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Frequency-domain identification of multi-input systems with highly-correlated inputs is
performed using the Joint Input-Output method. This method allows for highly-correlated
inputs by considering both the input and output of the system jointly as the outputs to
some uncorrelated (or partially-correlated) reference input. After a brief discussion of
multi-input system identification, the Joint Input-Output method is applied to two simu-
lation examples—a business jet model and a compound rotorcraft model both with control
systems that result in fully correlated bare-airframe inputs. The results of both sim-
ulation examples show that using the Joint Input-Output method recovers the correct
bare-airframe frequency responses when compared to the known simulation models. Sub-
sequently, the method is applied to flight data for a business jet with a fly-by-wire control
system that fully correlates the bare-airframe inputs. The business jet flight-test results
show excellent agreement between closed-loop flight data processed with the Joint Input-
Output method and open-loop flight data with no input correlation. Finally, the Joint
Input-Output method is used to identify frequency responses of an octocopter UAV to
individual motor inputs from flight-test data. The results of the octocopter identification
are validated using the known moment arms of the individual motors.

Nomenclature

β Sideslip angle [deg or rad]
δ Vector of inputs
C MIMO controller or mixer
F MIMO feed-forward or prefilter
G Matrix of auto- and cross-spectra
H MIMO feedback or sensor model
M Mixing matrix
P MIMO bare-airframe
r Reference input
y Vector of outputs
δ Single input
γ2xy Coherence from input x to output y
ω Frequency [rad/sec]
φ Phase angle [deg]
Gxy Cross-spectrum
j Imaginary number,

√
−1

p Roll rate [deg/sec or rad/sec]
T Total record length [sec]
t Time [sec]
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y Single output

Subscripts

ail Aileron
A Bare-airframe (Actuator)
lat Lateral stick
ped Pedals
rud Rudder
S Pilot (Stick)

I. Introduction

Aerospace applications often require the identification of multi-input/multi-output (MIMO) systems,
such as a MIMO bare-airframe aircraft model. A non-parametric frequency-response matrix of the dif-

ferent input-output pairs of a MIMO system is necessary for parametric model structure determination and
for transfer-function and state-space model identification using frequency-response identification techniques
(e.g., Ref. 1). A frequency-response matrix may also be desirable to validate parametric models identi-
fied using other frequency- or time-domain identification methods (e.g., Maximum Likelihood Estimate or
Output-Error Method2). Many times though, the inputs to these MIMO systems cannot be independently
excited and produce off-axis, or secondary, inputs that are correlated with the primary input. Examples of
such systems include aircraft with mechanical mixers that cannot be disconnected (such as an aileron-rudder
interconnect), aircraft with control allocation that allocate each moment command to multiple bare-airframe
inputs, or unstable aircraft that cannot be excited without a control system engaged which feeds back ex-
citations in the primary input to secondary inputs. When the inputs are highly correlated, the effects of
each individual input on each output cannot be separated, and an accurate frequency-response model of the
MIMO system cannot be determined without some additional processing. This paper reviews and applies
the Joint Input-Output (JIO) Method for frequency-response identification with highly-correlated inputs.

Several approaches have been proposed to mitigate the issue of correlated inputs. The simplest approach
is to perform the identification using a Direct Method, where the bare-airframe input and output data
are used directly, either ignoring [Single-Input/Single-Output (SISO) Direct Method ] or conditioning for
[Multi-Input/Single-Output (MISO) Direct Method ] any potentially correlated secondary inputs. Reference 1
provides a MISO Direct Method to condition the data and remove the effects of partially-correlated secondary
inputs, however, the method breaks down for highly- or fully-correlated inputs.

Another approach to mitigate high input-correlation is to de-correlate the inputs by summing random
signals uncorrelated with the primary input to the secondary inputs. This was demonstrated successfully
while identifying a model of a Bell 206 helicopter from flight data,3 where the copilot randomly pulsed
the secondary controls while the pilot performed a frequency sweep in the primary control. An alternative
method is to use mutually orthogonal multisine signals for each input simultaneously, which by design
attempts to keep the inputs uncorrelated.2 Then, SISO frequency responses from each individual input
to each output can be extracted at that input’s discrete, known input frequencies using a discrete Fourier
transform (DFT).2,4 This method is referred to herein as the Orthogonal DFT Method. However, in the
presence of feedback and coupling in either the bare-airframe or the feedback, discrete frequencies in one
axis may be fed back to the other axes are render the inputs no longer orthogonal and this method will break
down.

When a control system is causing the correlation, nonlinearities (such as a deadband or a conditional
controller5) can be added to the secondary input channels to reduce the correlation with the primary input.
Reference 6 lists two additional approaches for performing bare-airframe identification in the presence of a
control system (i.e., closed-loop identification). The first additional approach is called the Indirect Method
and consists of two steps: 1) Identify the closed-loop system for which the inputs can generally be made
uncorrelated or only partially correlated and 2) Extract the bare-airframe model using knowledge of the
controller. The main limitation of the Indirect Method is that any errors in knowledge of the controller
(e.g., under- or over-estimation of the time delay in the feedback path) will be manifested as errors in the
bare-airframe model.6 The second approach to closed-loop identification given in Ref. 6 is called the Joint
Input-Output (JIO) Method, where both the input and output of the bare-airframe are considered jointly as
outputs to some uncorrelated (or partially-correlated) reference input.

The JIO Method was proposed by Akaike7 as a way to mitigate measurement noise correlation when
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analyzing systems with feedback. More recently, the JIO method was utitlized by Gennaretti et al.8 and
Hersey et al.9 for identification of rotorcraft inflow models with highly-correlated inputs, and by Knapp et
al.10 to identify a flight dynamics model of an F-16 from closed-loop flight data.

Herein, the JIO Method is utilized to solve the highly-correlated input system-identification problem for
flight dynamics models using frequency-domain system-identification techniques.1 The JIO Method will be
used to generate a frequency-response matrix of the different input-output pairs of a MIMO system.

A brief description of the MISO Direct and JIO Methods with application to aircraft identification is pro-
vided in Sec. II. Two simulation examples are presented in Sec. III. The first is based on the lateral/directional
dynamics of a business jet with a simple control system which results in highly-correlated bare-airframe in-
puts. Bare-airframe frequency responses are extracted from frequency sweeps input at the actuators using
the Direct and JIO Methods, and also from orthogonal multisines input at the actuators using the Orthog-
onal DFT Method. The results are then compared to the known model. The second simulation example
is based on a compound rotorcraft with multiple redundant controls and a control system and control allo-
cation scheme that results in highly-correlated bare-airframe inputs. Bare-airframe frequency responses to
individual actuators are extracted from frequency sweeps input at the actuators using the Direct and JIO
Methods, and are compared to the known model. In Sec. IV, the JIO Method is first applied to closed-
loop flight-test data of a business jet, which contain highly-correlated bare-airframe inputs. Bare-airframe
frequency responses are extracted from the flight-test data using both the Direct and JIO Methods, and
are compared to frequency responses extracted from open-loop flight data collected with no control system,
thereby validating the JIO Method. Then, the JIO Method is used to identify the bare-airframe dynamics
of an octocopter unmanned aerial vehicle (UAV) to individual motors, which are highly correlated due to
control mixing, from flight-test data. Finally, conclusions are provided in Sec. V.

II. Frequency Response Identification of MIMO Flight Dynamics Models

Consider the generic block diagram shown in Fig. 1, with MIMO bare-airframe P , controller/mixer
C, feedback/sensor model H, and feed-forward/prefilter F . The pilot stick inputs are denoted by vector
δS ∈ RnS , bare-airframe inputs by vector δA ∈ RnA , and bare-airframe outputs by vector y ∈ Rny . Inputs
δAin ∈ RnA may also be summed directly into the bare-airframe inputs.

PSδ F y

H

 C 

inAδ

- Aδ

Figure 1. Generic closed-loop block diagram.

