
CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 1 of 9

San José State University
Department of Computer Science

CS/SE 153
Concepts of Compiler Design

Section 1
Fall 2020

Course and Contact Information
Instructor: Ron Mak
Office location: ENG 250 (but working from home)
Email: ron.mak@sjsu.edu
Website: http://www.cs.sjsu.edu/~mak/
Office hours: TuTh 4:30 - 5:30 PM online via Zoom
Class days/time: TuTh 9:00 – 10:15 AM online via Zoom
Classroom: online
Prerequisites: CS 47 or CMPE 102, CS 146, and CS 154 (with a grade of "C-" or better

in each); Computer Science, Applied and Computational Math, or
Software Engineering majors only; or instructor consent.

Course Catalog Description
“Theoretical aspects of compiler design, including parsing context free languages, lexical
analysis, translation specification and machine-independent code generation. Programming
projects to demonstrate design topics.”

Course Format
This course adopts a synchronous online classroom delivery format. To participate in classroom
activities, submit assignments, and take tests/exams remotely, a student must have a computer
with adequate internet connection and bandwidth for accessing Canvas and attending Zoom
video meetings. A smartphone or tablet with a camera capable of running Zoom is also needed
for video recording of your test environment during the tests/exams.

Faculty Web Page and Canvas
Course materials, syllabus, assignments, grading criteria, exams, and other information will be
posted at my faculty website at http://www.cs.sjsu.edu/~mak and on the Canvas Learning
Management System course login website at http://sjsu.instructure.com. You are responsible for
regularly checking these websites to learn of any updates. You can find Canvas video tutorials
and documentations at http://ges.sjsu.edu/canvas-students

Course Goals
This course will concentrate on practical aspects of compiler construction, programming
language design, and engineering a large, complex software application.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 2 of 9

• Compiler construction and language design. Design and build a working compiler for
a programming language that you invented. Write sample programs in your language and
then compile them into executable machine code that you can run.

• Software engineering. Employ the best practices of object-oriented design and team-
based software engineering. A compiler is a large, complex program! Managing the
development of such a program requires learning critical job skills that are highly desired
by employers.

Course Learning Outcomes (CLO)
Upon successful completion of this course, students will be able to:

CLO 1: Develop a scanner and a parser for a programming language.
CLO 2: Perform syntactic and semantic analyses of source programs.
CLO 3: Generate symbol tables and intermediate code for source programs.
CLO 4: Develop an interpreter that executes a source program in a suitable runtime

environment.
CLO 5: Design the grammar for a programming language and feed it into a compiler-

compiler.
CLO 6: Develop a compiler that translates a source program into executable machine code.
CLO 7: Engineer a large, complex software application.

Required Text
Title:

Author:
Publisher:

ISBN:

The Definitive ANTLR 4 Reference, 2nd edition
Terence Parr
Pragmatic Bookshelf, 2013
978-1934356999
http://www.antlr.org

Recommended Text
Title:

Author:

Publisher:
ISBN:

Source files:

Writing Compilers and Interpreters:
A Software Engineering Approach, 3rd edition
Ronald Mak
Wiley Publishers, Inc., 2009
978-0-470-17707-5
http://www.cs.sjsu.edu/~mak/CMPE152/sources
(both Java and C++ source files are available)

We will use Pascal as an example source language. These online Pascal tutorials are helpful:

Pascal Tutorial looks very good. It even has an online compiler.
Learn Pascal also looks good, although it doesn't appear to cover set types.

Some online websites to compile and run Pascal programs:

http://rextester.com/l/pascal_online_compiler
https://www.tutorialspoint.com/compile_pascal_online.php
https://www.jdoodle.com/execute-pascal-online

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 3 of 9

Software to Install
You should install and use an interactive development environment (IDE) such as Eclipse. To
develop a compiler for your language, you will need to download and install the ANTLR 4
package and its Eclipse plugin, and then modify them to generate the compiler components in
Java. This is relatively straightforward on the Mac and Linux platforms. However, the Windows
platform has significant compatibility challenges. Therefore, if you’re on Windows, you should
download and install the Windows Subsystem for Linux and then download and run Ubuntu (a
variant of Linux): https://docs.microsoft.com/en-us/windows/wsl/install-win10
Some useful tutorials:

• “Install Ubuntu on Windows 10 and on VirtualBox”
http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.pdf

• “Configure Ubuntu for Software Development”
http://www.cs.sjsu.edu/~mak/tutorials/ConfigureUbuntu.pdf

• “Install Eclipse for Java and C++ Development”
http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.pdf

• “Install and Configure ANTLR 4 for Ubuntu and MacOS X”
http://www.cs.sjsu.edu/~mak/tutorials/InstallANTLR4.pdf

• “Install and Configure ANTLR 4 for C++”
http://www.cs.sjsu.edu/~mak/tutorials/InstallANTLR4Cpp.pdf

Course Requirements and Assignments
You must have good Java programming skills and be familiar with development tools such as
Eclipse.
You will form project teams of four students each. Team membership is mandatory for this class.
The teams will last throughout the semester. Once the teams are formed, you will not be allowed
to move from one team to another, so form your teams wisely!
Weekly team-based lab assignments will provide practice with compiler design techniques and
give you experience adding new features to a large legacy code base. Each student on a team will
receive the same score for each team assignment.
Each team will submit its assignments into Canvas, where the rubric for scoring each will be
displayed. Each assignment and project will be worth up to 100 points. Late assignments will
lose 20 points and an additional 20 points for each 24 hours after the due date.
This is a challenging course that will demand much of your time and effort throughout the
semester.
The university’s syllabus policies:

• University Syllabus Policy S16-9 at http://www.sjsu.edu/senate/docs/S16-9.pdf.

