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ABSTRACT 

State-space system identification was performed in order to extract flight dynamic models for hovering flight of a 56 
cm, 1.56 kg hexacopter unmanned aerial vehicle (UAV). Different input excitation techniques were tested to determine 
which maneuvers provided high quality system identification results for small scale multirotor vehicles. These input 
excitation techniques included automated frequency sweeps, varying in amplitude, and multi-sine sweeps. Coherence, 
Cramer-Rao bounds, and insensitivities were used as metrics for comparing the system identification results. A 
parametric variation of frequency sweep amplitudes were performed in all axes (roll, yaw, pitch and heave) in order 
to provide guidance on frequency sweep amplitude for small scale multirotor unmanned aerial systems (UAS). The 
dynamics of the 56 cm hexacopter were used to estimate the dynamics of a larger 127 cm hexacopter via Froude 
scaling based on hub-to-hub distance as the characteristic length. The scaled results were compared to an actual system 
identification model of a 127 cm hexacopter.  

 

NOMENCLATURE �, �, � = body axis roll, pitch and yaw rates �, �, � = body axis pitch, roll, and yaw attitudes �	 , �
 , ��= body axis accelerometer measurements 

�, 
, �  = body axis velocities, m/s � = Motor lag states � = control deflection, 
%��� �� = ith eigenvalue of identified model, rad/s � = model validation cost function  

Subscripts 

lon = longitudinal (pitch) control input 

lat = lateral (roll) control input 

yaw =  yaw control input 

thr  = throttle (heave) control input 

Acronyms 

UAV = Unmanned Aerial Vehicle 

UAS = Unmanned Aerial Systems 

CIFER = Comprehensive Identification from       
    Frequency Responses 

GCS = Ground Control Station 

INTRODUCTION 

Unmanned aerial vehicles (UAVs) are serving as a 
new way to perform autonomous tasks [1]. Multirotor 
aerial vehicles are emerging as a popular configuration 
because of their mechanical simplicity and vertical lift 
capability [2]. Developing accurate flight dynamic 
models of these aircraft is an important step to 
simulate and predict the behavior of a UAV. Flight 
accurate computer simulations allow engineers to test 
the design and control systems in desktop and 
hardware in the loop simulations [3], ultimately 
abating flight time and cost. System identification is a 
rapid method for extracting dynamic models from 
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flight test data. A small scale hexacopter (1.56 kg, 56 
cm diameter) operated by the University of Portland 
was used to study system identification of small-scale 
multirotor UAVs using CIFER® [4]. Although 
frequency domain system identification has been 
previously applied to quadrotors [2, 3] this was one of 
the first applications to a hexacopter. As unique 
unmanned aerial vehicle configurations increase in 
popularity, physical models are not well validated; as 
such, flight accurate system identification models are 
taking a larger role. Although system identification 
flight test methods for large-scale manned vehicles are 
well documented [4], guidance on flight test methods 
for system identification of small scale multirotor 
unmanned aerial vehicles are not as readily available.  

A key aspect of the frequency domain system 
identification procedure is performing maneuvers to 
excite the aircraft across the frequency range of 
interest for system identification. Frequency sweeps 
are popular flight maneuvers to gather data about the 
vehicle dynamics as these inputs provide a rich 
spectral excitation [4]. Published research papers 
involving system identification of small-scale vehicles 
state that the UAV was excited using frequency sweep 
maneuvers, however, did not go into detail about how 
the frequency sweeps inputs were designed (in terms 
of duration, magnitude, frequency range, etc.) [3, 5]. 
Additionally, multi-sine maneuvers are another way to 
collect flight data in order to perform frequency 
domain system identification [6, 7] . There is a need 
for guidance in techniques used for gathering flight 
test data for small scale unmanned aerial vehicles in 
order to produce high quality system identification 
results with minimal trial and error. 

In addition to understanding how the system 
identification methods scale with size of the vehicle, it 
was also of interest to understand the scaling of the 
dynamics of multirotor vehicles as they grow or shrink 
in size. Looking toward development of 
flying/handling qualities specifications for unmanned 
systems, as in Refs. [8, 9, 10, 11, 12], a critical first 
step is to determine the methods for scaling common 
configurations with size, so that the handling qualities 
specifications can also be scaled accordingly. The 
ultimate goal, although outside the scope of this paper, 
is to provide a generic framework for scaling handling 
qualities specifications for any class of multirotor 
vehicle. This will ensure that requirements developed 
for one multirotor aircraft can be scaled and used as a 
generic guidance for that size of vehicle, as opposed to 
developing new specifications for every possible 
multirotor UAS.  

BACKGROUND 

Flight Vehicle 

A custom hexacopter built at the University of 
Portland (UP) was used to study system identification 
of small scale UAVs. The UP hexacopter weighs 1.56 
kg with the 4S battery and is 56 cm in diameter (hub-
to-hub). The hexacopter was built using a DJI Flame-
wheel F550 frame, 930 kV motors, 30A electronic 
speed controllers and 10-inch diameter rotors. The 
hexacopter as configured for flight is shown in Figure 
1.  

