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ABSTRACT

State-space system identification was performeatdier to extract flight dynamic models for hoverftight of a 56
cm, 1.56 kg hexacopter unmanned aerial vehicle (WABNferent input excitation techniques were tedtedetermine
which maneuvers provided high quality system ideaiion results for small scale multirotor veh&l& hese input
excitation techniques included automated frequameeps, varying in amplitude, and multi-sine swe€pherence,
Cramer-Rao bounds, and insensitivities were usethasics for comparing the system identificatiosulés. A
parametric variation of frequency sweep amplitudese performed in all axes (roll, yaw, pitch an@¥e) in order
to provide guidance on frequency sweep amplitudesfioall scale multirotor unmanned aerial system&S)J The
dynamics of the 56 cm hexacopter were used to astitihe dynamics of a larger 127 cm hexacopteFraaide
scaling based on hub-to-hub distance as the clesistat length. The scaled results were compareah @ctual system
identification model of a 127 cm hexacopter.

NOMENCLATURE Acronyms
p,q,r = body axis roll, pitch and yaw rates UAV = Unmanned Aerial Vehicle
$,6,9 = body axis pitch, roll, and yaw attitudes UAS  =Unmanned Aerial Systems
a,, a,, a,= body axis accelerometer measurements CIFER = Comprehensive Identification from

Frequency Responses

Y = b d i I t 3 / )
wuw ody axis velocities, mis GCSs = Ground Control Station

T = Motor lag states
8 = control deflection% INTRODUCTION
i ) - Unmanned aerial vehicles (UAVs) are serving as a
A = i" eigenvalue of identified model, rad/s new way to perform autonomous tasks [1]. Multirotor
] = model validation cost function aerial vehicles are emerging as a popular conftgura
) because of their mechanical simplicity and vertiéal
Subscripts capability [2]. Developing accurate flight dynamic
lon = longitudinal (pitch) control input models of these _alrcraft is an important step to
_ simulate and predict the behavior of a UAV. Flight
lat = lateral (roll) control input accurate computer simulations allow engineerssb te
yaw = yaw control input the design_ and control _systems in desk_top and
. hardware in the loop simulations [3], ultimately
thr = throttle (heave) control input abating flight time and cost. System identificatisra

rapid method for extracting dynamic models from
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flight test data. A small scale hexacopter (1.569@)
cm diameter) operated by the University of Portland
was used to study system identification of smadilesc
multirotor UAVs using CIFER [4]. Although
frequency domain system identification has been
previously applied to quadrotors [2, 3] this wag of

the first applications to a hexacopter. As unique
unmanned aerial vehicle configurations increase in
popularity, physical models are not well validated;
such, flight accurate system identification modeis
taking a larger role. Although system identificatio
flight test methods for large-scale manned vehiates
well documented [4], guidance on flight test method
for system identification of small scale multirotor
unmanned aerial vehicles are not as readily availab

A key aspect of the frequency domain system
identification procedure is performing maneuvers to
excite the aircraft across the frequency range of
interest for system identification. Frequency sveeep
are popular flight maneuvers to gather data abwait t
vehicle dynamics as these inputs provide a rich
spectral excitation [4]. Published research papers
involving system identification of small-scale veleis
state that the UAV was excited using frequency pwvee
maneuvers, however, did not go into detail abowt ho
the frequency sweeps inputs were designed (in terms
of duration, magnitude, frequency range, etc.)5[3,
Additionally, multi-sine maneuvers are another W@y
collect flight data in order to perform frequency
domain system identification [6, 7] . There is &de
for guidance in techniques used for gathering fligh
test data for small scale unmanned aerial vehicles
order to produce high quality system identification
results with minimal trial and error.

In addition to understanding how the system
identification methods scale with size of the véhid

was also of interest to understand the scalinchef t
dynamics of multirotor vehicles as they grow oriiskr

in size. Looking toward development of
flying/handling qualities specifications for unmaeh
systems, as in Refs. [8, 9, 10, 11, 12], a critfzat
step is to determine the methods for scaling common
configurations with size, so that the handling gies
specifications can also be scaled accordingly. The
ultimate goal, although outside the scope of thjsqy,

is to provide a generic framework for scaling hargll
qualities specifications for any class of multimoto
vehicle. This will ensure that requirements devetbp
for one multirotor aircraft can be scaled and used
generic guidance for that size of vehicle, as opdds
developing new specifications for every possible
multirotor UAS.

BACKGROUND
Flight Vehicle

A custom hexacopter built at the University of
Portland (UP) was used to study system identificati

of small scale UAVs. The UP hexacopter weighs 1.56
kg with the 4S battery and is 56 cm in diametebthu
to-hub). The hexacopter was built using a DJI Flame
wheel F550 frame, 930 kV motors, 30A electronic
speed controllers and 10-inch diameter rotors. The
hexacopter as configured for flight is showrFigure

1

ArduPilot is an open-source software suite that
bundles together sensor processing, flight condimd,

navigation software [1]. A branch of the ArduPilot
software is ArduCopter that supports a variety of
multirotor  configurations such as quadcopter,
hexacopter, and octocopter configurations. The

autopilot controller board, Pixhawk MifFigure 2),

was chosen for the UP hexacopter due to its general
application, reduced size, reliable navigation and
improved sensors [1]

Figure 1. University of Portland Hexacopter.

