
State-Space Inflow Model Identification and Flight Dynamics Coupling for an
Advanced Coaxial Rotorcraft Configuration

Sean Hersey Roberto Celi
Department of Aerospace Engineering

University of Maryland
College Park, MD

Ondrej Juhasz
San Jose State University
Ames Research Center

Moffett Field, CA

Mark B. Tischler
U. S. Army Aviation Development Directorate (AMRDEC)

Ames Research Center
Moffett Field, CA

Omri Rand Vladimir Khromov
Faculty of Aerospace Engineering

Technion
Haifa, Israel

ABSTRACT
In order to consider the stability and controllability of advanced coaxial configurations, a better understanding of the
aerodynamic interactions between rotors is required. Modern aerodynamic analysis tools such as free wake models can
accurately model the behavior of the inflow of a coaxial configuration, without the inclusion of theoretical limitations
and approximations used by classical-simplified schemes. They are not, however, expressed in state-space form and
therefore can not be readily analyzed as a linear flight dynamics problem and are often computationally expensive.
The objective of this paper is to extend a system identification method, which was previously validated for single main
rotor helicopters, to the extraction of state-space linearized models from computed inflow data acquired from free wake
models of a coaxial rotor in hover. Also a key extension of the identified inflow systems is shown to model inflow off
of the rotor plane as a output equation of the inflow system, or as its own ODE inflow system. With state-space models
of inflow defined for an advanced coaxial configuration, this paper also presents a study of the fully coupled aircraft
flight dynamics, showing key effects of rotor inflow on the dynamics of a coaxial rotorcraft configuration.

NOTATION

CL Aerodynamic rotor roll moment
CM Aerodynamic rotor pitch moment coefficient
CT Aerodynamic rotor thrust coefficient
C Array containing

[
CU

T CU
L CU

M CL
T CL

L CL
M
]ᵀ

∆C Perturbation of C
Ceq Equilibrium or trim value of C
[M] Induced inflow M matrix
[L]−1 Inverse of induced inflow L matrix
v̄x x-component of non-dim. off-rotor inflow
v̄y y-component of non-dim. off-rotor inflow
v̄z z-component of non-dim. off-rotor inflow
v̄vv Vector containing [v̄x v̄y v̄z]

ᵀ

λ0 Average induced inflow coefficient
λ1S Lateral induced inflow coefficient
λ1C Longitudinal induced inflow coefficient
λλλ Array containing

[
λU

0 λU
1S λU

1C λ L
0 λ L

1S λ L
1C

]ᵀ
∆λλλ Perturbation of λλλ

λλλ eq Equilibrium or trim value of λλλ

[τ] Time delay matrix
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θ0 Swashplate collective
θ1C Swashplate longitudinal cyclic
θ1S Swashplate lateral cyclic
θθθ Array containing

[
θU

0 θU
1S θU

1C θ L
0 θ L

1S θ L
1C

]ᵀ
θ S

0 Symmetric swashplate collective
θ S

1C Differential swashplate collective
θ S

1S Symmetric swashplate longitudinal cyclic
θ D

0 Symmetric swashplate lateral cyclic

Superscripts
(. . .)L Lower rotor
(. . .)U Upper rotor

Matrix Operators
× Matrix multiplication
◦ Element by element multiplication

INTRODUCTION

The next generation of military and commercial rotorcraft is
expected to reach substantially higher speeds than platforms
currently in production, through the use of advanced config-
urations. One possible configuration is a coaxial helicopter
with thrust and/or lift compounding, obtained through the ad-
dition of pusher propellers and/or wings. Coaxial rotors pro-
vide clear advantages by not requiring a tail rotor and by being
able to balance the dissymmetry of lift experienced by each
rotor in high-speed forward flight. Unlike single main rotors,
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their maximum speed is not limited by retreating blade stall.
Recent advances in design have made it feasible and worth-
while to overcome the challenges of coaxial rotors, includ-
ing higher complexity, higher hub drag and higher vibratory
loads.

Significant gaps remain in the fundamental understanding of
the flight dynamics and control characteristics of coaxial com-
pound rotorcraft configurations. Strong aerodynamic interac-
tions exist between the two rotors, and between the rotors,
empennage, and pusher propeller. The role of these interac-
tions in steady flight and maneuvers has not been studied in
depth and is not fully understood. Additionally, compound
configurations create control redundancy and possibly novel
strategies to trim and perform maneuvers.

Most building blocks of coaxial compound simulation are cur-
rently available, with the partial exception of accurate, com-
putationally efficient models of rotor wake dynamics in the
form of Ordinary Differential Equations (ODEs). Efficiency
is required for real-time piloted simulation, whereas the spe-
cific ODE format is required for flight control system design
and handling qualities compliance assessment. For single
main rotors, this requirement is usually fulfilled by the the
Peters-He finite state wake (Ref. 1) or a similar model. These
momentum-theory type models have the benefit of providing
a closed form solution over the entire disk.

Recently, state-space models of coaxial rotor wakes have been
presented (Refs. 2–5), which can be considered as sophisti-
cated applications of momentum theory. They are based on
potential flow theory and are extensions of Peters-He dynamic
inflow model to include off-rotor interference in varying ways.
Ref. 2 also presents a wake in which Galerkin weighted resid-
uals are used to discretize the momentum equation. Ref. 4
presents the potential flow solution with an active-receiving
rotor model that uses Morillo-Duffy finite state formulation
for off-disk inflow. These solutions, however, are not closed
form and still require some manipulations for wake curvature,
wake contraction and compressibility effects, which can be
important for coaxial systems. Ref. 6 tries to correct for such
wake distortions by using system identification on a free-wake
model to identify correction factors for the potential flow so-
lutions.

Free vortex wake-based and Computational Fluid Dynamics
(CFD)-based methodologies are capable of modeling com-
plex aerodynamic flow fields, and could represent the basis
for the extraction of compact inflow models in ODE form. In
Ref. 7, a dynamic inflow (Refs. 8,9) type model was extracted
from free and rigid vortex wake models of a single main rotor
helicopter using system identification techniques. Two dif-
ferent wake models and two different approaches, based on
the response to single frequency excitations and to frequency
sweeps, respectively, were used. A single main rotor config-
uration was used, and the results were subsequently incorpo-
rated in a full nonlinear flight dynamic simulation, and the
results compared with flight test data. The agreement was
good in the range of frequency of interest for flight dynam-
ics. Ref. 7 was the first in the literature to show the extraction

of a rotor inflow model in ODE form by system identification
from a refined aerodynamic analysis.

In subsequent work by Gennaretti et al. (Refs. 10, 11), a sim-
ilar methodology was applied to a boundary element method,
potential flow formulation of rotor wake inflow. Frequency
responses to perturbations of rotor kinematic quantities were
obtained, and transfer functions were extracted using rational
approximation techniques.

Many refined rotor aerodynamic theories include the ability to
compute the flow field at arbitrary points in space, and not just
at the rotor disk. For example, in free vortex wake methods,
this is needed to compute the dynamics of the vortices that
describe the rotor wake. As a consequence, it is possible to
describe the flow field dynamics at other locations of practical
interest, such as the empennage, and extract compact inflow
models in state-space form valid at those locations.

