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A high-order rotorcraft mathematical model is developed and validated against the XV-15 and a Large
Civil Tilt-Rotor (LCTR) concept. Rigid body and inflow states, as well as flexible wing and blade states
are used in the analysis. The separate modeling of each rotorcraft component allows for structural
flexibility to be included in the presented formulation, which is important when modeling large air-
craft where structural modes effect the frequency range of interest for flight control, generally 1 to
20 rad/sec. Details of the formulation of the mathematical model are given, including derivation of
structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed
using an approach similar to multibody analyses by exploiting a tree topology, but without equations
of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated
by looking at the nature of the couplings between rigid body modes and wing structural modes and
vice versa. A model following control architecture is then implemented on full order LCTR models
with and without structural flexibility. The rigid wing model is shown to give Level 1 handling quali-
ties, whereas the wing flexible model exhibits poor handling qualities. Notch filters are introduced to
eliminate wing structural dynamics from the output equations. The aircraft response with notch filters
is shown to be much improved with respect to stability margins and handling qualities requirements
for the LCTR.

Notation

Variables
a Acceleration vector
F Modal forcing
K Linear stiffness matrix
M Linear mass matrix
n Unit vectors of a coordinate system,

nodal displacement vector
N Modal spatial displacement of a point
p Forcing vector
P Position vector
p,q,r Body angular rates
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q Displacement vector, inertial moment vector
r Position vector
S Coodinate system transformation matrix
v Velocity vector
v,w Elastic displacements
V Modal matrix
x0 Displacement from start of elastic portion of beam
y0, z0 Offsets from elastic axis to center of mass
z Partial fraction zero
α Aerodynamic angle of attack, rotation vector
β Aerodynamic sideslip angle
η Structural control or stability derivative
δ Pilot stick input (inches)
φ , θ , ψ Euler angles
Φ Influence coefficient



ω Rotation rates, frequency
Ω Skew symmetric matrix of rotation rates
ρ Modal temporal displacement of a point
ψ Azimuth angle
ζ Offset from reference frame to first body

Subindices
a Antisymmetric mode
A Aerodynamic
B Blade
col Collective stick
D Damping
E External
f Flexibility
I Inertial
lat Lateral cyclic stick
lon Longitudinal cyclic stick
ped Pedal
rb Rigid-Body
s Symmetric mode
S Structural
str Structural mode

Abbreviations
ACAH Attitude Command Attitude Hold
CG Center of Gravity
DAE Differential-Algebraic Equation
HQ Handling Qualities
LCTR Large Civil Tilt-Rotor
MTE Mission Task Elements
ODE Ordinary Differential Equation
PIO Pilot Induced Oscillations

Motivation

Tilt-rotor configurations have been proposed for both
civil and military heavy-lift vertical take-off and landing
(VTOL) missions. An in-depth NASA investigation ex-
amined several types of rotorcraft for large civil transport
applications, and concluded that the tilt-rotor had the best
potential to meet the desired technology goals. It also pre-
sented the lowest developmental risk of the configurations
analyzed (Ref. 1). One of the four highest risk areas iden-
tified by the investigation was the need for broad spectrum
active control, including flight control systems, rotor load
limiting, and vibration and noise reduction (Ref. 1).

The development of a high-order model is paramount for
accurately predicting a wide range of stability phenomena
that tilt-rotors are susceptible to, and is the main subject of
this paper. The best known aeromechanic stability problem
for tilt-rotor aircraft is whirl-flutter, which occurs at high
advance ratios, and usually limits forward flight speed. At
hover and low speeds, pilot inputs can excite low frequency
wing structural modes for large tilt-rotor configurations like
the Large Civil Tilt-Rotor (LCTR), Fig. 1. Lateral stick in-
puts, for example, result in anti-symmetric wing bending

motion. This wing structural response can cause low stabil-
ity margins if the dynamics are not accounted for in flight
control design. The structural modes for future large tilt
rotors are likely to be in the range of interest for control
system design, around 1/3 to 3 times the response crossover
frequency, generally 1 to 20 rad/sec. Most rotorcraft also
tend to have increased levels of augmentation compared
to fixed-wing aircraft, especially in hover and low speed
where precision flying is necessary. Clearly, the success of
these configurations will require an improved fundamental
understanding of the interactions between handling quali-
ties, high-gain flight control systems, and aircraft structural
dynamics.

Prior Work

One of the first experimental tilt-rotor aircraft, the XV-15,
was developed in the 1970’s and 1980’s. To support anal-
ysis of flight dynamics, pilot-in-the-loop simulation, and
flight control, the Generic Tilt-Rotor Simulation (GTRSIM)
was developed (Ref. 2). GTRSIM is based heavily on wind
tunnel data from the XV-15 in the form of lookup tables
to augment the rigid body dynamics. The detailed look up
tables include effects of nacelle angle, sideslip, flaperon de-
flections, Mach number, etc., on aerodynamic coefficients
and contain correction factors to the dynamic response of
the aircraft.

Later, CAMRAD, a comprehensive aeromechanics and
dynamics model capable of multi-rotor and flexible air-
frame modeling (Ref. 3), was used to model the heavy lift
helicopters that are of interest herein. CAMRAD was later
updated to CAMRAD II and offers a larger suite of analysis
tools, and has been used extensively for tilt-rotor develop-
ment and analysis (Refs. 4, 5). These analyses focused on
optimization of the large civil tilt rotor for performance and
whirl-flutter. Performance optimization included rotor siz-
ing and geometry as well as cruise tip speeds. Whirl-flutter
optimization included cruise tip speeds, precone and other
rotor metrics.

Although CAMRAD is not a real-time tool, linear mod-
els derived from CAMRAD were used in NASA’s Verti-
cal Motion Simulator in piloted simulations (Refs. 7–10)
designed to test hover and low speed handing qualities
and control system architectures of the LCTR. These mod-
els were based on a combination of reduced-order stabil-
ity derivative models and more detailed rigid-body mod-
els that included rotor flapping dynamics, but lacked struc-
tural flexibility. Despite these limitations, the linear rigid
body model was sufficient for determining handling quali-
ties characteristics of large tilt-rotors. The key findings in-
cluded: (i) the need to loosen the requirements for ADS-
33E mission task elements as appropriate to the large ve-
hicle configuration; (ii) that the large CG to pilot station
offset resulted in lateral accelerations that were unfavorable
to the pilot with traditional yaw bandwidth requirements,
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Wing modal frequencies do not scale with rotor speed, 

especially for tiltrotors designed to different mission 

requirements. Hingeless proprotors will have different 

per-rev frequencies and mode shapes than the gimbaled 

rotors on current tiltrotors, so coupling between wing and 

rotor modes may differ from past experience. Thus, there 

is no guarantee that current methods of specifying wing 

frequency placement will suffice to ensure aeroelastic 

stability. 

These issues are the motivation for the present research. 

The goal is to develop criteria for inclusion in design 

codes to ensure that conceptual weights and geometries 

are consistent with aeroelastic stability. The immediate 

objective is to characterize the relative sensitivity of 

whirl-mode stability to different design parameters. The 

possible design matrix is extremely large, and this paper 

can only begin to lay out the technical explorations 

needed for complete understanding of the impact of 

aeroelastic stability on very large tiltrotors. Results are 

presented for traditional, basic parameter variations, with 

the intention of eventually incorporating the most 

important trends into a design code.  

LCTR Design Criteria 

The LCTR2 is focused on the short-haul regional 

market (Fig. 1). It is designed to carry 90 passengers at 

300 knots over at least 1000-nm range. It has low disk 

loading and low tip speed of 650 ft/sec in hover and 400 

ft/sec in cruise. A two-speed gearbox is assumed, so that 

the engine operates efficiently in both hover and cruise. 

This is a lower tip-speed ratio than was demonstrated in 

flight by the XV-3, and nearly the same gearbox speed 

ratio (Ref. 6). Aircraft technology projections from the 

LCTR1 have been updated for the LCTR2 based on a 

service entry date of 2018. Table 1 summarizes the 

nominal mission, and Table 2 lists key design values. 

The following paragraphs summarize the design criteria 

for the LCTR2; see Ref. 2 for further details of the design 

process. 

 

 

Fig. 1. The NASA Large Civil Tiltrotor, evolved version (dimensions in feet). 

Fig. 1. Configuration and dimensions of the NASA Large Civil Tiltrotor (LCTR) (from Ref. 4).

therefore, a modified yaw bandwidth criteria was proposed;
and (iii) that increased disturbance rejection characteristics
with relaxed stability margins were found to yield more fa-
vorable piloted handling qualities (Ref. 7).

First-principles, nonlinear real-time models that include
rotor and body flexibility will be needed for more advanced
investigations.

The model used in this work, and referred to as He-
liUM 2, has been in development at the University of
Maryland for many years and is a successor to the model
first mentioned in Ref. 11. It originated from the NASA
version of GenHel, built from a mathematical model by
Howlett (Ref. 12), and over time has evolved to include
flexible rotors and free-vortex wake models. More recently,
the code has been augmented to include multi-rotor capa-
bilities. The current research effort has expanded this to
include flexible wings and an overall multibody-like formu-
lation. The model is generic and allows for any rotorcraft
configuration, from single main rotor helicopters to coaxial
and tilt-rotor aircraft. Fuselage and wing aerodynamics por-
tions of GTRSIM were added to this model. The model was
therefore validated against the XV-15 before being scaled to
the LCTR configuration.

Objectives

The main objectives of this paper are:

1. To present the development and validation of a high fi-
delity flight dynamics model applied to flexible tiltro-
tor configurations. The mathematical model is first de-
veloped. Details are given regarding the formulation of
the problem including kinematic and coordinate sys-
tem considerations. Structural, inertial, and aerody-
namic components of a beam model are also extended
to be used for tilt-rotor wings. Specifically, downwash
and tip masses are accounted for. Validation is first
performed against XV-15 tilt-rotor aircraft flight test
data, with a rigid wing model only. The model is then
extended to the LCTR. The flexible wing model is then
compared to a rigid wing model using frequency re-
sponse analysis.

2. To study the influence of high-order rotor and struc-
tural flexibility on the dynamics of large tilt-rotors
through reduced order models.

3. To discuss the effects of aeroelastic coupling and rigid-
body coupling on the reduced order models of the
LCTR. The models are reduced to only include rigid-
body and wing structural states. Aeroelastic coupling
refers to the effect of wing flexibility on rigid body



states and rigid-body coupling refers to the effect of
rigid-body states on the flexible wing. Reduced order
uncoupled models simplify the model structure needed
for system identification, but must remain valid over
the frequency range of interest.

4. To describe the development of model following con-
trol laws for three levels of modeling fidelity. The
baseline model considered first is a rigid wing model.
Next, wing flexibility is introduced and optimization
results in a new set of gains. Finally, notch filters are
used on the state feedback and feedforward paths in the
roll, pitch, and yaw axes to suppress wing excitation.

Theoretical Development

A description of the formulation of the equations of motion,
specifically for the wing is given in this section. Along with
the beam equations, consideration of the effects of wing
flexibility are also discussed. Structural flexibility effects
the kinematics of all bodies upstream of the current one,
and a “quasi multibody” formulation is used in the formu-
lation described to connect the bodies. A full multibody
formulation is generally characterized by:

1. Numerical kinematics — Position vectors, velocities,
and accelerations are all built numerically, with no
algebraic manipulations, ordering schemes, or limi-
tations on magnitude of displacements and rotations.
Furthermore, the kinematic formulation can be ex-
tended in an automated way to any number of bodies
in a chain.