Figure 2. Pixhawk Mini Autopilot Controller
Board.



The UP hexacopter also shares information with a
ground control station (GCS) using a wireless 3DR
915MHz telemetry radio [1]. The ground control
station, Mission Planner, was utilized to show +eal
time data on the UAV's position, upload commands,
and set parameters. Mission Planner was also osed t
analyze downloaded missions, and use telemetry to
monitor, record, and view mission logs [1].

A tethering system was developed in order to ensure
that the hexacopter would not depart from the rigsti
area. The tether was designed to avoid interference
with the dynamics of the hexacopter. Light-weight
survival Kevlar cord (rated to 200 Ib) was tiecetich

leg of the hexacopter and to a thirty-pound keité

with double figure eight knots used to secure threl c

to each arm. Two lightweight aluminum rings were
attached to segments part way down the cord inrorde
to weigh the Kevlar cord down enough so that it did
not lift and interfere with the blades of the hexater
during flight but was light enough that it did reftect

the dynamics of the vehicle. A bungee cord with a
carabiner was attached to the kettle bell and gord
order to prevent sudden tugging of the cord when th
hexacopter is out of range. The cord was limite@%o
feet based on the dimensions of the testing area.

o
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The inputs to the model are the lateral controk axi
input 5,4, and the yaw control axis inpdt,,,,, both
measured just upsteam of the mixer (in normalized
units, %/100). The aircraft states were laterabeiy

v (m/s), roll ratep (rad/s), yaw rate (rad/s), roll
attitude¢ (rad). Additionally, actuator lag stat®s,;
andT,,, were applied to the lateral and yaw inputs,
respectively. This improves the accuracy of théo¥it
modeling the first order characteristic of the nmoto
response as also confirmed in Ref. [3, 13]. This
effectively multiplies the lateral responses byirat f
order lag, for example:

. - ( r )( wlag )
6lat Sl’at s+a)lag

S— 2
wherep/§;,; is the response with instantaneous thrust.
The yaw response is a combination of differential
motor torques on alternating rotors, which produzes

System | dentification Software

CIFER® (Comprehensive Identification from
Frequency Responses) is an integrated softward, use
for system identification [3]. CIFERwas utilized for

the work herein because it is a well-established
frequency domain method, which is well suited for
unstable dynamics and high vibration due to the six
rotors of the hexacopter. The software was used to
extract non-parametric control-to-vehicle frequency
responses from flight data, develop flight accurate
state-space models, and perform time-domain
verification on these models.

LATERAL-DIRECTIONAL MODEL
IDENTIFICATION AT HOVER

Automated frequency sweeps were performed on the
University of Portland hexacopter at the hovering
flight condition. The resulting data were used to
determine a high quality, flight accurate stateespa
model. On-axis derivatives were identified from the
flight test data of the hexacopter, using the model
structure shown iEgn. 1. All axes in this model were
decoupled due to the decoupled response of the
aircraft, which results from the counter-rotatingda
symmetric propeller configuration. The lateral-
directional state-space model structure is given by

Egn. 1

v 0 0

e o

r 5 Siar(t — 1)

+ | yaw | lat ] 1

¢ | 0 0 | 6yaw (t - 1) ( )
Tiqe lwlag 0

yaw 0 Wiag

lead-lag motor dynamic. This is implemented in the
model by including a lagged control derivatiNgzyaW

and lead control derivativkgyaw

r _( T ><5+wlead)_ N,
Syaw é‘gla_w StWiag

o)) o
T lag
where the lead frequency can be calculated from the
identified parameters as:
5yaw>
5yaw

In system identification, output equations are eeed
to map the measured frequency response outpus to t
model states. The outputy)(used in the system

Wieqq = Wigg (1 + (4)

Output Equations



identification for the lateral-directional model ree

[4]:
(®)

y=|[pr Ay, U |
The angular rate gyro sensors and the lateral
accelerometers are built into the Pixhawk. Therédte
velocity rate is reconstructed (at howey, w,, 8, =
0):

v=a,+gd (6)

When using the equations of motion, the assumption
is that the center of mass is where the data
measurement device is located. If the measurement
device cannot be placed directly at the centeradgsn
an offset term is used to account for the displas#gm
between the center of mass and the measurement
device. For the UP hexacopter, an offset was only
present in the vertical direction, which affect® th
lateral acceleration as measured:

()

z, is the z-body axis offset distance from the ceafer
mass to the sensor. The velocity rate was recarnetfu
at the sensor, using the accelerations that arsuread

at an offset from the center of gravity:

Um = ay,, +gb
=ay_2aﬁ+g¢=1.7_zalj (8)
The offset of the accelerometer, which is housetién
Pixhawk, was calculated as, = 0.03 m. The final
output matrix, which models the measured output
parameters as function of the states, is then:

p 010 0 ]