The objectives of the paper are to present:

1. The extraction of an inflow model in ODE form for a
coaxial rotor in hover using frequency domain system
identification techniques.

2. The extension of the methodology of Ref. 7 to the extrac-
tion of a linear state-space model of rotor-induced inflow
at locations other than the rotor disk, generally referred
to as off-rotor inflow. Specifically this is applied at the
horizontal tail and on the fuselage.

3. The coupling of the rotor inflow model to a full flight dy-
namic simulation, to show key effects of rotor inflow on
the stability and frequency response of a coaxial rotor-
craft configuration.

COAXIAL AIRCRAFT MODEL

A coaxial aircraft model was developed to assess the extracted
inflow model. Gross sizing and rotor geometry data of the
aircraft come from the “regression” military model found in
Ref. 12. Blade structural and mass properties were scaled
using data from the Sikorsky XH-59 Advancing Blade Con-
cept (Ref. 13) so that the 1st lag and flap modes match those
of the ABC, roughly 1.3/rev for lag and 1.5/rev for flap. The
same airfoils were used as in the XH-59 (Ref. 13).

Fuselage and empennage component sizes and locations
are based on Ref. 12, but the aircraft has been shortened
to be more consistent with publicly available images of
modern coaxial-pusher aircraft, such as the Sikorsky X2
TechnologyTM Demonstrator (Ref. 14). General fuselage
aerodynamics also come from Ref. 12. Look-up tables for
horizontal and vertical stabilizer aerodynamics are based on
wind-tunnel data obtained for the XV-15 (Ref. 15) and con-
tain effects of elevator and rudder deflection, respectively.
The pusher is modeled as a Bailey momentum theory type
rotor (Ref. 16). However, the lack of free-stream velocity in
hover means that the fuselage and stabilizers are essentially
inactive, and for these results, the pusher is also assumed to
also be inactive. The final configuration is shown in Fig. 1 and
key sizing data is found in Table 1.
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Fig. 1. Generic coaxial aircraft model (modified from orig-
inal found in Ref. 12)

Table 1. Coaxial aircraft characteristics
Characteristic English Metric
Gross Weight 35,185 lb 15,960 kg
# Rotors 2
Rotor Radius 30.55 ft 9.31 m
Rotor Ω 23.7 rad/s
Rotor Spacing 14% of Radius
# Blades per Rotor 4
Blade Weight 1133 lb 513 kg
1ST Flap Freq. 1.5/rev

METHODS

Aerodynamic Modeling

Two coaxial free-wake models are used, namely, the Mary-
land Free Wake (MFW) model (Ref. 17) and the RAPiD’s
(Rotorcraft Analysis for Preliminary Design) Free Wake
(RFW) Model (Refs. 7, 18, 19). For the configuration used
in the present study, shed wake effects are neglected, and the
wake is modeled by a near wake portion that extends over a
limited azimuth angle behind each blade, and a single tip vor-
tex per blade. In both models, each vortex is discretized with
linear segments defined by collocation points that are allowed
to convect freely in the velocity field generated by the combi-
nation of free stream velocity and bound and trailed vorticity.

• Maryland Free Wake (MFW)

The MFW is based on a time-accurate free-vortex wake
method (FVM) (Ref. 20). The velocity field induced by
the wake at any location is computed by application of
the Biot-Savart law, and then by numerically integrating
the induced velocity contribution from each vortex el-
ement over the entire flow field. The vortex filaments
are approximated by straight-line segments, resulting in
a prediction of the induced velocity field that is second-
order accurate (Ref. 21).

Each blade is modeled as a distribution of vortex sin-
gularities (bound vortices) in the flow field using the
Weissinger-L lifting surface model (Ref. 22). The wake
from each rotor blade consists of a vortex sheet and a
concentrated tip vortex. In the present work, the near
wake is assumed to be rigid and fixed to the blade. The
near wake is truncated at 30◦ behind each blade, and is
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Fig. 2. Schematic showing the Lagrangian markers used
to represent the rotor wake (Ref. 21).

coupled by means of a circulation-preserving boundary
condition to the far wake consisting of a single rolled-up
tip vortex.

The vortices in the far wake are defined by the positions
of Lagrangian markers that are connected by straight-line
segments that approximate the otherwise curved vortex
filaments; see Fig. 2. These markers are free to con-
vect to force-free locations under the influence of the lo-
cal velocity field. Their motion is obtained by solving
the governing equations using a time-accurate, two-step
backward, predictor-corrector scheme (PC2B) that was
developed by Bhagwat and Leishman (Ref. 17).

The MFW results in this work were obtained using tip
trailed vortex filaments discretized with straight seg-
ments of length ∆ψ = 10◦, with the length of each fil-
ament equal to six rotor revolutions or 2160◦. Shed vor-
ticity was neglected.

• RAPiD Free Wake (RFW)

The RFW models the wake by a single tip vortex per
blade (of each rotor), since the analysis is focused on a
generic “outer inflow solution”. The said tip vortex is
discretized with linear segments defined by collocation
points that are allowed to convect freely in the velocity
field generated by the combination of the free stream ve-
locity, the bound and trailed vorticity. The modeling in-
cludes semi-empirical models for vortex core and vortex
dissipation. Vortex core is implemented via analytical
rigid wake core that is smoothly blended into the far Bio-
Savart induced velocity. The vortex dissipation model
creates a vortex core that grows asymptotically with the
wake age. Subsequently, vortex diffusion takes a major
role in creating and updating the wake geometry.

Note that for the cases discussed in the present context,
due to the wide range of possible perturbation frequen-
cies, time and blade azimuth angle are not necessarily
interchangeable as two different blades may experience
different loading at the same azimuthal station. At time
t = 0, a tip control vortex point is created at the tip of
each blade with intensity, say Γ′, where this vortex inten-
sity is a function of both time and azimuth angle. After
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a finite small time step, ∆t, the vortex points have drifted
with the local velocity induced at their various locations.
At that time, a new vortex point of magnitude that cor-
respondent to the tip vortex strength at the new blade
position ψ +∆ψ and at t = ∆t is created, say Γ′′, and
shifted thereafter with the local velocity as well. These
two points create a vortex segment with a linear variation
of magnitude that varies from Γ′ to Γ′′. This process is
continued and a vortex line that consists of large num-
ber of segments of nonuniform strength is created. The
time-dependent shape of this line is created by the time-
dependent location of the above control points which are
moving with the local velocity.

Clearly, the local velocity that is calculated at each con-
trol point is the total velocity that has been accumulated
by all segments of all blades of all rotors. In the presence
of ground/fuselage in the rotor vicinity, these are mod-
eled using source panels which are all time-dependent
and the wake is developed under the influence of these
elements as well.

For both the MFW and the RFW, the calculation of the in-
duced velocity V due to bound and trailed vorticity at any
point of the flow field is based on the repeated application
of Biot-Savart law (Ref. 23):

V =
Γ

4π

∫
`

d`× r
|r|3

(1)

where Γ is the circulation and r is the distance of the point
from the vortex line element `.
It should be noted that an accurate calculation of the induced
velocity at the empennage is difficult, due to the complexity
of the flow field, which includes the interaction of the rotor
wake vortices with the fuselage, the effects of the empennage
own bound and trailed vorticity, and the role of other configu-
ration dependent elements, such as jet exhaust, tail rotors, and
pusher propellers (Ref. 23). The models used in this study
capture only some of the relevant physics, and do so in an ap-
proximate way. On the other hand, these models are adequate
for the development and the illustration of the methodologies
to extract state-space inflow models, because they are sophis-
ticated and have mathematical characteristics representative
of more advanced aerodynamic theories.