The MIMO bare-airframe P can be expressed as a matrix of frequency responses:

P (jω) =


y1
δA1

(jω) . . .
y1
δAnA

(jω)

...
. . .

...
yny
δA1

(jω) . . .
yny
δAnA

(jω)

 ≡
[
y

δA
(jω)

]
(1)

which can be identified from flight data by exciting the bare-airframe through some external excitation (e.g.,
δS or δAin

in Fig. 1), and measuring δA and y.
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A. Multi-Input/Single-Output Direct Method

Using the frequency-domain Multi-Input/Single-Output (MISO) Direct Method,1 the bare-airframe frequency-
response matrix [y/δA] can be identified from the following auto- and cross-spectra quantities:
y1
δA1

(jω) . . .
y1
δAnA

(jω)

...
. . .

...
yny
δA1

(jω) . . .
yny
δAnA

(jω)


︸ ︷︷ ︸[

y
δA

(jω)
]

=


GδA1

y1(jω) . . . GδAnA
y1(jω)

...
. . .

...

GδA1yny
(jω) . . . GδAnA

yny
(jω)


︸ ︷︷ ︸

[GδAy(jω)]


GδA1

δA1
(jω) . . . GδAnA

δA1
(jω)

...
. . .

...

GδA1δAnA
(jω) . . . GδAnA

δAnA
(jω)


−1

︸ ︷︷ ︸
[GδAδA(jω)]

−1

(2)

Note that Eq. 2 represents an ny × nA × nω matrix (i.e., an ny × nA matrix at each of the nω frequency
points). In CIFER R©1 for example, the spectral quantities (Gxy) in the right-hand side of Eq. 2 are first
extracted from windowed time history data. Then, the calculation in Eq. 2 is applied one output at a time
(e.g., y1 in Eq. 2) to produce conditioned frequency responses. Finally, the conditioned frequency responses
from the different windows are combined into composite frequency responses.

When high correlation exists between the bare-airframe inputs δA (e.g., due to controller crossfeeds or
bare-airframe coupling), the matrix GδAδA(jω) will be nearly singular and cannot be inverted to complete
the calculation in Eq. 2. In fact, Ref. 1 lists a guideline based on the average cross-control coherence γ2δAiδAj
between the primary input δAi and secondary inputs δAj under which the MISO Direct Method may be
used: (

γ2δAiδAj

)
ave

< 0.5 for i, j = 1, ..., nA and i 6= j (3)

If Eq. 3 is not satisfied, but the average secondary control autospectra GδAj δAj are small compared to

the average primary control autospectrum GδAiδAi :(
GδAj δAj

)
ave
−
(
GδAiδAi

)
ave
≤ −20 dB for i, j = 1, ..., nA and i 6= j (4)

then the secondary inputs can be ignored in the analysis,1 and the MISO Direct Method in Eq. 2 collapses
to the SISO Direct Method, given by:

yi
δAj

(jω) =
GδAj yi

GδAj δAj
(jω) (5)

When neither Eq. 3 nor Eq. 4 are met for the multiple bare-airframe inputs δA, then the MISO Direct
Method cannot be used and the SISO Direct Method will yield incorrect results, as demonstrated in the
examples in Sec. III and Sec. IV. For these cases, the MISO Direct Method can be applied using the
uncorrelated (or only partially-correlated) external excitations (δS or δAin in Fig. 1) as the inputs, and a
post-processing step using the JIO Method is added, as explained next.

B. Joint Input-Output Method

The JIO Method recovers the uncorrelated frequency responses that make up [y/δA] when the bare-airframe
inputs δA are highly correlated. The JIO Method relies on the fact that when performing system identification
of MIMO systems, the inputs cannot be highly correlated, however the outputs can. Therefore, if the inputs
to the bare-airframe δA are treated as outputs to a set of uncorrelated (or partially-correlated) reference
inputs r, then the correlation in δA is not prohibitive to identifying a MIMO bare-airframe model. Using
the JIO Method, the transfer-function matrix representing the bare-airframe can be calculated as:[

y

δA
(jω)

]
=

[
y

r
(jω)

][
δA
r

(jω)

]−1

(6)

Note that frequency responses matrices [y/r] and [δA/r] in Eq. 6 are extracted from flight data using the
MISO Direct Method (Eq. 2) with r as the input instead of δA. Therefore, the reference signal r must
adhere to the guidelines in Eqs. 3 and 4 with the additional restriction:
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1. Reference input r must have the same number of elements as δA (i.e., r ∈ RnA), such that the matrix
[δA/r] is square.

2. The independent inputs ri, i = 1, ..., nA that make up r can be excited independently (i.e., the cross-
spectra Grirj are small for all i 6= j).

3. The independent inputs ri, i = 1, ..., nA must generate independent combinations of bare-airframe
inputs δA, such that the matrix [δA/r] is invertible.

The usual considerations of input noise and correlated feedback of output noise1 must still be taken into
account when selecting the reference signal r. Signals external to the system (e.g., δS or δAin in Fig. 1) are
the best choice because they can typically be measured with little noise and have no output noise correlation.

For conventional aircraft, typically nS = nA, and pilot inputs δS are a good choice for the uncorrelated
(or partially-correlated) reference signals r. Then, Eq. 6 becomes:[

y

δA

]
=

[
y

δS

] [
δA
δS

]−1

(7)

When there are redundant bare-airframe controls (i.e., nA > nS), then δAin , an external input signal summed
into the actuator commands generated by the controller C, is a good choice for r and Eq. 6 becomes:[

y

δA

]
=

[
y

δAin

] [
δA
δAin

]−1

(8)

When δAin
is the reference input, an automated frequency sweep can be summed into the command of each

individual bare-airframe input (e.g., aerosurface actuators for a conventional airplane, swashplate servos for
a helicopter, or electric motors for a multi-rotor eVTOL aircraft) one at a time.

Alternatively, the reference input r can be mixed using a mixing matrix M ∈ RnA×nA before generating
the external actuator command inputs δAin , as shown in Fig. 2. Note that the mixing matrix M does not
have to be the same as any mixing in the controller C. This allows commanding ganged sets of bare-airframe
actuators to only excite certain aircraft responses per input, providing increased transparency of responses
to each excitation and more flexibility to fine tune desired responses. One example of this is mixing the
reference signal to excite a helicopter swashplate plate in collective, lateral cyclic, and longitudinal cyclic
instead of exciting the three swashplate servos individually. Another example is exciting opposite pairs of
electric motors of a multi-rotor eVTOL aircraft in a symmetric and differential manner. In both cases, Eq. 6
is applied directly with r in Fig. 2 as the reference input.

PSδ F y

H

 C 
-

M

inAδ

𝑟

Aδ

Figure 2. Generic closed-loop block diagram with mixed reference signal.

In all cases of Eqs. 6 through 8, all frequency responses in the matrices on the right hand side of the
equations are for inputs with correlation less than the guidelines given in Eqs. 3 and 4, even if the inputs to
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the bare-airframe δA are highly correlated. Therefore, the JIO Method solves the problems associated with
identification of MIMO systems in the presence of highly-correlated inputs. Note that unlike the Indirect
Method, the JIO Method does not require any knowledge of F , C, or H in Fig. 1 or M in Fig. 2 to extract
a model of the bare-airframe P from closed-loop data.