L I [ S A T L

n| [0 0 0 —9.81||T

vml o0 0 o ll¢ .
0 0 0 o]
0 0 0 o||P
1 -003 0 of|" ®)
1 -0.03 0 o]l

Speed Damping Derivative Y,

In system identification of helicopters, the speed
damping parameteY, (and similarly, X,) is often
found to be insensitive in the model structure
identification [4, 14]. However, this term primaril
captures the increase in drag as a function ofdssee
it must have a nonzero negative value. SimilaHgse
speed derivatives are also insensitive for the
hexacopter. This derivative can be accurately

identified for a helicopter based on a simple low
frequency approximation [4, 14], which also works
well on a hovering hexacopter:

I <

9
(S_Yv)

10)

=

Where v/p is calculated via frequency response
arithmetic using the reconstructedwith center of
mass correction:

o+ a5y
. + zql S
Z — alat a alat (11)
p p/61at

The model fit was performed by using a transfer
function fitting routine (NAVFIT, CIFER) as shown
in Figure 3, wher&,, = —0.221 s~ is identified.

vdot/p

= w o
[oNeNe]

— Flight Data

— — Model Fit
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Figure 3. Transfer Function Fit of ¥/p, with
Y,=-0.221s"1.

Identified Hover State-Space M odel:
L ateral-Directional

The identified model parameters, correspondingéo t
model structure irfEgn. 1, are shown iffable 1. An
ideal model should have an average cfist. < 100,
Cramer-Rao bound€R < 20% and insensitivities

I < 10%. A model structure determination process
was used, following the guidance in Ref. [4], where
parameters were dropped or fixed at an estimated
value (as in the case ©f) if insensitivities werd >
10% and Cramer-Rao bounds weiR > 20%. If the
average cost jumped significantly after dropping a
term, then the parameters were reintroduced back in



the model structure even with less than desired
theoretical accuracy. The angular damping derieativ
L, is seen to be dropped from the model structure as
unimportant for the hovering dynamics, where the
large dihedral derivativeL, dominates the roll
response. This is consistent with other hover model
identification for multicopters [2, 3]. For the ik&ied
hexacopter model, all Cramer-Rao bounds and
Insensitivity guidelines were achieved, as shown in
Table 1, indicating very good theoretical accuracy.
The frequency response costs are showhahie 2.

The resulting lateral-directional model had an ager
cost of J,,. = 54.2, indicating excellent predictive
accuracy in the frequency domain. It should be dhote
that many of the parameters are tied to the
longitudinal-heave model structure, which conssain
the problem via the symmetry of the dynamics for
pitch and roll observed at hover, further improving

multirotor vehicles, as exemplified by the rollgah
Figure 6 An adjustment factor was based on Froude
scaling [5] as determined by comparing the hubttb-h
distance of the multirotor relative to the rotoarmieter

of the UH-60, a representative full-scale
configuration, resulting iiN = 1/29.8. The raw roll-
axis cost waygys = 1.57 With Jrroude = JrmsVN =
0.288, and normalized coTIC = 0.043 (~4% error).
The yaw-axis Froude-scaled verify cost Veroude =
0.6380 and TIC = 0.054 (~5% error). These time-
domain Froude-scaled cost function results, in
combination withFigure 6 andFigure 7, confirm the
excellent predictive accuracy of the identifiecetal-
directional model at hover.

Table 1. Lateral-Directional M odel
Parametersat Hover.

theoretical accuracy, but increasing the model cost
slightly. Figure 4 and Figure 5 show frequency

response comparisons for the identified state space
model as compared with the flight data. Each
individual frequency response shows excellent
agreement, over a wide frequency range, between the
identified model and flight data, confirming theMo
individual cost functions iffable 2.

The eigenvalues A{) of the identified model are
located inTable 3. The first eigenvalue is the yaw
mode, which is an integratas & 0) because the yaw
damping of the hexacopter is negligibly, = 0.
Eigenvalues two and three are the unstable osumijlat
mode. The fourth eigenvalue is the stable aperiodic
roll mode. Eigenvalues 2-4 make up the unstable
hovering cubic, which is characteristic of any havg

Cramer-Rao Insensitivity
Parameter Value (%) (%)
Y, (1/s) -0.221 - -
rad/s
Lv( - ) -4.01 5.21 1.88
L, (1/s) 0 - -
N, (1/s) 0 - -
rad/s?
Lo (5s) 145 2.93 2.11
2
Nspea (50) 225 9.68 151
, (rad/s?
Mo, (mes) 341 6.03 0.914
Wiag (rad/s) 15 5.16 2.07
Tiat (S) 0.02 - -
Tped (5) 0.02 - -

vehicle [4]. The fifth and sixth eigenvalues are th
motor/rotor lag mode @,q,4)-

Time Domain Verification: Lateral-Directional

The identified lateral-directional model was vexdfiin

the time domain by comparing the flight test daterf

a doublet maneuver with the model extracted froen th
frequency sweep data. The model very accurately
predicts the flight data collected from roll andwya
doublets, shown ifigure 6 andFigure 7, with nearly
imperceptible difference between the model andhflig
data. For a full scale vehicle, the verificationsico
should b¢/gys < 1 — 2 andTIC < 0.35 [3]. For small
scale UAS, the verify cost should be Froude sctded
account for the large response magnitude achieyed b

Table 2. Lateral-Directional Frequency
Response Costs at Hover.