2. Enforcement of connectivity through explicit equations
of constraint — The equations are generally algebraic,
resulting in an overall model that is formulated as
a system of Differential Algebraic Equations (DAEs)
rather than a system of Ordinary Differential Equa-
tions (ODEs).

The present model implements numerical kinematics, but
does not include explicit equations of constraint.

The lack of explicit constraint equations makes the
model less flexible than full multibody formulations. The
topology is limited to tree-like arrangements without loops,
and connectivity that cannot be described by adding or re-
moving nodal degrees of freedom requires changes to the
software implementation. Moreover, the formulation is less
suitable for software interfaces in which users assemble the
model from point-and-click selections of element libraries.

On the other hand, the model naturally results in a sys-
tem of ODEs, modal coordinate transformations are eas-
ily implemented, and there is no need to solve DAE sys-
tems (typically of index 3 or higher) or use techniques
to condense out algebraic equations of constraints or con-
vert them to ODEs. If necessary, equations of constraints

could simply be added to the present formulation through
the use of Lagrange multipliers and suitable DAE solvers.
All structural and inertia couplings are rigorously mod-
eled. The aerodynamic couplings need to be analyzed on a
configuration-by-configuration basis, and may require addi-
tional configuration-specific modeling, but this is also true
for full multibody formulations. Because the present for-
mulation allows for an arbitrary number of rotors of arbi-
trary position and orientation, and any number of flexible
aerodynamic surfaces located anywhere on the aircraft, it is
still sufficiently general to formulate flight dynamic models
for all configurations envisioned for future rotorcraft with
little or no recoding.

The model is formulated as a series of nested loops
(from outermost to innermost: over rotors, blades or wings,
finite elements, and Gauss points within elements), uses
modal coordinate transformations, and contains no coupled
algebraic equations. With the exception of the blade iner-
tia load calculations (because of the centrifugal force), all
loops can be traversed in any order, and can be easily par-
allelized. As a result, real-time execution is achievable on
off-the-shelf workstations with no approximations for mod-
els of realistic complexity. Software granularity is also suf-
ficient for CUDA/GPU-based real time implementations.

Details of the baseline blade equations of motion can
be found in Ref. 13, and serve as a starting point for the
discussion regarding the wing equations. The equations of
motion can be broken down into three key components; in-
ertial, structural, and aerodynamic loads.

Kinematics and Coordinate System Transformations

The rotorcraft model consists of multiple flexible bodies ar-
ranged in a generic tree-like topology. For the tilt-rotor ex-
amples of the present study, shown in Fig. 2, the tree starts
from the aircraft center of mass and branches out to the
wings, pylons, and ultimately rotors and blades. Each com-
ponent within this tree is given its own coordinate system.
The coordinate system serves as the basis for the formula-
tion of flexibility contributions of that body to the overall
system. The local coordinate system for the wing has the
same sign conventions as those of the elastic blade.
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Fig. 2. Generic tilt-rotor multi body formulation
The development of the kinematic relations between the

bodies is given in the Appendix and covers derivations
of the positions, velocities, and accelerations of arbitrary
points within the tree-like configuration.

Beam Element Description

The model is entirely composed of a coupled set of nonlin-
ear ODEs, and modal coordinate transformations are used.
Blade and wing mode shapes are calculated at the beginning
of each simulation or can be read from files. Mode shapes
for the wing assume cantilever connections to an immove-
able object. In the dynamic system, wing motion produces
forces and moments on the fuselage causing coupled mo-
tion.

Beam finite elements are used to model the blades, with
coupled torsion and flap-lag bending degrees of freedom,
and small elastic deflections. Four elements are used to
model each wing and blades. Aerodynamic, structural, and
inertial forces and moments are calculated at specified in-
ternal points in each finite element, integrated to form nodal
loads, and finally transformed into modal loads, greatly re-
ducing the total number of degrees of freedom. All loads
are formed in the undeformed beam coordinate system.
This makes force and moment contributions to the body
downstream of the elastic body easier to calculate. The
same finite element is used to model the wings. A finite
state wake inflow model is used for each rotor.

Inertia and structural couplings are rigorously modeled
for any combination of rotors and wings. The aerodynamic
couplings need to be tailored for every specific configura-
tion. For the XV-15 model in the present study, the airframe
aerodynamics, including impingement of the downwash on
the wing surfaces, and inflow effects on the elevator and
rudders, are modeled using the flight test-derived data ta-
bles in Ref. 2. For the hover LCTR case, only downwash
impingement on the wing is modeled. Aerodynamic contri-
butions from the empennage are neglected.

A thorough discussion of the elastic blade formulation
can be found in Ref. 13. The following discussion high-

lights the contributions from tip masses and large external
objects, like the nacelle, on the beam equations.

Inertial Loads: The LCTR uses a tip mass to decrease
hover coning and thus increase figure of merit (Ref. 1). The
tip mass is assumed to be a point load on the beam elastic
axis. It is located at the 95% radial location of the blade.
The nacelle is assumed to be a mass centered at a distance
y0 nk

2 + z0 nk
3 from the elastic axis. The y0 and z0 displace-

ments are in the deformed beam coordinate system. This
formulation retains the built in displacements assumed for
the elastic blade. The generic position for a point on the
blade in the undeformed blade coordinate system is:

rB =
[
ecosβp + x0 +Sk j

21y0 +Sk j
31z0

]
n j

1+[
v+Sk j

22y0 +Sk j
32z0

]
n j

2+ (1)[
w− sinβp +Sk j

23y0 +Sk j
33z0

]
n j

3

The transformation matrix [S] transforms the offsets from
the deformed to the undeformed coordinate system. Its
components are given by Eqn. (A.5). v and w are elastic
contributions to the displacement of the elastic axis. e is
the offset from the beam connection point to the start of the
elastic portion of the beam. βp is the precone angle. The
displacement is written in general terms as:

rB = rxn j
1 + ryn j

2 + rzn j
3 (2)

with

rx =r11 + r12x0 + r13y0 + r14z0

ry =r21 + r22x0 + r23y0 + r24z0

rz =r31 + r32x0 + r33y0 + r34z0

Inertial loads are based on finding the absolute acceleration
of a mass. As with the position vector, Eqn. (1), the beam
acceleration vector retains a generic formulation where off-
sets from the elastic axis are retained. The full acceleration
vector in the undeformed coordinate system is given as:

aB = axn j
1 +ayn j

2 +azn j
3 (3)

with

ax =a11 +a12x0 +a13y0 +a14z0

ay =a21 +a22x0 +a23y0 +a24z0

az =a31 +a32x0 +a33y0 +a34z0

The first terms, a11, a21, and a31 contain all rigid body and
flexibility acceleration contributions up to the shaft. These
accelerations also contain acceleration terms specific to the
elastic rotor blade that do not depend on offsets from the
elastic axis. Once the acceleration of the point is known,
the inertial forces follow.

pI =−m aB (4)



Displacements from the deformed coordinate system to the
center of mass of the blade or tip element in the chordwise
and vertical directions, nk

2 and nk
3, respectively, create mo-

ments at the blade section.

qI =−m
[(

y0nk
2 + z0nk

3

)
×aB

]
(5)

The full moment vector is:

qI =−m
[
M1n j

1 +M2n j
2 +M3n j

3

]
(6)

with

M1 =q13y0 +q14z0 +q15x0y0 +q16x0z0 +q17y0z0

+q18y2
0 +q19z2

0

M2 =q23y0 +q24z0 +q25x0y0 +q26x0z0 +q27y0z0

+q28y2
0 +q29z2

0

M3 =q33y0 +q34z0 +q35x0y0 +q36x0z0 +q37y0z0

+q38y2
0 +q39z2

0

The quantities q above contain products of the components
of the position and acceleration vectors. The tip mass does
not create moments at the cross section since it is located
on the elastic axis. The nacelle’s moments of inertia are
lumped into two radii of gyration, one along y0 and the other
along z0. The nacelle is assumed to be a cylinder of constant
mass distribution. The parallel axis theorem is used to de-
rive the radius of gyration with respect to the connection
point to the wing, which is below the center of mass. Due
to the symmetry of the pylon, mass products of inertia are
generally zero.

Once the section forces and moments are known, they
are integrated into the nodal forces for the given finite ele-
ment.

Structural Loads: The structural load equations for the
elastic wings do not differ from those of the elastic blades.
Wing stiffness information was derived to produce the same
fundamental wing frequencies as given in Ref. 4. The
current study focuses on hover dynamics, specifically in
the lateral/directional axes. It was therefore important to
match wing antisymmetric beamwise and chordwise bend-
ing modes. The mode shapes of the elastic beams generally
contain coupled beamwise, chordwise, and torsion bending.
The mode is named after the dominant response. Therefore,
a beamwise mode will contain mostly beamwise bending
but could also contain chordwise and torsion bending. Fig-
ure 3 shows the beam modes and nomenclature used in this
analysis. The motion of the left and right wing are indepen-
dent in the formulation and therefore symmetric and asym-
metric modes are not explicitly formed. The following co-
ordinate transformation is used to transform from the inde-
pendent wing degrees of freedom to symmetric and asym-
metric degrees of freedom.{

q1
q2

}
=

[
1 1
1 −1

]{
qs
qa

}
(7)

q1 and q2 are the modal deflections of the left and right
wing and qa and qs are the same deflections given in terms
of antisymmetric and symmetric modes.

Aerodynamic Loads: The aerodynamic forcing is again
formulated in essentially the same manner as the elastic
blade. The wing is approximately 1/3 R below the main
rotor and is assumed to be immersed in the wake of the
rotor. The components of the inflow velocity are obtained
from the dynamic inflow coefficients of the rotor at the 270
deg azimuth position, approximately the azimuth position
of blade passage over the wing. These inflow velocities are
then augmented by the nacelle angle to find the local veloc-
ity at the wing section. The same wing airfoil data is used
for the LCTR as was available for the XV-15. This airfoil
data includes aerodynamic coefficients for very large angles
of attack as are needed by a wing experiencing downwash
in hover. The XV-15 aerodynamic coefficient look up ta-
bles are functions of angle of attack, mach number, nacelle
angle, and flap setting. For the LCTR hover case, the por-
tions of the look up tables with the nacelle in the vertical
position and flaps retracted were used. The total download
as a fraction of gross weight in hover was similar to that of
the XV-15 in hover.

Model Development and Validation

This section discusses in more depth the formulation of the
quasi-multibody tilt-rotor model and includes validation re-
sults against the XV-15.

Tree Structure Management

At each time step, the only information each individual
body has is that of the connection to the bodies just up-
stream of itself. This information contains the displacement
vector q to the connection point of that body, and the set of
rotations needed to get to the coordinate system of the next
body. This allows for components of the system to be easily
swapped out with other components with minimal changes
to the inputs. Information regarding each body is stored
individually with that body in derived types, allowing for
large systems to be constructed with minimal creation of
vectors that must be passed through each subroutine. A tree
array is formed to join the system of individual bodies into
the full multibody system of the aircraft and contains point-
ers to each of the derived types. A tree array for a generic
set of interconnected bodies, shown in Fig. 4, is given in
Table 1. The top line of the table contains a numerical
assignment for each body in the system. The columns of
the table indicate the path from that body to the reference
frame. For the tilt rotor example, the fuselage, wings, and
nacelles each have their own derived type. A tree array is
formed and assigns body numbers to each component of
the aircraft. Since some components are used twice, some
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contrast, figure 5 shows the most recent CAMRAD
predictions for the XV-15 configuration actually flown in
the flight tests reported here: 1.5°-precone steel hubs,
structural damping I based on full-scale wind-tunnel tests
(ref. 14), rotor speed restricted to 86% of nominal speed,
and maximum Cp/G r = 0.046 at 10,000 ft (the transmis-
sion torque limit at the nominal flight condition).