Finally, it is important to assess the quality of the frequency responses generated by the JIO Method
for their use in identification of a parametric model using coherence γ2δAiyj

. A method to reconstruct the

coherence of the frequency responses generated by the JIO Method (elements of [y/δA]) from the coherence
of the individual frequency responses used (elements of [y/r] and [δA/r]) was developed in Ref. 9. This
method is adopted herein with one modification, based on the authors’ experience applying the JIO Method
to flight-test data, to better represent the quality of the JIO Method frequency responses. Where Ref. 9
assumed the coherence of two multiplied frequency responses H1 and H2, given by γ2H1×H2

, is simply equal
to the minimum of the two coherences, here it is taken as a weighted minimum:

γ2H1×H2
= W (x) min(γ2H1

, γ2H2
) (9)

where:

W (x) = [1.582(1− e−x)]2 (10)

x =

(γ2H1
× γ2H2

)1/2 if max(γ2H1
, γ2H2

) < 0.9

y + (1− y)(γ2H1
× γ2H2

)1/2 otherwise
(11)

y = 10[max(γ2H1
, γ2H2

)− 0.9] (12)

The coherence weighting function W (x) in Eq. 10 is the same as used by Ref. 1, where x in Eq. 11
is the geometric mean when both coherences are below 0.9. If a single coherence is at or above 0.9, then
x is interpolated between 1 and the geometric mean using Eq. 12. This interpolation guarantees that the
coherence of a product collapses to the minimum coherence when a single coherence is very high. For example,
if one of the factors is perfectly known, then the maximum coherence is 1, resulting in W (x) = x = 1 and
γ2H1×H2

= min(γ2H1
, γ2H2

). This can happen when the reference signal is chosen as the actuator signal in the
JIO Method.

The JIO Method with coherence calculation presented here will be integrated into the next major release
of the CIFER R© software tool and will be available by the end of 2019.

III. Simulation Examples

In this section, the JIO Method is applied to simulation data. This allows validation of the JIO identifi-
cation results against a known bare-airframe model. The first simulation example is of the lateral/directional
dynamics of a fixed-wing business jet with two correlated bare-airframe inputs (ailerons and rudder). The
second simulation example is of a notional high-speed compound rotorcraft with 10 correlated bare-airframe
inputs.

A. Learjet LJ-25D

The simulation example presented here is based on a lateral/directional bare-airframe model of a Learjet LJ-
25D (shown in Fig. 3). The bare-airframe model P was identified from flight-test data at a flight condition
of 250 kts (KCAS), 15,000 ft,11 and is given in state-space form as:

v̇

ṗ

ṙ

φ̇

 =


Yv Yp +W0 Yr − U0 g cos Θ0

Lv Lp Lr 0

Nv Np Nr 0

0 1 tan Θ0 0



v

p

r

φ

+


Yδail Yδrud
Lδail Lδrud
Nδail Nδrud

0 0


[
δail

δrud

]

pβ
β̇

 =


0 1 0 0
1

Vtot
0 0 0

Yv
Vtot

Yp +W0

Vtot

Yr − U0

Vtot

g cos Θ0

Vtot



v

p

r

φ

+


0 0

0 0
Yδail
Vtot

Yδrud
Vtot


[
δail

δrud

]
(13)
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Stability and control derivative and trim values are given in Table 1.

Figure 3. Calspan Variable Stability System Learjet LJ-25D.

A notional control system was developed to investigate bare-airframe frequency response identification
from closed-loop data. The control system (shown in block diagram form in Fig. 4) consists of a yaw damper
using sideslip rate feedback (Kβ̇) and an aileron-rudder interconnect (ARI) given by KARI = −Nδail/Nδrud .
Control system parameter values are also given in Table 1. The yaw-damper loop has a crossover frequency
of ωc = 3.4 rad/sec, which is typical for a directional controller.12

𝐾  𝛽



𝐾ARI 𝑃

-


𝑝

𝛽

 𝛽δrud

δrudin

δailin

δail
𝐾lat

𝐾ped
δped

δlat

Figure 4. Block diagram of simple LJ-25 lateral/directional control system.

For this idealized example, there are no nonlinearities, actuator or sensor models, time delays, or process
or measurement noise. Thus any errors in the identified bare-airframe frequency responses from closed-loop
data are attributed to the correlated bare-airframe inputs. Furthermore, since there is no feedback or feed-
forward coupling to the ailerons, the aileron input will not be correlated to the rudder input when the rudder
is excited. Therefore, we expect all identified frequency responses to rudder inputs (i.e., p/δrud and β/δrud)
to be accurate, and frequency responses to aileron inputs (i.e., p/δail and β/δail) to be inaccurate using a
Direct Method approach.

Two Learjet simulation examples will be shown. In the first example, bare-airframe frequency responses
will be extracted from two time histories: 1) Frequency sweep of the aileron command external input (δailin
in Fig. 4) and 2) Frequency sweep of the rudder command external input (δrudin

in Fig. 4). In the second
example, bare-airframe frequency responses will be extracted from a single time history consisting of orthog-
onal phase-optimized multisine inputs at the aileron and rudder command external inputs simultaneously.
The results for both examples are presented together and compared.
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Table 1. Learjet Simulation Example Parameter Values (250 kts, 15,000 ft)

Parameter Value Units Parameter Value Units

Yv −0.1698 1/sec Lδrud 0.0330 rad/sec2-deg

Yp 0.8673 ft/sec-rad Nδail −0.0113 rad/sec2-deg

Yr 0 ft/sec-rad Nδrud −0.0373 rad/sec2-deg

Lv −0.0192 rad/sec-ft U0 536.18 ft/sec

Lp −2.2776 1/sec W0 20.86 ft/sec

Lr 0.8487 1/sec Vtot 536.59 ft/sec

Nv 0.0053 rad/sec-ft Θ0 0.039 rad

Np −0.2258 1/sec Klat 5.0 deg/in

Nr −0.2719 1/sec Kped 6.0 deg/in

Yδail −0.0132 ft/sec2-deg KARI −0.3020 deg/deg

Yδrud
0.3073 ft/sec2-deg Kβ̇ 1.0 deg/deg/sec

Lδail −0.1623 rad/sec2-deg

1. Frequency Sweep Inputs

Figures 5 and 6 show time histories of the roll- and yaw-axis frequency sweeps input directly into the aileron
and rudder actuator commands, respectively (δAin = [δailin δrudin ]T ). The total sweep length is T = 60 sec
for each maneuver, including 5 sec of trim data at the beginning and end of the maneuver. The range of
frequencies excited during the sweep is ω = 0.8− 15 rad/sec. For each maneuver, a sweep amplitude of ±1.2
deg was used on the swept input, while ±0.008 deg white noise was added to the non-swept input to mimic
flight test conditions where a pure zero signal would not be recorded. Therefore, for each frequency sweep
maneuver, the external actuator command inputs δAin

are not correlated by design.
Figures 5 and 6 also show the bare-airframe inputs aileron and rudder deflections (δA = [δail δrud]T ) and

the bare-airframe outputs (y = [p β]T ) for both roll- and yaw-axis frequency sweeps, respectively. During
the roll-axis frequency sweep (Fig. 5), the control system produced rudder deflections (secondary input) that
are correlated with the aileron deflections (primary input) due to the aircraft coupling β/δail, as seen in the
fourth subplot in Fig. 5. In contrast, during the yaw-axis frequency sweeps (Fig. 6), the aileron deflection
(secondary input) are essentially zero and not correlated with the rudder deflections (primary input), as seen
in the third subplot in Fig. 6.

For both frequency sweeps, roll rate p and sideslip β are excited due to bare-airframe coupling, as seen
in the bottom two subplots of Figs. 5 and 6.

A quantitative cross-control correlation analysis was performed to confirm the bare-airframe input cor-
relation for the roll-axis sweep seen qualitatively from the time histories in Fig. 5. Figure 7 shows the
cross-control correlation analysis for the roll-axis sweep between the bare-airframe inputs (primary input
δail and secondary input δrud) and between the external actuator command inputs (primary input δailin and
secondary input δrudin

). For the bare-airframe inputs (Fig. 7, solid blue line), the cross-control coherence is
γ2δailδrud

≈ 1.0 over a broad frequency range, violating the guideline in Eq. 3. Therefore, traditional condi-
tioning of the responses using the MISO Direct Method identification technique cannot be used in this case
due to the inversion of the ill-conditioned matrix in Eq. 2. One approach is to ignore the secondary input
and process the data using the SISO Direct Method. However, as will be shown, this approach will produce
the wrong results, since the secondary input magnitude is large compared to the primary input magnitude
(Fig. 7, top plot, solid blue line) which violates the guideline in Eq. 4.