Freguency Response Cost
ay/Biat 59.7
1814 52.0
V814t 79.9
7/8pea 25.1

Average Cost: ;. = 54.2



Table 3. Lateral-Directional M odel Eigenvalues at Hover.

Natural
Real Imaginary Damping Frequency
Eigenvalue Number, 4; Mode (rad/s) (rad/s) Ratio (rad/s)
1 Yaw 0 0 - -
2 Roll Oscillatory 1.63 2.93 - 0.485 3.35
3 Roll Oscillatory 1.63 -2.93 - 0.485 3.35
4 Roll Mode -3.46 0 - -
5 Motor Lag -15 0 - -
6 Motor Lag -15 0 - -
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@ 60 @ 60
a a
w 40 P w 40
5 —= 5 e
220 220 P
=20 = -20
__-180 ~ 90
2 225 =3 2 135 =
g’ - S a” e
w-270{  T===C - X w -180 ~ 7
£ -315 £ 225
o o
-360 -270
1 1
Ll Ll
[&] 08 M\ O 08 M
e 06 e 06
504 S04
3] 3]
0.2 0.2
107" 10° 10" 102 107 10° 10° 10?
FREQUENCY (RAD/S) FREQUENCY (RAD/S)
— Flight Data

— — System ID Model

Figure 4. Lateral Body Velocity Rate and Roll Rate M odels ver sus Flight Data.



a lé r/é,
—~ y lat — yaw
@ 60 @ 60
a a
W 40 W 40
S S
[ 20 ::———\——_:_—A,_g\\ [ 20 :;\
4 P4
g’ g’
s -20 = -20
90 0
it D 45
g -180 EEe=EENAT = _ ——
u ) ooy S
< 270 < 135
o o
-360 -180
1 1
w w
Sos Sos m
i %06
%06 0.
Soa Soa
o O
0.2 0.2
10™" 10° 10’ 102 10° 10 102
FREQUENCY (RAD/S) FREQUENCY (RAD/S)
— Flight Data
— — System ID Model
Figureb5. Lateral Body-Axis Accelerometer and Yaw Rate M odels ver sus Flight Data.
r
120 P 120
%) o
G 60 @ 60
Ll
a2 2
Ll
0 = , w oo
= = =
& &
-
3 -60 = -60
e) <
-120 -120
N
¢ (%) ay
%0 = 4
Q z
8 15 S2
5 3
20 wo M
— Ll
5 3
< 15 I -2
— -
2 &
& 30 W -4
0 0.5 1 15 2 25 3 < 0 0.5 1 15 2 25 3
TIME (S) TIME (S)
— Flight Data

— — System ID Model

Figure6. Lateral-Input Time Domain Verification at Hover.



60 60
@ @
O 30 @ 30
w
2 a
wl — — = = w
Mo wo
: s
-
2 -30 =30
2 £

-60 -60

o~
¢ (%] ay

—~ 30 34
o 2
a) 8
= 15 Q9
w =
8 &
2 w
E o0 —_— Yo e =
E 5}
< Q
g -15 < 2
2 =

-30 E -4

0 05 1 15 2 25 3 35 4 < 0 05 1 15 2 25 3 35 4
TIME (S) TIME (S)

— Flight Data
— — System ID Model

Figure7. Yaw-Input Time Domain Verification at Hover.

LONGITUDINAL-HEAVE MODEL
IDENTIFICATION AT HOVER

A similar process to the determination of the
lateral-directional dynamics was employed to idgnti
a longitudinal-heave state-space model. Longitddina
and heave axis frequency sweeps were performed on
the University of Portland hexacopter. The resgltin
data were used to determine a high quality, flight
accurate state-space model of the longitudinal-beav
dynamics at hover.

Model Structure

Similar to the lateral-directional model, only oxisa
derivatives were identified from the flight testaaf

the hexacopter, using the model structure shown in
Egn. 12. The lateral and longitudinal models were
simultaneously identified, so that parameters
constrained by symmetry of the physics could be
constrained in the model identification (suchXgs=

Y,). This model was decoupled due to the decoupled
response of the hexacopter resulting from the @vunt
rotating propeller configuration. The model struetu
was:

u X, 0 X —g 0 0 u 0 0
[ W 0 2, 0 0 0 Zs, || w 0 0
q M, 0 M, 0 M 0 q 0 0 |[8,0n(t — 1)
| . |= u q Sion lon ]
0 0 0 1 0 0 0 o || o 0 |[8,,(t—1) (12)
Ton| |0 0 0 0 -wg 0 [|Tion| |[@ag O
Toed 1O 0 0 0 0 —wglTmd 10 wg
4 _ () ( g
Slon - (6{gn) (S+wlag) (13)
w — w Wlag
Sthr (51’:hr) (5+wlag) (14)



The inputs to the model are the longitudinal cdnatro
axis inputé;,,, and the thrust control-axis inp8f,.,
both measured just upsteam of the mixer (in
normalized units, %/100). The aircraft states were
longitudinal velocity u (m/s), vertical velocity

w (m/s), pitch ratey, (rad/s), and pitch attitude(rad).
Two motor lag statesT),, and T, were also
introduced in the longitudinal-heave model, ashia t
lateral-directional model, in order to improve thigh
frequency fit of the pitch and heave responsess Thi
improves the accuracy of the fit by modeling thetfi
order characteristic of the motor responses [3tH&]
affects the control response as showhdqns. (13-14).

