt.gcf() 

plt.scatter(settle_diff.index,settle_diff) 

plt.xlabel('Simulation Number') 

plt.ylabel('Percent Difference') 

plt.title('Settle Time-Percent Difference between Noise and No Noise Responses') 

fig.savefig('Settle Time Difference.jpg',dpi=800) 

plt.show() 

 

C.2 Design Space 
""" Import all the modules needed to make a model, import data, visualize, and plot data points. 
This also import a lot of the statistics that  

will be needed to analyze our model and see how well it performs in a machine learning sense.  

""" 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn import linear_model as lm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error as mse 

import statsmodels.api as sm 

from statsmodels.stats.anova import anova_lm 

from statsmodels.formula.api import ols 

df_pid=pd.read_excel("design_space.xls") 

print(f' Number of missing or null values are: {df_pid.isnull().sum()}') 

print(f'The information about this data is: {df_pid.info()}') 

# Formatting Column Names 
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df_pid.columns=['p','i','d'] 

print(f'Now the columns look like this: \n{df_pid.columns} ') 

print(f'Check the first 5 rows of the data set {df_pid.head(5)}') 

print(f'Description of data is: {df_pid.describe()}') 

print(f'The shape of the Data set is: {df_pid.shape}') 

# Casting Data frame as float 

df_pid=df_pid.astype(float) 

print(f'Now the info about the data is: \n {df_pid.info()}') 

C.3 Correlation Studies 
""" Correlation study between variables. Using The values for P I D as dependent variables and 
the other three variables as independent  

variables  

""" 

sns.pairplot(df_pid) 

plt.show() 

correlation=df_pid.corr() 

print(correlation) 

correlation.style.background_gradient(cmap='coolwarm') 

C.3 Visualization of PID Variables 
""" Next is a visualition to describe the dataset and how it is about.""" 

visual=df_pid.copy(deep=True) 

 

# We are assigning labels either 1 or 0 for 1 = high, and 0 = low. This corresponds to values of 
the  

#P, I, or D that are greater than the average measurement 

visual['p'] = [ 1 if p >= -4.4 else 0 for p in list(visual['p'].values)] 

visual['i'] = [ 1 if i >= -2 else 0 for i in list(visual['i']. values)] 

visual['d'] = [ 1 if d >= .5 else 0 for d in list(visual['d']. values)] 
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# Now that these values have been assigned labels, we can create a box plot to see how often a 
high or 

# Low value occurs within the data set 

sns.countplot(x="p", data= visual) 

plt.xlabel("High = 1, Low = 0") 

plt.ylabel("Count") 

plt.title("Count plot of High and Low Value Occurrences for the P parameter") 

sns.countplot(x="i", data= visual) 

plt.xlabel("High = 1, Low = 0") 

plt.ylabel("Count") 

plt.title("Count plot of High and Low Value Occurrences for the I parameter") 

sns.countplot(x="d", data= visual) 

plt.xlabel("High = 1, Low = 0") 

plt.ylabel("Count") 

plt.title("Count plot of High and Low Value Occurrences for the D parameter") 
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C.3 Model Generation 
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C.4 Parameter Generation 
 

 


