

Battery Compression Testing System

Enhances battery performance using mechanical compression for reliable, scalable testing and manufacturing

Case ID:

SJSU ID 2024-005

IP Position:

Patent Pending

Development Status:

TRL 6-7: Representative model or prototype system, which is tested in a relevant environment.

Opportunity

Partners sought for development and prototype testing.

Category(s):

Solid-state battery, Battery testing & diagnostics, Battery manufacturing equipment

Keywords:

Solid polymer electrolytes, Battery compression testing, Ionic conductivity, Mechanical preconditioning, Solid-state batteries

Date Released:

April 09, 2025

Revision No:

1.0

Inventor(s):

Dahyun Oh, Sang-Joon (John) Lee

Contact Information:

Sandeep Mukkamala Intellectual Property Specialist Sandeep.Mukkamala@sjsu.edu 408-924-5462

Technology Overview

- This invention introduces a novel battery compression test apparatus and mechanical conditioning
 method designed to improve the reliability and predictability of solid polymer electrolytes (SPEs).
 SPEs, particularly those with non-polymer additives, can degrade due to viscoelastic behavior,
 mechanical fatigue, and changes in crystallinity. The invention addresses these issues by
 employing mechanical preconditioning and accelerated life testing.
- A key experimental application tested compressive strain effects on PEO-LiTFSI electrolytes.
 Results showed a significant reduction in ionic conductivity (up to 34%) due to densification under
 strain, offering valuable insight into polymer behavior under mechanical stress. The system
 demonstrated exceptional precision using a Micro-Epsilon laser sensor and TE Connectivity force
 sensor, yielding highly consistent compression results.

Key Features & Benefits

- . Improves SPE consistency and long-term performance predictability
- Enables rapid performance assessments for accelerated R&D
- · Compatible with electrochemical, thermal, and optical testing modalities
- Scalable to commercial manufacturing with roller-based configurations
- Enhances the safety and reliability of solid-state batteries

Potential Applications

- Battery R&D and prototyping
- · Quality assurance in battery manufacturing
- Life cycle simulation of solid-state batteries
- · Automotive and grid-scale energy storage system development
- . Materials research for SPE behavior under mechanical stress