Coaxial Inflow Model Extraction – MFW

The model extraction methodology is essentially the same as
the frequency domain system identification methodology pre-
sented in Ref. 7. For the coaxial rotor induced inflow, the
model is written as a linearized extension of the Pitt-Peters
model, i.e.,

[M]∆λλλ +[L]−1
∆λλλ = ∆C(t− [τ]) (2)

where [M] and [L]−1 are the 6 by 6 constant (for a given flight
condition) matrices that define the inflow model, and are ex-
tracted using frequency domain system identification meth-
ods, and [τ] is a matrix of time delays that approximates the

higher order dynamics not explicitly included in the model.
The ∆ prefixes on the states and inputs are dropped through-
out this paper for brevity, except when explicitly necessary,
however all models in this paper should be assumed to be per-
turbation models.

Frequency Response Generation – MFW

In the present study, the following methodology is used with
the MFW. First, the wake is marched forward in time un-
til moment trim has been achieved, the wake geometry has
converged to a periodic solution, and the desired input val-
ues of total thrust coefficient, as well as torque balance, have
been reached. Next, frequency sweep “chirp” inputs, shown
in Ref. 7, of all controls in θθθ are applied, one control at a time,
and the corresponding time histories of the perturbation inflow
state vector ∆λλλ and the perturbation aerodynamic load vector
∆C are calculated. Therefore, ∆λλλ and ∆C are both outputs of
the wake model, corresponding to the input θθθ .

The vectors ∆C and ∆λλλ are also, respectively, the input and
outputs for the system described by Eq. (2). This is the
state-space system that is extracted from the wake responses.
The frequency domain system identification tool CIFER R©

(Ref. 24) is utilized to analyze the time histories.

In Ref. 7, it was found that using swashplate inputs θ1s and
θ1c to excite the wake dynamics typically generated both lat-
eral and longitudinal aerodynamic rotor loads ∆CL and ∆CM .
These moments are the input into the linear model in Eq. (2)
and must be uncorrelated (decoupled) in order for a satisfac-
tory and unique solution to be obtained. In other words, a
proper blend of all swashplate control inputs had to be de-
termined, such that the output time histories contained only
one component of the rotor aerodynamic loads, with the other
as small as possible, and ideally zero. If this is not done,
it is impossible to determine which portion of the output is
caused by each input, e.g., which portion of λ1c is caused by
CL and which by CM (both CL and CM are generated by a sin-
gle swashplate input, e.g., θ1c), and the results will be unre-
liable. This issue of cross-control correlation was dealt with
by introducing cross-feeds into the frequency sweeps of the
control variables (swashplate inputs) to minimize the corre-
lation between the rotor loads. Recall that, given a primary
input, all other inputs will be equal to the primary input mul-
tiplied by the respective cross-feed, which can be constant or
variable with frequency (for additional details on the theory
see Ref. 24).

For this paper, the issue of correlation is solved without the
cross-feeds through transfer function manipulation similar to
the methodology shown in Ref. 11. The first step is to obtain
a series of Single-Input Multiple-Output (SIMO) frequency
responses of inflow and aerodynamic loads to swashplate in-
puts. The swashplate controls are kept decoupled by activat-
ing one at a time with a chirp input, while the other controls
are held at their trim value. Each of these 6 swashplate con-
trol chirps (3 for the upper rotor and 3 for the lower rotor)
produces 12 non-parametric frequency responses; 6 describ-
ing the response of λλλ and 6 describing the response of C,
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all to the given control. When the responses of all six con-
trols are grouped in matrix form, two 6 by 6 transfer function

matrices are generated. The matrix
[

λλλ (s)
θθθ(s)

]
describes the in-

flow response to swashplate inputs. The element in the i-th
row and j-th column is the response of the i-th component of
the inflow vector λλλ to a chirp input of the j-th component of
the swashplate control vector θθθ with all other controls held
at their respective trim values (the notation that implies the
division between two vectors is not mathematically rigorous,

and is used only for clarity). The matrix
[

C(s)
θθθ(s)

]
describes the

rotor aerodynamic loads response to swashplate inputs. Note
that each element of the two response matrices is generally a
function of frequency, therefore in practice the two matrices
are three-dimensional, with frequency as the third dimension.

The desired frequency responses on inflow to aerodynamic
loads can be found by numerical inversion and multiplication
at each individual frequency:[

λλλ (s)
C(s)

]
=

[
λλλ (s)
θθθ(s)

]
×
[

C(s)
θθθ(s)

]−1

(3)

For each frequency response in the [λλλ (s)/θθθ(s)] and
[C(s)/θθθ(s)] matrices, and at each value of frequency,
CIFER R© also calculates values of the coherence. The co-
herence is a direct measure of the linearity between the input
and output. Responses with high coherence are linear, have
a high signal-to-noise ratio, and are not excited by secondary
inputs (Ref. 24). It is important to assess the coherence of the
[λλλ (s)/C(s)] to evaluate the quality of the identification, but
there is not a straightforward way to calculate the exact co-
herence of frequency responses obtained from the arithmetics
of Eq. (3). However, from an analysis of the coherence of the
individual frequency responses that go into the calculation of
λλλ (s)/C(s), it is possible to calculate a weighted average co-
herence is calculated, based on the following considerations.

1. The coherence from input to output is equal to the coher-
ence from output to input. The coherence matrix of the
inverse of a frequency response matrix must remain the
same as that of the original matrix. For this method, this
establishes:

Coh
([

C(s)
θθθ(s)

]−1

i, j

)
=Coh

([
C(s)
θθθ(s)

]
i, j

)

2. When two Single-Input Single-Output (SISO) frequency
responses are multiplied, the total coherence is roughly
equal to the smaller coherence of the two components.
So this is used to approximate:

Coh
([

λλλ (s)
θθθ(s)

]
i, j
×
[

C(s)
[θθθ(s)

]−1

j,i

)
≈

min
{

Coh
([

λλλ (s)
θθθ(s)

]
i, j

)
, Coh

([
C(s)
θθθ(s)

]−1

j,i

)}

3. The level of coherence is unimportant if the product of
two frequency responses produces a very small magni-
tude output, relative to the other contributing parts. Con-
versely, if the product of two frequency responses pro-
duces a relatively large magnitude output, then its contri-
bution to the overall coherence is higher. This suggests
that a magnitude weight based summation would be ap-
propriate.

