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Perturbations in Lower Uranian orbit Review 

Karajeh Z.1 
San Jose State University, San Jose, California, 95116 

Uranus is almost a mystery to many of the scientists and engineers on Earth today. Its existence has 
been known for centuries, yet the planet has been largely unexplored and thus misunderstood. This 
paper describes two methods for sending a spacecraft from Earth to Uranus. First, a simple 
Hohmann transfer from LEO to LUO. Second, a flyby assist at Jupiter via two Hohmann transfers. 
The results of this paper describe why a flyby assist is the ideal option for a mission to Uranus and 
how it optimizes the Delta V requirement, in comparison to the more expensive single Hohmann. 
This paper also describes the tradeoff for conducting a flyby maneuver. The methods used to 
produce these results are explained in detail. The N-body analysis portion of this investigation also 
found that propagation did occur on the a spacecraft, the size of Voyager 2. The MATLAB script 
developed for this analysis has been verified and the results are acceptable.  

Nomenclature 

𝑎 =   semi-major axis 
𝑒  =   eccentricity  
𝐺𝑀  =   standard gravitational parameter 
𝑚  =   mass 
𝑟  =   radius 
𝑟!  =   distance to apoapsis 
𝑟!  =   distance to periapsis 
𝑡  =   time 
𝑉  =   velocity  
𝑉!  =   hyperbolic excess velocity 
∀  =   volume of a sphere 
𝛽  =   asymptote angle  
𝛥  =   aim radius 
𝜃  =   phase angle 
𝜌  =   density 
𝜏  =   period of orbit 
𝜔  =   angular velocity 

I. Introduction 
Uranus is often over looked as a planet of interest. Its distance from the Earth has played a pivotal 

role in the prevention of further research into the Ice Giant. Although no one planet in our Solar System 
should be considered more important than the others, it is often seen that planets like Mars and Saturn are 
higher points of focus. Uranus is unique in that its irregular orbit, polar locations, and rings could provide a 
better insight on the history of our solar system. Further investigation into the planet will help provide a 
basis for possible future missions. Investigation into the nature of Uranus and the nature of natural satellites 
currently orbiting the Ice Giant will help determine if Oranocentric flight will be possible.  

II. Objective 
The general objective of this paper is to provide a basis for future missions to Uranus. This 

research will be observed in two major parts. Firstly, a discussion will be presented on the topology and 
history of Uranus, its rings, moons, and atmosphere. A description will be presented on the determination 
of a launch window, trajectory, and delta V budget necessary to propel a satellite from Earth Parking Orbit 
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to Lower Uranian Orbit (LUO). Secondly, this research will investigate the gravitational perturbations 
produced on the space vehicle due to the rings of the Ice Giant; this will be described through the 
development of an N-Body model.  

III. Background 

A. History 
Sir William Herschel first discovered Uranus in the late 18th Century with a home-made telescope. 

At the time of its discovery, Uranus was deliberated as different celestial bodies ranging from a star to a 
comet. When Herschel had confirmed the body as a plant of our solar system, he and other astronomers 
failed to recognize its rings. In 1977, James Elliot, Edward Dunham, and Jessica Mink initially found a 
total of nine rings in orbit around Uranus via occultation. In 1986 when Voyager flew by Uranus, it had 
discovered two additional rings. Finally, in 2005, Hubble detected the last two rings of the Ice Giant 
totaling thirteen. There have been virtually no missions dictated toward the research of Uranus. As it 
stands, we have never sent any satellites to Uranus, with the exception of the Voyager 2 flyby. This paper 
and the research provided will potentially outline the necessary information needed to sustain a satellites 
orbit to LUO.  

B. General Topology 
The topology of Uranus is unique in that it is the only planet in the solar system that exhibits a 

tilted axis of rotation. Uranus faces a 97.7-degree axial tilt with retrograde rotation. Most planets in the 
solar system exhibit an almost 0 degree axial tilt; this becomes interesting for the development and design 
of a mission to the Ice Giant. If a satellite were to travel along plane of the solar system, or ecliptic plane, 
into oranocentric orbit it would face a polar orbit; it important to note that Uranus is 0.773 degrees inclined 
to the ecliptic. Unlike other planets in the solar system, Uranus’ poles can face extreme exposure to the sun 
due to the abnormal orientation of the planet. For the purposes of this paper, the mission will intend for 
LUO flight in polar orbit as to stay aligned with the ecliptic plane. 

Uranus also experiences an eighty-four year heliocentric orbit; this means it also faces seasonal 
changes once every estimated twenty-one years. When Voyager 2 passed the south pole of Uranus in 1986, 
scientists failed to recognize at the time that the reason for its lackluster appearance was due to lack of solar 
exposure. The Southern Hemisphere, at the time, was in the midst of winter. As will be discussed in more 
depth in the coming sections, Uranus has thirteen rings and twenty-seven moons with some moons 
embedded within particular rings. The estimated Perihelion of Uranus is 2,735,569,00 km whereas its 
Aphelion is 3,006,390,000 km. For the purposes of sustaining lower orbit flight, the atmosphere was also 
investigated; the constituents of the atmosphere are as follows, 82.5% hydrogen (H2), 15.2% Helium (He), 
and 2.3% Methane (CH4) as well as various trace compounds. The table attached provides additional 
information on the general topology of Uranus. 

 
Table 1. General Orbit Information on Uranus. 

 
Semimajor axis 25,559E6 km 
Semiminor axis 24,973E6 km 
Volume 5.914E13 km^3 
Average density 1270 kg/m^3 
Gravitational Acceleration 8.69 m/s^2 
Rings 13 rings 
Moons 27 observed 
Sol 17 Earth hours 42 minutes 
Angular velocity at equator 9315 km/hr 
Rotation Retrograde 
Sidereal Period 83.74 Earth years 
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Orbital Velocity 6.83 km/s 
Perihelion 2,735,569,00 km 
Aphelion 3,006,390,000 km 
Orbital eccentricity 0.04717 
Orbital inclination to the eliptic 0.77 degrees 

Obliquity (inclination of equator to Orbit) 97.77 degrees 
 

C. Rings 
 Uranus’ rings contain a history of their own. Because of the nature of their orbit around the planet, 
scientists believe that the rings of Uranus formed much later. There are currently thirteen known rings of 
Uranus, Zeta, 6,5,4, Alpha, Beta, Eta, Gamma, Delta, Lambda, Epsilon, Mu, and Nu. The table below 
provides information on the distances between the rings and the surface of Uranus. 
 

Table 2. Distances and Eccentricities of the Rings of Uranus. 
 

Rings Distance from surface to inner edge Approximate width Eccentricity 
1986U2R (also 
called Zeta) 38,000 km 2,500 km - 

6 41,837 km 1.5 km 0.001 
5 42,235 km 2 km 0.0019 
4 42,571 km 2.5 km 0.001 

Alpha 44,718 km 4-10 km 0.0008 
Beta 45,661 km 5-11 km 0.0004 
Eta 47,179 km 1.6 km - 
Gamma 47,626 km 1-4 km 0.0001 
Delta 48,303 km 3-7 km - 
Lambda 50,024 km 2 km - 
 
Epsilon 51,149 km 20-96 km 0.0079 
 
    

 
Rings Distance from surface to inner edge Approximate width Eccentricity 
R/2003 U 2 
(Mu) 67,300 km 3,800 km 0 
R/2003 U 1 
(Nu) 97,700 km 17,000 km 0 

 
 There does seem to be a difficulty in understanding what the rings are actually composed of. What 
is known is that the inner eleven rings of Uranus, the dark rings, are composed of dark ice. The outer two 
rings, the bright red rings, are composed of dust on the scale of micrometers. The objects populating the 
inner rings are on the magnitude of one to ten meters in size. There is much deliberation and speculation as 
to what the rings are composed of in terms of object size, density, and material composition. The rings of 
the planet are nearly circular in shape, as displayed by their eccentricities.  

D. Moons 
 There are currently twenty-seven known moons of Uranus. Each moon is named after a character 
created by William Shakespeare or Edgar Allen Poe. The moons, with their distances from the center of 
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Uranus, are listed in table 3 from closest to farthest. The moons Portia and Mab are embedded in the rings 
Nu and Mu respectively. The other moons orbit Uranus between the rings, with the exception of Miranda 
which orbits outside the farthest ring, Mab. With that said, the moons of Uranus also exhibit inclination 
angles to the Uranian plane.  
 

Table 3. Moons and their distances from the center of Uranus. 
 