Maximum true airspeed at 10,000 ft is 260 knots, thus
even the worst predicted stability margin (over
100 KTAS) is adequate, and the revised predictions show
no instability at all. However, the large differences
between figures 4 and 5 show that the stability margin can
be sensitive to seemingly small changes in the model or
flight conditions. It is not merely the airspeed for which
instability is predicted that matters; for flight test, the rate
at which instability is approached is also important. In the
early predictions (fig. 4), the symmetric chord and anti-
symmetric beam modes show damping decreasing rapidly
with increasing airspeed above 300 KTAS; hence rela-
tively small errors in the analytical model could translate
into large errors in the actual airspeed margins.

Except for the symmetric beam mode, the frequencies
of all modes lie within about 2 Hz of each other; two fre-
quencies---_ose of the antisymmetric chord and anti-

l see the Flight Test Results section for a table and
discussion of structural damping assumptions.

symmetric torsion modes--are within 0.1 Hz of each
other at low airspeeds. Also, the frequency of the
symmetric torsion mode lies within the design rotor-speed
range. The possibility of a rapid decrease in stability with
increasing airspeed makes precise identification of
individual modes necessary, and the modes' close
placement in frequency makes such identification
difficult. Moreover, the exponential-decay method used in
early XV-15 flight tests to estimate damping produced
results that in some cases had scatter that was a large
fraction of the predicted damping, as will be shown later
in this report.

Accordingly, the development of an improved
in-flight method of determining aeroelastic stability had
high priority. The frequency-domain method showed the
greatest promise of improved accuracy. Compared to the
exponential-decay method, it also promised to reduce the
flight-test time required for mode identification.

Previous Investigations

In previous flight tests (refs. 11 and 12), frequency
and damping were measured using primarily the
exponential-decay technique. The right-hand flaperon
(fig. 2) was oscillated at a fixed frequency to drive a
selected structural mode at resonance and was then

Fig. 3. Tilt-rotor beam mode shapes (Ref. 6)

body numbers are composed of the same derived type. As
the kinematics of the system are created, the appropriate
body is extracted from the set of all available bodies using
the tree array.

1	
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Fig. 4. Generic set of interconnected bodies
k 1 2 3 4 5 6 7 8

Γ1 0 1 2 3 4 4 2 7
Γ2 0 1 2 3 3 1 2
Γ3 0 1 2 2 0 1
Γ4 0 1 1 0
Γ5 0 0

Table 1. Tree array connecting the components of Fig. 4
The formulation of all components of the tree structure,

including the coordinate system transformation matrices,
kinematic relations, and kinematic vector transformations

are done in unison in loops based on the length of each
branch of the tree. All loops begin at the reference frame
and branch out depending on the number of connections
each individual body has. To obtain the kinematics of the
final body in the tree system, the kinematic relations of all
other bodies downstream of that one must be created first.
This formulation reduces the number of matrix multiplica-
tions needed to model the entire system.

Modal Analysis

Blade and wing modal analysis is used to reduce the over-
all degrees of freedom of the system. Full mass and stiff-
ness matrices for each wing or blade are only formulated
once at the beginning of execution. The mass matrix is ob-
tained from a central difference approximation to perturba-
tions of the second time derivative of the nodal degrees of
freedom. The stiffness matrix comes from a central differ-
ence approximation to perturbations in displacement of the
nodal degrees of freedom. The matrices are approximations
because the beam equations are generally nonlinear. The
linear matrices can be written as:

[M] n̈+[K]n = 0 (8)

The blade modes are obtained in a vacuum, i.e. aerody-
namic loads are not included. There are a total of 6NE + 5
nodal degrees of freedom, where NE is the total number
of finite elements used in the formulation. The nodal de-
grees of freedom for each finite element are displacement
and slope for flap (w) and lag (v) motions at the inboard and
outboard end of each element. Torsion (φ ) has degrees of
freedom at the inboard and outboard end, as well as at the
center of each element, as shown in Fig. 5.
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Eigen analysis produces a matrix of mode shapes, [V],
which consists of columns of eigenvectors, along with a
vector of the square of the corresponding modal frequen-
cies,

{
ω2
}

, such that:

−ω
2
i [M]{vi}+[K]{vi}= 0 (9)

Here, vi is the eigenvector associated with mode i. Each col-
umn in the matrix of mode shapes gives the modal displace-
ments for the mode associated with that column. Four fi-
nite elements are used for the formulation of each blade and
wing. The maximum number of modes retained is therefore
29, however, only the two lowest frequency modes are re-
tained for each wing and blade since the dominant response
of the system comes from the low frequency modes. Higher
frequency modes do little to alter the dynamics in the fre-
quency range of interest. For example, the third wing mode
occurs around 40 rad/sec and is not retained in the current
analysis. Modal reduction reduces the overall degrees of
freedom of the system. The total nodal displacement can
be written as the product of the columns of the [V] matrix
associated with retained modal displacements q:

n = [V]q (10)

Throughout the remainder of execution, blade and wing
motion are limited to summed contributions from the
retained modes. This summed contribution goes into
determining the displacement and angles that flexibility
add to the kinematics of the multibody system, given in
Eqn. (A.10).

The distributed forces on each finite element are inte-
grated across the element to produce nodal loads. The nodal
loads are reduced to modal loads using the transpose of
the transformations that produces nodal degrees of freedom
from modal degrees of freedom. For example,

FI = [V]T pI (11)

Here, FI are the modal inertial load and pI are nodal loads.

The sum of the modal inertial, aerodynamic, and struc-
tural loads produce the equilibrium equation for that mode.

Artificial damping was added to the wing equations to pro-
duce stable modes with 4% damping ratios. The majority
of the flexible bodies in the system are connected to other
bodies which also produce forces and moments at the con-
nection point to the current body. These external forces and
moments are also reduced to modal forcing. In equilibrium,
the blade modal equations can be written as:

FI +FA +FS +FD +FE = 0 (12)

Trim

The trim solution defines an equilibrium point for the air-
craft for a given flight condition, and is produced by the so-
lutions of algebraic equations. The aircraft can be trimmed
for forward speeds, as well as steady coordinated climbing
turns. The equations of motion for the aircraft are written
as first order ordinary differential equations, and the trim
conditions and unknowns must be able to uniquely define
all the states of the system. The following are the trim con-
ditions: V , total aircraft velocity; ψ̇ , turn rate; and γ , flight
path angle. Except for parts of the XV-15 validation, the
work presented here consists entirely of the hover condi-
tion.

The rigid body trim unknowns are as follows:{
δlat δlon δcol δped α β φ θ

}
(13)

The first four unknowns are the pilot stick inputs. α and
β are angles of attack and sideslip of the fuselage, respec-
tively. φ and θ are roll and pitch Euler angles. The trim
conditions and unknowns produce an overall equilibrium in
aircraft forces and moments. They also ensure turn coordi-
nation and adherence to the flight path angle equation. The
rigid body equations are integrated around the azimuth to
ensure a trim state for a full rotor revolution.

The blade equations of motion are second order in time.
To convert the differential blade equations into algebraic
equations, blade periodicity is assumed around the azimuth.
Each blade mode is allowed to have a constant component
of motion around the azimuth as well as three harmonics.
The trimmed modal equations have the following form:

q = q0 +
Nh

∑
i=1

(qic cos iψ +q1s sin iψ) (14)

The above equation can be easily differentiated twice to
produce the needed modal velocities and accelerations. The
unknowns in the trim algebraic solution are the steady state
and harmonic coefficients. For the current simulations,
Nh = 3 harmonics are retained, so a total of 7 unknowns
exist for each blade mode. The equilibrium equations for
the blades are also integrated around the azimuth. They
are based on the Galerkin method of residuals. Generally
Eqn. (12) is not equal to 0, but rather a residual that is
dependent on the current azimuth position, res(ψ). From



Eqn. (14), there are 2Nh + 1 unknowns, so 2Nh + 1 trim
equations are needed. The trim equations for the blade
modal unknowns aim to minimize this residual and its har-
monics as follow.∫ 2π

0
res(ψ) dψ = 0∫ 2π

0
res(ψ)cos iψ dψ = 0 i = 1, . . . ,Nh (15)∫ 2π

0
res(ψ)sin iψ dψ = 0 i = 1, . . . ,Nh

The flexible wing equations of motion are of the same
form as the blade. In trim, the wings are only allowed con-
stant deflections, so the trim unknowns become:

q = q0 (16)

Since there is only one unknown per wing mode, each wing
mode only has one associated trim equation.

Dynamic inflow trim equations and unknowns are also
used in the analysis. Each rotor has a constant coefficient
and first harmonic sine and cosine inflow distribution. The
dynamic inflow equations are written in first order ODE
form. In trim the time derivative of the inflow equations
must be zero when integrated around the azimuth.

Linearization

The full aircraft nonlinear equations are written in first order
form. Linearization is obtained from taking a Fourier se-
ries approximation to the nonlinear equations of motion and
truncating the approximation at the first derivative, leav-
ing a steady state term and a linear derivative term. The
steady state term describes the trim condition and is gener-
ally used as the basis for the perturbations. A central differ-
ence scheme is used for the first derivative. Perturbations
of the time derivative of the state vector produce a mass
matrix which is dependent on the current azimuth, E (ψ).
Perturbations to the state vector produce a matrix of stabil-
ity derivatives, F (ψ). Perturbations to the control vector
produce control derivatives, G(ψ), such that:

E (ψ) ẋ(ψ) = F (ψ)x(ψ)+G(ψ)u(ψ) (17)

or

ẋ(ψ) = E (ψ)−1 F (ψ)︸ ︷︷ ︸
A(ψ)

x(ψ)+E (ψ)−1 G(ψ)︸ ︷︷ ︸
B(ψ)

u(ψ) (18)

The A(ψ) and B(ψ) matrices are functions of azimuth, and
generally the average of these is taken around a rotor revolu-
tion to obtain a constant coefficient system. These averaged
A and B matrices are used for validation and the subsequent
analyses presented in this paper.

Free Flight Response

Starting from a set of initial conditions, the equations of mo-
tion can be integrated in time to form a free flight response
of the aircraft. Generally a trimmed solution is used as the
set of initial conditions and step or impulse commands can
be given for stability analysis in the time domain.

Validation with XV-15

An important first step was to validate the model against
flight data for a known configuration to test its fidelity. The
model was validated against the XV-15 before being applied
to the LCTR. The XV-15 was chosen because simulation in-
put data, such as aerodynamic tables, and flight responses
that can be used for validation were readily available in the
public domain. XV-15 input data were obtained from the
GTRSIM manual and sample code inputs. Blade structural
data was not a part of the GTRSIM simulations and was de-
rived from a UH-60 blade input block. Only the first struc-
tural mode was retained for the blade, which was a rigid
body flapping mode, meaning the blade structure contribu-
tions to the blade equations of motion remained unexcited.