In contrast, for the external actuator command input (Fig. 7, dashed red line), the cross-control coherence
and secondary input magnitude are low (i.e., meet the guidelines in Eqs. 3 and 4). Therefore, the MISO
Direct Method can be applied to the data with the external actuator commands as the inputs (r = δAin =
[δailin δrudin ]T ) to extract [y/δAin ] and [δA/δAin ]. Then, the JIO Method is applied to post process the results
and extract the bare-airframe frequency responses [y/δA] as in Eq. 8.

The results of the quantitative cross-control correlation analysis for the yaw-axis sweep are shown in
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Figure 5. Closed-loop roll-axis frequency sweep
time history (LJ-25 simulation example).
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Figure 6. Closed-loop yaw-axis frequency sweep
time history (LJ-25 simulation example).
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Figure 7. Closed-loop roll-axis frequency sweep
cross-control correlation for aerosurface and actu-
ator commands (LJ-25 simulation example).
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Figure 8. Closed-loop yaw-axis frequency sweep
cross-control correlation for aerosurface and actu-
ator commands (LJ-25 simulation example).
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Fig. 8. In this case, since there is no feedback to the ailerons, both the bare-airframe inputs (primary
input δrud and secondary input δail) and the actuator command inputs (primary input δrudin and secondary
input δailin) are not highly correlated (i.e., meet the guidelines in Eqs. 3 and 4). Therefore, we expect
that processing the yaw-axis frequency sweep data using the MISO Direct Method will produce accurate
frequency responses to rudder inputs.

2. Orthogonal Multisine Inputs

In addition to the frequency sweeps input at the actuator commands one at a time presented above, a
simultaneous excitation of both actuator commands was performed using orthogonal multisine inputs.2

Orthogonal multisine inputs have commonly been used to de-correlate bare-airframe inputs and perform
system identification of multi-input systems using one time history record.2 The orthogonal phase-optimized
multisine signals input directly into the aileron and rudder actuator commands (δailin , δrudin

) in this example
are given by:

δailin =
∑
iail

aiail cos

(
2πiail
T

t+ φiail

)
, iail = 1, 3, ..., 39

δrudin
=

∑
irud

airud
cos

(
2πirud
T

t+ φirud

)
, irud = 2, 4, ..., 40 (14)

where, iail 6= irud ensures that the inputs are orthogonal.
Figure 9 shows the 40 excitation frequencies ωi = 2πi/T (20 per input) used in each input and their

corresponding magnitudes ai. The phase lags φi were optimized to minimize the relative peak factor of
the input signals.2 Then, the magnitudes of each excitation frequency ai were scaled to produce input
magnitudes similar to the frequency sweeps presented above (±1.2 deg). In addition, the same record length
T = 60 sec was used for the multisine input as for the frequency sweeps, although here, the 5 sec of trim
data at the beginning and end of the maneuver were not included, thus fully utilizing the T = 60 sec record
length. In addition, since neither reference input (δailin , δrudin

) was exactly 0 in this case, no noise was added
to the inputs.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Figure 9. Multisine excitation frequencies for actuator command signals.

Figure 10 shows time histories of the aileron and rudder actuator command inputs (δAin
= [δailin δrudin

]T ),
bare-airframe aileron and rudder inputs (δA = [δail δrud]T ), and aircraft outputs (y = [p β]T ) for the multi-
sine signal.
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Figure 10. Closed-loop simultaneous roll- and yaw-axis phase-optimized orthogonal multisines time
histories (LJ-25 simulation example).

A discrete finite Fourier transform evaluated only at the excitation frequencies was used to extract
frequency responses from the multisine data.13 For example, the roll rate p responses are given by:

p

δail
(jωiail) =

N−1∑
k=0

p(tk)[cos(ωiailtk)− j sin(ωiailtk)]∆t

N−1∑
k=0

δail(tk)[cos(ωiailtk)− j sin(ωiailtk)]∆t

p

δrud
(jωirud

) =

N−1∑
k=0

p(tk)[cos(ωirudtk)− j sin(ωirudtk)]∆t

N−1∑
k=0

δrud(tk)[cos(ωirudtk)− j sin(ωirudtk)]∆t

(15)

where ∆t is the sampling time and N is the number of data samples in the time history.
Although the multisine input signals used (δailin , δrudin

) are uncorrelated by design, the presence of
feedback and bare-airframe coupling results in correlation of the actual control surface deflections (δail, δrud).
Figure 11 shows the magnitude of each excitation frequency in the bare-airframe inputs. As expected, only
those excitation frequencies used in the aileron command input δailin are present in the aileron deflection δail
(Fig. 11, top subplot), since there is no feedback to the ailerons. In contrast, excitation frequencies used in
both the aileron command input δailin and rudder command input δrudin

are present in the rudder deflection
δrud (Fig. 11, bottom subplot). The presence of aileron command excitation frequencies in the rudder
deflection is due to both inherent bare-airframe lateral/directional coupling (i.e., β/δail 6= 0) and presence
of a yaw damper. A quantitative correlation analysis between the aileron and rudder deflections was done
using correlation coefficients, given in Table 2. This correlation level is well below the 0.9 correlation level
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typically used as an upper limit for allowable correlation of explanatory variables,2 incorrectly suggesting
that frequency responses extracted from the data using the Orthogonal DFT Method should match the
bare-airframe for both aileron and rudder inputs.

Table 2. Pairwise correlation matrix for control surface deflections

δail δrud

δail 1 0.0319

δrud — 1

0

0.1

0.2

0.3

0 1 2 3 4 5
0

0.1

0.2

0.3

Figure 11. Multisine excitation frequencies in aerosurface deflections (LJ-25 simulation example).

3. Results

Figures 12 through 15 show the bare-airframe frequency responses of:

1. The known truth model,

2. Identified from the frequency sweep data using the SISO Direct Method,

3. Identified from the frequency sweep data using the JIO Method, and

4. Identified from the multisine data using the Orthogonal DFT Method.

The results of the different methods are compared using a standard and useful frequency-domain accuracy
metric, the mismatch cost function J ,1 which is the weighted sum of squared magnitude (dB) and phase
(deg) errors between the identified response and true response. The mismatch costs for the SISO Direct and
JIO Methods are calculated over the frequency range of ω = 0.3 − 10 rad/sec. For the Orthogonal DFT
Method, the mismatch costs are calculated at the 20 discrete frequency points. The cost for each response
is shown in the legends of Figs. 12 through 15, as well as summarized in Table 3.

As expected, the responses to aileron input, p/δail (Fig. 12) and β/δail (Fig. 13), identified using the SISO
Direct Method, where rudder inputs are ignored, are incorrect and have large mismatch costs: JSISOp/δail =
43.38 and JSISOβ/δail = 1096.14. The frequency responses have an over-damped Dutch roll mode, due to
the suppression of the Dutch roll oscillations by the yaw damper, which is not accounted for in the SISO
Direct Method. Essentially, the SISO Direct Method identified the responses to aileron with the yaw-damper
loop closed, instead of for the bare-airframe. Recall that the MISO Direct Method could not be used here,
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because the secondary input was highly correlated to the primary input rendering the matrix GδAδA in Eq. 2
nearly singular and therefore non-invertible.

The responses to aileron input identified using the JIO Method agree with the bare-airframe model,
retaining the correct peaking of the Dutch roll mode in the frequency responses and having significantly
lower mismatch costs: JJIOp/δail = 0.88 and JJIOβ/δail = 3.23.