Moons 
Distance 

(Km) 
Cordelia 49,752 
Ophelia 53,764 
Bianca 59,165 
Cressida 61,767 
Desdemona 62,659 
Juliet 64,630 
Portia 66,097 
Rosalind 69,927 
Cupid 74,800 
Belinda 75,255 
Perdita 76,420 
Puck 86,004 
Mab 97,734 
Miranda 129,390 
Ariel 191,020 
Umbriel 266,300 

Titania 435,910 
Oberon 583,520 
Francisco 4,276,000 
Caliban 7,231,000 
Stephano 8,004,000 
Trinculo 8,504,000 
Sycorax 12,179,000 
Margaret 14,345,000 
Prospero 16,256,000 
Setebos 17,418,000 
Ferdinand 20,901,000 

 

E. Notes 
It is important to note that Uranus is still a mystery to many researchers and engineers in the planetary 

sciences. Missing information, such as the actual composition of the rings of Uranus and definitive size of 
the objects that populate those rings will all be subject to further educated assumptions. Uranus has been 
largely unexplored and it is the hope of this paper to develop a feasible mission to understand whether it 
would be possible to send a spacecraft to the Ice Giant.  
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IV. Hohmann Transfer 

In order to achieve the ultimate goal of this paper, an N-body problem relating the orbit of the 
space vehicle to the objects found in Uranus’ rings, the space vehicle must first arrive at its destination. 
Firstly, It is decided that a Hohmann transfer would be conducted, as the mission is not time sensitive. In 
order to conduct the Hohmann transfer, certain parameters have been found and certain assumptions made 
to simplify the problem in this section. The transfer ellipse and hyperbola parameters have been defined 
and will be shown in later sections. For the sake of this analysis, we have assumed a coplanar transfer with 
both the Earth and Uranus level to the ecliptic plane. This paper will outline a simple  Hohmann case 
before further outlining to a more complicated orbital assist to Uranus. 

 
A. Transfer Ellipse 
 In order to define the transfer ellipse, a number of parameters must be found. Firstly, the 
perihelion and apohelion of the ellipse, which are the distance from the sun to the earth and the sun to 
Uranus respectively, must be defined. Citing NASA’s planetary fact sheet, it is found that the values are as 
follows: 

𝑟! = 𝑃𝑒𝑟𝑖ℎ𝑒𝑙𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝐸𝑎𝑟𝑡ℎ = 147.09 × 10! 𝐾𝑚 
𝑟! = 𝐴𝑝𝑜ℎ𝑒𝑙𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑈𝑟𝑎𝑛𝑢𝑠 =  2,741.3 × 10! 𝐾𝑚 

 
The semi major axis of the transfer ellipse is defined by equation 4.1 which is, by definition, the 

average of the perihelion and apohelion. 
𝑎!"#$%&'" =

!
!
𝑟! + 𝑟!                                                      (4.1) 

The shape of the ellipse is defined by it’s eccentricity which is shown in equation 4.2. 
𝑒!"#$%&'" =

!!!!!
!!!!!

                                                         (4.2) 

The values yielded by both the semi major axis and the eccentricity, for the case of this Hohmann 
transfer, are 1444195000 Km and .8981496229 respectively.  
 
B. Definition of the Transfer Hyperbola Upon Departure and Arrival 
 In order to embark on the transfer ellipse, the transfer hyperbola must be defined. This section will 
define the hyperbolic excess velocity necessary to rendezvous with Uranus and depart from Earth, define 
both the asymptote angles for Earth and Uranus, define the aiming radii, and the delta V for both 
hyperbolas.  
 It is firstly important to define the hyperbolic excess at both planets. The hyperbolic excess 
velocity is defined in equations 4.3 and 4.4. 

 𝑉!,!"#$%& =
!!!"#
!!

[1 − !!!
!!!!!

]                                                           (4.3) 

𝑉!,!"#$! =
!!!"#
!!

[ !!!
!!!!!

− 1]                                                           (4.4) 

 Substituting the values we know for rp, ra, and GMsun, we obtain a hyperbolic excess of 
4.658432669 Km/second at Uranus’ sphere of influence and 11.28131883 Km/second at Earth’s sphere of 
influence. 
 Defining the aiming radii and asymptote angles, as equation 4.5 and 4.6 respectfully show, will 
allow the spacecraft to neither over nor undershoot the ellipse in transfer.  

∆ = 𝑟 1 + (!!"
!!!!

)                                                                (4.5) 

𝛽 = cos!! !

!!!!!
!

!"

                                                                (4.6) 

 Manipulating these equations to both Uranus and Earth, we find the following: 
𝛥!"#$! = 9500.008853 𝐾𝑚 
𝛥!"#$%& = 133898.8019 𝐾𝑚 
𝛽!"#$! = 71.75360899° 
𝛽!"#$%& = 26.62898572° 



6 
San Jose State University 

Lastly, it is imperative to find the ΔV required to transfer from the hyperbola to the ellipse as shown in 4.7 
and 4.8. 

∆𝑉!"#$%& = 𝑉!! + !!!!"#$!%
!!

− !!!!"#$%&
!!

− !!!"#$%&
!!

                            (4.7) 

∆𝑉!"#$! = 𝑉!! + !!!!"#$!
!!

− !!!!"#$!
!!

− !!!"#$!
!!

                         (4.8) 

 The values produced from the equations are 6.160793744 Km/s and 7.981264515 Km/s respectful 
to Uranus and Earth.  
 
C. Ephemeris and Time to Travel 

In order to actually launch to Uranus, the ephemeris of both the Earth and Uranus must both be 
determined with respect to dates of the Julian calendar. It is necessary to determine the time of travel along 
the transfer ellipse which is determined by equation 4.9.  

𝑡!"#$%&'" = 𝜋 !!

!!!"#
                                                      (4.9) 

This simple calculation yielded an approximate travel time for 15 years. Upon further analyzing 
that time, it is important to note that Hohmann transfers are low energy and therefore often produce long 
wait times and relatively slow velocities.  
 Because the launch of the space vehicle from Lower Earth Orbit is dependent on the ephemeris of 
both Earth and Uranus, it is necessary to select an “initial day” which will help determine the wait time to 
launch. The paper has arbitrarily selected the 15th of December 2017 as it’s initial day. Referencing NASA 
JPL’s Horizons software, which determines the ephemerides of planets in our solar system, it was found 
that the ephemeris of Earth and Uranus are as follows: 
 

𝜃!"#$!,!"# !" !"#$ = 2.134649677784732×10! degrees 
𝜃!"#$%& !"# !" !"#$ = 3.415039723125511×10! degrees 

 
 In order to calculate the wait time, as described in equation 4.10, both the true anomalies and 
angular velocities of the planets must be known.  

 𝑡!"#$ =
!"
!"

                                                                     (4.10) 
A simplified version of the angular velocity equation is presented. 

𝜔 = !!!"#
!!

                                                                   (4.11) 

Where ω is the angular velocity of the given planet and r is the either the perihelion or apohelion, 
assuming circular orbit. Solving for the wait time, it is found that the space vehicle must wait 128 Days 5 
Hours 59 Minutes 57.02 Seconds to departure. This would mean that the day of launch is on the 22nd of 
April 2018.  

 
D.  Discussion  
 This analysis provides two notable pieces of information. First, because the Earth travels so much 
faster relative to Uranus, a launch window for a simple Hohmann transfer will open up frequently. A 
launch window will open at least once a year to Uranus, granted no flyby maneuvers are conducted. It is 
also important to note the Delta V required. Although Hohmann transfers are low energy transfers, it is still 
possible to optimize the Delta V required. Looking at the total Delta V needed to preform this single 
Hohmann, which is the sum of the Delta V’s required, a real mission would try other means to reduce this 
value. Since these are propulsive Delta V’s, parameters such as fuel consumption and cost become 
problematic.  The next section will discuss optimizing the Hohmann transfer by using a flyby assist at 
Jupiter. The expectation is that Delta V will be reduced but wait time to transfer, and transfer time, will 
increase significantly.  
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V. Flyby Assist Through Two Hohmann Transfers 
 

A. Theory Behind the Assist 
 For the sake of this analysis, a single Hohmann transfer to Uranus might not be enough since it is 
possible to optimize the Delta V required. It can be thought that simple Hohmann transfers actually provide 
relatively high delta V’s compared to other maneuvers. So, how could this be corrected? There are different 
maneuvers that can be conducted, and different methods to conducting such maneuvers, but the simplest of 
these complex transfers would be to preform two Hohmann transfers. The maneuver would require one 
Hohmann transfer from Earth to a flyby planet and then another from the flyby planet to the target. The 
flyby assist is essentially a slingshot method, which would effectively produce a lower more optimal, delta 
V but a longer time of flight.  
 When selecting the flyby planet, the most commonsensical would be to select Jupiter. Jupiter’s 
shear size and mass would, when the flyby maneuver is conducted, would effectively produce the highest 
delta V compared to any other planetary option. In comparison to Mars or Saturn, it would simply make the 
most sense to select the celestial body that is closest and largest to obtain the assist. The analysis shown in 
this section will discuss three scenarios, with the results displayed below. The scenarios will be as follows, 
if a satellite were in Lower Earth Orbit on the 12th of May, 2017, how long would it have to wait until it 
could conduct it’s first maneuver to Jupiter in order to flyby to Uranus? If a satellite were in LEO on the 
15th of December 2060 how long would a satellite have to wait until it could conduct its first maneuver to 
Jupiter and then to Uranus? And finally, the wait time required if the satellite were in LEO on the 2nd of 
April 2180. Next, we will produce the total delta V required to launch to Uranus from Earth via a flyby 
assist at Jupiter.  
 