Hover Figure 6 shows a frequency response comparison
of the XV-15 roll rate to lateral stick inputs in hover. The
curve labeled “HeliUM” represents the model developed in
the present study. The curve marked “ID Model” comes
from a state space model derived from flight test data using
system identification. The “GTRSIM” model represents a
state space model derived from the GTRSIM software. Sta-
bility and control derivatives for both comparison curves
can be found in Ref. 16. “Flight Data” curves are derived
from frequency sweeps performed during test flights. The
roll response is measured in rad/sec, while the input is de-
grees of aileron deflection. Control surface deflections are
downstream of the stability and control augmentation sys-
tems and are geared with swashplate inputs. They are used
to measure the input for the bare airframe responses. The
roll response curve is dominated by the low frequency lat-
eral phugoid mode. Overall, there is good agreement be-
tween the HeliUM curve and the GTRSIM and ID mod-
els. While the unstable phugoid frequency agrees well with
flight test data, there is a 5 dB over prediction of the roll
response by the models as compared to flight data.
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Fig. 6. XV-15 hover roll rate response to lateral stick
inputs.

The hover yaw rate response is shown in Fig. 7.
Here, the units are rad/sec of yaw rate for input degrees
of rudder deflection, which is geared with antisymmetric
longitudinal swashplate inputs. The yaw response is es-
sentially a first order system that has a pole at low fre-
quency, giving a constant -20 db/dec slope at the frequen-
cies shown in the figure. The offset in the HeliUM mag-
nitude response above 0.6 rad/sec can be attributed to the
modeling of the hub. The XV-15 has a gimbaled hub,
while the present model has an articulated hub, with the
gimbal behavior approximated through flapping springs.
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Fig. 7. XV-15 hover yaw rate response to pedal inputs.
Figure 8 shows the pitch rate response to longitudinal

inputs. Here the curve marked “TF Model” comes from
low order transfer functions found in Ref. 15. Flight data
were not available for the pitch or heave responses, but the
transfer function models were fit to flight data. The pitch

response is measured in rad/sec and the input is degrees
of elevator deflection, which are geared with symmetric
longitudinal cyclic swashplate commands. Much like the
roll response, this curve is dominated by the low frequency
phugoid pole. There is a difference in the low frequency
slope of the curves; the TF Model predicts a 20 dB/dec
slope, while the HeliUM model predicts a 40 dB/dec slope.
This difference is again attributed to the modeling of the
hub. The pitch response of the rotorcraft is a product of lon-
gitudinal flapping of each rotor and variations in hub type
should produce different results. This is not seen in the roll
response, Fig. 6 or heave repsonse, Fig. 9, because these
responses come from collective and rotor coning.
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Fig. 8. XV-15 hover pitch rate response to longitudinal
stick inputs.

Figure 9 shows the heave response to collective stick in-
puts. The HeliUM curves match well with the low order
transfer function model. The slight difference in magnitude
plots represents an error of less than 5%. The portions of the
magnitude and phase curves between 1 and 10 rad/sec show
a consistent heave response to commanded inputs at these
frequencies. The transfer function model has a flat magni-
tude response because the effects of dynamic inflow are not
included, although they are present in the HeliUM model.
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Fig. 9. XV-15 hover heave response to collective stick
inputs.

Cruise: In cruise mode, the XV-15 behaves much like a
fixed wing aircraft. Through transition to cruise, rotor sym-
metric and antisymmetric lateral cyclic controls are dialed
back based on nacelle angle. At the cruise nacelle angle,
the pilot lacks lateral cyclic control, and controls the roll of
the aircraft through the ailerons. The cruise speed for the
following plots is 180 knots.

Figure 10 shows the roll rate response to lateral
stick commands. The units are the same as the hover
configuration. The roll response is dominated by the
Dutch roll mode at around 1.5 rad/sec, with a cor-
responding magnitude drop and phase decrease. The
HeliUM model shows a slightly more damped Dutch
roll oscillation, but the overall response matches well.
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Fig. 10. XV-15 cruise roll rate response to lateral stick
inputs.

The yaw response, Fig. 11, shows the yaw rate re-
sponse in rad/sec to measured rudder inputs in de-
grees. The lightly damped zero at 0.45 rad/sec is fol-
lowed by the Dutch roll peak, again at around 1.5
rad/sec. The damping of the zero for the HeliUM
model is predicted slightly unstable, but overall the
curve fits well with the other models and flight data.
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Fig. 11. XV-15 cruise yaw rate response to pedal inputs.
The pitch response in Fig. 12 shows the pitch response

in rad/sec to measured elevator inputs in degrees. The
transfer function model is a low order fit of the phys-
ical response and includes the lightly damped short pe-
riod mode. The short period mode occurs at a slightly
lower frequency in the transfer function model than it does
in the HeliUM case. The gain and phase offset at low
frequency can be attributed to phugoid dynamics which



are not included in the low order transfer function model.
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Fig. 12. XV-15 cruise pitch rate response to longitudinal
stick inputs.

Overall, there is good agreement between the XV-15 He-
liUM model, prior models, and flight data, validating the
modeling approach taken.

LCTR Dynamics

The LCTR dynamics are next validated against CAM-
RAD. These models are then reduced to include only lat-
eral/directional and wing bending states. The reduced or-
der flexible wing models are then decoupled into rigid body
portions and flexible wing portions. These decoupled mod-
els show the validity of deriving rigid body only models
and adding structural flexibility to those models in parallel.
Model following control laws are then developed for the full
order and flexible wing models. It is shown that the flexi-
ble wing model has reduced stability and degraded handling
qualities as compared to the rigid body aircraft. Notch fil-
ters are added to suppress the flexible wing contribution in
the outputs and handling qualities are restored.

Full Order Validation

Full order LCTR models derived from HeliUM are com-
pared to full order rigid body CAMRAD models. The
models contained rotor, inflow, and rigid body states. The
majority of the inputs for HeliUM come directly from the
CAMRAD model. The HeliUM model contains two rotor
modes; flap and lag.

Wing flexibility was also included in the validation
(Figs.15-18) as a separate curve since the CAMRAD lin-
ear model did not include wing flexibility. The wing struc-
tural frequencies were derived to match those of Ref. 4, and

structural damping was set to 4 %. Wing beamwise bend-
ing stiffness was modified until the antisymmetric beam-
wise bending mode occurred at approximately 16.5 rad/sec.
Likewise, chordwise stiffness was modified until a fre-
quency of 14.5 rad/sec was reached for the antisymmet-
ric chordwise bending mode. Since the pylon is displaced
vertically from the elastic axis, the chordwise mode con-
tains heavily coupled chordwise and torsion motion. Mode
shapes for the LCTR are shown in Figs. 13 and 14. Each
mode has a symmetric and antisymmetric component.The
wing modes show up as second order poles and are accom-
panied by decreases in phase. The validation results look at
both the longitudinal as well as lateral/direction axes.

Fig. 13. LCTR symmetric and antisymmetric beamwise
bending mode shapes



Fig. 14. LCTR symmetric and antisymmetric chordwise
bending mode shapes

The LCTR modal freqencies could also be estimated if
the XV-15 structural modes are known. Froude scaling sug-
gests that the structural frequencies of the aircraft will re-
duce with the square root of the vehicle size ratio (Ref. 17).
The LCTR has a rotor radius of 32.5 feet, and the XV-15
rotor had a 12.5 foot radius, giving a ratio of 0.38. The first
symmetric structural mode, derived from XV-15 flight test
results, occurs at 20.7 rad/sec, giving an estimate of 12.8
rad/sec for the LCTR. The first symmetric coupled rigid-
body/wing mode from the model occurs at 9.9 rad/sec. Us-
ing Froude scaling alone would suggest that including the
structural frequencies of the LCTR would be important for
flight controls applications. The scaling isn’t exact, but pro-
vides a good rule of thumb estimation for mode scaling.

Figures 15 through 18 compare the CAMRAD and He-
liUM models. Overall there is good agreement in all axes
for the rigid wing HeliUM curves and the CAMRAD curves
up to about 30 rad/sec. The rigid wing curves don’t in-
clude any structural flexibility, while the flex wing curves
have a rigid fuselage with flexible wings. The output mag-
nitudes are expressed in deg/sec or ft/sec. Inputs are inches
of stick deflection. Rotor modes also match well. The first
flap mode from HeliUM is at 1.44/rev and for CAMRAD is
at 1.43/rev. The models all match well at low frequency and
diverge at the frequency of the wing mode, as expected, be-
cause flexible wing modes are highly coupled to rigid body
states.

The roll response, Fig. 15, is dominated by the lateral
phugoid at low frequency. When comparing the CAM-
RAD and rigid wing HeliUM curves, there are offsets only
at the higher frequencies corresponding to rotor dynamics.
The large peak in the magnitude in the flexible wing re-
sponse around 16 rad/sec is the wing antisymmetric beam
mode. It will be shown that this mode corresponds to the
anti-symmetric beamwise bending mode mentioned earlier.
At frequencies above the wing mode, the flexible wing He-
liUM curve has characteristics similar to the other curves.
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Fig. 15. LCTR hover roll rate response to lateral stick
inputs.

The yaw response, Fig. 16, is similar to that of the XV-
15, Fig. 7, and shows a fairly constant -20 dB/dec slope
in the magnitude plot. The low frequency first order yaw
mode causes the slope change in the magnitude plot and
associated 90 deg phase decrease. As with the roll case,
and with the rest of the plots, rotor dynamics start to have
a dominant effect at around 30 rad/sec. The wing struc-
tural peak, at around 14 rad/sec, is associated with the anti-
symmetric chordwise wing bending mode as indicated ear-
lier. This is a coupled mode because of the nacelle’s in-
ertia. The nacelle acts as a large mass above the elastic
axis of the wing. It does not effect beamwise bending but
creates large torsion moments during chordwise bending.

LCTR Model Comparisons (r/δrud)"
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Fig. 16. LCTR hover yaw rate response to pedal inputs.
The HeliUM model was not able to capture the low fre-

quency XV-15 pitch response well (Fig. 8), and this was
attributed to the rotor hub modeling. The LCTR has a hin-



geless rotor system which forces the blades to behave as
cantilevered beams. HeliUM models this type of blade
boundary condition and the response now matches well
with CAMRAD results (Fig. 17). The wing flexibility con-
tribution here comes from coupled symmetric chordwise
beam bending and torsional displacements. This mode is
the symmetric counterpart to the wing mode in the yaw re-
sponse.
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Fig. 17. LCTR hover pitch rate response to longitudinal
stick inputs.

The vertical velocity response of the rigid body HeliUM
case matches well with the CAMRAD plot, and is shown
in Fig. 18. The wing bending mode excited here is a sym-
metric beamwise bending mode, the counterpart to the an-
tisymmetric mode in the roll response.
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Fig. 18. LCTR hover vertical velocity to collective in-
puts.

Reduced Order Models

Reduced order models offer the ability to evaluate the over-
all aircraft response in terms of conventional stability and
control derivatives. In the reduced order models shown,
only lateral/directional rigid body states are retained along
with the relevant wing structural modes if wing flexibil-
ity is included. All the models used come from HeliUM.
Table 2 summarizes the states kept and the nomenclature
used for the reduced models. Longitudinal rigid body, ro-
tor, inflow, and non-relevant wing states are reduced out
using a quasi-static reduction. The “Rigid Wing” model
contains 47 states, while the “Lat/Dir Rigid Wing” contains
only 5 total states (including yaw angle, ψ) . The “Flex
Wing” model contains 55 states, all the states of the Rigid
Wing model and an additional 8 wing structural states. The
“Lat/Dir Flex Wing” contains 9 states, including 5 rigid
body states and 4 states associated with two antisymmet-
ric wing bending modes. The lateral axis excites, almost
exclusively, the antisymmetric beamwise bending mode,
while the directional axis excites the antisymmetric chord-
wise/torsion mode. Figures 19 and 20 show reduced order
models. The full order curves are retained for comparison.