A singular index of the [λλλ (s)/C(s)] matrix is calculated by:[
λλλ (s)
C(s)

]
i, j

=
6

∑
k=1

[
λλλ (s)
θθθ(s)

]
i,k
×
[

C(s)
θθθ(s)

]−1

k, j
(4)

This broken down equation more clearly shows that, in this
case, 6 transfer function multiplications are summed to give a
value for a given index in the λλλ (s)/C(s) matrix. Magnitude
based weights are defined as:

Wi, j(n) =

∣∣∣∣∣
[

λλλ (s)
θθθ(s)

]
i,n
×
[

C(s)
θθθ(s)

]−1

n,i

∣∣∣∣∣∣∣∣∣∣
[

λλλ (s)
C(s)

]
i, j

∣∣∣∣∣
(5)

The coherence is then approximately equal to the average
weighted coherence:

Coh
([

λλλ (s)
C(s)

]
i, j

)
≈

6

∑
n=1

(
Wi, j(n)× (6)

min
{

Coh
([

λλλ (s)
θθθ(s)

]
i,n

)
, Coh

([
C(s)
θθθ(s)

]
n,i

)})

State-Space Model Identification – MFW

The new frequency responses, combined with the approx-
imate coherences, define the non-parametric frequency
responses used to determine the state-space coaxial inflow
model. These responses are analyzed using the state-
space identification utility, DERIVID, within CIFER, as in
Refs. 7, 24. The form of the identified state-space model is
given in Eq. (2). The [M], [L]−1 and τ matrices are identified
that best fit the frequency responses generated by Eq. (3).

In general, all of the responses [λλλ (s)/C(s)] obtained from the
free wake are nonzero and the [M], [L]−1, and τ are fully pop-
ulated. This would leave a total of 108 parameters that need to
be identified for the full state-space model of the coaxial sys-
tem. Physical insight along with examination of the frequency
responses obtained in Eq. (3) is used to reduce the number
of free parameters and make the identification problem more
tractable:

1. The 3-by-3 [M] and [L]−1 matrices in the Pitt-Peters dy-
namic inflow model are diagonal in hover, and this form
is retained for the four 3-by-3 submatrices of the coax-
ial rotorcraft model (upper and lower rotor, and mutual
interference).
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2. In hover, the rotor behavior in pitch is identical to that in
roll but shifted by 90◦. This allows to constrain selected
values of the state space matrices to be identical.

3. If a frequency response has low coherence and small
magnitude, it is excluded from the identification, on the
assumption that it is mostly an artifact of small non-
linearities in the system.

4. If response magnitudes are not small, but the coherences
are low, the frequency responses are not considered reli-
able and may have to be ignored even if potentially sig-
nificant. No such situation occurred in the results of this
paper.

5. If the coherence is high but the magnitude is low, it may
be safe to assume that it is negligible and set the corre-
sponding transfer function to zero.

6. The form of [M], [L]−1, and τ is assumed to correspond
directly to the form of [λλλ (s)/C(s)], in the sense that if the
magnitude of the {i, j} component of λλλ (s)/C(s) is below
some preassigned threshold at all frequencies, then the
{i, j} component of the state space matrices can be set to
zero.

Combining all these criteria, in hover the preliminary form
of [M] and [L]−1 was found to be (only nonzero terms are
shown):

[M] =


m11 m14

m22 m25
m33 m36

m41 m44
m52 m55

m63 m66



[L]−1 =


l11 l14

l22 l25
l33 l36

l41 l44
l52 l55

l63 l66

 (7)

[τ] =


τ11 τ14

τ22 τ25
τ33 τ36

τ41 τ44
τ52 τ55

τ63 τ66



with the following parameters constrained to be identical:

m22 = m33 m44 = m55 m25 = m36 m52 = m63
l22 = l33 l44 = l55 l25 = l36 l52 = l63
τ22 = τ33 τ44 = τ55 τ25 = τ36 τ52 = τ63

Time Domain Verification – MFW The identified state-
space model can then be validated using another CIFER util-
ity, VERIFY, which performs time-domain verification. A

new set of controls, different from the frequency sweeps used
in the identification, is applied to the the MFW to get new time
histories of ∆λλλ and ∆C. VERIFY then uses the time histories
of ∆C as inputs to a linear simulation based on the state-space
system previously identified, calculating the corresponding
outputs ∆λλλ . These can be directly compared with the MFW
time histories to ensure adequate agreement (Ref. 24).

Off-Rotor Induced Velocity Identification

Free vortex wake models must be able to calculate the induced
velocity at arbitrary locations of the flow field, because that
velocity is needed to define the motion of the blade vortices.
This can also be used to compute the velocity induced by the
rotor wake at any other points of interest, e.g., on the horizon-
tal tail or across the fuselage. Two methods were explored for
identifying the induced velocity off of the rotor plane.

Off-rotor ODE model Inflow – RFW For each point of in-
terest in the flowfield, a “dynamic inflow like,” ODE-based
model can be obtained using the same methodology as for the
rotor. This approach was performed on several points across
the 1/4 chord line of the horizontal tail. The Single Frequency
Analysis for on-rotor inflow was designed to directly extract
all elements of the [M] and [L]−1 matrices for a given single
frequency excitation of the RFW, see Rand et al. (Ref. 7) and
Rand and Khromov (Ref. 25).

To calculate the induced velocity at an off-rotor point, a simi-
lar approach has been adopted, presented here using the RFW.
For a single rotor, the equation is written:

[M]


∗
v̄x
∗
v̄y
∗
v̄y

+[L]−1

 v̄x
v̄y
v̄z

=

∆CT
∆CL
∆CM

 . (8)

where v̄x, v̄y, v̄z are the induced velocity components in the
x,y,z directions, respectively.

For a coaxial rotor system, the upper rotor contributions to v̄x,
v̄y, v̄z are distinguished from the lower rotor contributions to
the same components:

[MU ]


∗
v̄x
∗
v̄y
∗
v̄z


U

+[LU ]
−1

 v̄x
v̄y
v̄z


U

=

∆CT
∆CL
∆CM


U

(9)

and

[ML]


∗
v̄x
∗
v̄y
∗
v̄z


L

+[LL]
−1

 v̄x
v̄y
v̄z


L

=

∆CT
∆CL
∆CM


L

(10)

Figure 3 summarizes the methodology.

As will be shown, following a trim solution with RFW,
the induced velocity at a given location due to the upper
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rotor ṽU
i (ψ1) = v̄U

x x̂ + v̄U
y ŷ + v̄U

z ẑ is determined for various
∆CU

T (ψ1), ∆CU
L (ψ1), ∆CU

M(ψ1) periodic perturbations. Sim-
ilarly, the induced velocity at the same location due to the
lower rotor ṽL

i (ψ1) = v̄L
x x̂+ v̄L

y ŷ+ v̄L
z ẑ is determined for vari-

ous ∆CL
T (ψ1), ∆CL

L(ψ1), ∆CL
M(ψ1) periodic perturbations.

These are FFT analyzed. For the upper rotor influence, the
sine and cosine components (at the perturbation frequency)
∆v̄Us

x ,∆v̄Uc
x , ∆v̄Us

y ,∆v̄Uc
y , ∆v̄Us

z ,∆v̄Uc
z , are first obtained. These

coefficients are then used to determine all 18 coefficients that
appear in the [MU ] and [LU ] matrices - see Rand and Khromov
(Ref. 25). Similar procedure is executed for the lower rotor
influence.