B. Assumptions 
 The assumptions involved in this analysis were conducted to simplify calculations and the 
understanding of the problem. It is important to note that the Earth, and the other planets included in the 
analysis, does not naturally follow circular orbits. J2 oblateness is not in effect for any of the planets in this 
paper. The analyses are also conducted using patched conics, which is purely two-body based. This code 
also goes to estimate an altitude in which the spacecraft will depart the Earth, flyby at Jupiter, and arrive at 
Uranus; those altitudes are 500, 200,000 and 60,000 km respectively. 500 km was selected as an ideal 
departure altitude because that places Earth in LEO. 200,000 km was selected as the flyby altitude because 
this would be a distance close enough for the spacecraft to be launched from Jupiter to Uranus without 
being captured by Jupiter. 60,000 km was selected as the arrival altitude for Uranus because it would place 
the vehicle outside the rings; this would be the starting point for the N-body analysis that will be conducted 
in future research. Because this is simply two Hohmann transfers, it can also be assumed that the time to 
transfer from Earth to Uranus via flyby assist is simply the sum of the transfer time from Earth to Jupiter 
and the transfer time from Jupiter to Uranus. Making a summation from equation 4.9, the total time for 
transfer is: 

𝑡!"#$% !"#$%&'" = 𝜋 !!
!

!!!"#
!
!!!      (5.1) 

 
Where the value for total transfer time is 23.412 years.  

C. Implementation of MATLAB Script 
The MATLAB scripts produced, which can be referenced in Appendix A, B and C of this paper, 

can be thought of being split into two parts. Part I provides the wait time needed to conduct a flyby 
maneuver. Part II is a calculator to define the parameters needed to produce the more optimal delta V 
required. The aforementioned equations in section IV of this paper layout the basics involved in conducting 
a Hohmann transfer and are implemented in the mentioned code. Remember, the flyby assist produced here 
is through two simple Hohmann transfers. The most difficult part of conducting these maneuvers is to 
provide a basis from when a transfer can be conducted from Earth to flyby from Jupiter to the target, 
Uranus. 

D. Explanation of MATLAB 
This paper shall begin by describing the code in section A of appendix A. The code begins by 

describing the parameters needed to produce the necessary results. Firstly the constants will be explained. 
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As commented, it shows the perihelion and apohelion from Earth to Jupiter. The code also describes the 
corresponding altitudes the satellite will depart at and arrive at in both Earth and Jupiter orbit. The code 
also defines the standard gravitational parameters for the Sun, Earth, and Jupiter.  

Now the calculations are initialized. The periods of Jupiter, Earth, and the transfer orbit are 
defined as follows: 

 

𝜏 = !!!!!

!!!"#
      (5.2) 

 
Because of our assumption that the Earth and Jupiter are in circular heliocentric orbit, the semi-major axis, 
a, is equal to the distance of the planets to the sun. This is necessary for calculating the angular velocities of 
both the Earth and Jupiter. Next, the transfer ellipse from Earth to Jupiter is defined. Using equations 4.1 
and 4.2, the semi-major axis and eccentricity are respectively calculated. The calculator then defines the 
phasing parameters for Earth to Jupiter transit. Firstly, the period of the transfer orbit is calculated using 
equation 5.1. This is necessary to calculate the 𝜃!, the angular distance covered by Jupiter in the time it 
takes for the spacecraft to travel to the rendezvous location 180 degrees away. The phase angle that Jupiter 
must be at when the transfer is initiated is then calculated.  

It is important to note, that Appendix A section A and Appendix A section B complete the same 
task for two separate transfer orbits. The former describes transfer to Jupiter from Earth whereas the latter 
describes transfer to Uranus from Jupiter. The difference between the two codes is that Appendix A section 
A also discusses the launch window opening by utilizing both scripts.  

The next section of this explanation will discuss the methodology involved in determining the 
launch dates available for the flyby. When producing mission plans for a flyby maneuver, all planets must 
be some angular distance away from one another so that when departure is initiated, the spacecraft in 
question does not miss its targets. How is it possible to determine the angular distances of the Earth-Jupiter-
Uranus system? There are two methods, one is to look into published data, such as JPL Horizons, that 
explicitly estimates the exact true anomalies of the planets in question for a large set of dates and attempt to 
filter out the incorrect true anomalies. The other method, the one implemented in this paper, is to select an 
arbitrary date and determine the wait time necessary to launch when the planets have arrived at a phase 
angle that a spacecraft can launch at in which it will not miss its target. The initial true anomalies are also 
selected from JPL’s Horizon’s tool.  

This is a similar analysis conducted in the simple Hohmann transfer section. Refer to equation 
4.10. Wait time is simply the change in phase angle divided by the change in angular velocities.  

 
𝑡!"#$ =

!"
!"

                                                    (4.10)      
 

The difference in this analysis is that the calculations are done iteratively. The analysis takes the 
true anomalies of three dates that this paper observes and continually increases them based off of the 
angular velocity and time step chosen. Each loop will check the current phase angle between the planets 
with two to check; one between Earth and Jupiter and one between Jupiter and Uranus. In order to exit the 
loop and produce the time to wait, both angles must match the desired phases.  

In other words, the script looks at the true anomalies of the planets on the given date, and iterates 
them over the given time step. If the iterated true anomaly extends past a value above 2𝜋 radians, it will 
reset to 0 to keep the value of the iterated true anomaly between 0 and 2𝜋. The code goes into producing 
the phase angles necessary for phasing between Earth to Jupiter and Jupiter to Uranus. It applies a 
condition where, if the difference in true anomalies are negative for both sets of planets, it will preform an 
additional calculation to produce positive values. Finally, at time t when the planets are at their respective 
true anomalies, 𝑡 × 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 will produce a value when the flyby transfer will be possible. 

The code presented in Appendix A section C provides the delta V optimization. The word 
optimization will be associated with the fact that the delta V produced from the flyby assist will be lower 
than that of the simple Hohmann transfer.  

The altitudes are firstly initialized. As mentioned before, the altitude of Earth has been set to 
500km, Jupiter to 200,000 km, and Uranus to 60,000km. Next, the velocities of each planet are calculated 
in circular heliocentric orbit using the circular velocity equation:  
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𝑉 = !!!"#
!

     (5.3) 

The code then calculates the transfer ellipse velocities from Earth to Jupiter then from Jupiter to 
Uranus using the energy equation. 

𝑉 = !!"
!
− !"

!
     (5.4) 

Then, the hyperbolic excess velocities and eccentrics are formulated which are inputted into the 
turning angle calculations. The hyperbolic excess velocities are implemented as: 

𝑉! = 𝑉!!! − 𝑉!!!     (5.5) 
Where 𝑉!!! is the spacecraft velocity with respect to the sun and 𝑉!!! is the planet velocity with 

respect to the sun. From this, hyperbolic eccentricity can be found using: 
𝑒 = 1 + !!!!

!"
     (5.6) 

From this, the turning angle can be calculated using the arcsine of the inverse hyperbolic 
eccentricity. This equation is particularly important because it is dictated by the radius at periapsis. If the 
radius is too high or too low, the delta V could be too high. 

Finally, the delta V is calculated by using the decomposed parts of the hyperbolic velocity and 
from that, the three burns at each planet are combined to produce the delta V for the flyby assist.  
The above equations are all expressed as scalar quantities, but in the actual implementation of these 
missions, everything is expressed as vector quantities. The transfer velocity, as expressed in vector notation 
is as follows. The mentioned equations and the one below are identical, but equation 5.7 is expressed in a 
sun vector frame.  

𝑉!" =
!"
!
𝑒𝑠𝑖𝑛𝜃 𝑆𝑦 + !"

!
𝑒𝑐𝑜𝑠𝜃 𝑆𝑥   (5.7) 

Where the sign of both components will vary with the positions of the planets for each case. This 
equation is applicable to both transfer to Jupiter from Earth, and to Uranus from Jupiter. Likewise, the 
hyperbolic excess velocities can also be expressed as vector quantities. Where the departure from Earth is 
expressed as: 

𝑉!,!,!"#$!
=  !!!!"#$!

!
− !!!"#$!