ArduPilot is an open-source software suite that 
bundles together sensor processing, flight control, and 
navigation software [1]. A branch of the ArduPilot 
software is ArduCopter that supports a variety of 
multirotor configurations such as quadcopter, 
hexacopter, and octocopter configurations. The 
autopilot controller board, Pixhawk Mini (Figure 2), 
was chosen for the UP hexacopter due to its general 
application, reduced size, reliable navigation and 
improved sensors [1] 

 

 

Figure 2. Pixhawk Mini Autopilot Controller 
Board. 

 

Figure 1. University of Portland Hexacopter. 
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The UP hexacopter also shares information with a 
ground control station (GCS) using a wireless 3DR 
915MHz telemetry radio [1]. The ground control 
station, Mission Planner, was utilized to show real-
time data on the UAV's position, upload commands, 
and set parameters. Mission Planner was also used to 
analyze downloaded missions, and use telemetry to 
monitor, record, and view mission logs [1].  

A tethering system was developed in order to ensure 
that the hexacopter would not depart from the testing 
area. The tether was designed to avoid interference 
with the dynamics of the hexacopter. Light-weight 
survival Kevlar cord (rated to 200 lb) was tied to each 
leg of the hexacopter and to a thirty-pound kettle bell 
with double figure eight knots used to secure the cord 
to each arm. Two lightweight aluminum rings were 
attached to segments part way down the cord in order 
to weigh the Kevlar cord down enough so that it did 
not lift and interfere with the blades of the hexacopter 
during flight but was light enough that it did not effect 
the dynamics of the vehicle. A bungee cord with a 
carabiner was attached to the kettle bell and cord in 
order to prevent sudden tugging of the cord when the 
hexacopter is out of range. The cord was limited to 35 
feet based on the dimensions of the testing area.  

System Identification Software 

CIFER® (Comprehensive Identification from 
Frequency Responses) is an integrated software, used 
for system identification [3]. CIFER® was utilized for 
the work herein because it is a well-established 
frequency domain method, which is well suited for 
unstable dynamics and high vibration due to the six 
rotors of the hexacopter. The software was used to 
extract non-parametric control-to-vehicle frequency 
responses from flight data, develop flight accurate 
state-space models, and perform time-domain 
verification on these models.  

LATERAL-DIRECTIONAL MODEL 
IDENTIFICATION AT HOVER 

Automated frequency sweeps were performed on the 
University of Portland hexacopter at the hovering 
flight condition. The resulting data were used to 
determine a high quality, flight accurate state-space 
model. On-axis derivatives were identified from the 
flight test data of the hexacopter, using the model 
structure shown in Eqn. 1. All axes in this model were 
decoupled due to the decoupled response of the 
aircraft, which results from the counter-rotating and 
symmetric propeller configuration. The lateral-
directional state-space model structure is given by 
Eqn. 1:   
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The inputs to the model are the lateral control axis 
input ���� and the yaw control axis input �
��, both 
measured just upsteam of the mixer (in normalized 
units, %/100). The aircraft states were lateral velocity 
 (m/s), roll rate � (rad/s), yaw rate � (rad/s), roll 
attitude � (rad). Additionally, actuator lag states ���� 
and �
�� were applied to the lateral and yaw inputs, 
respectively. This improves the accuracy of the fit by 
modeling the first order characteristic of the motor 
response as also confirmed in Ref. [3, 13]. This 
effectively multiplies the lateral responses by a first 
order lag, for example:  

)*+,- = > )*+,-? @ > A+,BCDA+,B@       (2) 

where �/����7  is the response with instantaneous thrust. 
The yaw response is a combination of differential 
motor torques on alternating rotors, which produces a 

lead-lag motor dynamic. This is implemented in the 
model by including a lagged control derivative .*0,1 

and lead control derivative .*0,17  : 

/*0,1 = > /*0,1? @ >CDA+F,GCDA+,B @= HIJ0,1?
CKIL M >CDA+F,GCDA+,B @     (3) 

where the lead frequency can be calculated from the 
identified parameters as:  

3�N�O = 3��4 H1 + IJ0,1IJ0,1? M      (4) 

Output Equations 

In system identification, output equations are needed 
to map the measured frequency response outputs to the 
model states. The outputs (6) used in the system 
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identification for the lateral-directional model were 
[4]:  

  6 = [ � � �
R  
�S ]      (5) 

The angular rate gyro sensors and the lateral 
accelerometers are built into the Pixhawk. The lateral 
velocity rate is reconstructed (at hover �U, �U , �� =0):  

 
� = �
 + gϕ  (6) 

When using the equations of motion, the assumption 
is that the center of mass is where the data 
measurement device is located. If the measurement 
device cannot be placed directly at the center of mass, 
an offset term is used to account for the displacement 
between the center of mass and the measurement 
device. For the UP hexacopter, an offset was only 
present in the vertical direction, which affects the 
lateral acceleration as measured: 

�
R =  �
 − X���           (7) 

X� is the z-body axis offset distance from the center of 
mass to the sensor. The velocity rate was reconstructed 
at the sensor, using the accelerations that are measured 
at an offset from the center of gravity:   

      
�S = �
R + gϕ 

 = �
 − X��� + '� = 
� − X���               (8) 

The offset of the accelerometer, which is housed in the 
Pixhawk, was calculated as X� = 0.03 m. The final 
output matrix, which models the measured output 
parameters as function of the states, is then:  