The Lat/Dir Rigid Wing roll response matches well with
the full order Rigid Wing model, which also includes ro-
tor dynamics, at low frequency, meaning the system is well
decoupled from longitudinal dynamics, as expected for a
tiltrotor in hover. Divergence occurs in the magnitude plot
around 8 rad/sec, well within the frequency range of inter-
est for control systems design. Rotor modes are impor-
tant even at this low frequency and using a reduced or-
der model might lead to an inaccurate stability and han-
dling qualities analysis. The Lat/Dir Rigid Wing phase re-
sponse diverges from the full order response at higher fre-
quency than the magnitude plot. The wing mode excited
in the Lat/Dir Flex Wing case is the antisymmetric beam-
wise bending mode. The other wing modes have a negligi-
ble impact on the roll response. The included wing bend-
ing mode captures well the dynamics around the frequency
of the wing mode. There are slight gain and phase differ-
ences around the frequency range of the mode. These dif-
ferences could be attributed to effects from the other flexible
wing modes, but clearly, the dominant response is captured.



Longitudinal Lateral/Directional Inflow Rotor Symmetric Antisymmetric
Rigid Body Rigid Body Structural Structural

Rigid Wing
√ √ √ √

Flex Wing
√ √ √ √ √ √

Lat/Dir Rigid Wing
√

Lat/Dir Flex Wing
√ √

Table 2. Reduced order model nomenclature
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Fig. 19. LCTR reduced order hover roll response com-
parisons with full order models

The Lat/Dir Rigid wing yaw response matches well at
low frequency in the magnitude plot. Pedal inputs pro-
duce differential longitudinal cyclic commands to the ro-
tor. The tip path plane must realign in order to produce
differential force and thus yaw moments. This realign-
ment produces a time delay, and thus the phase diverges
at lower frequencies than the roll response since the ro-
tor responds to lateral stick commands through collective
inputs which achieve a response from the system much
faster than cyclic inputs. The phase difference in the rigid
wing reduced model could be accounted for with a time de-
lay. The time delay is approximately 0.04 seconds. For
the LCTR rotor with a flap frequency of 1.44/rev, a 1/rev
input leads to a delay of approximately 0.04 seconds be-
fore realignment of the tip path plane, which matches the
time delay from the phase offset. Rotor dynamics there-
fore play a large role in the yaw response. Time delays
could be used to improve the phase difference. Magni-
tude plots, however, are not affected by time delays, so the
variations between the reduced order and full order mag-
nitude plots would still produce significant error in flight
control applications. The Lat/Dir Flex Wing case contains
the antisymmetric chordwise/torsion bending mode. This
is the only mode significantly excited by this response.
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Fig. 20. LCTR reduced order hover yaw response com-
parisons with full order models

LCTR Structural Coupling Analysis

In general, the flexible wing modes are highly coupled with
rigid body motion of the aircraft. As seen in Figs 15 through
18, each rigid body response has a flexible wing mode as-
sociated with it. Symmetric wing bending modes couple
with longitudinal motion of the aircraft, while antisymmet-
ric modes tend to couple with lateral/directional motion.
The reduced order model from Fig. 19 still captures the
structural response with only the antisymmetric beamwise
bending mode included. The reduced order model from
Fig. 20 retains the response if only the antisymmetric chord-
wise bending mode is included. It has been shown that the
reduced order models may not be accurate for flight control
design. Reduced order models are useful for understanding
effects of structural flexibility on broader aircraft metrics
such as stability and control derivatives. This section de-
scribes the effect of decoupling the structural modes from
the rigid body. Regaining the fully coupled response is then
attempted by augmenting the output matrix to include struc-
tural flexibility.



The general states space structure is.

{ẋ}= [A]{x}+[B]{u} (19)
{y}= [C]{x}+[D]{u}

The state vector can be reorganized into parts containing
rigid body terms and parts containing structural flexibility
terms.

{x}=
{

xrb
xstr

}
(20)

A reduced order model with wing flexibility can be decom-
posed into blocks that follow the nomenclature in Refer-
ences 17, 19:

A =



Rigid−Body
Stability

Derivatives
−−−−−−

|
|
|
+

Aeroelastic
Coupling

Terms
−−−−−−

Rigid−Body
Coupling

Terms

|
|
|

Structural
Flexibility

Modes


(21)

B =



Rigid−Body
Control

Derivatives
−−−−−−

Structural
Mode Control

Derivatives


(22)

If starting from a rigid body model, to implement a
fully decoupled system, structural dynamics could be added
to the rigid body equations in block diagonal form. The
wing contribution to the roll response is added to the model
through the output. If the rigid body roll response is imple-
mented as a SISO system, the transfer function could have
the following form (Ref. 17).

p
δlat

= Grb(s)+Gstr(s) (23)

p
δlat

=
Lδlat

s−Lp
+

η1δlat
s

s2 +2ζ1ω1s+ω2
1
+ . . .

+
ηnδlat

s

s2 +2ζnωns+ω2
n

(24)

In block form, this is as the same as adding structural dy-
namics in parallel as shown in Fig. 21 and suggested in
Ref. 18.

δlat	



Grb	



Gstr	


p	

+	



+	



Fig. 21. Parallel implementation of structural and rigid
body dynamics

A first attempt to decouple the system from one that has
the form of Eqn. (21) to one like Eqns. (23) and (24), can
be done by zeroing out the off diagonal components. How-
ever, Aeroelastic Coupling Terms couple structural flexibil-
ity back into the rigid body equations of motion. If the
Aeroelastic Coupling Terms are forced to be zero, there will
be no structural flexibility effect to the rigid body states, so
the contribution from flexibility must be added to the out-
put matrix. Also, the Rigid Body Coupling Terms couple
rigid body motion back into the structural mode equations
and give the terms in Eqn. (24) an additoinal s0 term in the
partial fraction expansion (Ref. 17).

If there is enough separation between the frequency of
the highest rigid body mode and the structural mode of in-
terest,

ωstr

ωrb
≥ 5, (25)

the aeroelastic coupling contributions to rigid-body mo-
tion can be absorbed into the Rigid-Body Stability Deriva-
tives through a quasi-static reduction of the wing structural
modes (Ref. 17). The reduction of the wing structural states
from the Lat/Dir Flex Wing model into the rigid-body states
produces a static-elastic model with only rigid-body states.
The differences between the rigid-body stability derivatives
from the Lat/Dir Rigid Wing and the static-elastic deriva-
tives are know as flex factors. Table 3 gives the nomencla-
ture of the models used in this analysis.

Roll and yaw responses to stick inputs for Lat/Dir Rigid
Wing, Static-Elastic and Lat/Dir Flex Wing models are
shown in Figs. 22 and 23. The Static-Elastic model is the
Lat/Dir Flex Wing model with structural modes reduced out
and thus these models match very well with each other in
both axes at low frequency. These two models are expected
to match well because the inequality of Eqn. (25) holds.
Both models predict the flex wing response well up to ωstr/3.
Table 4 contains the eigenvalues for the lateral/directional
model and shows that the frequency separation is greater
than 10. The table contains both the antisymmetric beam-
wise bending mode which is excited in the roll response and
antisymmetric chordwise/torsional bending mode which is
excited in the yaw response.



Rigid-Body Flex Aeroelastic Rigid-Body Structural
Stability Derivatives Factors Coupling Terms Coupling Terms Flexibility Mode

Lat/Dir Rigid Wing
√

Lat/Dir Flex Wing
√ √ √ √

Static-Elastic
√ √

Static-Elastic with RBC
√ √ √ √

Decoupled Flexibility
√ √ √

Table 3. Decoupling analysis model nomenclature

Eigenvalue ζ ωn (rad/sec) Mode
-1.65e-01 1.00e+00 1.65e-01 Spiral

8.36e-02 + 4.68e-01i -1.76e-01 4.76e-01 Lateral
8.36e-02 - 4.68e-01i -1.76e-01 4.76e-01 Phugoid

-1.19e+00 1.00e+00 1.19e+00 Roll
-5.67e-01 + 1.45e+01i 3.91e-02 1.45e+01 Antisymmetric Chordwise/
-5.67e-01 - 1.45e+01i 3.91e-02 1.45e+01 Torsion Bending
-6.22e-01 + 1.65e+01i 3.78e-02 1.65e+01 Antisymmetric Beamwise
-6.22e-01 - 1.65e+01i 3.78e-02 1.65e+01 Bending

Table 4. Eigenvalues for the Lat/Dir Flex Wing LCTR model
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Fig. 22. Model reduction comparisons for a roll re-
sponse to lateral stick inputs

LCTR Static-Elastic Model Comparisons (r/δrud)"
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Fig. 23. Model reduction comparisons for a yaw re-
sponse to pedal inputs

Flex factors quantify the change in the Static-Elastic
model as compared to the original Lat/Dir Rigid model and
show the influence of structural flexibility on the rigid-body
stability derivatives. Flex factors for key stability and con-
trol derivatives are given in Table 5.



Rigid-Body Static-Elastic Flex Factor
Yv -0.0728 -0.0435 0.5968
Lp -0.9661 -0.9572 0.9908
Nv 0.0009 0.0007 0.7970
Nr -0.1819 -0.1874 1.0304

Lδlat
-0.2250 -0.2219 0.9864

Nδlat
0.0249 0.0259 1.0389

Lδped
-0.0427 -0.0459 1.0748

Nδped
0.0337 0.0336 0.9982

Table 5. Comparison of Lat/Dir Rigid Wing and Static-
Elastic stability and control derivatives

The flex factors for stability derivatives Lp and Nr, as
well as control derivatives Lδlat

and Nδrud
, are nearly one.

This could have been inferred from the Figs. 22 and 23
because the Static-Elastic response matches so well with
the Lat/Dir Rigid Wing response. The difference in the Yv
stability derivative could account for the small difference in
the lateral phugoid peak between the Lat/Dir Rigid Wing
and Static-Elastic roll responses as Yv is a component of the
hovering cubic. The hovering cubic does not show up in a
first order yaw response, so this stability derivative does not
have a large impact on the yaw response.

Including flex factors in the Rigid-Body Stability
Derivatives allows for the zeroing out of the Aeroelastic
Coupling Terms. The Rigid-Body Coupling Terms (RBC)
are still retained, so the equations are still not fully decou-
pled. The damping and natural frequency of the structural
mode is set to the damping and natural frequency of the
mode in the fully coupled system. This is done because
any system rewritten in block diagonal form must retain the
eigenvalues of the original system. With the exclusion of
the Aeroelastic Coupling Terms, in order to add the contri-
bution to wing flexibility in the overall response, the out-
put matrix must be augmented to include wing structural
modes. The contribution to the roll response of the output
is taken from the wing rate state. The roll response output
will now be:

p = p′+Φp1q̇str1 (26)

Here, p′ is the roll response from the static-elastic model,
Φp1 is the contribution to roll from the first structural mode
and is called an influence coefficient, and q̇str1 is the rate
component from the first structural mode. In the current
formulation, the influence coefficient can be calculated as
the ratio of aeroelastic coupling to the natural mode of the
structural frequency (Ref. 17).