!
 𝑆𝑦 − !!!"#$! 

!
 𝑆𝑦  (5.8)                 

The arrival to Jupiter is expressed as: 

𝑉!,!,!"#$%&'
=  − !!!!"#$!

!
− !!!"#$!

!
 𝑆𝑦 + !!!"#$! 

!
 𝑆𝑦 (5.9)          

 
The departure from Jupiter is expressed as: 

𝑉!,!,!"#$%&'
=  !!!!"#$!

!
− !!!"#$!

!
 𝑆𝑦 − !!!"#$! 

!
 𝑆𝑦 (5.10) 

And the Arrival to Uranus is expressed as: 

𝑉!,!,!"#$!%
=  − !!!!"#$!

!
− !!!"#$!

!
 𝑆𝑦 + !!!"#$! 

!
 𝑆𝑦  (5.11) 

 
E. Results of MATLAB CODE 

1. Case I, May 12th 2017 
The wait time produced for the 12th of May 2017, at midnight, was 43.19 years. This means that 

approximately 49 years from this initial day is when the launch window will open.  
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Figure 1. Orbital Assist Around Jupiter to Uranus for the Case of May 12th 2017 

 
The figure above illustrates the orbital assist from Jupiter to Uranus after waiting 43.19 years to 

conduct the maneuvers. The figure shows transit from Earth to Jupiter and then Jupiter to Uranus. It must 
be noted that the subsequent figures also display similar maneuvers but at different true anomalies.  

 
2. Case II, December 15th 2060 

The wait time produced for the 15th of December 2060, at midnight, was 10.54 years. This means 
that approximately 10 and a half years from the initial day is when the launch window will open.  

 

 
Figure 2. Orbital Assist Around Jupiter to Uranus for the Case of December 15th 2060 

 
3. Case III, April 2nd 2180 

The wait time produced for the 2nd of April 2180, at midnight, was 76.85 years. This means that 
approximately 77 years from the initial day is when the launch window will open.  
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Figure 3. Orbital Assist Around Jupiter to Uranus for the Case of April 2nd 2180 

 
4. Delta V 

The results for the Delta V calculator proved to be successful. Setting the altitude of arrival 
Uranus to 60000 km and the flyby altitude at Jupiter to 200000, the total Delta V results to 13.778 km. The 
Delta V upon departure of earth is 6.2684 km/s. The Delta V corrected at Jupiter is 3.8531 km/s; this 
correctional value is the delta V to correct the hyperbola for arrival at Uranus. Finally, the Delta V at 
Uranus is -3.6564 km/s where the spacecraft must slow down to arrive.  

 

 
Figure 4. Vector diagram showing departure from Earth 
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Figure 5. Vector Diagram showing arrival to Uranus 

F. Discussion  
Firstly, it is important to ask how real missions to the outer planets are conducted and what the 

results presented from this paper’s analysis mean. Although Hohmann transfers are important, because they 
are low energy transfers and provide low delta V requirements, the wait time needed to conduct the 
maneuvers and the transfer time makes for a mediocre to poor option. Although the transfer time for the 
flyby has increased relative to the simple transfer, delta V required has been decreased. Other solutions 
may be more useful, and it would be of use to investigate other methods of transfer such as Lambert’s 
problem.  

 
VI. N-Body Analysis 

 
A. Explanation of N-Body Problem 
 When the spacecraft dives through the rings of Uranus into lower ouranocentric orbit, a point of 
concern is how the objects in these rings will perturb the spacecraft in flight. This becomes an N-Body 
problem. Two models will be explored when conducting the N-body analysis. The first, and possibly least 
feasible of the models presented in this text, is to assume the rings as solid objects and assign them 
effective masses based on random population of objects. The more feasible model is to preform an N-body 
analysis on a random number of objects in the Zeta ring with respect to the spacecraft and Uranus while in 
lower ouranocentric orbit.  
 
B. Characterization of Rings 

1. Estimation of Mass based on size and density 
The rings of Uranus can be characterized by the main constituency of their masses, “blackened 

ice”. This blackened ice is simply methane ice blackened by high-energy particles bombarding off the 
masses from the magnetosphere. We know that the size of the masses can vary from micrometers to sizes 
of five to ten meters in diameter. In order to estimate the mass of these objects, we will make two 
assumptions. Firstly, these masses will be perfectly spherical. Asteroids and other celestial bodies, such as 
the blackened ice, are not perfect nor are they devoid of cracks and abrasions. To simplify this analysis they 
will be assumed to be perfectly solid and round. Secondly, these objects will range from five to ten meters 
in diameter. It is my hope that a MATLAB script will be generated, in the continuation of this paper, that 
can produce a random number of objects between a range of 500,000 and 1,000,000. The investigation will 
look into how masses of the specified range in orbit around Uranus will perturb the spacecraft. These 



13 
San Jose State University 

objects will be populated with some mass based off of a randomly assigned diameter with respect to the 
density of methane ice, also known as methane clathrate. This will be done by using the following: 
 

𝜌 = !
∀

       (6.1) 

∀= !
!
𝜋𝑟!     (6.2) 

 
Where 𝜌 is the density, which is approximately 900 !"

!! and V is the volume defined for a sphere. 
With this a simple model for the masses can be expressed: 
 

𝑚 = !
!
𝜌𝜋𝑟!      (6.3) 

 
 

C. Velocity of the Rings 
As described by Randii Wessen, Jeffrey Cuzzi, and Ellis Miner in “Planetary ring systems”, each 

ring is observed at an effective velocity. Those velocities are presented in table 4 below.  
 

Ring Velocity (km/s) 
Zeta 12.11 

6 11.78 
5 11.724 
4 11.667 

Alpha 11.393 
Beta 11.274 
Eta 11.091 
Gamma 11.307 
Delta 10.961 
Lambda 10.77 
Epsilon 10.65 

R/2003 U2 (Mu) 
9.28 

R/2003 U1 (Nu) 
7.7 

Table. 4 Effective Velocities of Uranus’ rings in the planetary reference frame of 
Uranus. 

 
 The masses within the model that will be generated will be assigned the effective velocity of the 
ring that they will be present in.  
 
D. Ideal Model 
 The particles within the closest ring, Zeta, will be modeled in a range from one to ten meters in 
size, as mentioned in the Rings section of this paper. Using methane clathrate’s density and the range of 
sizes mentioned, the following potential candidates for ring particles are as follows: 
 
𝑚! =

!
!
𝜌𝜋𝑟!! =  3769.91 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! =  30159.29 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!!  =  101787.60 𝑘𝑔   
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𝑚! =
!
!
𝜌𝜋𝑟!! =  241274.32 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! =  471238.90 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! =  814300.82 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! =   1.29 × 10! 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! =   1.93 × 10! 𝑘𝑔   

𝑚! =
!
!
𝜌𝜋𝑟!! = 2.75 × 10! 𝑘𝑔   

𝑚!" =
!
!
𝜌𝜋𝑟!"! = 3.80 × 10! 𝑘𝑔   

 
Based on the current science and knowledge conducted on Uranus’ rings, these mass and size 

values are estimations at best. It will be reiterated, it is assumed that all particles in the rings are composed 
of methane clathrate and that the particles within Zeta all range from one to ten meters in diameter. Based 
on this information, a model of Uranus and its Zeta ring have also been modeled in MATLAB. The widths 
of each ring have been listed in table 2. Zeta’s width is approximately 2500 km. Each particle will be 
randomly positioned somewhere on the ring and given the effective ring velocity. Their masses will be 
randomized as well based on size, as previously expressed. Figures 4 and 5 show the geometry of Uranus 
and the Zeta ring.  
 

 
Figure 6. MATLAB generated model of Uranus and its Zeta ring 

 
Using a script appended in Appendix D, The Zeta ring of Uranus was created. 

Essentially, the script takes the geometry of the ring, and populates the geometry with random 
points within a polar coordinate plane. From this, it will be possible to assign each of these points 
a random mass and the effective ring velocity in which the N-body problem will be analyzed. 
Figure 5 shows the model up close. 
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Figure 7. MATLAB generated model of Uranus zoomed in to see the individual points. 

 
With this randomization, it will be possible to get random cases that could reflect what 

would possibly happen to a spacecraft in multiple flight scenarios to Uranus.  
 
 

E. N-Body Problem 
1. General Expression for N-Body Formulation 
 

 The N-Body Problem is the problem of calculating and predicting the motions of many bodies 
under mutual gravitational interaction. While analytically unsolvable, numerical integration approximations 
can determine the varying gravitational force acting on a given body, with respect to other masses of a 
dynamic system, to a high degree of accuracy. From this, it will be possible to track the trajectory of the 
given bodies with respect to one another. The figure below depicts an N-body system as presented by Bate, 
Muller, and White’s Fundamentals of Astrodynamics. 