Y ���
R
�S Z = Y0 1 0 00 0 1 00 0 0 −9.810 0 0 0 Z Y
���Z +
                                       Y0 0 0 00 0 0 01 −0.03 0 01 −0.03 0 0Z Y
������� Z        (9) 

Speed Damping Derivative _` 

In system identification of helicopters, the speed 
damping parameter #$ (and similarly, ab) is often 
found to be insensitive in the model structure 
identification [4, 14]. However, this term primarily 
captures the increase in drag as a function of speed, so 
it must have a nonzero negative value. Similarly, these 
speed derivatives are also insensitive for the 
hexacopter. This derivative can be accurately 

identified for a helicopter based on a simple low 
frequency approximation [4, 14], which also works 
well on a hovering hexacopter: 


�� = '(c−#
)                  (10) 

Where 
�/�  is calculated via frequency response 
arithmetic using the reconstructed 
�  with center of 
mass correction:  

$�) = d�� RJ+,- D �,>C eJ+,-@)/*+,-   (11) 

The model fit was performed by using a transfer 
function fitting routine (NAVFIT, CIFER®) as shown 
in Figure 3, where #$ = −0.221 cK� is identified.  

 

Figure 3. Transfer Function Fit of �̀ /g, with _` = −h. iij kKj. 

Identified Hover State-Space Model:           
Lateral-Directional 

The identified model parameters, corresponding to the 
model structure in Eqn. 1, are shown in Table 1. An 
ideal model should have an average cost   ��$N < 100, 
Cramer-Rao bounds mn < 20% and insensitivities o < 10%. A model structure determination process 
was used, following the guidance in Ref. [4], where 
parameters were dropped or fixed at an estimated 
value (as in the case of #$) if insensitivities were o >10% and Cramer-Rao bounds were mn > 20%. If the 
average cost jumped significantly after dropping a 
term, then the parameters were reintroduced back into 
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the model structure even with less than desired 
theoretical accuracy. The angular damping derivative () is seen to be dropped from the model structure as 
unimportant for the hovering dynamics, where the 
large dihedral derivative ($ dominates the roll 
response. This is consistent with other hover model 
identification for multicopters [2, 3]. For the identified 
hexacopter model, all Cramer-Rao bounds and 
Insensitivity guidelines were achieved, as shown in 
Table 1, indicating very good theoretical accuracy. 
The frequency response costs are shown in Table 2. 
The resulting lateral-directional model had an average 
cost of ��$N = 54.2, indicating excellent predictive 
accuracy in the frequency domain. It should be noted 
that many of the parameters are tied to the 
longitudinal-heave model structure, which constrains 
the problem via the symmetry of the dynamics for 
pitch and roll observed at hover, further improving 
theoretical accuracy, but increasing the model cost 
slightly. Figure 4 and Figure 5 show frequency 
response comparisons for the identified state space 
model as compared with the flight data. Each 
individual frequency response shows excellent 
agreement, over a wide frequency range, between the 
identified model and flight data, confirming the low 
individual cost functions in Table 2.  

The eigenvalues (��) of the identified model are 
located in Table 3. The first eigenvalue is the yaw 
mode, which is an integrator (c = 0) because the yaw 
damping of the hexacopter is negligible, ./ = 0. 
Eigenvalues two and three are the unstable oscillatory 
mode. The fourth eigenvalue is the stable aperiodic 
roll mode. Eigenvalues 2-4 make up the unstable 
hovering cubic, which is characteristic of any hovering 
vehicle [4]. The fifth and sixth eigenvalues are the 
motor/rotor lag mode (-3��4).  

Time Domain Verification: Lateral-Directional  

The identified lateral-directional model was verified in 
the time domain by comparing the flight test data from 
a doublet maneuver with the model extracted from the 
frequency sweep data. The model very accurately 
predicts the flight data collected from roll and yaw 
doublets, shown in Figure 6 and Figure 7, with nearly 
imperceptible difference between the model and flight 
data. For a full scale vehicle, the verification cost 
should be �stu < 1 − 2 and TIC < 0.35 [3]. For small 
scale UAS, the verify cost should be Froude scaled to 
account for the large response magnitude achieved by 

multirotor vehicles, as exemplified by the roll rate in 
Figure 6. An adjustment factor was based on Froude 
scaling [5] as determined by comparing the hub-to-hub 
distance of the multirotor relative to the rotor diameter 
of the UH-60, a representative full-scale 
configuration, resulting in . = 1/29.8. The raw roll-
axis cost was �stu = 1.57 with �z/UbON = �stu√. =0.288, and normalized cost �om = 0.043 (~4% error). 
The yaw-axis Froude-scaled verify cost was �z/UbON =0.6380 and TIC = 0.054 (~5% error). These time-
domain Froude-scaled cost function results, in 
combination with Figure 6 and Figure 7, confirm the 
excellent predictive accuracy of the identified lateral-
directional model at hover. 

 

Table 1. Lateral-Directional Model 
Parameters at Hover. 

Parameter Value Cramer-Rao  
(%) 

Insensitivity 
(%) #$ (1/s) -0.221 - - ($ }rad/sm � -4.01 5.21 1.88 () (1/s) 0 - - ./ (1/s) 0 - - (*��� }rad/��%/100� 145 2.93 2.11 

.*)NO }rad/��%/100� -22.5 9.68 1.51 

.*eFG′ }rad/��%/100� 34.1 6.03 0.914 3��4 (rad/s) 15 5.16 2.07 ;��� (s) 0.02 - - ;)NO (s) 0.02 - - 

 

Table 2. Lateral-Directional Frequency 
Response Costs at Hover. 