The Orthogonal DFT Method gives results in close agreement to the SISO Direct Method (Figs. 12
and 13), in essence identifying the responses to aileron input with the yaw-damper loop closed, which is
not reflective of the bare-airframe response. The Orthogonal DFT Method mismatch costs are slightly
higher than the SISO Direct Method and significantly higher than the JIO Method: JDFTp/δail

= 62.81
and JDFTβ/δail

= 1691.82. This is despite the low correlation coefficient between the aileron and rudder

deflections (shown in Table 2).
Figures 14 and 15 show the roll rate p and sideslip β bare-airframe frequency responses to rudder input

δrud. Here, as expected, all identification methods used produced similar responses that matched the bare-
airframe model well. This is because there was no correlated input to the aileron during the rudder frequency
sweep which is evidenced by the low cross-control correlation analysis shown in Fig. 8. There was also no
correlated input to the aileron during the multisine input, which is evidenced by the lack of δrudin

excitation
frequency content in the δail response shown in Fig. 11. These results confirm the close agreement between
the Orthogonal DFT and SISO Direct Methods for the same record length, with slightly better SISO Direct
Method results, as shown previously in Ref. 14, due to higher spectral content of the frequency response
input signal compared to the multisine signal.

The results of Figs. 14 and 15 demonstrate that closed-loop identification of multi-input systems is not
an issue when the inputs are truly de-correlated. When high input-correlation does exist (violating the
guidelines in Eqs. 3 and 4), which can be generated with bare-airframe coupling and feedback or with
crossfeeds, then identification using the MISO Direct Method cannot be used and the SISO Direct and
Orthogonal DFT Methods will produce incorrect results, as shown in Figs. 12 and 13. For these cases of
high input correlation, the JIO Method can produce correct results using the uncorrelated reference signals
as the inputs.

Note that the JIO Method cannot be applied directly to frequency responses obtained from simultaneous
multisine excitations using the Orthogonal DFT Method. This is because the columns of the [y/r] and
[δA/r] matrices in Eq. 6 are each at different frequencies, by design of the othrogonal reference signals r.
Therefore, to apply the JIO Method to frequency responses obtained using the Orthogonal DFT Method,
an additional step of interpolating all responses to a common frequency vector would be necessary before
carrying out the calculation of Eq. 6.

-40

-30

-20

-10

M
ag

ni
tu

de
 [

dB
]

Bare-Airframe Model (Truth Data)
SISO Direct Method, Frequency Sweeps (J = 43.38)
JIO Method, Frequency Sweeps (J = 0.88)
Orthogonal DFT Method, Multisine (J = 62.81)

-270

-225

-180

Ph
as

e 
[d

eg
]

10-1 100 101

Frequency [rad/sec]

0

0.5

1

C
oh

er
en

ce

Figure 12. Roll rate to aileron (p/δail) frequency
response comparison (LJ-25 simulation example).
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Figure 13. Sideslip to aileron (β/δail) frequency re-
sponse comparison (LJ-25 simulation example).
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Figure 14. Roll rate to rudder (p/δrud) frequency
response comparison (LJ-25 simulation example).
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Figure 15. Sideslip to rudder (β/δrud) frequency re-
sponse comparison (LJ-25 simulation example).

Table 3. Comparison of identification method mismatch costs J (LJ-25 simulation example)

SISO Direct JIO Orthogonal

Response Method Method DFT Method

p/δail 43.38 0.88 62.81

β/δail 1096.14 3.23 1691.82

p/δrud 4.89 4.55 10.26

β/δrud 2.68 2.86 6.80

B. Compound Rotorcraft

In the second simulation example presented in this paper, the JIO method is applied to a notional high-speed
compound rotorcraft with two coaxial main rotors and a pusher propellor. A rendering of the aircraft is
shown in Fig. 16 and a detailed description of the flight dynamics of the aircraft model is provided in Ref. 15.
This notional model is similar to the Sikorsky-Boeing SB>1 Defiant Joint Multi-Role (JMR) Technology
Demonstrator (TD), and similar to one of the configurations being considered for the Future Vertical Lift
(FVL) initiative.

With its two main rotors, pusher propellor, and vertical and horizontal tails, the configuration has
multiple redundant controls. In total, the aircraft has 10 actuators: three actuator per main rotor (upper
and lower), two pusher propellor actuators, one elevator actuator, and one rudder actuator. It is important
to know the aircraft response to each individual actuator to be able to develop a control allocation scheme
or for failure reconfiguration.

Closed-loop frequency sweeps were performed at 180 kts, Sea Level flight condition in simulation to
extract the roll and pitch rate responses to each individual actuator. The model contained an explicit
model following control system with pseudo-inverse control allocation. Since there are 10 bare-airframe
actuators δA = [δA1

. . . δA10
]T , 10 reference inputs are needed for the identification r = [r1 . . . r10]T . In this

example, the reference inputs r are mixed to command the 10 actuators to produce symmetric and differential
collective, longitudinal cyclic, and lateral cyclic, propellor collective, propellor lateral cyclic, elevator, and
rudder inputs, through a mixing matrix M given by:
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Figure 16. High-speed compound rotorcraft rendering.
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︸ ︷︷ ︸

δA

=



0.866 0.5 1.0 1.0 0.866 0.5 0 0 0 0

0 −1.0 1.0 1.0 0 −1.0 0 0 0 0

−0.866 0.5 1.0 1.0 −0.866 0.5 0 0 0 0

0 1.0 1.0 −1.0 0 −1.0 0 0 0 0

−0.866 −0.5 1.0 −1.0 0.866 0.5 0 0 0 0
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0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 0 1.0


︸ ︷︷ ︸

M



r1

r2

r3

r4

r5

r6

r7

r8

r9

r10


︸ ︷︷ ︸
r

(16)

Table 4 lists the 10 reference inputs used and the 10 bare-airframe actuators. The mixed reference input δAin

is then summed into the actuator commands as shown in Fig. 2. Note that although the reference inputs
are excited only one at a time, the mixing of the reference inputs and the control system fully correlate the
bare-airframe inputs δA.

Table 4. Compound rotorcraft reference signals and actuators

Reference Input Actuator

Symbol Name Symbol Name

r1 Symmetric lateral cyclic δA1 Upper rotor actuator 1

r2 Symmetric longitudinal cyclic δA2
Upper rotor actuator 2

r3 Symmetric collective δA3
Upper rotor actuator 3

r4 Differential collective δA4 Lower rotor actuator 1

r5 Differential lateral cyclic δA5
Lower rotor actuator 2

r6 Differential longitudinal cyclic δA6
Lower rotor actuator 3

r7 Propellor collective δA7 Propellor collective actuator

r8 Propellor lateral cyclic δA8
Propellor cyclic actuator

r9 Elevator δA9
Elevator actuator

r10 Rudder δA10 Rudder actuator
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Ten closed-loop frequency sweeps are performed, exciting each reference signal ri individually. Figures 17
and 18 show time histories of two of the 10 sweep manuevers: symmetric lateral cyclic r1 and symmetric
longitudinal cyclic r2, respectively. The total sweep length used is T = 120 sec for each maneuver, including
5 sec of trim data at the beginning and end of the maneuver. The range of frequencies excited during the
sweep is ω = 0.6 − 20 rad/sec. For each maneuver, a sweep amplitude of ±2.0 deg was used on the swept
reference input (shown in Figs. 17 and 18), while ±0.01 deg white noise was added to the nine other non-
swept reference inputs (not shown in Figs. 17 and 18). Therefore, for each frequency sweep maneuver, the
reference inputs r are not correlated by design.

Figures 17 and 18 also show time histories for four of the 10 bare-airframe actuators: upper rotor actuator
1 δA1

, lower rotor actuator 1 δA4
, elevator actuator δA9

, and rudder actuator δA10
. In addition, the roll rate

p and pitch rate q time histories are shown.
During the symmetric lateral cyclic r1 sweep (Fig. 17), the upper and lower rotor actuators δA1 and δA4

as well as the rudder actuator δA10 are fully correlated (as seen by the second, third, and fifth subplots in
Fig. 17). Furthermore, as expected for this input, the aircraft is primarily excited in roll (p ≈ ±20 deg/sec,
sixth subplot in Fig. 17) with minor pitch excitations (q ≈ ±0.5 deg/sec, seventh subplot in Fig. 17).