Off-Rotor Output Equation

Depending on the location of interest, a simpler approach is
possible that expresses the inflow at that location as an output
equation, i.e., as a linear combination of rotor inflow states,
with the possible addition of a time delay, and no additional
states. This approximation can be sufficiently accurate be-
cause the spatial details of the flow field tend to be unimpor-
tant for the flight dynamic behavior. Furthermore, the inflow
model can be extracted using only the low frequency portion,
between 1 to 5 rad/s, of the frequency response, because for
flight dynamics purposes, this is the region of interest.

In the present study, the methodology is applied to the extrac-
tion of a model for the average inflow along the 1/4 chord
line of the horizontal tail. Although only the component of
the main rotor inflow normal to the rotor disk is used in the
identification, all three components of the inflow at the tail
are considered. Therefore, the three inflow components are
defined by the following model: v̄x

v̄y
v̄z

=

 K0x K1cx K1sx
K0y K1cy K1sy
K0z K1cz K1sz

×
 λ0(t− τ0)

λ1c(t− τ1C)
λ1s(t− τ1S)

 (11)

where, for example, the notation λ0(t− τ0) denotes the value
of λ0 delayed by τ seconds. The 9 constants K and the 3
delays τ in Eq. (11) are the unknowns of the identification
problem.

The methodology was also applied to points on the fuselage.
In this case, a similar spread of points as for the horizontal tail
were calculated in order to still get an average, but they were
located below the rotor. The form used for fuselage inflow

was different, using up to nine time delays: v̄x
v̄y
v̄z

=

 K0x K1cx K1sx
K0y K1cy K1sy
K0z K1cz K1sz

◦ (12)

 t− τ0x t− τ1cx t− τ1sx
t− τ0y t− τ1cy t− τ1sy
t− τ0z t− τ1cz t− τ1sz

×
 λ0

λ1c
λ1s


where v̄x, v̄y, and v̄z are the average induced velocity
components at the 1/4 chord of the horizontal tail, non-
dimensionalized by tip-speed, and the λ ’s are the inflow har-
monics at the rotor disks. The problem unknowns are the
gains K and the time delays τ . As an illustration of the no-
tation of Eq. (12), consider the expansion of the v̄x inflow
component:

v̄x = K0xλ0(t− τ0x)+K1cxλ1c(t− τ1cx)+K1sxλ1s(t− τ1sx)

Equation (11) is written for a single main rotor, and for this
paper, results are only shown for the single main rotor case
(same configuration as Ref. 7), but the extension to coaxial
rotors is straightforward. The frequency domain identification
procedure for the off-rotor inflow equation is very similar to
the method for the rotor inflow, and in fact it can be carried
out at the same time. The non-parametric frequency response

that is calculated is now
[

v̄vv(s)
λλλ (s)

]
and, similarly to Eq. (3), is

calculated by: [
v̄vv(s)
λλλ (s)

]
=

[
v̄vv(s)
θθθ(s)

]
×
[

λλλ (s)
θθθ(s)

]−1

(13)

The procedure is generally the same. To get the form given
by Eq. (11) or (12), each transfer function must be fit with a
constant plus time delay. Following this, time-domain verifi-
cation can be performed on these equations in the same way as
for the rotor inflow equations, except that the input will now
be λλλ and the output will be v̄vv .

Full Aircraft Coupled Model

To analyze the effect of inflow dynamics on the full aircraft
response, the state-space rotor inflow models extracted as de-
scribed in the previous sections were incorporated into the full
nonlinear flight dynamics simulation HeliUM. The mathemat-
ical model in HeliUM has been described in detail in Ref. 26,
and only its main features will be summarized here.

The analysis is based on a “quasi-multibody” formulation,
with fully numerical kinematics, flexible bodies arranged with
an open-chain, tree-like topology, floating and co-rotational
reference frames, but no algebraic equations of constraints.
The rotors flap-lag-torsion dynamics are modeled using non-
linear finite elements (Ref. 27). Blade aerodynamics are
quasi-steady, with look-up tables for lift, drag and pitching
moment coefficients as a function of Mach number and inci-
dence angle, and radial flow drag corrections (Ref. 28).
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Three types of solution of the equations of motion are avail-
able, namely: (i) trim, (ii) time marching response, and (iii)
linearized analysis. The calculation of a steady state equilib-
rium condition, or trim, is formulated as a system of nonlin-
ear algebraic equations, and does not require that the math-
ematical model be in ODE form. In particular free wake or
CFD-type calculation of rotor inflow can be used directly. All
trim calculations for the fully coupled aircraft results were
performed using the free wake in its original, finite difference-
based formulation. The time marching response to pilot inputs
is formulated as the solution of a system of ODEs, but portions
of the models not in ODE form can be used (see Ref. 26 for
details concerning the coupling of these portions). The third
type of solution, i.e., linearized analysis, requires the extrac-
tion of a linearized model in state space form. To accomplish
this, the entire simulation model must be in state-space form.

The linearized results of the present paper were obtained using
two types of state-space rotor inflow models. The first type,
used for most results, is the model extracted from the MFW
using the methodology described in the previous section. The
second type, used for comparison for a few coaxial results, is
a simple extension of the single rotor Peters-He model (simi-
lar to Ref. 14), obtained by putting the lower rotor into a climb
equivalent to the upper rotor’s MFW trim average induced in-
flow.

Lastly, perturbation inflow states can be calculated using the
MFW identified state-space model, assuming that values for
equilibrium, Ceq and λλλ eq, are known. These can be calculated
from the standalone MFW or by HeliUM trimmed with the
loosely coupled MFW. Now with Eq. (2), perturbation inflow
states can be calculated, given that ∆C is first calculated by:

∆C = C−Ceq (14)

With perturbation inflow states, inflow at a point on the rotor
disk is calculated as:

λλλ = ∆λλλ +λλλ eq (15)

λ (
r
R
,ψ,∗) = λ

∗
0 +λ

∗
1S

r
R

sin(ψ)+λ
∗
1C

r
R

cos(ψ)

where ∗ superscripts indicates lower (L) or upper (U) rotor,
depending on which is being calculated

ODEs with time delays can not be directly solved by a
generic ODE solver, and specifically require a Delay Differ-
ential Equation (DDE) solver. To avoid this complication,
Padé approximations are used to approximate the time de-
lays (Ref. 29). Each time delay is written as:

Ti, j(s) = e−τi, js =
e−τi, js/2

eτi, js/2 ≈
1− τs/2+ τ2s2/12 . . .
1+ τs/2+ τ2s2/12 . . .

(16)

The Padé approximant is truncated to the first order term or
the second order term, depending on the length of the time
delay. Larger time delays require the second order term to
ensure that the error in the approximation is small. The full
time delay transfer function matrix, T (s), can now be used

to modify the state-space model written in transfer function
form: [

λλλ (s)
C(s)

]
T DA

=
λλλ (s)
C(s)

◦T (s) (17)

(where the “TDA” subscript indicates “Time Delays Ab-
sorbed”). The new transfer function, with the time delays ab-
sorbed, can then be converted back to state-space form. The
new state space form will have added states that correspond
to the poles and zeros of the time delays. The current anal-
ysis required nine time delays which became 26 time delay
states. The simplicity of the 26 time delay equations ensures
that they are simple for the ODE solver to solve and there is
no noticeable effect on computation time.