Frequency Response Cost �
/���� 59.7 �/���� 52.0 
� /���� 79.9 �/�)NO 25.1 

Average Cost: ��$N = 54.2 

 



 
6

 

Table 3. Lateral-Directional Model Eigenvalues at Hover. 

Eigenvalue Number, �� Mode 
Real 

(rad/s) 
Imaginary 

(rad/s) 
Damping 

 Ratio 

Natural 
Frequency 

(rad/s) 

1 Yaw 0 0 - - 

2 Roll Oscillatory 1.63   2.93 - 0.485 3.35 

3 Roll Oscillatory 1.63 - 2.93 - 0.485 3.35 

4 Roll Mode -3.46 0 - - 

5 Motor Lag -15 0 - - 

6 Motor Lag -15 0 -  - 

 

 

 

 

 

Figure 4. Lateral Body Velocity Rate and Roll Rate Models versus Flight Data. 
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Figure 5. Lateral Body-Axis Accelerometer and Yaw Rate Models versus Flight Data. 

 

 

Figure 6. Lateral-Input Time Domain Verification at Hover. 
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Figure 7. Yaw-Input Time Domain Verification at Hover.  

 

LONGITUDINAL-HEAVE MODEL 
IDENTIFICATION AT HOVER 

A similar process to the determination of the 
lateral-directional dynamics was employed to identify 
a longitudinal-heave state-space model. Longitudinal 
and heave axis frequency sweeps were performed on 
the University of Portland hexacopter. The resulting 
data were used to determine a high quality, flight 
accurate state-space model of the longitudinal-heave 
dynamics at hover.  

Model Structure 

Similar to the lateral-directional model, only on-axis 
derivatives were identified from the flight test data of 
the hexacopter, using the model structure shown in 
Eqn. 12. The lateral and longitudinal models were 
simultaneously identified, so that parameters 
constrained by symmetry of the physics could be 
constrained in the model identification (such as ab =#$). This model was decoupled due to the decoupled 
response of the hexacopter resulting from the counter-
rotating propeller configuration. The model structure 
was:  

         

���
���
� �����������U�����/�  

   
!
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���
���
�ab 0 a� −' 0 00 �� 0 0 0 �*-�L�b 0 �� 0 �*+�� 00 0 1 0 0 00 0 0 0 −3��4 00 0 0 0 0 −3��4�  

   
!

���
���

������U����/�  
  ! +

��
���
� 0 00 00 00 03��4 00 3��4� 

   
!

8δ�U�(: − ;)���/(: − ;)=                    (12) 

�*+�� = > �*+��? @ > A+,BCDA+,B@      (13) 

�*-�L = > �*-�L? @ > A+,BCDA+,B@      (14) 

 

-60

-30

0

30

60
p

Flight Data

System ID Model

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME (S)

-30

-15

0

15

30

-60

-30

0

30

60
r

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME (S)

-4

-2

0

2

4

a
y



 
9

The inputs to the model are the longitudinal control-
axis input ��U� and the thrust control-axis input ���/, 
both measured just upsteam of the mixer (in 
normalized units, %/100). The aircraft states were 
longitudinal velocity � (m/s), vertical velocity � (m/s), pitch rate �, (rad/s), and pitch attitude � (rad). 
Two motor lag states ��U� and ���/ were also 
introduced in the longitudinal-heave model, as in the 
lateral-directional model, in order to improve the high 
frequency fit of the pitch and heave responses. This 
improves the accuracy of the fit by modeling the first 
order characteristic of the motor responses [3, 13] that 
affects the control response as shown in Eqns. (13-14). 

Output Equations 

The outputs used in the system identification for the 
longitudinal-heave model were:  

6 = � �	R  �� S � � ��R  ��
 

The output equations map the model states and 
measured outputs. Just as in the lateral-directional 
models, a vertical cg offset X� = 0.03 m was included 
in the accelerometer output (�	R) and body velocity 
rate (�� S) outputs:  

���
���	R�� S����R �  

 ! =
���
��0 0 0 9.810 0 0 00 0 1 00 0 0 10 0 0 0 �  

 ! ����� � +           

      
���
��1 0 0.03 01 0 0.03 00 0 0 00 0 0 00 1 0 0�  

 ! Y�������� Z         (15) 

Speed Damping Derivative �� 

The speed derivative ab was insensitive in the system 
identification optimization cost. To maintain 
symmetry with the roll-axis dynamics, the value of ab 
was selected as ab = #$ = −0.221.  

��� = −'(c−a�)                  (16) 

The validity of this assumption was verified in 
NAVFIT, by evaluating the fit of �� /� using Eqn. (16) 
with ab = −0.221, sK�.  The pitch axis had a similarly 
excellent fit as that shown for the lateral axis in Figure 
3.  