 

 
Figure 8. N-Body System: The term, 𝐅𝐎𝐓𝐇𝐄𝐑, is the sum of all perturbing forces on 
object 𝐦𝐢, such as radiation pressure or atmospheric drag, and is assumed to be 

infinitesimally small and ignored in this analysis. 
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 As with the 2 and 3-body problems, the N-body problem begins with the force vector, 𝑭 for a 
single object, defined by Newton’s law of universal gravitation. 

 
 

𝑭! =  −
𝐺𝑚!𝑚!

𝑟!"
!  𝒓!" (6.4) 

 
 Where 𝐺 is the gravitational constant, 𝑚 is the mass of an object, and 𝑟 is the radial distance 
between objects 𝑖 and 𝑗. The subscript 𝑖 represents the body in question and subscript 𝑗 represents the 𝑛th 
body in the system. The vector 𝒓!", the distance between the initial and 𝑛th body, is defined by the 
following: 

 
 𝒓!" = 𝒓! − 𝒓! (6.5) 

 
The sum of the forces on mass 𝑚! due to 𝑁 bodies becomes: 
 

 
𝑭! =  −𝐺𝑚!

𝑚!

𝑟!"
!

!

!!!
!!! 

 𝒓!" (6.6) 

 
 It is important to formulate the force vector as a sum, as seen in Equation (6.6), because it 
generalizes and simplifies the equations of motion for any number of 𝑁-bodies. The number of equations 
and terms become large as the quantity of bodies increase. Looking at Equation (6.6), the mass of 𝑚! is 
constant and appears on both sides of the equality, so it can be divided out to further simplify the equations 
of motion for N-bodies to, 

  
 𝑑!𝒓!

𝑑𝑡!
=  −𝐺

𝑚!

𝑟!"
!

!

!!!
!!! 

 𝒓!" (6.7) 

 
 The equations of motion for the entire system are represented by the combined formulas derived 
by Equation ( for bodies 𝑖 = 1, 2,… ,𝑁. From this general expression, an algorithm using 𝑁 initial state 
vectors can be written to formulate 𝑁 equations of motion. Then a solution to the N-body problem is found 
by applying one of many numerical integrators to these 2nd order equations over many iterations. For the 
sake of optimization and simplicity, the scope of the next part of this paper will be limited to 7 bodies 
conducted via MATLAB. The code will be provided in the next update. Appendix E provides a sample of 
the N-Body summations. 
 
F. Placement Of The Particles 
 

Using Matlab, the following vectors were produced showing the initial and final positions and 
velocities of each of seven particles that will be analyzed in a future paper. The particles are placed with 
respect to a Uranus fixed Z-Y frame. Each vector represents the initial and final conditions of the seven 
particles to be modeled for the N-Body solution, which will be scripted in the next part of this paper. Using 
a Matlab script, the positions and velocities of the seven particles were tracked for an allotted 1.4 hours; 
this is the time it takes for the spacecraft to dive between Uranus and it’s Zeta ring. The final position and 
velocity were calculated from this. The script took the initial position inputs and from that calculated 
effective initial velocities as well as final position and velocity for the allotted time. With this, the N-Body 
problem is established and work toward determining a valid solution can now begin.  
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Table 5. Initial and final position and velocity vectors for the seven ring particles.  

 
Figure 9. Y position of particles with respect to time. 

 
Figure 10. Z position of particles with respect to time. 
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G. N-Body Solver Overview 
 

Because the ultimate objective of this research is to understand the orbital effects that inserting a 
spacecraft into lower Uranian orbit, between Uranus and Zeta, certain cases will be looked into in order to 
outline and benchmark these effects. It must be understood that there is no benchmark comparison for this 
analysis neither theoretically nor otherwise. As mentioned once previously, Uranus has not been a focus of 
study for scientists and thus this research is stand alone in what it may mean to perform an orbital insertion 
of a spacecraft into lower Oranocentric orbit. The effect of the rings particles and the perturbations that will 
occur on the satellite will be scrutinized.  
 
 The N-body analysis will be conducted using MATLAB. Said analysis conducted in this research 
is an adaptation based on A. Ahmed and L. Cohen’s research, “A Numerical Integration Scheme for the N-
Body Gravitational Problem”. The numerical model and algorithm presented in their research provide a 
strong basis in providing realistic results for observing orbital perturbations due to injection.   
 

The numerical integration begins with the second order differential equation where a solution is 
needed for the N bodies. 

 
!!!!
!!!

= −
(!!!!")

!!"
!  !

!!!
!! ! 

   where 𝑖 = 1, 2,…𝑁 

 
Because integrating the equations of motion will prove to be tedious and difficult to achieve by 

hand, an ordinary differential equation solver will be designed in MATLAB. This paper will achieve the 
integration scheme through the design of a Runge-Kutta-Felberg 45 propagator and is compared to 
MATLAB’s ODE23 propagator. Before any of that can be achieved, though, it must first be theorized and 
understood how the rings and spacecraft will have an effect on one another. In order to do this, the cases 
alluded previously will be conducted in the following order. First, a spacecraft of comparable mass to 
Voyager 2 will be placed in circular orbit between Uranus and Zeta. Second, that same satellite will 
conduct a flyby maneuver between the planet and its ring. Third a particle with the Earth’s mass will be 
inserted in circular orbit between Uranus and Zeta; this particle will be referred to as the earth particle for 
the remainder of this paper. Fourth and finally, the earth particle will conduct the same flyby maneuver that 
Voyager 2 conducts in the previous case.   
 
 This paper theorizes that because the total mass of Zeta is significantly larger than that of Voyager 
2, the rings will not perturb the satellite significantly. If perturbation of the spacecraft is initiated, it may be 
small enough to be considered negligible for the purposes of a real mission. The purpose of placing the 
earth particle and conducting a flyby maneuver between Uranus and Zeta will provide an idea of how large 
a mass would be necessary to perturb the ring system. With that understanding, the mass of Earth is 
approximately 5.972e24kg. If the N-body solution is integrated properly, the dynamics of the Uranus-Zeta 
system would be thrown into complete chaos.  
 
Because the earth particle will undoubtedly disturb the dynamics of the ring system, we can use this 
information as a check to verify that the code produced is replicating the dynamics properly. Thus this 
extreme, and improbable case, will serve as a boundary condition and verification. 
 
 To prelude the investigation, figure x shows the simplified ring system that this paper investigates 
before the introduction of a satellite. Once Voyager 2 and the earth particle are introduced, there will be 
perturbations. Voyager 2 will most probably show no perturbations on the ring system because of its mass 
but the earth particle will surely throw the entire system into complete chaos.  
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Figure 10. The figure shows the simplified Uranian ring system that is modeled in this 
paper with only 100 bodies in the lower ring, Zeta. 

 
 

The significance of this data is to establish the system at equilibrium. Once new bodies are 
introduced, the system will be disturbed. As previously stated, depending on the mass of the object the 
magnitude of the disturbance will vary. It is the hope of this paper to verify that injecting a spacecraft with 
mass equivocal to Voyager 2 will show perturbations.  
 
H. Initial Model Implementation  
 

The following simulations are conducted with approximately 100 bodies over a course of fifteen 
hours. Although this may seem like an unrealistic model, computing time and computing power play a 
significant limiting factor. This model assumes that the total ring mass is approximately 7e16 kg. It is 
important to note that the ring with the model attempts to replicate that of Uranus as closely as possible. 
With that understood, the limitations presented do not show a real Uranian model, but a simplified model. 
Ideally, the research would conduct an analysis with the ring system consisting of over one million bodies 
over the course of many years. The code presented is capable of preforming this analysis with the proper 
computing machine.  
 
I.	Propagator	
	

When comparing the results from MATLAB’s ODE23 solver and the RKF45 Solver, we receive 
similar plots. The results did show some difference between propagators.   
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The results of the simulation will be discussed further in the next section but it is important to 
show a comparison between propagators to show the accuracy of the research. This investigation, as 
mentioned, uses both MATLAB’s ODE23 and RKF45 propagators. The reason for this is to compare 
propagators for any future study conducted in research to Uranus. The preferred solver would be the 
generic RKF45 because it is generally accepted that the RKF45 produces a more accurate result than 
ODE23 because it is a higher order differential equation solver; it is also suspected that the RKF45 will be 
less computationally costly than the ODE23. Below is a comparison between the positional displacements 
in X, Y, and Z.  
 

Other solvers, such as the Runge-Kutta-Felberg-86, could potentially provide the most optimal 
results but could also potentially be more computationally costly; the RKF 86 is a strong solver for analyses 
conducted over long periods of time and that is not the case for our analysis here.  
 