Output Equations

The outputs used in the system identification far t
longitudinal-heave model were:

yz[axmumqgazm]T

The output equations map the model states and
measured outputs. Just as in the lateral-diredtiona
models, a vertical cg offse, = 0.03 m was included

in the accelerometer output,{ ) and body velocity
rate {,,) outputs:

[‘fxm] 0 0 0 9817,
| % | [000 o[,
| a |=l0 0 1 o +
1o fooo 1][f
la,. | lo 0 0 ol
[l 0 003
[1 0 0.03
[00 0 (15)
0 0 0
01 0

Speed Damping Derivative X,,

The speed derivativE, was insensitive in the system
identification optimization cost. To maintain
symmetry with the roll-axis dynamics, the valuexgf
was selected a§, = Y, = —0.221.

| -

:—g
q (S'_)(u)

(16)

The validity of this assumption was verified in
NAVFIT, by evaluating the fit oft/q usingEgn. (16)
with X,, = —0.221, s~1. The pitch axis had a similarly
excellent fit as that shown for the lateral axi§igure

3.

Identified Hover State-Space M odel:
Longitudinal-Heave

The Cramer-Rao bounds, insensitivities and the
parameters identified are located Table 4. The
model has Cramer-Rao and Insensitivities well withi
the guidelines of 20% and 10%, respectively, for al
except the Z,, derivative which is just outside
theoretical accuracy guidelines. Many of the pitch
derivatives are constrained to the roll-axis syminet
counterpart, resulting in improved theoretical
accuracy. The longitudinal and heave frequency
response cost functions are located Tiable 5,
indicating good accuracy of the identified modek(

100 is good, < 50 is excellent)Figure 8 andFigure

9 show frequency responses for the identified state-
space model as compared with the flight data. Each
individual frequency response shows good agreement,
over a wide frequency range, between the identified
model and flight data. The resulting longitudinal-
heave model had an excellent average cogt,of=
52.2.

Table 4. Longitudinal-Heave M odel
Parametersat Hover.

Cramer-Rao Insensitivities
Parameter Value (%) (%)
X, (1/s) -0.221 - :
m/s
Xq (rad) 0 - -
Z, (1/s) -0.338 21.1 10.3
rad/s
M, ( - ) 4.01 5.21 1.88
M, (1/s) 0 . .
m/s
X‘Slon (%/100) 0 - -
rad/s
Ms1on (%/100) — 3.78 1.21
m/s
Zsunr (%/100 -394 2.29 1.35
Wiqg (rad/s) 15 5.16 2.07
() 0.02 i .
Table5. Longitudinal-Heave Frequency
Response Costs.
Freqguency Response Cost
Woion 86.2
100 58.9
AlS1om 50.4
a, /8y 13.1

Average Cost/,,. =52.2
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Eigenvalues comparing the flight test data from a doublet mareu

to the model extracted from the frequency sweeg,dat
and assessed using the Froude-scale(/g,yuqe- The
model accurately predicts the flight data collected
from the doublet, shown inFigure 10 for a
longitudinal input. The corresponding Froude scaled

The eigenvalues of the modglare located inrable

6. The first eigenvalue is the heave mode with
frequencyd, = —Z,,. Eigenvalues two and three are

the unstable oscillatory mode. The fourth eigen@alu

is the pitch mode. Eigenvalues 2-4 make up the

unstable hovering cubic, which is characteristiamy cost iS Jrrouse = J1/N = 0.278 and normalized
hovering vehicle. The fifth and sixth eigenvalues a costTIC = 0.041 (~4%), which are well below the

The heave-axis (throttle-input) time domain predict
is also very good as shown kiigure 11. The Froude
scaled verify cost wajp,ouqe = 0.36 @and TIC was
0.09. These time-domain cost function results confi
the good predictive accuracy of the identified mMode

eigenvalues A, — 1) match the lateral-directional
eigenvalues(1, — 45), due to the enforced model
symmetry.

Time Domain Verification: Longitudinal-Heave

As in the lateral-directional model, the longitualin
heave model was verified in the time domain by

Table 6. Longitudinal-Heave M odel Eigenvalues at Hover .

Real Imaginary Damping Natural Frequency
Eigenvalue Number, 4; M ode (rad/s) (rad/s) Ratio (rad/s)
1 Heave - 0.338 - - -
2 Pitch Oscillatory 1.63 2.93 - 0.485 3.35
3 Pitch Oscillatory 1.63 -2.93 -0.485 3.35
4 Pitch Mode -3.46 - - -
5 Motor Lag -15 - - -
6 Motor Lag -15 - - -
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%‘ﬁ Autopilot

Excitation Input
(Multi-Sine or Sweep)

Figure 12. Block Diagram of Control Input.