• Office of Graduate and Undergraduate Program’s Syllabus Information web page at
http://www.sjsu.edu/gup/syllabusinfo/

 “Success in this course is based on the expectation that students will spend, for each unit of
credit, a minimum of 45 hours over the length of the course (normally 3 hours per unit per week
with 1 of the hours used for lecture) for instruction or preparation/studying or course related

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 4 of 9

activities including but not limited to internships, labs, clinical practica. Other course structures
will have equivalent workload expectations as described in the syllabus.”

Team Compiler Project
In addition to the team assignments, each student team will work on a compiler project
throughout the semester. Each team will develop a working compiler for a newly invented
language or for an existing language. Teams will be able to write, compile, and execute programs
written in their invented or chosen languages. Each student on a team will receive the same score
for the team project. Each project involves:

• Invent a new programming language or choose a subset of an existing language.

• Develop a grammar for the language.

• Generating a compiler for the language using the ANTLR compiler-compiler. Other
components may be borrowed from the compiler code given in the class.

A minimally acceptable compiler project has at least these features:

• Two data types with type checking.
• Basic arithmetic operations with operator precedence.
• Assignment statements.
• A conditional control statement (e.g., IF).
• A looping control statement.
• Procedures or functions with calls and returns.
• Parameters passed by value or by reference.
• Basic error recovery (skip to semicolon or end of line).
• Nontrivial sample programs written in the source language.
• Generate Jasmin assembly code that can be successfully assembled.
• Execute the resulting .class file.
• No crashes (e.g., null pointer exceptions).

Each team will write a report (5-10 pp.) that includes:

• A high-level description of the design of the compiler with UML diagrams of the major
classes.

• The grammar for your source language, either as syntax diagrams or in BNF.
• Code templates that show the Jasmin code your compiler generates for some key

constructs of the source language.

Technology Requirements
Students are required to have an electronic device (laptop, desktop, or tablet) with a camera and
microphone. SJSU has a free equipment loan program available for students.
Students are responsible for ensuring that they have access to reliable Wi‐Fi during tests. If
students are unable to have reliable Wi-Fi, they must inform the instructor, as soon as possible or
at the latest one week before the test date to determine an alternative. See Learn
Anywhere website for current Wi‐Fi options on campus.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 5 of 9

Exams
The exams will test understanding (not memorization) of the material taught during the semester
and now well each of you participated in your team assignments and project. Instant messaging,
e-mails, texting, tweeting, file sharing, or any other forms of communication with anyone else
during the exams will be strictly forbidden.
There can be no make-up quizzes and midterm examination unless there is a documented
medical emergency. Make-up final examinations are available only under conditions dictated by
University regulations.

Grading Information
Individual total scores will be computed with these weights:

30% Assignments*
35% Compiler project*
15% Midterm exam**
20% Final exam**

 * team scores
** individual scores

Course grades will be based on a curve. The median total score will earn a B–. Approximately
one third of the class will earn higher grades, and another one third will earn lower grades.

Postmortem Report
At the end of the semester, each student must also turn in a short (under 1 page) individual
postmortem report that includes:

• A brief description of what you learned in the course.
• An assessment of your accomplishments for your team assignments and design project.
• An assessment of each of your other project team members.

Only the instructor will see these reports. How your teammates evaluate you may affect your
course grade.

Zoom Classroom Etiquette
• Mute your microphone. To help keep background noise to a minimum, make sure you

mute your microphone when you are not speaking.
• Be mindful of background noise and distractions. Find a quiet place to “attend” class,

to the greatest extent possible.
o Avoid video setups where people may be walking behind you, people talking,

making noise, etc.
o Avoid activities that could create additional noise, such as shuffling papers,

listening to music in the background, etc.
• Position your camera properly. Be sure your webcam is in a stable position and

focused at eye level.
• Limit your distractions and avoid multitasking. You can make it easier to focus on the

meeting by turning off notifications, closing or minimizing running apps, and putting
your smartphone away (unless you are using it to access Zoom).

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 6 of 9

• Use appropriate virtual backgrounds. If using a virtual background, it should be
appropriate and professional and should not suggest or include content that is objectively
offensive and demeaning.