 

Table 6: Comparison between the ODE 23 and RKF45 solvers for the polar orbit of 
Voyager 2 

 X-displacement (km) Y-displacement (km) Z-displacement (km) 
ODE23 0.0003348 0.0000887 0.0000223 
RKF45 0.0003668 0.0002102 0.0000231 
 
 

Table 7: Comparison between the ODE 23 and RKF45 solvers for the flyby maneuver of 
Voyager 2 

 X-displacement (km) Y-displacement (km) Z-displacement (km) 
ODE23 0.0005768 0.0000215 0.0001965 
RKF45 0.0005893 0.0000088 0.0001949 
 
 

Table 8: Comparison between the ODE 23 and RKF45 solvers for the polar orbit of the 
earth particle 

 X-displacement (km) Y-displacement (km) Z-displacement (km) 
ODE23 0.0083 0.0133 0.0003 
RKF45 0.0005474 0.0001541 0.0000226 

 
Table 9: Comparison between the ODE 23 and RKF45 solvers for the flyby maneuver of the 

earth particle 
 X-displacement (km) Y-displacement (km) Z-displacement (km) 
ODE23 0.001 0.0059 0.0021 
RKF45 0.001 0.0059 0.0021 
 

1. Solver Mathematical Explanation and Representation of the Runge-Kutta-Felberg-45  
 

The Runge-Kutta-Felberg 45 is a numerical solver that approximates ordinary differential 
equations by solving them using fourth order and fifth order methods. It utilizes a predictor-corrector 
algorithm in which the solver will try to predict and correct the solution to the system of ordinary 
differential equations in question by solving them twice. By using a step size, h and h/2, the solver 
computes values utilizing both step sizes and compares their results. This produces two approximations per 
solution. If the approximations are in close agreement as dictated by an acceptable error then the solution is 
accepted. If there is disagreement in the solution, the step size will decrease and recalculate. Alternatively, 
if the solution is accepted, the step size increases and the solver will continue iterating. Each step requires a 
solution for each of these following values:    
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𝑘! = ℎ𝑓 𝑡! , 𝑦!      (6.8) 
𝑘! = ℎ𝑓(𝑡! +

!
!
, 𝑦! +

!
!
𝑘!)   (6.9) 

𝑘! = ℎ𝑓(𝑡! +
!
!
, 𝑦! +

!
!"

𝑘! +
!
!"

𝑘!)   (6.10) 

𝑘! = ℎ𝑓(𝑡! +
!"#
!"

, 𝑦! +
!"#$
!"#$

𝑘! −
!"##
!"#$

𝑘! +
!"!"
!"#$

𝑘!)   (6.11) 

𝑘! = ℎ𝑓(𝑡! + ℎ, 𝑦! +
!"#
!"#

𝑘! − 8𝑘! +
!"#$
!"#

𝑘! −
!"#
!"#!
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𝑘! = ℎ𝑓 𝑡! +
!
!
, 𝑦! −

!
!"

𝑘! + 2𝑘! −
!"##
!"#"

𝑘! +
!"#$
!"#!

𝑘! +
!!
!"

𝑘!          (6.13) 
  

 
Each k value is written as a function as the previous k and step size of h or h/2.  

 
The approximation for the solution is then made using Runge-Kutta method of order 4 and of order 5 
respectively as follows: 
 

𝑦!!! = 𝑦! +
!"
!"#

𝑘! +
!"#$
!"#"

𝑘! +
!"#$
!"#"

𝑘! −
!
!
𝑘!   (6.14) 

𝑧!!! = 𝑦! +
!"
!"#

𝑘! +
!!"!
!"#"$

𝑘! +
!"#$%
!"#$%

𝑘! −
!
!"

𝑘! +
!
!!

𝑘!  (6.15) 
 
Then, finally, the optimal step size 𝑠ℎ would be determined by multiplying a scalar s to h. The value s is 
found as follows: 
 

𝑠 = !
! !!!!!!!!!

!
!     (6.16) 

 
 

VI. Solutions 
 
A. Polar Orbit – Voyager 2 
 

1. Analysis 
The introduction of Voyager 2 into Oranocentric polar orbit shows that there is very little 

perturbation on the spacecraft. The magnitude of the perturbation is approximately 42.33909423 cm. The 
plots below show the displacements of the rings with respect to the spacecraft.  

 
2. Discussion 

 The masses in the system are almost all in equilibrium. The rings, as shown below, do not show 
displacement. Likewise, the spacecraft itself experiences minimal perturbations. This is in line with our 
predictions. Voyager 2 is too small of a body to have an effect on the rings. As such, the masses in the 
system perturb the spacecraft but only minimally. This perturbation can be considered negligible.   
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Figure 11. Visual representation of the Uranian system as Voyager 2 orbits between 

Zeta and Uranus in polar orbit. 
 

 
Figure 12. 3 dimensional plot showing a sample of 7 particles in Zeta as Voyager 2 is in 

polar orbit. 
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Figure 13. 2 dimensional plot showing a sample of 7 particles in Zeta as Voyager 2 is in 

polar orbit. 

 
Figure 14. Visual representation of the displacements of the particles in 1 dimension over 

time. 
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B. Polar Orbit – Earth Particle 
 
 

1. Analysis 
Earlier on in this paper, it had been predicted that the earth particle would throw the entirety of the 

Uranian-ring system into disarray due to its mass. Because the mass of the earth particle is so large, it was 
also predicted that the effect that the rings had on it would be comparatively infinitesimal. As dictated by 
the solver, the magnitude of the earth particle’s displacement is approximately 56.91259351 cm.   

 
2. Discussion 

 These results set a necessary precedent for this solver. Because we cannot compute results over a 
significant amount of time with the necessary number of bodies to create a more realistic analysis, this 
analysis was meant to immediately disturb the system. Previously, it had been mentioned that the analyses 
regarding the earth particle were meant to be a verification. This analysis does in fact prove our suspicions 
and proves the functionality of this code.  
 

 
Figure 15. Visual representation of the Uranian system as the earth particles orbits its poles. 
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Figure 16. The figure shows a 3 dimensional representation of the earth particles polar orbit 
around Uranus. Each color represents the changing position of each sample ring particle as 
the earth particle orbits Uranus.  
 

 
Figure 17. A 2 dimensional sample of seven particles in Zeta as a earth particle orbits 
Uranus’ poles.  
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Figure 18. Visual representation of the displacements of the particles in 1 dimension over 
time.  
 
 
C. Flyby Maneuver – Voyager 2 
 
 1. Analysis 
 As one may suspect, conducting a flyby maneuver produces less perturbation than a consistent 
plethora of orbits would on the spacecraft. This is due to the obvious constant gravitational effects on the 
spacecraft as it orbits the planet. In the case presented here, because we are only orbiting the planet over a 
course of 15 hours, this cannot be seen and is thus not exemplified. The flyby maneuver actually produces a 
larger perturbation on the spacecraft than the polar orbit does in this short time period; the effective 
perturbation yielded upon Voyager 2 in this case is approximately 62.07559424 cm. 
 2. Discussion 
 Theoretically, if the spacecraft is in orbit over a longer period of time, the spacecraft should 
experience increased levels of perturbation. The bodies affecting the spacecraft would consistently “pull” 
on it. In the case of the flyby, as presented here, it is only pulled on momentarily as the spacecraft is 
passing through the ring system.  
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Figure 19. The visualization shows the spacecraft as it flies through the ring. 

 
 

 
Figure 20. The figure above looks almost identical to figure X. This is due to the very small 

perturbations that the spacecraft has on the rings and vise versa. 
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Figure 21. Similar to the previous figure, the figures between the flyby and polar orbit are 

indistinguishable because of the quantity at which the spacecraft is being perturbed. 
 
D. Flyby Maneuver – Earth Particle 
 1. Analysis 

The mass of the earth particle, as insinuated in its name, is enormous. When the earth particle flies 
between Uranus and Zeta, it throws the system into chaos as it does when it is in polar orbit. But, it is seen 
in this case that the particle perturbs the system much less than in polar orbit. The earth particle, though, is 
perturbed considerably more than with the polar orbit case. It is perturbed by 6.341924 m. As mentioned in 
the analysis of the Voyager 2 flyby maneuver, the same stands true here.  

2. Discussion 
Something that requires further understanding is why such a large mass is perturbed so much more 

considerably than its smaller counterpart in the previous case. It is expected that there is some error in this, 
perhaps in the initialization of the RKF45 solver, but the results are well within believable physics.  
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Figure 22. Visual representation of the Uranian system as the earth particle passes between 

Zeta and the planet. The flyby also throws the system into complete disarray. 
 

 
 

Figure 23. A 3 dimensional diagram of the ring system is perturbed as the earth particle 
flies between Uranus and Zeta. 
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Figure 24. A 3 dimensional diagram of the ring system is perturbed as the earth particle 

flies between Uranus and Zeta. Perturbation is noticeably smaller on the rings here. 
 