During the symmetric longitudinal cyclic r2 sweep (Fig. 18), the upper and lower rotor actuators δA1
and

δA4
as well as the elevator actuator δA9

and rudder actuator δA10
are fully correlated (as seen by the second

through fifth subplots in Fig. 17). Furthermore, as expected for this input, the aircraft is primarily excited
in pitch (q ≈ ±20 deg/sec, seventh subplot in Fig. 17) with minor roll excitations (p ≈ ±0.5 deg/sec, sixth
subplot in Fig. 17).
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Figure 17. Closed-loop symmetric lateral cyclic r1
sweep frequency sweep (Compound rotorcraft sim-
ulation example).
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Figure 18. Closed-loop symmetric longitudinal
cyclic r2 frequency sweep (Compound rotorcraft
simulation example).

A quantitative cross-control correlation analysis was performed to confirm the bare-airframe input corre-
lation for the symmetric lateral cyclic r1 sweep seen qualitatively from the time histories in Fig. 17. Figure 19
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shows the cross-control coherence, which is a correlation analysis in the frequency domain, for the symmetric
lateral cyclic r1 sweep between four of the 10 bare-airframe inputs (primary input δA1 and secondary inputs
δA4

, δA9
, and δA10

). The cross-control coherence (Fig. 19, bottom subplot) is γ2δ1δ2 ≈ 1.0 over a broad fre-
quency range, violating the guideline in Eq. 3. For the elevator actuator δA9

, the secondary input magnitude
is small and meets the guideline in Eq. 3 (Fig. 19, top subplot, dashed red line). Therefore, the elevator
actuator input can be ignored in the analysis. However, since not all secondary inputs meet the guidelines
of Eqs. 3 and 4, the SISO Direct Method will produce incorrect results.

Figure 20 shows the cross-control correlation analysis for the symmetric lateral cyclic r1 sweep between
four of the 10 reference inputs (primary input r1 and secondary inputs r4, r9, and r10). Here, the cross-control
coherence and secondary input magnitudes are all low (meet the guidelines in Eqs. 3 and 4). Therefore, the
MISO Direct Method can be applied to the data with the reference signals as the inputs. Then, the JIO
Method is applied to post process the results and extract the bare-airframe frequency responses.

-80

-60

-40

-20

0

20

10-1 100 101

Frequency [rad/sec]

0

0.5

1

Figure 19. Closed-loop symmetric lateral cyclic fre-
quency sweep cross-control correlation for actuator
positions (Compound rotorcraft simulation exam-
ple).
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Figure 20. Closed-loop symmetric lateral cyclic fre-
quency sweep cross-control correlation for refer-
ence signals (Compound rotorcraft simulation ex-
ample).

A representative subset of the 20 identified frequency responses (p/δAi and q/δAi , i = 1 . . . 10) are
presented here for brevity. Figures 21 through 24 show the roll rate p bare-airframe frequency responses to
upper rotor actuator 1 input δA1

, lower rotor actuator 1 input δA4
, elevator actuator input δA9

, and rudder
actuator input δA10 for the bare-airframe model (truth data) and as extracted from the closed-loop sweeps
using the SISO Direct and JIO Method. Note that the SISO Direct Method results are shown for comparison
when the secondary controls are ignored, since the cross-control correlation results in a breakdown of the
MISO Direct Method. Mismatch costs J are given for the identified responses as compared to the known
bare-airframe model.

For all responses, the results extracted using the JIO Method show excellent agreement with the bare-
airframe model. This is even the case for the off-axis response of roll rate to elevator p/δA9 shown in Fig. 23.
In contrast, the results extracted using the SISO Direct Method show very poor agreement, as expected due
to the high cross-control correlation, even while having high coherence.

Figures 25 and 26 show the pitch rate q bare-airframe frequency responses to lower rotor actuator 1
input δA4

and elevator actuator input δA9
for the bare-airframe model (truth data) and as extracted from

the closed-loop sweeps using the SISO Direct and JIO Method. As with the roll rate responses shown, the
results extracted using the JIO Method show excellent agreement with the bare-airframe model, while the
results extracted using the SISO Direct Method show very poor agreement.

The remaining results (not presented) show similar levels of agreements between the frequency responses
identified using the JIO Method and the known bare-airframe model. There results validate using the JIO
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Figure 21. Roll rate to upper rotor actuator
1 (p/δA1) frequency response comparison (Com-
pound rotorcraft simulation example).
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Figure 22. Roll rate to lower rotor actuator
1 (p/δA4) frequency response comparison (Com-
pound rotorcraft simulation example).
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Figure 23. Roll rate to elevator (p/δA9) frequency
response comparison (Compound rotorcraft simu-
lation example).

-40

-20

0

M
ag

ni
tu

de
 [

dB
]

Bare-Airframe Model (Truth Data)
SISO Direct Method (J = 3584.67)
JIO Method (J = 6.41)

-450
-360
-270
-180

-90
0

Ph
as

e 
[d

eg
]

10-1 100 101

Frequency [rad/sec]

0

0.5

1

C
oh

er
en

ce

Figure 24. Roll rate to rudder (p/δA10) frequency
response comparison (Compound rotorcraft simu-
lation example).
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Figure 25. Pitch rate to lower rotor actuator
1 (q/δA4) frequency response comparison (Com-
pound rotorcraft simulation example).
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Figure 26. Pitch rate to elevator (q/δA9) frequency
response comparison (Compound rotorcraft simu-
lation example).

Method when the reference inputs are mixed before they are summed to the individual actuator commands,
as in Fig. 2.

IV. Flight-Test Examples

To demonstrate that the JIO Method works on real flight-test data where noise and turbulence are
present, two flight-test examples are presented in this section. The first flight-test example is based on
identification of a Learjet LJ-25D lateral/directional dynamics from closed-loop flight data. The second
flight-test example is based on identification of an octocopter UAV frequency responses to each individual
motor.

A. Learjet LJ-25D

This example is based on identification of the Calspan Variable Stability System (VSS) Learjet LJ-25D
(Fig. 3) lateral/directional dynamics from closed-loop flight-test data. The control system used during the
closed-loop frequency sweeps, described in detail in Refs. 16 and 17, contains crossfeeds between the lateral
and directional axes in both the feed-forward (F in Fig. 1) and feedback (H in Fig. 1) paths, thus fully
correlating the bare-airframe aerosurface inputs aileron δail and rudder δrud. Since δA is fully correlated, the
MISO Direct Method cannot be applied using δA as the input. Therefore, bare-airframe frequency responses
are extracted from closed-loop flight data using the JIO Method for piloted frequency sweeps, with δS in
Fig. 1 used as the reference input. The resulting JIO frequency responses are compared to those extracted
from open-loop piloted frequency sweeps using the MISO Direct Method where the bare-airframe inputs
were not correlated (i.e., the truth data). In addition, the JIO frequency responses are compared to those
extracted from the closed-loop data with δA as the input processed using the SISO Direct Method (which
will produce incorrect results in this case).

Figure 27 shows time histories of the pilot lateral stick and pedal inputs (δS = [δlat δped]T ), bare-airframe
aileron and rudder inputs (δA = [δail δrud]T ), and aircraft outputs (y = [p β]T ) for both the open- and closed-
loop roll-axis frequency sweeps. During both open- and closed-loop sweeps, there is no input on the pedals
δped (Fig. 27, second subplot), and therefore the pilot inputs δS are not correlated. For the open-loop sweeps,
the rudder deflections δrud (secondary input) during the maneuver are significantly smaller than and not
correlated with the aileron deflections (primary input) (Fig. 27, fourth subplot, solid blue line). However,
for the closed-loop sweeps, the control system produced rudder inputs that are highly correlated with the
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aileron inputs (violates the guideline in Eq. 3) and have a large magnitude (violates the guideline in Eq. 4)
(Fig. 27, fourth subplot, dashed red line). In addition, during the closed-loop sweeps, the control system
suppressed the Dutch roll motion of the aircraft, as evidenced by the significantly smaller sideslip response
at around t = 90 sec in Fig. 27.