Φp1 =
Lqstr1

ω2
str1

(27)

Figures 24 and 25 show the roll and yaw response of
the aircraft to lateral stick and pedal inputs, respectively.
The Lat/Dir Flex Wing curves retain the rigid-body lat-
eral/directional and structural states intact. The “Static-

Elastic with RBC” curves reduce out the Aeroelastic Cou-
pling Terms and use the static-elastic model, as well as the
output matrix, as described above, to retain the effects of
wing bending.
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Fig. 24. Model comparisons for roll response to lateral
stick inputs.

Both the roll and yaw responses show very good agree-
ment with the Lat/Dir Flex Wing models up to the wing
structural frequencies. Above the wing structural frequen-
cies, there are some small discrepancies, particularly in the
phase plots.
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Fig. 25. Model comparisons for yaw response to pedal
inputs.

The final step in decoupling the system is to remove the
Rigid-Body Coupling Terms from the Static-Elastic with
RBC model described above. These terms couple the rigid-
body motion to the wing (Eqn. (21)). The fully decoupled
roll and yaw responses, of the form of Eqn. (24), are plotted
against the fully coupled response in Figures 26 and 27. The
Rigid-Body Coupling Terms will have a negligible effect on



the dynamics if the following inequality holds (Ref. 17):∣∣∣∣ω1

z1

∣∣∣∣≥ 5 (28)

Here z1 is the first partial fraction zero of a system that in-
cludes Rigid-Body Coupling Terms, but otherwise is of the
same form as shown in Eq. 24.

p
δlat

=
Lδlat

s−Lp
+

η10δlat
+η11δlat

s

s2 +2ζ1ω1s+ω2
1
+ . . .

+
ηn0δlat

+ηn1δlat
s

s2 +2ζnωns+ω2
n

(29)

with

zn =
ηn0δlat

ηn1δlat

(30)

This first partial-fraction zero of Eq. 29 can be approxi-
mated as (Ref. 17):

z1 ∼=
Lδlat η1p

η1δlat

(31)

Here, η1p is the rigid-body coupling term that couples the
roll response to the wing mode and η1δlat

is the control
derivative for the wing mode. For the yaw response, the
approximate zero using Eqn. (31) is z1approx = 0.0246. The
exact zero is z1exact = 0.025. With the wing structural mode
occurring at ωη1 = 14.5 rad/sec, the Rigid-Body Coupling
Terms can be safely ignored in the yaw response. The roll
response has a z1approx = 1.65 and z1exact = 1.81 . The wing
structural mode occurs at ωη1 = 16.5 rad/sec, therefore the
Rigid-Body Coupling Terms can also be ignored in the roll
response.
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Fig. 26. Coupled flexible wing and decoupled model
comparisons for roll response to lateral stick inputs.

The decoupled roll response in Fig. 26 shows good
agreement in magnitude. The phase curve shows good

agreement up to the structural frequency, but diverges af-
terwards. The most significant of the rigid body coupling
stability derivatives is the roll effect on wing state, η1p. Re-
placing this term would restore the roll response seen in
Fig. 24. A small phase lead of 10 msec is added as the final
curve to improve the phase response at higher frequencies.
The yaw response matches well over the entire frequency
range in magnitude and phase, and a phase lead is not nec-
essary to improve the correlation to the Lat/Dir Flex Wing
model. For this response, the effects of rigid body coupling
are insignificant and the η1r stability derivative is small.
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Fig. 27. Coupled flexible wing and decoupled model
comparisons for yaw response to pedal inputs.

The results above show that even with a fully decoupled
flexible wing response, i.e. Fig 21, accurate dynamics of
the aircraft can be reproduced. From a system identifica-
tion and flight dynamics simulation standpoint, this means
that a large model with many unknowns is not necessary.
Rigid body stability and control derivatives, a few number
of structural coefficients, and time delays are capable of re-
producing the response.

LCTR Control Design

The final section of this paper discusses the control design
for the flexible wing LCTR using The Control Designer’s
Unified Interface (CONDUIT R©) software tool (Ref. 20).
The same control architecture is used as described in Refs.
7–9 and is shown in Fig. 29. The model following con-
troller is designed for all axes and thus also contains longi-
tudinal dynamics. Control laws were developed for the full
order rigid and flexible wing HeliUM models, labeled Rigid
Wing and Flex Wing in previous sections of this paper. A
third set of control laws used the same Flex Wing model,
but also included notch filters at the outputs and feedfor-
ward loop to remove the wing flexibility effects from the
dynamics of the aircraft. Only the model and use of notch
filters was substituted in each case, while the rest of the



controller architecture remained unchanged. The command
model gives an attitude command attitude hold (ACAH) re-
sponse type in the roll and pitch axes and rate command in
the yaw axis. The inverse plant contains first order fits of
the short-term aircraft on-axis response between 1 and 10
rad/sec. The time delay block is introduced to avoid over-
driving actuators and other higher order dynamics that are
not modeled by the first order inverse block. The time de-
lays are equal to the system response delays to command
inputs. The actuator block introduces limits on actuators
positions and rates and allows for evaluation of PIO ten-
dencies.

Notch filters were fit on the outputs of the model to re-
move components of the vehicle response caused by excita-
tion of the wing structural modes. They were added to the
roll, pitch, and yaw feedbacks and were tuned to the wing
structural mode excited by each response. Notch filters
were also added at the feedforward path. This prevented
the command model from exciting a wing structural mode.
These notch filters were added to the commanded stick in-
puts, and each stick displacement’s notch filter was tuned
to the wing mode that was excited by that command. The
notch filters used are shown in Fig. 28. The damping of the
numerator and denominator of each filter were hand tuned.
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Fig. 28. Notch filters for the lateral, directional, and lon-
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The optimization focused on the lateral/directional axis,
though a longitudinal stability margin specification was
used to help ensure stable longitudinal modes at low fre-
quency. Table 6 presents the specifications used in the
CONDUIT R© optimization.

Vertical acceleration at the CG was also fed back to
help stabilize a coupled heave/wing symmetric beamwise
bending mode. The feedback attempts to directly con-
trol this structural mode. It was found that a positive
(i.e. destabilizing) feedback was beneficial at reducing
the higher frequency vertical accelerations caused by this
mode. The frequencies and damping ratios of the wing

structural modes were set to predetermined values, but cou-
pled rigid-body/wing modes tend to have different damping
ratios and frequencies. Positive displacements in vertical
body states would normally elicit an increase in collective
control to offset the downward motion of the aircraft. With
flexible wings an increase in collective exacerbates the wing
bending, exciting the wing structural mode, so a decrease in
collective with +ẇ is beneficial. At low frequency, vertical
velocity and integral position feedback give the dominant
response.

Figures 30 and 31 show the broken loop responses of
the controller. The loops were broken at the actuators. The
broken loop responses are used to calculate the stability
margins of the aircraft, given in Table 7, along with the
crossover frequencies. The control systems are designed to
have a broken loop crossover frequency of ωc = 2.7 rad/sec
in the lateral axis and ωc = 2.0 rad/sec in the yaw axis. The
desired crossover frequencies were not reached in the flexi-
ble wing design. A second crossing occurs in the magnitude
plot of the flexible wing directional response with no notch
filters and is due to a wing structural mode. The flexible
wing response does not produce Level 1 stability margins in
the roll or yaw axis. Both responses show the effect of the
notch filters at reducing magnitude near the structural fre-
quency of the wing. The notch filters, even with the added
phase delay, bring the stability margins back to Level 1 and
the crossover frequencies back to desired values.

Figures 32 and 33 show the Nichols plots for the broken
loop response. These figures make it apparent that the flex-
ible wing model without the notch filters is unacceptable.
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Constraint Spec Name Description Axis

Hard
EigLcG1 Eignevalues in L.H.P -
StbMgG1 Gain Phase Margin (6 dB, 45 deg)1 Pitch, Roll, Yaw
StbMgG2 Structural Gain Phase Margin (8 dB, 60 deg) Pitch, Roll, Yaw

Soft

ModFoG2 Model Following 2 Roll, Yaw
DstBwG1 Disturbance Rejection Bandwidth φ , ψ

DstPkG1 Disturbance Rejection Peak φ , ψ

CrsMnG2 Minimum Crossover Frequency3 Roll, Yaw
EigDpG1 Eigenvalue Damping (Below Piloted BW)4 -
EigDpG1 Eigenvalue Damping (Above Piloted BW)4 -
OlpOpG1 Open Loop Onset Point (Actuator Rate Limiting) Roll, Yaw
DmpTmG1 Time Domain Damping (Pilot Input) Roll
DmpTmG1 Time Domain Damping (Disturbance Input) φ

Summed Obj. CrsLnG1 Crossover Frequency Roll, Yaw
RmsAcG1 Actuator RMS Roll, Yaw

Check Only BnwAtH1 Bandwidth (Other MTEs, UVE > 1) Roll
BnwYaH2 Bandwidth (Other MTEs) Yaw

1 6dB, 45 deg. margins were not achievable for the Flex Wing model without notch filters.
2 Model following max frequency was reduced from 10 rad/sec to 4 rad/sec for both Flex Wing cases.
3 Crossover frequencies were reduced for the Flex Wing model without notch filters.
4 Damping requirements were reduced for the Flex Wing models.

Table 6. Control system optimization specifications
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Fig. 29. Generic model following control system architecture
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Fig. 31. Directional broken loop response
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Fig. 32. Lateral broken loop Nichols plot



Rigid Wing Flex Wing Flex Wing with Notch Filters
Lateral ωc [rad/sec] 2.7 2.2 2.7
Directional ωc [rad/sec] 2 1.5 2
Lateral PM [rad/sec] 58 35 61
Lateral GM [dB] 11 9.6 6.4
Directional PM [rad/sec] 58 28 46
Directional GM [dB] 14 5.5 6.7
Lateral ωBW [rad/sec] 2.5 3.7 3.2
Lateral τPD [sec] 0.08 0.2 0.2
Directional ωBW [rad/sec] 2.1 3.1 2
Directional τPD [sec] 0.072 0.2 0.22
ζBW [ND] 0.35 0.35 0.38
ζStruct [ND] 0.62 0.064 0.1
φ -DRB [rad/sec] 0.97 1.1 0.91
φ -DRP [dB] 3.5 6.3 2.9
ψ-DRB [rad/sec] 0.6 0.65 0.73
ψ-DRP [dB] 4.1 6 4.4

Table 7. Handling Qualities Comparison
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Fig. 33. Directional broken loop Nichols plot

Root locus plots for roll feedback are shown next in
Figs. 34, 35, and 36. These plots show the effect of wing
flexibility at reducing the allowable control system gains
before instability occurs. The rigid wing response, Fig. 34,
allows a high gain before a rotor mode becomes unstable,
and there is a large separation between the design gain used
in the Rigid Wing control laws and the instability.
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Fig. 34. Root locus plot for roll feedback on the rigid
wing model

The Flex Wing root locus plot, Fig. 35, gives a much
tighter allowance between the design gain and the gain
when the first mode becomes unstable, which is the wing
antisymmetric beamwise bending mode, as expected for a
roll rate feedback. The pilot, if acting as a gain, could easily
destabilize the wing bending mode.
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Fig. 35. Root locus plot for roll feedback on the flexible
wing model

The root locus plot for the Flex Wing model with a notch
filter is shown in Fig. 36. This figure shows the effect of the
notch filter zero at attracting the wing mode and preventing
it from becoming unstable. The notch filter does not add
damping to the wing mode, but does allow for higher gains
in the roll rate feedback before instability occurs. The first
mode to go unstable here is the pole of the notch filter, but
it does so at a much higher gain than if the notch filter was
not used, giving a higher gain separation, or gain margin,
than the flexible wing case without the notch filters.
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Fig. 36. Root locus plot for roll feedback on the flexible
wing model with notch filters

Figures 37 and 38, compare the closed loop roll atti-
tude and yaw rate responses for the various models. The
curves in the plots contain the optimized controllers for the
Rigid Wing model, the Flex Wing model, and the Flex Wing
model with notch filters added. Magnitudes are expressed

in radians for roll attitude commands and rad/sec for yaw
rate commands, while the inputs are inches of stick de-
flection. The yaw response without the notch filters has a
large peak around the wing antisymmetric mode frequency
(Fig. 38). The notch filter in the feedfoward path removes
the wing flexibility peaks at the expense of bandwidth re-
duction. The models all match well at low frequency with
differences occurring after 1 rad/sec in both axes.
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Fig. 37. Closed loop roll attitude command response to
pilot lateral stick inputs
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Fig. 38. Closed loop yaw rate command response to pilot
pedal inputs.