Identified Hover State-Space Model: 
Longitudinal-Heave 

The Cramer-Rao bounds, insensitivities and the 
parameters identified are located in Table 4. The 
model has Cramer-Rao and Insensitivities well within 
the guidelines of 20% and 10%, respectively, for all 
except the ��  derivative which is just outside 
theoretical accuracy guidelines. Many of the pitch 
derivatives are constrained to the roll-axis symmetric 
counterpart, resulting in improved theoretical 
accuracy. The longitudinal and heave frequency 
response cost functions are located in Table 5, 
indicating good accuracy of the identified model (� <100 is good, � < 50 is excellent). Figure 8 and Figure 
9 show frequency responses for the identified state-
space model as compared with the flight data. Each 
individual frequency response shows good agreement, 
over a wide frequency range, between the identified 
model and flight data. The resulting longitudinal-
heave model had an excellent average cost of ��$N =52.2. 

Table 4. Longitudinal-Heave Model 
Parameters at Hover. 

Parameter Value 
Cramer-Rao 

(%) 
Insensitivities 

(%) ab (1/s) -0.221 - - a� }m/s/�O� 0 - - �� (1/s) -0.338 21.1 10.3 �b }rad/sm � 4.01 5.21 1.88 �� (1/s) 0 - - a* �U� } m/��%/���� 0 - - �*�U� }rad/��%/100� 165 3.78 1.21 �*��/ } m/��%/���� -39.4 2.29 1.35 3��4 (rad/s) 15 5.16 2.07 ; (s) 0.02 - - 

Table 5. Longitudinal-Heave Frequency 
Response Costs. 

Frequency Response Cost �� /��U� 86.2 

q/��U� 58.9 �	/��U� 50.4 ��/���/ 13.1 

Average Cost: ��$N =52.2 
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Figure 8. Longitudinal Body Velocity Rate and Pitch Rate Models versus Flight Data.  

 

Figure 9. Longitudinal Body Acceleration and Heave Body Acceleration Models versus Flight Data. 
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Eigenvalues 

The eigenvalues of the model ��  are located in Table 
6. The first eigenvalue is the heave mode with 
frequency �� = −��. Eigenvalues two and three are 
the unstable oscillatory mode. The fourth eigenvalue 
is the pitch mode. Eigenvalues 2-4 make up the 
unstable hovering cubic, which is characteristic of any 
hovering vehicle. The fifth and sixth eigenvalues are 
the motor lag modes (-3��4). The longitudinal 
eigenvalues (�� − ��) match the lateral-directional 
eigenvalues (�� − ��), due to the enforced model 
symmetry.  

Time Domain Verification: Longitudinal-Heave  

As in the lateral-directional model, the longitudinal-
heave model was verified in the time domain by 

comparing the flight test data from a doublet maneuver 
to the model extracted from the frequency sweep data, 
and assessed using the Froude-scaled cost �z/UbON. The 
model accurately predicts the flight data collected 
from the doublet, shown in Figure 10 for a 
longitudinal input. The corresponding Froude scaled 

cost is �z/UbON = ��1/. = 0.278 and normalized 
cost TIC = 0.041 (~4%), which are well below the 
recommendations (�z/UbON < 1 − 2 and TIC < 0.35). 
The heave-axis (throttle-input) time domain prediction 
is also very good as shown in Figure 11. The Froude 
scaled verify cost was �z/UbON = 0.36 and TIC was 
0.09. These time-domain cost function results confirm 
the good predictive accuracy of the identified model. 

 

Table 6. Longitudinal-Heave Model Eigenvalues at Hover. 

Eigenvalue Number, �� Mode 
Real 

(rad/s) 
Imaginary 

(rad/s) 
Damping 

 Ratio 
Natural Frequency 

(rad/s) 

1 Heave - 0.338 - - - 

2 Pitch Oscillatory 1.63   2.93 - 0.485 3.35 

3 Pitch Oscillatory 1.63 - 2.93 - 0.485 3.35 

4 Pitch Mode - 3.46 - - - 

5 Motor Lag - 15 - - - 

6 Motor Lag - 15 - - - 

 

Figure 10. Pitch-Input Time Domain Verification at Hover. 
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Figure 11. Throttle-Input Time Domain Verification at Hover. 

 

 

Figure 12. Block Diagram of Control Input. 

TESTING GUIDANCE: SYSTEM ID OF 
MULTIROTOR AERIAL VEHICLES 

A parametric variation of frequency sweep amplitudes 
was performed in all axes (roll, yaw, pitch and heave) 
in order to provide guidance on frequency sweep 
amplitude for small scale multirotor UAS. The 
frequency sweeps were input at the mixer as shown in 
Figure 12 and amplitudes of the sweep was varied as 
appropriate for the control axis. Sweeps were 
performed in the “stabilize” mode of the Arducopter. 
The resulting response magnitudes were recorded, and 
are shown in Table 7, characterizing the low, medium 
and high amplitude cases in each axis.  