Figure 28 shows time histories for both the open- and closed-loop yaw-axis frequency sweeps. As with
the roll-axis sweeps above, the pilot inputs δS are not correlated for both the open- and closed-loop sweeps.
For the open-loop sweeps, the aileron deflections δail (secondary input) are not correlated with the rudder
deflections δrud (primary input). However, for the closed-loop sweeps, the control system produced large
aileron inputs that are highly correlated with the rudder inputs (violating the guideline in Eqs. 3 and 4)
(Fig. 28, third subplot, dashed red line). In addition, during the closed-loop sweeps, the control system
almost entirely suppressed the roll motion of the aircraft, as evidenced by the significantly smaller roll rate
response throughout the maneuver in Fig. 28.
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Figure 27. Open-loop and closed-loop roll-axis pi-
loted frequency sweeps (LJ-25 flight-test example).
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Figure 28. Open-loop and closed-loop yaw-axis pi-
loted frequency sweeps (LJ-25 flight-test example).

A quantitative cross-control correlation analysis was performed to confirm the bare-airframe input cor-
relation for the open- and closed-loop frequency sweeps seen qualitatively from the time histories in Figs. 27
and 28. Figure 29 shows the cross-control correlation analysis for both the open- and closed-loop roll-axis
sweep data, while Fig. 30 shows the cross-control correlation analysis for both the open- and closed-loop
yaw-axis sweep data. For the open-loop sweeps, the cross-control coherence between the bare-airframe inputs
δail, δrud for both the roll and yaw sweeps are γ2δailδrud , γ

2
δrudδail

< 0.5 (Figs. 29 and 30, bottom plot, solid blue
line), indicating very little correlation between the primary and secondary inputs, and that the MISO Direct
Method solution of Eq. 2 can be used. For the closed-loop sweeps, there is near-total correlation between
the bare-airframe inputs for both the roll and yaw sweeps: γ2δailδrud , γ

2
δrudδail

≈ 1.0 across a large frequency
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range (Figs. 29 and 30, bottom plot, dashed red line). Therefore, traditional conditioning of the responses
using the MISO Direct Method identification technique cannot be used in this case. One approach is to
ignore the secondary input and process the data using the SISO Direct Method, however, this will produce
the wrong results since the secondary input magnitude is large compared to the primary input magnitude
(Figs. 29 and 30, top plot, dashed red line).

However, if the pilot stick inputs δlat, δped are used instead of the bare-airframe inputs for the closed-loop
sweeps, the cross-control coherence values are all low (Figs. 29 and 30, bottom plot, dash-dot green line).
Therefore, the MISO Direct Method is applied to the closed-loop data using the pilot stick as the input
(r = δS = [δlat δped]T ) to extract [y/δS] and [δA/δS]. Then, the JIO Method is applied to extract the
bare-airframe frequency responses as in Eq. 7.
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Figure 29. Open-loop and closed-loop roll-axis fre-
quency sweep cross-control correlation for aerosur-
face and pilot inputs (LJ-25 flight-test example).
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Figure 30. Open-loop and closed-loop yaw-axis fre-
quency sweep cross-control correlation for aerosur-
face and pilot inputs (LJ-25 flight-test example).

Figures 31 and 32 show the roll rate p and sideslip β bare-airframe frequency responses to aileron input
δail as extracted from the open-loop sweeps using the MISO Direct Method (considered here as the truth
data for the purposes of comparing methods). The figures also show the bare-airframe frequency responses
as extracted from the closed-loop sweeps using the SISO Direct Method and JIO Method. Mismatch costs
J are given for the responses identified from closed-loop data using the SISO Direct and JIO Methods as
compared to the responses identified from open-loop data using the MISO Direct Method.

Both responses p/δail, β/δail determined from closed-loop data using the SISO Direct Method have an
over-damped Dutch roll mode, due to the suppression of the Dutch roll oscillations by the control system.
However, the JIO Method agrees with the open-loop data processed using the MISO Direct Method, retaining
the correct peaking of the Dutch roll mode in the frequency responses, even though the yaw control system
was suppressing this motion (Fig. 27, bottom plot). The better agreement of the JIO Method frequency
responses with the truth data is also seen in their lower mismatch costs J as compared to the responses
identified using the SISO Direct Method, especially for the (off-axis) sidesip response.

Figures 33 and 34 show the roll rate p and sideslip β bare-airframe frequency responses to rudder input
δrud as extracted from the open-loop sweeps (MISO Direct Method) and from the closed-loop sweeps (SISO
Direct Method and JIO Method). The roll rate response to rudder p/δrud was completely suppressed by the
control system (Fig. 28, fifth subplot, dashed red line), and so the resulting frequency response extracted
from the closed-loop sweeps using the SISO Direct Method has very low coherence and a large mismatch cost
(Fig. 33). However, the p/δrud response is identified correctly using the JIO Method, as seen by the good
agreement with the open-loop MISO Direct Method results (truth data), and has high coherence across a
broad frequency range. The sideslip response to rudder β/δrud identified from the closed-loop data using the
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Figure 31. Roll rate to aileron (p/δail) frequency
response comparison (LJ-25 flight-test example).
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Figure 32. Sideslip to aileron (β/δail) frequency re-
sponse comparison (LJ-25 flight-test example).
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Figure 33. Roll rate to rudder (p/δrud) frequency
response comparison (LJ-25 flight-test example).
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Figure 34. Sideslip to rudder (β/δrud) frequency re-
sponse comparison (LJ-25 flight-test example).
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SISO Direct Method has a distortion in the magnitude curve at the Dutch roll mode frequency ωdr = 1.6
rad/sec (Fig. 34). The β/δrud frequency response identified from the closed-loop data using the JIO Method
matches the response identified from the open-loop data better and with a lower mismatch cost.

For all four responses shown, the frequency responses extracted from the closed-loop sweeps using the
JIO Method match the open-loop frequency responses nearly perfectly. In contrast, the frequency responses
extracted from the closed-loop data using the SISO Direct Method exhibited an over-predicted Dutch roll
damping and wrong off-axis response characteristics, as expected.

B. Octocopter UAV

In the second flight-test example presented in this paper, the JIO method is applied to identify the dynamics
of an octocopter UAV [shown in Fig. 35(a)]. This octocopter is a version of the vehicle presented in Ref. 18,
originally built for studying package delivery but modified here with no cargo bay. The responses of the
octocopter to the eight individual motors is needed to validate reconfigurable models (as done in Ref. 19)
and to design control systems that included failure reconfiguration. The numbering convention, grouping,
and direction of rotation of the eight motors is shown in the diagram in Fig. 35(b).

(a)

1 2

3

4

56

7

8

Tetrad 1

Tetrad 2

(b)

Figure 35. Octocopter UAV (a) picture and (b) motor numbering and rotation convention.

A closed-loop flight test was performed in which eight closed-loop frequency sweeps were performed,
summing reference inputs directly into the motor commands generated by the flight control system. Similar
to the compound rotorcraft example presented in Sec. III.B, the reference frequency sweep inputs were mixed
before being summed into the motor commands, as shown in Fig. 2. The mixing matrix M , shown in Eq. 17,
was selected to break the eight motors into a pair of tetrads (i.e., two groups of four), the first consisting of
the front and back two motors [motors 1, 2, 5, and 6 in Fig. 35(b)] and the second consisting of the left and
right two motors [motors 3, 4, 7, and 8 in Fig. 35(b)]. Each tetrad was then actuated to produce heave (r1
and r5), pitch (r2 and r6), roll (r3 and r7), and yaw (r4 and r8) responses. The eight reference inputs used
are listed in Table 5. 