TESTING GUIDANCE: SYSTEM ID OF
MULTIROTOR AERIAL VEHICLES

A parametric variation of frequency sweep ampligide
was performed in all axes (roll, yaw, pitch anduea

in order to provide guidance on frequency sweep
amplitude for small scale multirotor UAS. The
frequency sweeps were input at the mixer as shawn i
Figure 12 and amplitudes of the sweep was varied as
appropriate for the control axis. Sweeps were
performed in the “stabilize” mode of the Arducopter
The resulting response magnitudes were recorded, an
are shown ifmable 7, characterizing the low, medium
and high amplitude cases in each axis.

State-space models were identified from each set of
frequency sweep data. The criteria for selectirg th
best models were based on frequency domain cost
values, Cramer-Rao Bounds and verify costs. The
costs were averaged for each control axis, as @gpos

to combined longitudinal-heave and lateral-diratdio
costs shown earlier in the paper. The low amplitude
sweeps provided the best models across the bdard. |
should be noted that these low amplitude sweeps wer
used in the results that are presented in the quevi
sections of the paper. Based on the resulfablfe 7,

it is recommended that the longitudinal and lateral
sweeps produce approximateil25 deg/s of pitch
and roll rate for best results. When Froude scalesl,

is equivalent to + 23 deg/s in full-scale anguktes.
The guidance for full scale frequency sweeps in Ref
[3] is to achieve angular rates on the order of +10
deg/s. The reason for the larger scaled amplitodes
the multirotor vehicle may be due to reduced signal
to-noise ratios from the small-scale sensor and the
larger influence of any turbulence on the response.
Based on Table 7, the yaw-axis sweep is
recommended to produce +/- 30 deg/s of yaw-rate
response. This Froude scales to approximately Gdeg
of full scale response, which is similar to thd fdale
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recommendation. However, it should be noted that th
yaw response was less sensitive to amplitude add ha
similar characteristics for all amplitude sweepthis
may be due to the fact that the yaw response stiays

which is still 4 m/$ of acceleration when Froude
scaled, and is about twice the accelerations uskdli
scale sweeps. A general recommendation would be
that the Froude scaled (to full scale) frequencgegw

the hover condition regardless of the amplitudéhef amplitude should be roughly twice the
sweep and so is more linear. The heave axis results recommendations found in [4].
produced the best result with +/- 4 fdé response,
Table 7. Variation in Amplitude Effects on System I dentification Resultsat Hover.
Sweep Amplitude Metric Roall Axis Yaw Axis Pitch Axis  Heave Axis
e . +/- 125 deg/s +/- 30 deg/s +/- 125 deg/s +/- 4 m/g
Max On-Axis Response Amplitude +/-10 deg +-20deg  +-10deg +-1.3mis
Low Average Model Cost (Frequency Domai 63.9 251 65.2 13.1
Average Cramer Rao (%) 4.43 7.85 4.72 11.7
Verification TIC Cost 0.04 0.05 0.04 0.09
e . +/- 190 deg/s +/- 85 deg/s +/- 140 deg/s +/-5 m/g
Max On-Axis Response Amplitude +/- 20 deg +-25deg  +- 15 deg -4 mis
Medium Average Model Cost (Frequency Domai 82.9 29.0 90.4 28.3
Average Cramer Rao (%) 17.2 24.9 6.07 6.83
Verification Cost (Time Domain) 0.09 0.09 0.11 0.17
e . +/- 230 deg/s +/- 95 deg/s +/- 195 deg/s +/- 8 m/g
Max On-Axis Response Amplitude +/- 30 deg +-45deg  +- 20 deg 4 mis
High Average Model Cost (Frequency Domai 166 355 105.8 32.4
Average Cramer Rao (%) 5.57 11.2 6.16 5.66
Verification Cost (Time Domain) 0.14 0.15 0.14 0.22

MULTI-SINE INPUT EXCITATION
FOR SYSTEM IDENTIFICATION OF
MULTROTOR VEHICLES

Another frequently used maneuver for system
identification flight testing is the multi-sine iop[6,

7]. Multi-sine inputs add together sine waves at
discrete frequencies to create a single input sitpaa
excites the desired frequency range. The equations
below describe the input to the aircraft contrafaces

that is a set of summed harmonic sinusoids with
individual phase lags [6].

2wkt
cos (T + qbk)

7'[71.2

¢k=T

1,2,3,.M

u = 31 a”

(18)

The input yis applied to the'jcontrol surface, and the
total number of harmonically-related frequencieg (M
is the maximum frequency range desired. T is the ti
length of the excitation angk are the phase angles for
each given frequency k. The multi-sine inputs are
orthogonal and can be applied across all contplts
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simultaneously. However, it should be noted that in
the case where the model structure is not decoupled
and the control system is engaged, the inputsheill
fully correlated [15]. For a fully decoupled model
structure, such as the hover condition presentesirhe
with inputs at the mixer, it is possible to use
simultaneous inputs. However, only a single axpaitn
was used to provide better frequency resolution and
better direct comparison with the frequency sweep
inputs.