 
Figure 25. The one dimensional position changes for the earth particles flyby maneuver are 

shown. 
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VII. Conclusion 

From the research conducted in this investigation, a mission to the lower ring of Uranus seems to 
be very possible. Whether a flyby maneuver is to be conducted or a polar orbit between the planet and its 
lower ring, the research presented platforms the possibility of a future mission. With much more powerful 
computing hardware, a more accurate representation of this analysis could be analyzed and a better 
understanding of spacecraft – ring interactions could be achieved. This research hopes to set the grounds 
and interest in possible missions to Uranus with the understanding that more research can be, and should 
be, conducted with a more accurate model including all thirteen rings, the moons, and a more accurate 
transit between the earth and Uranus.  
 

VIII. Acknowledgments 
 I would like to thank San Jose State University for allowing me to conduct my research under its 
guise and Professor Jeanine Hunter for guiding me and providing support as I conducted my research. I 
would also like to thank my colleagues, Theodore Hendrix and Andrew Torricelli for assisting me with 
writing my MATLAB scripts. I would like to thank my father and mother for their guidance and support, 
which has culminated in my achievements and ability to preform this research. Finally, I would like to 
thank the late Dr. Fawzi Karajeh for the inspiration, motivation, and unequivocal support in my years 
leading up to the conclusion of this article.  
 

 
References 

Ahmad, A., & Cohen, L. (1973). A numerical integration scheme for the N-body gravitational problem. 
Journal of Computational Physics, 12(3), 389-402. 
 
Bate, R. R., Mueller, D. D., & White, J. E. (1971). Fundamentals of astrodynamics. Courier Corporation. 
Chicago 

Chaple, G. F., Greenwood Guides to the Universe: Outer Planets, Santa Barbra, Ca: ABC-CLIO, 2009. 
 
Lunine, J. I., “The Atmospheres of Uranus and Neptune,” Annual Review of Astronomy and Astrophysics, 
vol. 31, pp. 217–263. 
 
Pater, I. D., “New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring,” Science, vol. 312, 
Jul. 2006, pp. 92–94. 
 
Pater, I. de., and Lissauer, J. J., Planetary sciences, Cambridge: Cambridge Univ. Press, 2011. 
 
N. A. S. A., “Uranus Lithograph” Available: 
https://www.nasa.gov/sites/default/files/files/Uranus_Lithograph.pdf. 
 

APPENDIX A. 

A. Jupiter Hohmann.m 
%clear all; close all; clc; 
%% Student: Zaid Karajeh 
% Master's Advisor: Jeanine Hunter 
%1) Hohmann from Earth to Jupiter (for flyby) 
% Define Earth (r_p) and Jupiter (r_a) and mu_earth and 
mu_sun 
r_a = 816.62e6 % Km Jupiter 
r_p = 147.09e6 % Km Earth 
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r_p_E = (6371 + 500) % Distance at Earth 
r_p_J = (71492+200000) %Distance at Jupiter 
mu_earth = 0.39869e6 % Km^3/s^2 
mu_sun = 132712e6 %Km^3/s^2 
 
mu_jupiter = 126.687e6 %Km^3/s^2 
%period of jupiter 
per_jupiter = sqrt((4*pi^2*r_a^3)/(mu_sun)) 
%period of earth 
per_earth = sqrt((4*pi^2*r_p^3)/(mu_sun)) 
% Calculate Semi Major Axis of Transfer Ellipse, a 
a=.5*(r_a + r_p) %Km 
% Calculate Ecentricity of Transfer Ellipse, e 
e = (r_a - r_p)/(r_a + r_p) 
%Hyperbolic excess Velocity Earth wrt Q 
E_V_Q = sqrt(mu_sun/r_p) * (sqrt((2*r_a)/(r_a+r_p))-1) % sy 
%Burn from 500Km LEO to departure hyperbola 
Del_V_1 = sqrt((E_V_Q)^2 + (2*mu_earth)/(6878)) - 
sqrt(mu_earth/6878) 
%Hyperbolic excess velocity jupiter wrt Q 
J_V_Q = sqrt(mu_sun/r_a) * (sqrt(1-((2*r_p)/(r_a+r_p))))% 
sy 
%% Hyperbola parameters 
%Aim radius at jupiter 
Aim_Rad_Juptier=r_p_J* 
(sqrt(1+((2*mu_jupiter)/(r_p_J*J_V_Q^2)))) 
%Aim radius at earth 
Aim_Rad_Earth=r_p_E* 
(sqrt(1+((2*mu_earth)/(r_p_E*E_V_Q^2)))) 
%Asymptote angle, beta at earth in degrees 
beta_earth = acos(1/(1+((r_p_E * (E_V_Q^2))/(mu_earth)))); 
rad2deg(beta_earth) 
%Asymptote angle, beta at Jupiter in degrees 
beta_Jupiter=acos(1/(1+((r_p_J* (J_V_Q^2))/(mu_jupiter)))); 
rad2deg(beta_Jupiter) 
%% Phasing 
% Period (1) of transfer orbit to Jupiter from earth 
peri_tr_1 = (1/2) * sqrt((4*pi^2*a^3)/(mu_sun)) 
%angular velocities 
omega_j = (2*pi/per_jupiter) %angular velocity of jupiter 
omega_e = (2*pi/per_earth) %angular velocity of uranus 
%Theta_delta for target (angle jupiter covers during 
transfer) 
%period of transfer ellipse * angular velocity 
theta_delta_jupiter = omega_j * peri_tr_1 
rad2deg(theta_delta_jupiter) 
%phase angle jupiter must be at when transfer begins 
relative to earth 
 
final_phase_j = pi - theta_delta_jupiter 
rad2deg(final_phase_j) 
total_phase = final_phase_j + final_phase_u 
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rad2deg(total_phase) 
%% Determine Launch date 
TA_earth = deg2rad(1.302377841813924e2) %on may 12 2017 in 
rad (courtesy of JPL Horizons) 
TA_jupiter = deg2rad(1.863005081850869e2) %on may 12 2017 
in rad (courtesy of JPL Horizons) 
TA_uranus = deg2rad(2.114707033271004e2)%on may 12 2017 in 
rad (courtesy of JPL Horizons) 
t=0 %time index 
tstep = 60 
tol= pi/128 
C_PA_jupiter = abs(TA_jupiter - TA_earth) %phase angle 
between 2 planets at defined moment in time 
C_PA_uranus = abs (TA_uranus - TA_jupiter)%phase angle 
between 2 planets at defined moment in time 
while(1) %begin stepping forward in time 
    if TA_earth >= 2*pi 
        TA_earth = TA_earth + (tstep* omega_e)-2*pi; 
    else 
        TA_earth = TA_earth + (tstep* omega_e); 
    end 
    if TA_jupiter >= 2*pi 
        TA_jupiter = TA_jupiter + (tstep* omega_j)-2*pi; 
    else 
        TA_jupiter = TA_jupiter + (tstep* omega_j); 
    end 
    if TA_uranus >= 2*pi 
        TA_uranus = TA_uranus + (tstep* omega_u) - 2*pi; 
    else 
        TA_uranus = TA_uranus + (tstep* omega_u); 
    end 
    if (TA_jupiter - TA_earth < 0) 
    C_PA_jupiter = 2*pi+TA_jupiter - TA_earth; 
    else 
      C_PA_jupiter =  TA_jupiter - TA_earth; 
    end 
    if (TA_uranus - TA_jupiter < 0) 
        C_PA_uranus = 2*pi + TA_uranus - TA_jupiter; 
    else 
 
       C_PA_uranus = TA_uranus - TA_jupiter; 
    end 
    t=t+1; 
    if mod(t*tstep,3.154e8) == 0 
       years =  t*tstep/3.154e7; 
       fprintf('%.3f Years\n',years) 
    end 
    if ((C_PA_jupiter - tol <= final_phase_j && 
C_PA_jupiter + tol >= final_phase_j) && (C_PA_uranus - tol 
<= final_phase_u && C_PA_uranus + tol >= final_phase_u)) 
        break 
    end 
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end 
wait_time = t*tstep 