RESULTS FOR HOVER

State-Space Model Identification Results – MFW

A state-space inflow model characteristic of the coaxial con-
figuration in hover is identified using the methodology de-
scribed in the previous sections on the MFW. Figure 4 shows
the perturbation responses of upper, in black, and lower, in
gray, rotor average induced inflow to a thrust perturbation of
the upper rotor. The solid lines show the non-parametric fre-
quency response, and the dashed show their best parametric
fit for the given state space form given by Eqn. 7.

Table 2 show the costs of all of the transfer function fits, as
well as the average. Generally, costs below 200 are consid-
ered acceptable (Ref. 24). The majority of the responses are
well represented by the low-order form of the model, with the
collective on-axis having costs of J < 50, meaning an excel-
lent fit is obtained. The lower rotor on-axis moment response
have the largest costs, meaning the form used may not be ad-
equate for capturing the dynamics in the frequency range of
the fit.

There are several interesting things to note from these fre-
quency responses. First, the response of the upper and lower
rotor are just about equal in magnitude over the full frequency
range.

The non-parametric response show that at the lowest fre-
quency (1 rad/s), the upper rotor response is slightly larger
than the lower rotor response. On the other hand, in the mid-
dle frequency band, there is a larger λ L

0 response than λU
0

response, before falling back below at high frequency. It is
important to note that these responses have very high coher-
ences, as shown by the bottom plot in Figure 4. The coher-
ence is very close to one across the whole frequency range.
Therefore, the dynamics of the wake in this frequency range
are in fact very linear time-invariant. A larger set of equa-
tions describing the inflow dynamics could be produced which
would perfectly fit the magnitude and phase curves, and such
a system would inevitably capture more of the wake behavior.
However for this paper, the state space model is constrained
to the first order form given by Eq. (7), and so some error is
expected.
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The CU
T responses from Fig. 4 are close to first order and are

well fit with very low error by a first order system. However,
a better fit could be possible with a second order inflow re-
sponse, especially in the region of the apparent rise of the λ L

0
response at mid frequency. Because only a first order approx-
imation is used, the state-space optimization fits the system
with a slightly higher gain to account for the higher magni-
tude in the middle frequencies.

The opposite response, CL
T to λU

0 and λ L
0 , is shown in Fig. 5.

Relative to the effects of CU
T perturbations, CL

T perturbations
have a much smaller effect on both inflows. In particular, the
lower rotor thrust perturbations have very little effect on the
upper rotor inflow. Also the upper rotor thrust perturbations
have a larger effect on the lower rotor inflow than lower rotor
thrust does over the entire frequency range (as was shown in
Fig. 4). The non-parametric frequency responses seem to be
second order in nature and are not well modeled by the first
order model structure assumed in this analysis. Physical in-
sights and modeling of higher-order forms of dynamic inflow
responses are out of the scope of this paper, and so the model
was set up to follow a first-order dynamic inflow type form.

Table 2. Cost of state-space parameterizations

Response Cost

λU
0 (s)/CU

T (s) 3.74

λ L
0 (s)/C

U
T (s) 17.19

λU
1C(s)/C

U
M(s) 203.97

λ L
1C(s)/C

U
M(s) 178.05

λU
1S(s)/C

U
L (s) 204.08

λ L
1S(s)/C

U
L (s) 177.73

λU
0 (s)/CL

T (s) 85.34

λ L
0 (s)/C

L
T (s) 28.82

λU
1C(s)/C

L
M(s) 115.78

λ L
1C(s)/C

L
M(s) 463.61

λU
1S(s)/C

L
L(s) 115.07

λ L
1S(s)/C

L
L(s) 462.45

Average Cost 171.3190

Figure 6 shows the responses of the upper and lower longitu-
dinal inflow to the upper rotor pitching moment. Once again,
the upper rotor effect on the lower rotor is roughly the same
magnitude as effect on the upper rotor, indicating large cou-
pling. Both of these responses require time delays to help fit
the higher order unmodeled dynamics. The lower rotor re-
quires a significantly larger time delay, as displayed by the
larger phase roll-off. Though not shown here, the equivalent
responses of CU

L to λU
1S and λ L

1S are almost exactly the same,
due to hover rotor symmetry. These responses again demon-
strate that a first-order inflow model structure may not be ade-
quate in capturing all the dynamics of a coupled coaxial rotor
system.

In the same manner as the CL
T responses, Fig. 7 shows a

dissimilar effect on both rotors longitudinal induced inflow
caused by pitching moments of the lower rotor, CL

M . The re-
sponse of λ L

1C is much larger than the response of λU
1C, indi-

cating relatively little upper rotor coupling. Also comparing
the response of λ L

1C of this figure with the same response on
Figure 6 shows that for the lower rotor, excitations from the
upper rotor have a larger magnitude than self-induced excita-
tion from the lower rotor.

As shown in Table 2, the cost of this state-space fit is rather
high at 463.61, well above the guideline of 200. In particu-
lar, the response has a large amount of error at low frequency
in both phase and magnitude, meaning that when these ODE
systems are used with slow maneuvers, there will be more λ L

1C
created per unit of CL

M and will be off of the correct phase by
about 45 degrees. The state-space model identified is as accu-
rate as possible given the system’s first order constraint.

The identified state-space parametric model for these plots is
in the form of Eq 2 with:
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[M] =


0.851 0 0 −0.4664 0 0

0 −0.243 0 0 0.06601 0
0 0 −0.243 0 0 0.06601

0.674 0 0 1.0563 0 0
0 0.3349 0 0 −0.27 0
0 0 0.3349 0 0 −0.27


[L]−1 = . . .

0.4418 0 0 −0.182 0 0
0 −0.0453 0 0 −0.01089 0
0 0 −0.0453 0 0 −0.01089

−0.7262 0 0 0.6748 0 0
0 0.03581 0 0 −0.06139 0
0 0 0.03581 0 0 −0.06139



[τ] =


0.03373 0 0 0.09985 0 0

0 0.02264 0 0 0.1265 0
0 0 0.02264 0 0 0.1265
0 0 0 0.02631 0 0
0 0.08218 0 0 0 0
0 0 0.08218 0 0 0


(18)
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Time-Domain Verification Results – MFW

The inflow models were validated in the time-domain using
control inputs that were smooth doublets. The first was a
doublet on symmetric collective θ S

0 which produced a simi-
lar looking doublet in both CU

T and CL
T . Figure 8 shows these

thrust responses in the top axes. The middle and bottom
axes show the λ L

0 and λU
0 responses from the identified lin-

ear model, and are compared to the actual time histories pro-
duced by MFW. In general the agreement is good. The high
frequency oscillation in the λ L

0 MFW response is caused by
blade-vortex interaction caused when the lower rotor blades
hit the upper rotor’s wake. Most of the error in the two plots
can be directly attributed to the error in the state-space fits
shown in figures 4 and 5.

A doublet that excited the longitudinal inflow was also per-
formed and shown in figure 9. This doublet was performed
on θU

1C creating doublets in both CU
M and CL

M . The correspond-
ing time histories for λU

1C and λ L
1C are shown in the middle

and bottom plots, respectively. The error is slightly larger
than for the collective doublet case, but the general trend is
still well captured. The error is larger due to the larger differ-
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ence between the identified state-space model and the MFW
frequency response data, previously pointed out in figures 6
and 7.