State-space models were identified from each set of 
frequency sweep data. The criteria for selecting the 
best models were based on frequency domain cost 
values, Cramer-Rao Bounds and verify costs.  The 
costs were averaged for each control axis, as opposed 

to combined longitudinal-heave and lateral-directional 
costs shown earlier in the paper. The low amplitude 
sweeps provided the best models across the board. It 
should be noted that these low amplitude sweeps were 
used in the results that are presented in the previous 
sections of the paper. Based on the results of Table 7, 
it is recommended that the longitudinal and lateral 
sweeps produce approximately ±125 deg/s of pitch 
and roll rate for best results. When Froude scaled, this 
is equivalent to ± 23 deg/s in full-scale angular rates. 
The guidance for full scale frequency sweeps in Ref. 
[3] is to achieve angular rates on the order of ±10 
deg/s. The reason for the larger scaled amplitudes on 
the multirotor vehicle may be due to reduced signal-
to-noise ratios from the small-scale sensor and the 
larger influence of any turbulence on the response. 
Based on Table 7, the yaw-axis sweep is 
recommended to produce +/- 30 deg/s of yaw-rate 
response. This Froude scales to approximately 6 deg/s 
of full scale response, which is similar to the full scale 

Hex
+

-
Autopilot

-

Excitation Input

(Multi-Sine or Sweep)

Mixer+
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recommendation. However, it should be noted that the 
yaw response was less sensitive to amplitude and had 
similar characteristics for all amplitude sweeps – this 
may be due to the fact that the yaw response stays at 
the hover condition regardless of the amplitude of the 
sweep and so is more linear. The heave axis results 
produced the best result with +/- 4 m/s2 of response, 

which is still 4 m/s2 of acceleration when Froude 
scaled, and is about twice the accelerations used in full 
scale sweeps. A general recommendation would be 
that the Froude scaled (to full scale) frequency sweep 
amplitude should be roughly twice the 
recommendations found in [4].  

Table 7. Variation in Amplitude Effects on System Identification Results at Hover. 

Sweep Amplitude Metric Roll Axis Yaw Axis Pitch Axis Heave Axis 

Low 

Max On-Axis Response Amplitude 
+/- 125 deg/s 

+/- 10 deg 
+/- 30 deg/s 
+/- 20 deg 

+/- 125 deg/s 
+/- 10 deg 

+/- 4 m/s2 

+/- 1.3 m/s 

Average Model Cost (Frequency Domain) 63.9 25.1 65.2 13.1 

Average Cramer Rao (%) 4.43 7.85 4.72 11.7 

Verification TIC Cost 0.04 0.05 0.04 0.09 

Medium 

Max On-Axis Response Amplitude 
+/- 190 deg/s 

+/- 20 deg 
+/- 85 deg/s 
+/- 25 deg 

+/- 140 deg/s 
+/- 15 deg 

+/- 5 m/s2 

+/- 4 m/s 

Average Model Cost (Frequency Domain) 82.9 29.0 90.4 28.3 

Average Cramer Rao (%) 17.2 24.9 6.07 6.83 

Verification Cost (Time Domain) 0.09 0.09 0.11 0.17 

High 

Max On-Axis Response Amplitude 
+/- 230 deg/s 

+/- 30 deg 
+/- 95 deg/s 
+/- 45 deg 

+/- 195 deg/s 
+/- 20 deg 

+/- 8 m/s2 

+/- 4 m/s 

Average Model Cost (Frequency Domain) 166 35.5 105.8 32.4 

Average Cramer Rao (%) 5.57 11.2 6.16 5.66 

Verification Cost (Time Domain) 0.14 0.15 0.14 0.22 

MULTI-SINE INPUT EXCITATION 
FOR SYSTEM IDENTIFICATION OF 

MULTROTOR VEHICLES 

Another frequently used maneuver for system 
identification flight testing is the multi-sine input [6, 
7]. Multi-sine inputs add together sine waves at 
discrete frequencies to create a single input signal that 
excites the desired frequency range. The equations 
below describe the input to the aircraft control surfaces 
that is a set of summed harmonic sinusoids with 
individual phase lags [6].  

�� = ∑ cos }2¡¢:� +  �¢�1,2,3,…�¢    (17) 

�¢ = ¡¤2
.                      (18) 

The input uj is applied to the jth control surface, and the 
total number of harmonically-related frequencies (M) 
is the maximum frequency range desired. T is the time 
length of the excitation and ϕk are the phase angles for 
each given frequency k. The multi-sine inputs are 
orthogonal and can be applied across all control inputs 

simultaneously. However, it should be noted that in 
the case where the model structure is not decoupled 
and the control system is engaged, the inputs will be 
fully correlated [15]. For a fully decoupled model 
structure, such as the hover condition presented herein 
with inputs at the mixer, it is possible to use 
simultaneous inputs. However, only a single axis input 
was used to provide better frequency resolution and 
better direct comparison with the frequency sweep 
inputs.  

Resulting frequency responses using two concatenated 
records from multi-sine inputs versus two 
concatenated records from Frequency Sweep inputs 
are compared in Figure 13 for pitch axis system 
identification (�/��U�). The multi-sine is only plotted 
at the discrete input excitation frequencies. Every 
effort was made to ensure that the multi-sine and the 
frequency sweep had similar input frequency content 
and amplitude to ensure a fair comparison of the two 
maneuvers. The power spectral density signals across 
the frequency range of interest are shown in the first 
column of Figure 13. The power spectral density for 
the excitation signal, inserted upstream of the mixer, 
as shown in Figure 12, was selected to be similar for 
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the multi-sine and frequency sweep inputs. As shown 
by Figure 13, the frequency sweep signal has more 
content at lower frequency and less at higher 
frequency, due to its exponential frequency 
progression, whereas the multi-sine is designed to 
provide a flat spectrum. Still, this averages out to about 
the same spectral content. The total input signal is the 
sum of the excitation signal and the control system 
input (labeled as � in Figure 12). For this signal, 
Figure 13 indicates that the spectral content is slightly 
higher for the multi-sine input, resulting from the 
control system response to the multi-sine input. The 
output power spectral density of the pitch rate, 