δAin1

δAin2

δAin3

δAin4

δAin5

δAin6

δAin7

δAin8


︸ ︷︷ ︸

δA

=



1 1 1 1 0 0 0 0

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 1

0 0 0 0 1 −1 −1 −1

1 −1 −1 1 0 0 0 0

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 1

0 0 0 0 1 1 1 −1


︸ ︷︷ ︸

M



r1

r2

r3

r4

r5

r6

r7

r8


︸ ︷︷ ︸
r

(17)
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Table 5. Octocopter reference inputs

Symbol Name

r1 Tetrad 1 heave

r2 Tetrad 1 pitch

r3 Tetrad 1 roll

r4 Tetrad 1 yaw

r5 Tetrad 2 heave

r6 Tetrad 2 pitch

r7 Tetrad 2 roll

r8 Tetrad 2 yaw

Figures 36 and 37 show time histories of two of the eight sweep manuevers: Tetrad 1 roll r3 sweep and
Tetrad 2 pitch r6 sweep, respectively. The total sweep length used is T = 70 sec for each maneuver, including
5 sec of trim data at the beginning and end of the maneuver. The range of frequencies excited during the
sweep is ω = 0.5 − 60 rad/sec. For each maneuver, a sweep amplitude of ±5.0% was used on the swept
reference input. Figures 17 and 18 also show time histories of motors δA2

, δA4
, δA6

, and δA8
, as well as roll

rate p and pitch rate q.
During the Tetrad 1 roll sweep (Fig. 36), the frequency sweep reference input r3 is summed directly into

the commands of motor 4 δA4 and motor 8 δA8 , which leads to high correlation between those two signals
(Fig. 36, third and fifth subplots). In addition, the control system results in correlation of the other two
motors shown δA2

and δA6
(Fig. 36, second and fourth subplots). The primary response of the aircraft is in

roll rate p, with small excursions in pitch rate q.
During the Tetrad 2 pitch sweep (Fig. 37), the frequency sweep reference input r6 is summed directly into

the commands of motor 2 δA2 and motor 6 δA6 , which leads to high correlation between those two signals
(Fig. 36, second and fourth subplots). The control system results in correlation of the other two motors
shown δA4

and δA8
(third and fifth subplots, Fig. 36). The primary response of the aircraft is in pitch rate

q, with minor excursions in roll rate p.
A quantitative cross-control correlation analysis was performed to confirm the bare-airframe motor input

correlation for the Tetrad 1 roll r3 sweep seen qualitatively from the time histories in Fig. 36. Figure 38 shows
the cross-control correlation analysis for the Tetrad 1 roll r3 sweep between four of the eight bare-airframe
motor inputs (primary input δA4 and secondary inputs δA2 , δA6 , and δA8). The cross-control coherence
(Fig. 38, bottom subplot) is γ2δ1δ2 > 0.5 over a broad frequency range, violating the guideline in Eq. 3.
Therefore, traditional conditioning of the responses using the MISO Direct Method identification technique
cannot be used in this case due to the inversion of the ill-conditioned matrix in Eq. 2. Furthermore, the
secondary inputs cannot be ignored, because their magnitudes are large compared to the primary input
magnitude (Fig. 38, top plot) which violates the guideline in Eq. 4.

Figure 39 shows the cross-control correlation analysis for the Tetrad 1 roll r3 sweep between four of
the eight reference signals (primary input r3 and secondary inputs r1, r2, and r4). Here, the cross-control
coherence and secondary input magnitudes are all low (meet the guidelines in Eqs. 3 and 4). Therefore, the
MISO Direct Method can be applied to the data with the reference signals as the inputs. Then, the JIO
Method is applied to post process the results and extract the bare-airframe frequency responses.

Figures 40 and 41 show the identified roll rate p and pitch rate q frequency responses to motors 2, 4, 6,
and 8. Although there is no truth model to compare against in this case, several observations can be made
to validate these results:

1. All identified frequency responses have high coherence (γ2xy > 0.6) across a broad frequency range.

2. Due to XZ-plane symmetry of the octocopter configuration, the roll rate p response to motors 2 and 6
are of equal magnitude but opposite sign (i.e., off by −180 deg in phase) (Fig. 40) as expected. This
is also the case for the roll rate p response to motors 4 and 8.

3. The roll rate response to motor 2 p/δA2
is about 8 dB (2.5 times) smaller than the roll rate response

to motor 4 p/δA4
(Fig. 40). This is consistent with the larger moment arm from the axis of symmetry
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Figure 36. Closed-loop Tetrad 1 roll frequency
sweeps (Octocopter flight-test example).
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Figure 37. Closed-loop Tetrad 2 pitch frequency
sweeps (Octocopter flight-test example).
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Figure 38. Closed-loop Tetrad 1 roll frequency
sweep cross-control correlation for motor inputs
(Octocopter flight-test example).
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Figure 39. Closed-loop Tetrad 1 roll frequency
sweep cross-control correlation for reference inputs
(Octocopter flight-test example).
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of motor 4 as compared to motor 2:
sin(112.5 deg)

sin(22.5 deg)
= 2.4 (18)

This is also the case for the roll rate p response to motors 6 and 8.

4. Similar observations can be made about the pitch rate q response to motors 2, 4, 6, and 8 (Fig. 41).

5. Due to the near YZ-plane symmetry of the octocopter configuration, the roll rate response to motor 4
p/δA4

(Fig. 40, dashed red line) is similar to the pitch rate response to motor 6 q/δA6
(Fig. 41, dashed

green line). This is also the case for the following pairs:

p

δA2

≈ q

δA4

,
p

δA6

≈ q

δA8

,
p

δA8

≈ q

δA2

(19)

These results show that it is possible to identify the octocopter frequency responses to individual motors
from flight-test data with highly-correlated motor signals. These accurate frequency response identification
results are the basis for the parametric reconfigurable multirotor model of Ref. 19.
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Figure 40. Roll rate to motors 2, 4, 6, and 8
frequency response comparison (Octocopter flight-
test example).
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Figure 41. Pitch rate to motors 2, 4, 6, and 8
frequency response comparison (Octocopter flight-
test example).

V. Conclusions

The Joint Input-Output (JIO) Method was presented as a way of extracting frequency responses of a
multi-input/multi-output (MIMO) system with highly-correlated inputs. The method relies on treating both
the input and output of the MIMO system as output to reference inputs that are at most only partially
correlated. Based on the examples presented in this paper, the following conclusions can be reached:

1. The JIO Method was used to extract bare-airframe frequency responses of a business jet and compound
rotorcraft from simulation data. Frequency responses extracted from closed-loop simulation data with
highly-correlated bare-airframe inputs using the JIO Method showed near perfect agreement with the
known bare-airframe models. This validates the JIO Method’s ability to extract accurate MIMO
bare-airframe frequency response matrices from data with highly-correlated bare-airframe inputs.

2. The closed-loop business jet simulation model was excited by summing simultaneous orthogonal mul-
tisine inputs to the actuator commands. The resulting data were processed using the Orthogonal
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Discrete Fourier Transform (DFT) Method. Even though the correlation coefficient of the total mea-
sured actuator positions were well below the threshold typically used as an upper limit for allowable
correlation of explanatory variables,2 the DFT Method produced incorrect results when a control sys-
tem was present that fed back discrete frequencies from one input to the second input as a result of
lateral/directional bare-airframe coupling.

3. The JIO Method was used to extract bare-airframe frequency responses of a business jet from flight-
test data. Responses extracted from closed-loop flight data with highly-correlated bare-airframe inputs
using the JIO Method showed excellent agreement with bare-airframe frequency responses extracted
from open-loop flight data with uncorrelated bare-airframe inputs using the Multi-Input/Single-Output
(MISO) Direct Method. This demonstrates that the JIO Method works well on real data when noise
and disturbances are present.

4. The JIO Method was used to extract bare-airframe frequency responses of an octocopter UAV to
individual motor inputs. Roll and pitch rate frequency responses to individual motors matched the
expected behavior based on motor moment arms and vehicle symmetry.

5. The JIO Method is a post-processing step on the frequency responses already being determined in the
frequency response identification method.
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