Resulting frequency responses using two concaténate
records from multi-sine inputs versus two
concatenated records from Frequency Sweep inputs
are compared irFigure 13 for pitch axis system
identification @/6,,,)- The multi-sine is only plotted

at the discrete input excitation frequencies. Every
effort was made to ensure that the multi-sine &ed t
frequency sweep had similar input frequency content
and amplitude to ensure a fair comparison of the tw
maneuvers. The power spectral density signals scros
the frequency range of interest are showthin first
column ofFigure 13. The power spectral density for
the excitation signal, inserted upstream of theemix
as shown irFigure 12, was selected to be similar for



the multi-sine and frequency sweep inputs. As shown
by Figure 13, the frequency sweep signal has more
content at lower frequency and less at higher
frequency, due to its exponential frequency
progression, whereas the multi-sine is designed to
provide a flat spectrum. Still, this averages ouliout

the same spectral content. The total input signtie
sum of the excitation signal and the control system
input (labeled assin Figure 12). For this signal,
Figure 13 indicates that the spectral content is slightly
higher for the multi-sine input, resulting from the
control system response to the multi-sine inpute Th
output power spectral density of the pitch rate,

indicates similar response amplitudes, but again
slightly higher for the multi-sine. Despite the lew
total input to output amplitude tfe frequency sweep,
the frequency sweep still has an overall higher
coherence compared to the pitch Multi-Sine input as
shown inFigure 13, especially in the 7-15 rad/s range.
Coherence represents the accuracy, quality and
linearity of the frequency response. A higher
coherence means the data is of better quality. éThes
results indicate a preference for the frequencyegwe
in this application.
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Figure 13. Spectral Data and Frequency Responsesfor q/8;,, Using Multi-Sine and Frequency Sweep

Inputs.

DYNAMIC RESPONSE SCALING FOR
MULTIROTOR VEHICLES

It would be useful to utilize an identified stafgase
model of a one multirotor vehicle and extrapoléie t
dynamics to larger/smaller scale. This is espsciall
important when considering control system desigh an
handling qualities metrics, for which it is impantao

be able to scale as opposed to developing newasetri
for every possible vehicle size class. To addrbiss t
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area of interest, a comparison of the identified
dynamics of the University of Portland (UP)
hexacopter, shown herein, and the larger Aviation
Development Directorate (ADD) hexacopter [16] was
performed. The two vehicle specifications are
compared ifmable 8.

The Froude number relates inertial force to gravity
force via a characteristic length. Scaling rotor
dynamics based on the Froude number is a common



similarity requirement for rotorcraft models [5,]17
Froude scale was shown to work well for scaling
fixed-wing aircraft dynamic modes, as observed by
Sanders [12]. There is some prior evidence in the
literature that the characteristic length usedriouBle
scaling for multirotor aircraft should be basedtba
hub-to-hub distancB,,,,;, as opposed to disk diameter
that is commonly used for a single rotor helicopt&;

11]. UsingDy;,,;, as the characteristic length gives:

559
127

L =044

Dhubup
N = Np,,, = - 2.27

Dhub 4pp

(19)

This indicates that the UP hexacopteﬁ; scale, or

nearly half scale relative to the ADD hexacoptdre T
scaling results for the stability derivatives ah@wn

in Table 9 against the true ADD hexacopter system
identification results. The Froude scaled estimates
within £11% of the true stability derivatives, with the
exception of Z,,. This is likely because¢,, is less
accurately known in the identification as showrtHwy
larger Cramer-Rao bound ifable 4. It should be
noted that the.,, and M, derivatives could not be
identified for the UP hexacopter at hover and tfoeee
cannot be scaled. These parameters were insensitive
indicating that the angular rate damping does not
affect the dynamics in the frequency range of eger
for the identification (1-30 rad/s). These paramgete
are likely present, but very small and thereforé no
important for a good prediction of the dynamic
behavior. Small (or zero) angular rate damping at
hover is a common result for multirotor vehicles32
13]. A comparison of the associated scaled
eigenvalues iMable 10 also shows that all modes are
well predicted by Froude scaling basedpy,,.

Froude scaling as applied to the control derivatige
shown in Table 11. Scaling based By,;, predicted
the control moment derivative¥s, , Ls,,, N5,
within 18%. The scaling under-predidt;, , Ls,,,

by approximately 17% and 14%, respectively. This
may be related to discrepancies in the relativéedca

inertias of the two aircraft. When backing out the
Froude number from the inertias, the scale fastor i

1 1
)= () =G

I}’ADD IZADD
which is a larger characteristic length than whsing
the hub-to-hub distance. If the Froude scale wehet

Leyp

Ninertia = ( )é =056 (20)

IXADD

based on the rotor diameter, an even larger
characteristic length would result:
_ Drotorup _ 21
Np,opor = 58 = 0713 (21)
Totor ADD

In an ideal world, the inertia, rotor diameter, sraad
other physical properties of the aircraft wouldsaidle
consistently. However, these two aircraft were not
built to be dynamically similar; they are made of
different material and the UP blades are much targe
relative to the body than the ADD blades. Despite
these scaling imperfections, the frequency response
prediction is still surprisingly good, as shown tinge
Bode plots overlaying the scaled UP hexacopter tnode
and the ADD hexacopter model Figure 14. This
shows that the scaling method is robust, and dotes n
require perfectly scaled models to provide a
reasonable prediction of the dynamics. This has
important implications for scaling handling quali
requirements and flight control design methods ,[19]
where robust scaling of specifications are needdid t

a variety of vehicles in a similar size class.