Recording Zoom Classes
This course or portions of this course (i.e., lectures, discussions, student presentations) will be
recorded for instructional or educational purposes. The recordings will be posted to the class
webpage. The recordings will be deleted at the end of the semester. If you prefer to remain
anonymous during these recordings, then please communicate with the instructor about possible
accommodations (e.g., temporarily turning off identifying information from the Zoom session,
including student name and picture, prior to recording).

Students are Not Allowed to Record
Students are prohibited from recording class activities (including class lectures, office hours,
advising sessions, etc.), distributing class recordings, or posting class recordings. Materials
created by the instructor for the course (syllabi, lectures and lecture notes, presentations, etc.) are
copyrighted by the instructor. This university policy (S12-7) is in place to protect the privacy of
students in the course, as well as to maintain academic integrity through reducing the instances
of cheating. Students who record, distribute, or post these materials will be referred to the
Student Conduct and Ethical Development office. Unauthorized recording may violate university
and state law. It is the responsibility of students that require special accommodations or assistive
technology due to a disability to notify the instructor.

Proctoring Software and Exams
Exams will be proctored in this course through Respondus Monitor, LockDown Browser, and
Zoom video meeting. Please note it is the instructor’s discretion to determine the method of
proctoring. If cheating is suspected the proctored videos may be used for further inspection and
may become part of the student’s disciplinary record. Note that the proctoring software does not
determine whether academic misconduct occurred but does determine whether something
irregular occurred that may require further investigation. Students are encouraged to contact the
instructor if unexpected interruptions (from a parent or roommate, for example) occur during an
exam. Please refer to the online exam instructions for details of the setup and requirements.

Technical Difficulties
• Internet connection issues: Canvas autosaves responses a few times per minute as long

as there is an internet connection. If your internet connection is lost, Canvas will warn
you but allow you to continue working on your exam. A brief loss of internet connection
is unlikely to cause you to lose your work. However, a longer loss of connectivity or
weak/unstable connection may jeopardize your exam.

• Other technical difficulties: Immediately notify the instructor and explain the problem
you are facing. Your instructor may not be able to respond immediately or provide
technical support. However, the current state of your exam and communication will
provide a record of the situation.

Contact the SJSU technical support for Canvas:
Technical Support for Canvas
Email: ecampus@sjsu.edu

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 7 of 9

Phone:	(408)	924-2337	
https://www.sjsu.edu/ecampus/support/	

University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as
academic integrity, accommodations, etc. will be available on Office of Graduate and
Undergraduate Program’s Syllabus Information web page at
http://www.sjsu.edu/gup/syllabusinfo/.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 8 of 9

CS/SE 153
Concepts of Compiler Design

Section 1
Fall 2020

Course Schedule (subject to change with fair notice)
Week Dates Topics Readings

1 Aug 20 Overview of the course
What are compilers and interpreters?
Form programming teams
Lab: Write Pascal programs

1

2 Aug 25
Aug 27

Syntax diagrams
A simple scanner
Basic scanning algorithm
A simple parser
Top-down recursive-descent parsing
Lab: Scanner

2

3 Sep 1
Sep 3

Symbol tables
Parse trees
Parse assignment statements and expressions
Parse control statements
Syntax and semantics
Lab: Parser

3

4 Sep 8
Sep 10

Visit parse tree nodes
Execute assignment statements and expressions
Execute control statements
A simple DFA scanner
BNF grammars for programming languages
The ANTLR compiler-compiler
Lab: Execute simple programs

4

5 Sep 15
Sep 17

Generate a scanner and a parser with ANTLR
ANTLR parse tree visitor interfaces
An ANTLR-based Pascal interpreter
Execute statements and expressions with visitors
Lab: ANTLR 4 grammar

5

6 Sep 22
Sep 24

Scope and the symbol table stack
Parsing declarations
Strong typing and type checking
Lab: Pascal interpreter

6

7 Sep 29
Oct 1

Runtime memory management
The runtime stack and stack frames
Programs, procedures, and functions
Procedure and function calls

7

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 9 of 9

Week Dates Topics Readings
8 Oct 6

Oct 8
Midterm exam Tuesday, October 6

A language converter: Pascal to C++
Structured data: arrays and records
Lab: Language converter

9 Oct 13
Oct 15

The Java Virtual Machine (JVM) architecture
Jasmin assembly language
Code templates and code generation
Code for expressions

10 Oct 20
Oct 22

Code for assignment statements
Code for control statements
Code for procedure and function calls
Lab: Code generation

11 Oct 27
Oct 29

Code to call printf()
Code for arrays and records
Code to pass parameters by value and by reference
Runtime libraries

12 Nov 3
Nov 5

Compiled vs. interpreted code
Context-free vs. context-sensitive grammars
Bottom-up parsing with yacc and lex
Code optimization

13 Nov 10
Nov 12

Runtime memory management, cont’d
Garbage collection algorithms
A simple source-level debugger

14 Nov 24 (TBD)

15 Dec 1
Dec 3

Project presentations

Final
Exam

Wednesday,
Dec 9

Time: 7:15 - 9:30 AM
online