The higher bandwidth Level 1 region from ADS-33E
bandwidth specification in the yaw axis was found to be
objectionable to pilots due to the large CG offset of the pi-
lot station, so the roll and yaw attitude bandwidths for the
Rigid Wing LCTR were placed within the Level 1 regions
of both ADS-33E and the proposed LCTR boundaries from
Ref. 8, as shown in Figs. 39 and 40. This was done by
hand tuning the natural frequency of the second order roll



axis command model and the time constant of the first or-
der yaw axis model. These same command models were
held constant when used for the Flex Wing cases. This was
done to see the effect of the flexible wing and notch fil-
ters on bandwidth and phase delay. The phase delay of the
Rigid Wing model was not achievable in either of the Flex
Wing cases, Fig. 39 and 40, meaning a majority of the delay
comes from structural flexibility. The notch filters add more
phase delay and also reduce the bandwidth when compar-
ing the Flex Wing with Notch Filters to the Flex Wing case.
Level 1 handling qualities were achieved for all models in
the roll response for both the ADS-33 boundaries as well as
the proposed LCTR ones. Level 1 handling qualities were
not achievable for the ADS-33E boundaries in yaw for all
three models. The bandwidth reduction due to the notch fil-
ters places the Flex Wing with Notch Filters model in the
Level 2 region of both the ADS-33E boundaries as well as
the proposed LCTR boundaries. The Flex Wing case lies in
the Level 1 region of the ADS-33E boundaries, but is in the
Level 3 region of the proposed LCTR boundaries.
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Fig. 39. ADS-33 Roll Bandwidth specification for Hover,
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bandwidth (rad/sec)

P
h

a
s
e

 D
e

la
y
 (

s
e

c
)

Yaw Atttitude Bandwidth
All other MTEs

Level 3

Level 2

Level 1

Proposed LCTR
Level 1

Proposed LCTR
Level 2

Proposed LCTR
Level 3

 

 

Rigid Wing

Flex Wing

Flex Wing with Notch Filters

ADS-33E Boundaries

Proposed LCTR Boundaries

Fig. 40. ADS-33 Yaw Bandwidth specification for
Hover, all other MTEs

Time responses to piloted step commands are shown in
Figs. 41 and 42. Overall, there is good tracking of roll
commands. The yaw rate response shows the excitation of
wing modes which are not well damped because there is
no active structural damping. The yaw commands produce
oscillations of the wing antisymmetric wing mode. The
notch filters are able to reduce the oscillation and provide
better damped responses. These oscillations are not seen
in the roll attitude response because the command model
produces a more gradual response, while the yaw model is
more aggressive. The rise and settling times for all three
yaw responses match well. Again, using the notch filters in
the feedforward design was important so that piloted inputs
would not excite the wing structural modes, particularly in
the yaw axis.
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Fig. 41. Closed loop step roll attitude command to pilot
lateral stick
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Fig. 42. Closed loop step yaw rate command to pilot
pedal inputs

Disturbance rejection plots are shown in Figs. 43 and 44.
In the roll axis, the Flex Wing with Notch Filters model re-
gains the disturbance rejection properties of the Rigid Wing
model with both the bandwidth and peak response being re-
stored.
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Fig. 43. Roll axis disturbance rejection

The yaw axis disturbance rejection plot shows that the
Flex Wing with Notch Filters model has a higher distur-
bance rejection bandwidth than the flexible wing or rigid
wing models. The peak response for the Flex Wing is worse
than the other two.
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Fig. 44. Yaw axis disturbance rejection

Disturbance rejection properties of the models are com-
pared next in Figs. 45 and 46. Disturbances in roll attitude,
φd = 5 deg, and yaw attitude, ψd = 5 deg, were applied for
1 second. In the roll axis, the Flex Wing model has the high-
est disturbance magnitude peak, given in Table 7 and show
in Fig. 43, and thus has the largest response to disturbance
as seen in Fig. 45. All three responses in the yaw axis are
well damped and take around the same time to settle.

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

Time (sec)

R
o

ll 
A

tt
it
u

d
e

 (
d

e
g

)

Roll Attitude Disturbance Response

 

 

Roll Attitude Disturbance

Rigid Wing

Flex Wing

Flex Wing with Notch Filters

Fig. 45. Closed loop roll attitude response to a 1 second
disturbance in roll attitude
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Fig. 46. Closed loop yaw attitude response to a 1 second
disturbance in yaw attitude

Discussion

Level 1 stability and handling qualities, with the exception
of yaw axis piloted bandwidth, were attained for the Flex
Wing with Notch Filters model. The Level 2 ADS-33E
bandwidth in the yaw response, Fig. 40, comes from the ad-
ditional phase lag and bandwidth reduction due to the notch
filters. It might be possible to retune the command model to
attain Level 1 bandwidth, but all three cases in the current
work use the same command model to better demonstrate
the effects of flexible wings and notch filters. Care must be
given to ensure that the flexible wing mode peak in the mag-
nitude of the broken loop response does not get too close to
the 0 dB line, or enter the exclusion zone on the Nichols
plot when retuning the command model.

Wing modes were not fed back in the current work.
Since wing damping was set to 4%, wing excitation was
not directly controllable and structural damping proved to
be a bound for some damping specifications. Feeding back
wing states or structural load measurements might allow
the control system to improve the damping, as well as the
stability margins and bandwidth of the flexible wing re-
sponses (Ref. 22).

Conclusions

Based on the results shown it can be concluded that:

1. The model correctly predicts behavior when compared
to XV-15 flight data in hover and cruise. Differences
in the hover responses are attributed to hub model-
ing. The XV-15 had a gimbaled hub, where the current
model has an articulated rotor with hub springs.

2. The LCTR hover configuration shows qualitatively
similar dynamics to that of the XV-15. The LCTR He-
liUM rigid wing model matches very well the CAM-
RAD model, which is also rigid.

3. For large aircraft, such as the LCTR, structural and ro-
tor dynamics have large effects in the frequency ranges
used for flight control designs.

4. A parallel implementation that decouples rigid-body
and structural states retains the majority of the dynam-
ics, reducing modeling complexity and problem size.
This implementation also provides a pathway for in-
cluding structural dynamics in existing rigid body real-
time simulation models.

5. Level 1 handling qualities cannot be obtained from a
flexible wing aircraft model without notch filters, but
the model with the notch filters meets nearly all ADS-
33 specifications to Level 1 standards. Notch filters
can be used to suppress the structural response but re-
duce the bandwidth of the system to create a Level 2
aircraft in the yaw axis. Removing the notch filters
would give an aircraft with lower phase margin and
crossover frequency in this axis. Tests could be con-
ducted to determine if pilots prefer higher bandwidth
or improved phase margin and crossover frequency.
The notch filters also add phase delay and must be used
judiciously to avoid degrading the piloted bandwidth
and phase delay too heavily.
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Appendix A: Kinematics

Positions

The position vector of a point on a body with respect to a
reference point can be written as a linear combination of
orthogonal unit vectors.

x n j
1 + y n j

2 + z n j
3 = [x y z]


n j

1
n j

2
n j

3

=
{

q j}T {n j} (A.1)

n j
1,2,3 are the unit vectors in reference frame j. The for-

mulation allows for arbitrary directions of the unit vectors,
but generally they are chosen to be meaningful for a given
body. The fuselage unit vectors are those of the standard
body axis system, with n1 pointing forwards, n2 pointing to
starboard, and n3 pointing down. The starting point for the
formulation is an inertial reference frame. This reference
frame maintains its orientation in space and so is unaffected
by aircraft angular motion. The reference frame always has
the z-axis pointing down, with the positive direction of the x
and y axes remaining unspecified (but could be prescribed,
for example, to point North and East, respectively, if nec-
essary, with no consequences on the results of the present
study).

The transformations between reference frames are car-
ried out on the unit vectors using the standard aerospace
rotation sequence, i.e., a rotation about the n3 axis by an-
gle ψ , followed by a rotation by angle θ about the nψ

2 axis
resulting from the ψ rotation, and by a rotation by angle φ

about the nθ
1 axis resulting from the θ rotation. The trans-

formation matrices between two reference frames j and k
are as follows:

[ψ] =
[
S1 j]=

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1



[θ ] =
[
S21]=

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ



[φ ] =
[
Sk2
]
=

 1 0 0
0 cosφ sinφ

0 −sinφ cosφ


The intermediate coordinate systems are labeled

{
n1
}

and
{

n2
}

. {
n1}= [S1 j]{n j}

and {
n2}= [S21]{n1}

The complete transformation from body j to k is:
nk

1
nk

2
nk

3

=[φ ] [θ ] [ψ]


n j

1
n j

2
n j

3

 (A.2)

=
[
Sk2
][

S21][S1 j]


n j
1

n j
2

n j
3

 (A.3)

or more compactly written as:{
nk
}
=
[
Sk j
]{

n j} (A.4)

The components of
[
Sk j
]

are:

Sk j =

S11 S12 S13
S21 S22 S23
S31 S32 S33

 (A.5)

where

S11 = cosθ cosψ

S12 = cosθ sinψ

S13 =−sinθ

S21 = sinφ sinθ cosψ− cosφ sinψ

S22 = sinφ sinθ sinψ + cosφ cosψ

S23 = sinφ cosθ

S31 = cosφ sinθ cosψ + sinφ sinψ

S32 = cosφ sinθ sinψ− sinφ cosψ

S33 = cosφ cosθ

For a wing, the unit vectors n1,n2, and n3 point, respec-
tively, outwards along the undeformed elastic axis of the
wing, forwards towards the leading edge, and upwards. The
transformation from the fuselage coordinate system to that
of the wing contains wing dihedral and sweep.