As a point of interest, the scaled hexacopter feaqy
responses when using scaling based on the rotor
diameter Eqgn. 21) are also shown ifigure 14. The
pitch, roll, and yaw frequency responses clearly
indicate that the dynamics modes and control mosnent
of the aircraft are not correctly predicted whee th
ratio of the rotor diameters is used as the charistic
length. The heave frequency response is less sensit
to the choice of characteristic length, as the ghru
control derivative scale factor is 1, afg is small.

Table 8. Scale Comparison for Two Hexacopter UAVSs.

UP Hexacopter

ADD Hexacopter

Hub-to-Hub Distance, Dy, 55.9 cm 127 cm
Rotor Diameter, D,o¢or 25.4 cm 35.6 cm

Mass, m 1.56 kg 7.13 kg
Pitch/Roll Inertia, I, = I, 0.0266 kg - m? 0.477kg - m?
Yaw Inertia, I, 0.0489 kg - m? 0.913kg - m?
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Table 9. Stability Derivatives Froude Scaling Based on Hub-to-Hub Distance (N = 0.44) at Hover.

- Scaled True %Error
Dsetr"’}f’lggze Units Scalli: ;Ougaector %52 ':n‘i;‘ UPHex  ADDHex  Scaled versus
9 (to 127 cm) (127 cm) True
X, 1/s VN -0.221 0.147 20.167 11.9 %
M, radr NVN 4.01 1.17 1.09 7.34 %
m
M, 1/s VN 0 0 -523 n/a
Y, 1/s VN -0.221 -0.148 -0.167 11.9 %
L, radrs NVN 4.01 117 -1.09 8.8 %
m
L, 1/s VN 0 0 -0.610 n/a
7, 1/s VN -.338 -224 -0.291 23 %
N, 1/s VN 0 0 0 0%
Ooad rad/s VN 5.41 3.59 3.27 9.80 %
Olag rad/s VN 15 9.95 11.0 -9.95 %

Table 10. Scaled Hover M odes.

Mode Frequency (rad/s) Damping
Scaled UP True ADD  Scaled UP True ADD
Hex Hex Hex Hex
Lateral-Directional Dynamics
Unstable Lateral Oscillatory Mode 2.22 2.08 -.48 -41
Sable Roll Mode 2.3 2.44 n/a (lorder)
Yaw Mode 0 0 n/a (' order)
Longitudinal-Heave Dynamics
Unstable Longitudinal Oscillatory Mode 2.22 2.08 -.48 -41
Sable Pitch Mode 2.3 2.44 n/a (lorder)
Sable Heave Mode 0.224 0.291 n/a (' order)
Motor Dynamics
Stable Motor Lag Modes ( X6 motors) 9.95 11.0 n/a (® order)
Mode Frequency (rad/s) Damping

Table 11. Control Derivatives Froude Scaling at Hover.

Froude Scaled True 0
Stability Derivative Units Scaling UP Hex YoError

UP Hex ADD Hex

Factor  °M  (N=044) (27cm) (NFO4)
2
Lsiae s N 145 638 772 17.4%
0
M rad/s’ 165 72.7 84.4 13.9%
Sion m . . -1o.
By s N 34.1 15 13.8 8.7 %
0
ft/s?
Zs iy i 394 -394 424 7.07%
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CONCLUSIONS

Frequency domain system identification was
performed in order to extract dynamic models of the
University of Portland hexacopter (56 cm, 1.56 kg).
Different input excitation techniques were tested t
determine recommendations for achieving high
quality system identification results on small scal
multirotor vehicles. These input excitation teclugg
included automated frequency sweeps, varying in
amplitude, and multi-sine sweeps. Additionally, the
concepts of scalability in multirotor vehicles was
explored by comparison to system identification

17

results of a larger hexacopter (127 cm, 7.13 kg).
Resulting from this work, several key conclusioan c
be made:

1. A decoupled state-space model structure, which
incorporates motor lag states, well predicts
hexacopter dynamics at hover.

A parametric variation of frequency sweep

amplitudes resulted in the recommendation that
the output response angular rates should be
approximately £ 125 deg/s for pitch and roll for a

small-scale (56 cm) hexacopter. This is equivalent

2.



to + 23 deg/s in full-scale angular rates (Froude
the

scaled relative to the UH-60), twice

recommended amplitude for full-scale frequency

sweeps (10-15 deg/s).

The frequency sweep input method resulted in

improved coherence and associated frequency

response accuracy for extracted models as
compared to the multisine input method, even
when conducted such that both result in similar

output power spectral densities.
Froude scaling, based on hub-to-hub distance, is

an effective and robust method for scaling
multirotor  dynamics. This has important
implications for scaling handling qualities, where
robust scaling of specifications is needed to set
requirements for multirotor vehicles in a range of

size classes.
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