B. Uranus Hohmann.m 

%clear all; close all; clc; 
%% Student: Zaid Karajeh 
% Master's Advisor: Jeanine Hunter 
%1) Hohmann from Jupiter to Uranus (Arrival Planet) 
% Define Jupiter (r_p) and Uranus (r_a) and mu_uranus and mu_sun 
r_a = 2741.30e6 % Km Uranus 
r_p = 816.62e6 % Km Jupiter 
mu_uranus = 5.7940e6 % Km^3/s^2 
mu_sun = 132712e6 %Km^3/s^2 
mu_jupiter = 126.687e6 %Km^3/s^2 
%period of jupiter 
per_jupiter = sqrt((4*pi^2*r_p^3)/(mu_sun)) 
%period of uranus 
per_uranus = sqrt((4*pi^2*r_a^3)/(mu_sun)) 
% Calculate Semi Major Axis of Transfer Ellipse, a 
a=.5*(r_a + r_p) %Km 
% Calculate Ecentricity of Transfer Ellipse, e 
e = (r_a - r_p)/(r_a + r_p) 
%Hyperbolic excess Velocity Jupiter wrt Q 
J_V_Q = sqrt(mu_sun/r_p) * (sqrt((2*r_a)/(r_a+r_p))-1) % sy 
%Burn from 200000Km LJO to departure hyperbola 
 
Del_V_1 = sqrt((J_V_Q)^2 + (2*mu_jupiter)/(71492+200000)) - 
sqrt(mu_jupiter/(71492+200000)) 
%Hyperbolic excess velocity Uranus wrt Q 
U_V_Q = sqrt(mu_sun/r_a) * (sqrt(1-((2*r_p)/(r_a+r_p)))) % sy 
%% Phasing  
% Period (2) of transfer orbit to Uranus from Jupiter 
peri_tr_2 = (1/2) * sqrt((4*pi^2*a^3)/(mu_sun)) 
%angular velocities 
omega_j = (2*pi/per_jupiter) %angular velocity of jupiter 
omega_u = (2*pi/per_uranus) %angular velocity of uranus 
%Theta_delta for target (angle jupiter covers during transfer) 
%period of transfer ellipse * angular velocity 
theta_delta_uranus = omega_u * peri_tr_2 
rad2deg(theta_delta_uranus) 
%phase angle jupiter must be at when transfer begins relative to 
earth 
final_phase_u = pi - theta_delta_uranus 
rad2deg(final_phase_u) 
 
 
 

C. Delta V Calculator 

%% Delta-V Calculator  
% Orbit Altitude Definitions altitude = [ r_p_E, r_p_J, r_p_J, 
r_p_U]; % Planet Velocities v_body_e = sqrt(mu_sun./147.09e6);  
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v_body_j = sqrt(mu_sun./816.62e6); v_body_u = 
sqrt(mu_sun./2741.30e6);  
% Trasnfer Ellipse Velocities v_peri_e = sqrt(2*mu_sun./147.09e6-
mu_sun./a);  
v_peri_j = sqrt(2*mu_sun./816.62e6-mu_sun./a);  
v_apo_j = sqrt(2*mu_sun./816.62e6-mu_sun./a);  
v_apo_u = sqrt(2*mu_sun./2741.30e6-mu_sun./a);  
%Hyperbolic excess velocity v_infinity = [v_peri_e - v_body_e, 
v_body_j - v_apo_j, v_peri_j - v_body_j,...     
 v_body_u - v_apo_u];  
% Hyperbolic Eccentricity hyperbolic_e = 1 + 
altitude.*v_infinity.^2./[mu_earth, mu_jupiter, mu_jupiter, 
mu_uranus];  
% Turning Angle del_turn = 2*asin(1./hyperbolic_e); 
% Delta-V Calculations v_inf_departure = 
[v_infinity(2)*cos(del_turn(2)) v_infinity(2)*sin(del_turn(2))]; 
delta_v = [sqrt(v_infinity(1)^2 + 2*mu(2)/altitude(1))-
sqrt(mu(2)/altitude(1))            
norm([v_infinity(3)+v_inf_departure(1), 0-v_inf_departure(2)])            
sqrt(mu(4)/altitude(4)) - sqrt(v_infinity(4)^2 + 
2*mu(4)/altitude(4))]; 
Delta_v_total = sum(abs(delta_v)); 
row_names = {'Earth Departure','Jupiter Correction','Uranus 
Arrival','Total'};  
Dv_total = table(cat(1,delta_v, 
Delta_v_total),'rownames',row_names,...     
'variablenames',{'Delta_V'}) 
 

D. MATLAB script Generating Uranus and it’s Zeta Ring 

clc, clear all, close all 
% Create a random set of coordinates in a circle. 
% First define parameters that define the number of points and the 
circle. 
[radius, mu, Rp, Ra, soi, rgb] = orbital_constants('Uranus'); 
n = 50000; 
Outter_R = 41378+radius; 
Inner_r = 38000+radius; 
x0 = 0; % Center of the circle in the x direction. 
y0 = 0; % Center of the circle in the y direction. 
z0 = 0; 
% Now create the set of points. 
% For a full circle, use 0 and 2*pi. 
angle1 = 0; 
angle2 = 2*pi; 
z_thickness = 2500; 
% For a sector, use partial angles. 
% angle1 = pi/4; 
% angle2 = 3*pi/4; 
t = (angle2 - angle1) * rand(n,1) + angle1; 
r = Outter_R*sqrt(rand(n,1)); 
x = x0 + r.*cos(t); 
y = y0 + r.*sin(t); 
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a = (z0 - z_thickness/2); 
b = (z0 + z_thickness/2); 
z = a + (b-a).*rand(n,1); 
data = cat(2,x,y,z); 
indx = find(sqrt(data(:,1).^2 + data(:,2).^2 + data(:,3).^2) >= 
Inner_r); 
%indx = find(data(:,1) ~= 0); 
% Now display our random set of points in a figure. 
hold on 
body_plot(radius, rgb,1) 
plot3(data(indx,1), data(indx,2), data(indx,3), '.', 'MarkerSize', 
5) 
axis equal; 
grid on; 
 
 

E. N-Body Summations 

Example of 4-body system, equations of motion 𝑟!" = 𝑟!" : 
 

𝑑!𝒓!
𝑑𝑡!

= −𝐺
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!"  

𝑑!𝒓!
𝑑𝑡!

= −𝐺
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!"  

𝑑!𝒓!
𝑑𝑡!

= −𝐺
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!"  

𝑑!𝒓!
𝑑𝑡!

= −𝐺
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!" +
𝑚!

𝑟!" !  𝒓!"  

 

F. Sphere of Influences of the Moons of Uranus 

Sphere	of	
Influence:	 km	 		 R	 Mb	 MB	

Uranus	
51760998.2

7	 		
287097000

0	 8.68E+25	 1.99E+30	

Cordelia	
9.52277913

9	 		 49,752	 4.40E+16	 8.68E+25	

Ophelia	
11.0859781

4	 		 53,764	 5.30E+16	 8.68E+25	

Bianca	
15.2108014

5	 		 59,165	 9.20E+16	 8.68E+25	

Cressida	
26.7867591

4	 		 61,767	 3.40E+17	 8.68E+25	

Desdemona	
21.0700011

4	 		 62,659	 1.80E+17	 8.68E+25	

Juliet	
34.2201149

6	 		 64,630	 5.60E+17	 8.68E+25	
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Portia	 54.5674192
3	 		 66,097	 1.70E+18	 8.68E+25	

Rosalind	
26.8159382

9	 		 69,927	 2.50E+17	 8.68E+25	

Cupid	
5.37510724

8	 		 74,800	 3.80E+15	 8.68E+25	
Belinda	 33.3909256	 		 75,255	 3.60E+17	 8.68E+25	

Perdita	
10.2302944

3	 		 76,420	 1.80E+16	 8.68E+25	
Puck	 87.9123617	 		 86,004	 2.90E+18	 8.68E+25	

Mab	
4.11734985

7	 		 97,734	 1.00E+15	 8.68E+25	

Miranda	
461.346230

2	 		 129,390	 6.59E+19	 8.68E+25	

Ariel	
2281.23516

1	 		 191,020	 1.35E+21	 8.68E+25	

Umbriel	
3002.71634

9	 		 266,300	 1.17E+21	 8.68E+25	

Titania	
7637.14635

7	 		 435,910	 3.53E+21	 8.68E+25	

Oberon	
9600.30747

5	 		 583,520	 3.01E+21	 8.68E+25	

Francisco	
396.773622

6	 		 4,276,000	 7.20E+15	 8.68E+25	

Caliban	
2772.97824

6	 		 7,231,000	 2.50E+17	 8.68E+25	

Stephano	
1161.04285

4	 		 8,004,000	 2.20E+16	 8.68E+25	

Trinculo	
617.477577

8	 		 8,504,000	 3.90E+15	 8.68E+25	

Sycorax	
11731.6671

2	 		 12,179,000	 2.50E+18	 8.68E+25	

Margaret	
1195.13709

4	 		 14,345,000	 5.50E+15	 8.68E+25	

Prospero	
4049.05203

9	 		 16,256,000	 8.50E+16	 8.68E+25	
Setebos	 4126.6239	 		 17,418,000	 7.50E+16	 8.68E+25	
Ferdinand	 1728.60859	 		 20,901,000	 5.40E+15	 8.68E+25	
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