Once the transformation matrices from one coordinate
system set to another are known, the product of the matri-
ces allows for the formulation of a position vector in any
coordinate system. The summing of the displacements in
each coordinate system gives the expression for any point
in the system. The reference frame is denoted with super-
script (. . .)0, and is generally the inertial frame. The su-
perscript increases with each connection. An example for a
generic set of connected bodies is given in Fig. A.1. Here,
the reference frame is the inertial frame. The segment ζ is
an offset from a reference point to the first body and is writ-
ten in terms of the reference frame. It is set to zero for the
present study, but if the bodies are free to move with respect
to the reference frame, it could be used to position the bod-
ies with respect to an arbitrary point in the reference frame:
for example a location on the ground if the bodies form an
aircraft. The position vectors q locate the connection of



the next body in the current body’s coordinate system. The
vectors r locate a point within each body that is not the con-
nection point, a center of mass for example. Thus, the po-
sition vector P, of a point placed by vector r3 in the third
body relative to a point in the reference frame is found in
Eqn. (A.6). This position vector, and the kinematics of the
bodies presented, follows the formulation found in Ref. 14.
For the tiltrotor of the present study, the bodies are arranged
as follows: Body 1 is the aircraft fuselage, Body 2 is the un-
deformed right wing, and Body 3 is the nacelle. The hub of
the opposite rotor is described by a symmetric set of bodies.

Inertial Frame	



ζ0	



q1	



q2	



r3	



n0
1

n0
2

n0
3

Fig. A.1. Bodies connected together in a multiple body
configuration

P ={ζ}T {n0}+{q1}T {n1}+{q2}T {n2}+ (A.6){
r3}T {n3}

We can write a set of unit vectors in the reference frame for
the tilt rotor as follows:{

n3}= [S32][S21][S10]{n0}= [S30]{n0} (A.7)

and thus:

P =
(
{ζ}T +

{
q1}T [

S10]+{q2}T [
S20]+ (A.8){

r3}T [
S30]){n0}

or more generally as:

P =

(
{ζ}T +

n−1

∑
i=1

{
qi}T [

Si0]+{rn}T [Sn0]){n0}
(A.9)

Flexibility effects show up by modifying the transfor-
mation matrices

[
Sk j
]

to include the rotations due to struc-
tural flexibility, as well as adding displacements. A con-
stant wing deflection will alter the connection point of the

nacelle since the wing coordinate system is in the unde-
formed frame. The deflection will also introduce additional
rotations in the transformation from the wing undeformed
coordinate system to the nacelle coordinate system. Dis-
placements and rotations at the connection are functions of
the modal temporal coordinates, ρ(t) and the spatial com-
ponents of the finite element beam model, [N(x)]. Since the
beam finite element model has position and slopes at each
node, flexible displacements and rotations can be written as:{

q f
α f

}
= [N(x)]ρ(t) (A.10)

Here, q f is the connection point’s displacement due to flex-
ibility, and α f is the rotation at that point. The displacement
for the connection point, including flexibility contributions
for the next body is then:

q̄ j = q j +q j
f (A.11)

The beam element formulation assumes rotations in the
same order as the coordinate system transformations.
Therefore, the transformation to the coordinate system of
body upstream of the flexible body, when written in the
same form as Eqn. (A.4), contains an additional set of rota-
tions due to flexibility:{

nk
}
=
[
Sk f
][

S f j]︸ ︷︷ ︸
[Sk j]

{
n j} (A.12)

where, [
S f j]= [φ f

][
θ f
][

ψ f
]

(A.13)

and φ f ,θ f , and ψ f are components of α f , from Eqn. (A.10).
The matrix

[
Sk f
]

now has the same form as Eqn. (A.2), and
is the transformation from the connection point coordinate
system, which is now the deformed coordinate system, to
the coordinate system of the next body. In the equation
above, and following the example of the flexible wing, su-
perscript j denotes the wing undeformed coordinate system,
while superscript k denotes the nacelle coordinate system.
This matrix takes into account the static wing deformation.

The full position vector of any point on the aircraft, in-
cluding flexibility contributions is now:

P =

(
{ζ}T +

n−1

∑
i=1

{
q̄i}T [

Si0]+{r̄n}T [Sn0]){n0}
(A.14)

Velocities

Once the position vector of the point is known, the veloc-
ity and acceleration vectors follow. The velocity vector is



simply the time derivative of the position vector.

v =
dP
dt

=

({
ζ̇

}T
+

n−1

∑
i=1

({
˙̄qi}T [

Si0]+{q̄i}T [
Ṡi0])+

(A.15){
˙̄rn}T [Sn0]+{r̄n}T [Ṡn0]){n0}

Here, ζ̇ is the velocity of the aircraft CG in the inertial refer-
ence frame. The time derivatives of the transformation ma-
trices,

[
Ṡi0
]
, as well as ˙̄qi and ˙̄rn take into account motion

due to flexibility. The position and angular time derivatives
again come from the beam finite element:{

q̇ f
ω f

}
= [N(x)] ρ̇(t) (A.16)

Since the bodies are not allowed to translate with respect
to each other, the velocity contribution, ˙̄q only has terms
associated with flexibility. In keeping the notation from
Eqn. (A.11):

˙̄q j = 0+ q̇ j
f = q̇ j

f (A.17)

The time derivatives of the transformation matrices require
more development. The flexible contributions to angular
rates, ω f have the form:

ω f =ψ̇n j
3 + θ̇n1

2 + φ̇n2
1 (A.18)

=
(
φ̇ cosθ cosψ− θ̇ sinψ

)
n j

1+(
φ̇ cosθ sinψ + θ̇ cosψ

)
n j

2 +
(
ψ̇− φ̇ sinθ

)
n j

3
(A.19)

Notice the unit vectors in the final equation above are in
the “downstream” coordinate system, i.e., the coordinate of
system of the next body proceeding from the end of the
tree toward the beginning. For the wing, or any flexible
body, this is the coordinate system before elastic deforma-
tion. These angular rates act on the upstream body to the
flexible body, for the tilt-rotor example, the nacelle. In gen-
eral, the formulation presented assigns rotation rates in the
coordinate system of the rotating body, as opposed to the
upstream body. Before they are converted to the nacelle co-
ordinate system, they must be converted through the wing
deformed coordinate system as in Eq. (A.12). This allows
for easier manipulation of the

[
Ṡ
]

matrices later on.{
ω

j
f

}T
{n} j =

{
ω

j
f

}T [
S jk
]

︸ ︷︷ ︸
ωk

f

{n}k (A.20)

Note the superscript order of matrix
[
S jk
]
. For a rigid air-

craft, Eq. (A.18) gives the Euler rates at the CG in the co-
ordinate systems local to each Euler rate. For example, θ̇

is the Euler rate after a transformation by ψ has occured.
Equation (A.19) gives the Euler rates in the inertial coordi-
nate system, and Eq. (A.20) transforms the Euler rates into

the body axis. The Euler rates in the body axis give the
standard flight dynamics formulation of roll, pitch, and yaw
rates.

Since the transformation matrices are pure rotations,
their inverse is equal to their transpose:[

Sk j
]
=
[
S jk
]T

=
[
S jk
]−1

(A.21)

Taking the time derivative of Eqn. A.4 directly, we obtain:[
Ṡk j
]
=
[
Ω

k j
][

Sk j
]

(A.22)

where [Ω] is a skew symmetric matrix. using ωk
f from

Eqn. (A.20):

[
Ω

k j
]
=

 0 ωk
3 f −ωk

2 f
−ωk

3 f 0 ωk
1 f

ωk
2 f −ωk

1 f 0

 (A.23)

The formulation for
[
Ṡ
]

thus far only accounts for a single
coordinate transformation, so for two tangent bodies. For
groups of transformations, as is the case with almost any
multibody configuration, the treatment of

[
Ṡ
]

has additional
components.[

Sn0]= [Sn,n−1][Sn−1,n−2] . . .[S21][S10] (A.24)

taking the time derivative:

d
dt

[
Sn0]= d

dt

([
Sn,n−1][Sn−1,n−2] . . .[S21][S10]) (A.25)[

Ṡn0]=([Ṡn,n−1][Sn−1,n−2] . . .[S21][S10])+([
Sn,n−1][Ṡn−1,n−2] . . .[S21][S10])+ . . .([
Ṡn,n−1][Sn−1,n−2] . . .[Ṡ21][S10])+([
Ṡn,n−1][Sn−1,n−2] . . .[S21][Ṡ10]) (A.26)

Each individual
[
Ṡk,k−1

]
is formulated in the same fashion

as Eqn. (A.22). The trigonometry of Eqn. (A.26) does not
need to be carried out each time. Note the following treat-
ment of

[
Ṡn0
]
.[

Ṡ10]= [Ω10][S10][
Ṡ20]= [Ṡ21][S10]+ [S21][Ṡ10]

=
[
Ω

21][S20]+ [S21][
Ω

10][S10]
=
[
Ω

21][S20]+ [S21][Ṡ10]
. . .[

Ṡn0]= [Ωn,n−1][Sn0]+ [Sn,n−1][Ṡn−1,0][
Ṡn0]= [Ωn0][Sn0] (A.27)

In general,
[
Ṡn0
]

is built from outwards starting from the
reference frame as each body’s angular velocity has contri-
butions from all time derivatives between bodies 0 and n,
and is in the reference coordinate system. The velocity of a



component of the multibody system can now be expressed
using Eqn. (A.15). Often times the angular velocities of a
body in the local coordinate system need to be used. This
is easily done using Eqn. (A.27). Using the formulation of
Eqn. (A.22), and Eqn. (A.23):[

Ω
k j
]
=
[
Ṡk j
][

Sk j
]−1

=
[
Ṡk j
][

Sk j
]T

(A.28)

The skew-symmetric matrix gives the angular velocities of
body k in the coordinate system of body k so individual
angular rates can readily be extracted from its components.
If the rates are desired in a different coordinate system they
can be transformed using Eqn. (A.20).

Accelerations

The linear and angular acceleration vectors are derived in
much the same way as the velocity vectors. Taking an addi-
tional time derivative of Eqn. (A.15):

a =
dv
dt

=

({
ζ̈

}T
+

n−1

∑
i=1

({
¨̄qi}T [

Si0]+2
{

˙̄qi}T [
Ṡi0]+

{
q̄i}T [

S̈i0])+{ ¨̄rn}T [Sn0]+2{ ˙̄rn}T [Ṡn0]+
(A.29)

{r̄n}T [S̈n0]){n0}
The first term in the derivative is the linear acceleration of
the aircraft in the inertial reference frame. ¨̄qT terms are
linear accelerations of the bodies with respect to one an-
other. The tilt-rotor model does allow for linear motion of
aircraft components next to each other. Much like the ve-
locity component in Eqn. (A.17), this terms only contains
accelerations due to flexibility. The second time derivative
of the transformation matrix

[
S̈i0
]

is the remaining compo-

nent that has not been derived yet. To determine
[
S̈i0
]
, one

could take time derivatives of the transformation matrices
one by one, as in Eqn. (A.26). Since

[
Ωi0
]
, is readily avail-

able, as in Eqn. (A.27), the following treatment is much
abbreviated.

d
dt

[
Ṡi0
]
=

d
dt

([
Ω

n0][Sn0]) (A.30)

=
[
Ω̇

n0][Sn0]+ [Ωn0][Ṡn0][
S̈n0]=[Ω̇n0][Sn0]+ [Ωn0][

Ω
n0][Sn0] (A.31)

Here
[
Ω̇n0
]

is a skew symmetric matrix containing the
summed angular accelerations of bodies 0 to n in the fi-
nal body’s coordinate system. It is derived in the same
fashion as the skew symmetric matrix of angular velocities,
Eqn. (A.23), which comes from the sequence of rotations
given by Eqn. (A.18).