Full Coupled Helicopter Results

When the identified state-space models are introduced into
the full aircraft simulation, the entire mathematical model of
the helicopter can be linearized to create linearized state and
controls matrices. These responses can be compared to the
frequency responses derived with the simplified coaxial ex-
tension of the single rotor Peters-He dynamic inflow model,
obtained by simply placing the lower rotor in a climb corre-
sponding to the average inflow of the upper rotor. Figure 10
shows the heave velocity response to the symmetric collective.
Very close agreement is shown between the two responses,
meaning the identified hover inflow model aligns well with the
extended Peters-He model. Figure 11 shows almost perfect
agreement for the yaw rate response to differential collective.

The roll and pitch response using the identified state-space
model differ from the extended Peters-He model. As shown
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Fig. 8. Time-domain verification of symmetric collective
θ S

0 doublet, showing the thrust pertubations and the re-
sulting time histories of λU

0 and λ L
0 from the identificed

state-space model and the MFW

in figure 12, the MFW state-space inflow model shows the
aircraft having a higher response in roll due to θ S

1S than is
predicted with the extended Peters-He model with the lower
rotor in climb. This response elevation occurs right around
the frequency range of control system crossover (1-10 rad/s),
and would have a direct impact on predicted aircraft stability
margins.

Figure 13 shows a similar result for the response of pitch rate
to θ S

1C. This response is not exactly the same as the roll rate
due to the large variation in pitch and roll inertia of the air-
craft. There are also small but non-zero off-axis responses, as
in θ S

1S causes some pitch rate and θ S
1C causes some roll rate.

This is indicative of the fact that the swash-plate angle is set
to zero for both cases to allow comparison. Practically, the
differences in the two responses may indicate that the design
of the swash-plate phasing would be different depending on
which inflow model is used.

Looking at the previous bode plots it is clear that the heave
and directional responses are pretty much the same at high
frequency, regardless of the inflow model used. The low fre-
quency poles are different but poles above 10 rad/s are essen-
tially unchanged. This is further shown in Tables 3 and 4 in
the appendix, which show the poles of the linearized state ma-
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Fig. 9. Time-domain verification of upper rotor longitudi-
nal cylcic θU

1C doublet, showing the pitching moment per-
tubations and the resulting time histories of λU

1C and λ L
1C

from the identificed state-space model and the MFW

trices for the two different systems. The high frequency rotor
modes are very close in value when using either inflow model.

Inflow Extraction at Off-Rotor Locations

Tail ODE Induced Inflow Results – RFW The methodol-
ogy prescribed for calculating an off-rotor ODE inflow model
was applied to the RFW at the previously stated points of the
tail. Figure 14 shows the induced velocity without excitations
at three points across the 1/4 chord line of the horizontal tail
at a trim CT of 0.005. The center point lies on the longitudinal
axis and the port tip and starboard tip are located at the wing
tips of their respective sides. All of these points lie outside
of the wake in hover. As shown, these velocities are periodic
which stands in contrast with the steady nature of λ0, λ1s, λ1c
(without excitations) in standard dynamic inflow analysis.

Figure 15 shows the velocities at the tail center point due to
thrust, roll moment and pitch moment perturbations in hover
(trim CT = 0.005). The small fluctuations are the rotor periods
which demonstrate the fact that in this case the perturbation is
relatively slow (ω̃ = 0.2)

Freq (rad/s)

10
-1

10
0

10
1

10
2

-450°

-360°

-270°

-180°

dB

-60

-40

-20

0

20

40

θ
0
 to w - Mag/Phase

Peters-He Lower Rotor Climb

MFW State-Space Model

Fig. 10. Responses of heave velocity w to θ S
0 showing com-

parison between MFW identified state-space model and
Peters-He model with the lower rotor in a climb; magni-
tude(top), phase(bottom)

Freq (rad/s)

10
-1

10
0

10
1

10
2

-450°

-360°

-270°

-180°

-90°

0°

dB

-60

-40

-20

0

20

θ
d
 to r - Mag/Phase

Peters-He Lower Rotor Climb

MFW State-Space Model

Fig. 11. Responses of yaw rate r to θ D
0 showing comparison

between MFW identified state-space model and Peters-He
model with the lower rotor in a climb; magnitude(top),
phase(bottom)

Figure 16 shows a bode plot of the v̄z due to many thrust per-
turbation (∆CT ) at different frequencies across the frequency
range. The plot shows that the points across the tail exhibit
similar behavior and can be all approximately represented by
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the tail average. This result is also compared with the induced
velocity inside the wake (at r/R = 0.75), which as expected
is evidently much higher with a sign difference. This bode
plot can further be approximately expressed as an ODE, by
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Fig. 14. RFW rotor induced velocity at the horizontal tail
vs. azimuth angle of blade #1 (no excitation); port tip(top),
center point(middle), starboard tip(bottom)

the method shown in Refs. 7, 25.

Figure 17 shows v̄z due to pitch perturbation (∆CM) in hover
(trim CT =0.005). Again, it is shown that the behavior is simi-
lar for the various points on the tail and much lower than those
which are located inside the wake.

Tail Output-Equation Induced Inflow Results – MFW
The methodology described to identify output-equation off-
rotor induced inflow was performed on the MFW to come up
with the relationship between λλλ and v̄x, v̄y and v̄z for a single
main rotor in hover. For the location of the tail, the average
of the seven points across the 1/4 chord line was used. Using
the form defined by Eq 11, the output equation for the induced
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velocities was determined to be: v̄x
v̄y
v̄z

=

 −0.2892 −0.3108 0.0532
−0.142 −0.1353 0.3407
0.3148 0.5361 −0.1104

 (19)

×

λ0(t−0.06225)
λ1c(t−0.2115)
λ1s(t−0.6929)


Figure 18 shows the time-domain verification of the output
equations for tail inflow. This was performed using a ramp in-
put, and time histories calculated from the state-space model
are compared to the actual output of the MFW. The time-
domain verification shows that the system responds well in
the long term, but has some misalignment in the short term at
high frequency. The error here is attributable to the fact that
the velocities have been approximated to be a linear combi-
nation of the inflow coefficients, and the responses were only
fit at low frequency. Hence the verification is not expected
to be exact, but rather adequate enough to provide the needed
dynamics.
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Fig. 16. Responses of v̄z due to ∆CT in hover (trim
CT =0.005) at various points across the tail and at
a point inside the wake using RFW; magnitude(top),
phase(bottom)
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Fuselage Output-Equation Induced Inflow Results –
MFW Another example example of Output-Equation In-
duced Inflow can be shown for points which are directly in
the wake. Once again this was performed on a single main

14



0.058

0.0595

0.061

0.0625

0.064
λ0 MFW

-0.012

-0.011

-0.01

-0.009

-0.008
v̄x MFW

v̄x State-space

-0.008

-0.007

-0.006

-0.005

-0.004
v̄y MFW

v̄y State-space

time (s)

0 0.5 1 1.5 2 2.5 3 3.5
0.014

0.015

0.016

0.017

0.018
v̄z MFW

v̄z State-space
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rotor in hover using the MFW. The output equation, fit to the
form defined by Eq 12, is defined as: v̄x

v̄y
v̄z

=

 0.0221 −0.7496 −0.2117
0 0.207 −0.766

−1.366 0.02861 0

◦ (20)

t−

 0.2149 0.541 0.3795
0 0.4452 0.5327

0.07075 0.154 0

×
 λ0

λ1c
λ1s




The time-domain verification of these output equations are
shown by Figure 19. This time a doublet input is used, and
the time histories calculated by the state-space model are com-
pared to the actual output of the MFW. For this case, a pertur-
bation in λ0 only produces a significant perturbation in v̄z. For
this case the output equations are a much better fit, indicating
that the velocities in the wake are well represented by this
formulation. This is important since a point inside the wake
experiences the larger induced velocities which can actually
create disturbances in the aircraft dynamics.