indicates similar response amplitudes, but again 
slightly higher for the multi-sine. Despite the lower 
total input to output amplitude of the frequency sweep, 
the frequency sweep still has an overall higher 
coherence compared to the pitch Multi-Sine input as 
shown in Figure 13, especially in the 7-15 rad/s range. 
Coherence represents the accuracy, quality and 
linearity of the frequency response. A higher 
coherence means the data is of better quality. These 
results indicate a preference for the frequency sweep 
in this application.   

    

Figure 13. Spectral Data and Frequency Responses for ¥/¦§¨© Using Multi-Sine and Frequency Sweep 
Inputs.   

 

DYNAMIC RESPONSE SCALING FOR 
MULTIROTOR VEHICLES 

It would be useful to utilize an identified state-space 
model of a one multirotor vehicle and extrapolate the 
dynamics to larger/smaller scale. This is especially 
important when considering control system design and 
handling qualities metrics, for which it is important to 
be able to scale as opposed to developing new metrics 
for every possible vehicle size class. To address this 

area of interest, a comparison of the identified 
dynamics of the University of Portland (UP) 
hexacopter, shown herein, and the larger Aviation 
Development Directorate (ADD) hexacopter [16] was 
performed. The two vehicle specifications are 
compared in Table 8.   

The Froude number relates inertial force to gravity 
force via a characteristic length. Scaling rotor 
dynamics based on the Froude number is a common 
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similarity requirement for rotorcraft models [5, 17]. 
Froude scale was shown to work well for scaling 
fixed-wing aircraft dynamic modes, as observed by 
Sanders [12].  There is some prior evidence in the 
literature that the characteristic length used in Froude 
scaling for multirotor aircraft should be based on the 
hub-to-hub distance ª�b« as opposed to disk diameter 
that is commonly used for a single rotor helicopter [18, 
11]. Using ª�b« as the characteristic length gives:  

. = .¬�­® = ¬�­®¯°¬�­®±²² = ��.³��´ = ��.�´ = 0.44        (19) 

This indicates that the UP hexacopter is 
��.�´ scale, or 

nearly half scale relative to the ADD hexacopter. The 
scaling results for the stability derivatives are shown 
in Table 9, against the true ADD hexacopter system 
identification results. The Froude scaled estimates are 
within ±11% of the true stability derivatives, with the 
exception of  ��. This is likely because �� is less 
accurately known in the identification as shown by the 
larger Cramer-Rao bound in Table 4. It should be 
noted that the () and �� derivatives could not be 
identified for the UP hexacopter at hover and therefore 
cannot be scaled. These parameters were insensitive, 
indicating that the angular rate damping does not 
affect the dynamics in the frequency range of interest 
for the identification (1-30 rad/s). These parameters 
are likely present, but very small and therefore not 
important for a good prediction of the dynamic 
behavior. Small (or zero) angular rate damping at 
hover is a common result for multirotor vehicles [2, 3, 
13]. A comparison of the associated scaled 
eigenvalues in Table 10 also shows that all modes are 
well predicted by Froude scaling based on ª�b«.  

Froude scaling as applied to the control derivatives is 
shown in Table 11. Scaling based on ª�b« predicted 
the control moment derivatives �*+��, (*+,-, .*0,1 

within 18%. The scaling under-predicts �*+��,  (*+,- 
by approximately 17% and 14%, respectively. This 
may be related to discrepancies in the relative scaled 

inertias of the two aircraft. When backing out the 
Froude number from the inertias, the scale factor is:  

.inertia = > ¹º¯°¹º±²² @»¼ = > ¹0¯°¹0±²² @»¼ ≃ > ¹¾¯°¹¾±²² @»¼ = 0.56     (20) 

which is a larger characteristic length than when using 
the hub-to-hub distance. If the Froude scale were to be 
based on the rotor diameter, an even larger 
characteristic length would result:   

.¬/U�U/ = ¬L�-�L¯°¬L�-�L±²² = 0.713         (21) 

In an ideal world, the inertia, rotor diameter, mass and 
other physical properties of the aircraft would all scale 
consistently. However, these two aircraft were not 
built to be dynamically similar; they are made of 
different material and the UP blades are much larger 
relative to the body than the ADD blades. Despite 
these scaling imperfections, the frequency response 
prediction is still surprisingly good, as shown by the 
Bode plots overlaying the scaled UP hexacopter model 
and the ADD hexacopter model in Figure 14. This 
shows that the scaling method is robust, and does not 
require perfectly scaled models to provide a 
reasonable prediction of the dynamics. This has 
important implications for scaling handling qualities 
requirements and flight control design methods [19], 
where robust scaling of specifications are needed to fit 
a variety of vehicles in a similar size class.  