CONCLUSIONS

This paper presents a frequency domain system identification
methodology to extract a low order rotor inflow model in the
form of a system of ODEs, suitable for flight dynamics and
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Fig. 19. Time-domain verification of off-rotor fuselage in-
flow given a doublet in λ0 (compared with MFW)

control applications. The methodology is demonstrated using
a free-vortex wake simulation, but it is applicable to a wide
variety of advanced aerodynamic analyses, including CFD-
based ones. The methodology can also be applied to extract
state-space models of the inflow at points away from the rotor
disk, such as fuselage and empennage.

The wake dynamics describing the relationship from rotor
loads to inflow were extracted as non-parametric frequency
responses. These responses showed that this type of dynamics
of the rotor wake is linear in the frequency range of interest in
flight dynamics. Each non-parametric response had generally
high coherence across that frequency range.

The non-parametric frequency responses were fit with a first
order state-space model, which allows coupling and interfer-
ence between the rotors. In general, the state space model
fit well the collective responses, but mis-alignment was found
in the lateral and longitudinal inflow responses when com-
pared to the free-wake frequency responses. It is possible
that a higher order model could be created to better capture
the shape of the non-parametric frequency responses. Even
simple second order models for each of the given frequency
responses would likely improve the accuracy of the identifica-
tion. Higher order models come at the cost of model complex-
ity and loss of insight into the physical meaning of the inflow
states. In the first order model presented, the states are the in-
flow coefficients, but further analysis would need to be done
to determine the physical meaning of any higher order states.
For this reason, the first order model is used in this paper.
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The identified state-space model was then used in a full air-
craft simulation model. Comparisons of the predicted aircraft
response to controls using the identified state space model
and a simple modification of the single rotor Peters-He model
were given. The results show that for the heave and yaw re-
sponses, the inflow models predicted very similar behavior.
The responses to pitch and roll inputs show quite different
responses, indicating that a more complex model with rotor-
rotor interactions is needed to properly predict the aircraft be-
havior.

Lastly two methods were presented to approximately predict
the inflow of any point off of the rotor. The first was a full
ODE model describing the relationship between rotor loads
and off-rotor inflow. This has the advantage of offering an ac-
curate prediction across the frequency range of flight pertur-
bations. The second method was to compute off-rotor inflow
as a linear combination of the on-rotor inflow states. This has
the advantage of not needing extra states, however this advan-
tage may be negated by the need for additional states arising
from the Padé approximations to the time delays.

The time-domain verification results show that the approxima-
tion is reasonably accurate. It is also important to note that,
with little effort, the frequency sweep method could be used
to achieve the full ODE model of off-rotor inflow, and like-
wise the single frequency analysis could determine an output-
equation inflow model.

In conclusion, the results of this paper show that:

1. Given a high-fidelity non-linear aerodynamic simulation
of coaxial rotor inflow, it is possible to extract a linear
model that well represents the inflow dynamics at a given
trim condition.

2. A first-order linear inflow model does not capture all of
the dynamics of a coaxial rotor wake, and a higher order
model may be required to get a better match with the free
wake data.

3. An ODE model or an output equation on the inflow ODE
model can be extracted and used to predict the rotor-
induced velocities anywhere on or around the aircraft.

4. When coupled back into a full flight simulation, some
differences between the identified model and a more
classical dynamic inflow-type model exist, showing the
necessity of a coupled rotor inflow model.

Because of the complexity of a coaxial rotor flow field and,
in general, of the flow fields away from the rotor and espe-
cially in proximity of fuselage and empennage, the conclu-
sions above should be carefully validated with more refined
mathematical models and experiment.
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APPENDIX

Table 3. Aircraft poles with Peters-He inflow with climb-
ing lower rotor.

Freq. (rad/s) Pole Description
0 0 heading
0.08656 -0.08656 heave
0.478 -0.478 yaw
0.5833 0.007835 ± 0.5833i phugoid
0.5858 0.0852 ± 0.5796i phugoid
2.788 -2.788 spiral
4.18 -4.18 pitch
10.29 -10.29 inflow
11.44 -11.44 inflow
13.68 -3.705 ± 13.17i Regressive Flap
19.28 -19.28 inflow
19.79 -19.79 inflow
19.87 -3.747 ± 19.51i Regressive Flap
21.4 -21.4 inflow
21.71 -21.71 inflow
34.71 -7.631 ± 33.86i Coning Flap
35.36 -7.975 ± 34.45i Reactionless Flap
35.43 -7.34 ± 34.66i Reactionless Flap
35.53 -6.849 ± 34.86i Coning Flap
57.92 -7.262 ± 57.46i Progressive Flap
58.34 -6.572 ± 57.97i Progressive Flap

Table 4. Aircraft poles with MFW identified state-space
model inflow.

Freq. (rad/s) Pole Description
0 0 heading
0.08606 -0.08606 heave
0.321 -0.005125 ± 0.3209i phugoid
0.4252 0.02015 ± 0.4247i phugoid
0.8566 -0.8566 yaw
3.23 -3.23 pitch
3.799 -3.798 ± 0.0969i inflow
3.853 -3.853 inflow
3.853 -3.853 inflow
4.455 -4.455 pitch
4.93 -4.93 pitch
7.408 -7.408 inflow
9.985 -9.179 ± 3.931i inflow
10.89 -10.89 inflow
12.44 -10.93 ± 5.95i inflow
13.62 -12.93 ± 4.284i inflow
13.79 -13.79 inflow
13.79 -13.79 inflow
14.43 -11.58 ± 8.604i inflow
14.94 -4.736 ± 14.17i Regressive Flap
21.05 -4.601 ± 20.54i Regressive Flap
21.85 -21.85 inflow
25.54 -22.07 ± 12.86i inflow
28.47 -23.85 ± 15.54i inflow
34.83 -8.367 ± 33.81i Coning Flap
35.08 -30.72 ± 16.93i inflow
35.36 -7.804 ± 34.49i Reactionless Flap
35.39 -7.576 ± 34.57i Reactionless Flap
35.92 -7.663 ± 35.1i Coning Flap
41.47 -35.94 ± 20.68i inflow
42.91 -37.06 ± 21.63i inflow
49.94 -49.94 inflow
58.92 -7.512 ± 58.43i Progressive Flap
59.3 -7.376 ± 58.84i Progressive Flap
68.53 -68.53 inflow
88.76 -88.73 ± 2.535i inflow
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