As a point of interest, the scaled hexacopter frequency 
responses when using scaling based on the rotor 
diameter (Eqn. 21) are also shown in Figure 14. The 
pitch, roll, and yaw frequency responses clearly 
indicate that the dynamics modes and control moments 
of the aircraft are not correctly predicted when the 
ratio of the rotor diameters is used as the characteristic 
length. The heave frequency response is less sensitive 
to the choice of characteristic length, as the thrust 
control derivative scale factor is 1, and �� is small.  

Table 8. Scale Comparison for Two Hexacopter UAVs. 

 UP Hexacopter ADD Hexacopter 

Hub-to-Hub Distance,  ª�b« 55.9  cm 127 cm 

Rotor Diameter, ª/U�U/  25.4  cm 35.6 cm 

Mass, ¿ 1.56 kg 7.13 kg 

Pitch/Roll Inertia, o
 = o	 0.0266 kg ∙ m� 0.477 kg ∙ m� 

Yaw Inertia, o� 0.0489 kg ∙ m� 0.913 kg ∙ m� 
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Table 9. Stability Derivatives Froude Scaling Based on Hub-to-Hub Distance (Â = h. ÃÃ) at Hover. 

Stability 
Derivative 

Units 
Froude 

Scaling Factor 
UP Hex 
(56 cm) 

Scaled  
UP Hex  

(to 127 cm) 

True 
ADD Hex 
(127 cm) 

%Error 
Scaled versus 

True ab 1/s √. -0.221 -0.147 -0.167 11.9 % �b 
rad/s

m
 .√. 4.01 1.17 1.09 7.34 % �� 1/s √. 0 0 -.523 n/a #$ 1/s √. -0.221 -0.148 -0.167 11.9 % ($ 

rad/s

m
 .√. -4.01 -1.17 -1.09 -8.8 % () 1/s √. 0 0 -0.610 n/a �� 1/s √. -.338 -.224 -0.291 -23 % ./ 1/s √. 0 0 0 0 % 3�N�O  rad/s √. 5.41 3.59 3.27 9.80 % 3��4 rad/s √. 15 9.95 11.0 -9.95 % 

 

Table 10. Scaled Hover Modes.  

Mode Frequency (rad/s) Damping 

 
Scaled  UP 

Hex 
True ADD 

Hex 
Scaled UP  

Hex 
True ADD 

Hex 
 Lateral-Directional Dynamics 

Unstable Lateral Oscillatory Mode 2.22 2.08 -.48 -.41 
Stable Roll Mode 2.3 2.44 n/a  (1st order) 

Yaw Mode 0          0 n/a  (1st order) 
 Longitudinal-Heave Dynamics 

Unstable Longitudinal Oscillatory Mode 2.22 2.08 -.48 -.41 
Stable Pitch Mode 2.3 2.44 n/a  (1st order) 

Stable Heave Mode 0.224 0.291 n/a  (1st order) 
 Motor Dynamics 

Stable Motor Lag Modes ( ×6 motors) 9.95 11.0 n/a  (1st order) 
Mode Frequency (rad/s) Damping 

 

Table 11. Control Derivatives Froude Scaling at Hover. 

Stability Derivative Units 
Froude 
Scaling 
Factor 

UP Hex 
(56 cm) 

Scaled 
UP Hex 
(N=0.44) 

True 
ADD Hex 
(127 cm) 

%Error 
(N=0.44) 

(*+,- rad/s�%/100 N 145 63.8 77.2 -17.4 % �*+�� 
rad/s�%/100 N 165 72.7 84.4 -13.9 % .*0,17  rad/s�%/100 N 34.1 15 13.8 8.7 % �* ��/ 
ft/s�%/100 1 -39.4 -39.4 -42.4 -7.07 % 
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Figure 14. Frequency Responses for Scaled UP Hexacopter versus ADD Hexacopter System ID at Hover.  

CONCLUSIONS 

Frequency domain system identification was 
performed in order to extract dynamic models of the 
University of Portland hexacopter (56 cm, 1.56 kg). 
Different input excitation techniques were tested to 
determine recommendations for achieving high 
quality system identification results on small scale 
multirotor vehicles. These input excitation techniques 
included automated frequency sweeps, varying in 
amplitude, and multi-sine sweeps. Additionally, the 
concepts of scalability in multirotor vehicles was 
explored by comparison to system identification 

results of a larger hexacopter (127 cm, 7.13 kg). 
Resulting from this work, several key conclusions can 
be made:  

1. A decoupled state-space model structure, which 
incorporates motor lag states, well predicts 
hexacopter dynamics at hover.  

2. A parametric variation of frequency sweep 
amplitudes resulted in the recommendation that 
the output response angular rates should be 
approximately ± 125 deg/s for pitch and roll for a 
small-scale (56 cm) hexacopter. This is equivalent 
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to ± 23 deg/s in full-scale angular rates (Froude 
scaled relative to the UH-60), twice the 
recommended amplitude for full-scale frequency 
sweeps (10-15 deg/s).  

3. The frequency sweep input method resulted in 
improved coherence and associated frequency 
response accuracy for extracted models as 
compared to the multisine input method, even 
when conducted such that both result in similar 
output power spectral densities.  

4. Froude scaling, based on hub-to-hub distance, is 
an effective and robust method for scaling 
multirotor dynamics. This has important 
implications for scaling handling qualities, where 
robust scaling of specifications is needed to set 
requirements for multirotor vehicles in a range of 
size classes.  
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