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ABSTRACT 

The control equivalent turbulence input (CETI) modeling approach uses flight data taken in turbulence and identifies 

control inputs that would effectively reproduce the aircraft’s response to turbulence. CETI models are extracted and 

presented for a quad-, hexa- and octocopter using flight test data collected in different wind conditions. Time domain 

simulation of the developed turbulence models is verified with flight test data. The effects of wind intensity are studied 

by comparing extracted turbulence models against the collected wind information. The effects of output measurement 

noise on CETI model identification are studied in simulation as well. The implications of these findings are discussed 

in relation to the development of a reconfigurable CETI model for multirotor UAS.  

 

INTRODUCTION 1  

Multirotor unmanned aerial systems (UAS) have grown 

increasingly popular across a variety of military and 

commercial applications. Within the military, multirotor UAS 

are being developed for surveillance, reconnaissance, and 

resupply missions. For commercial use, multirotor UAS are 

being developed as package delivery drones and for urban air 

mobility applications. Due to their wide range of applications, 

multirotor UAS are incredibly versatile. Their versatility is 

partly due to their ability to precisely hover and maneuver 

through dense environments, while often subject to windy and 

turbulent flight conditions. The flight control system’s 

disturbance rejection capabilities must be properly designed 

and evaluated to ensure adequate performance in these 

adverse conditions. A realistic turbulence model can be used 

in simulation to effectively tune and evaluate control system 

performance. 

Several sources have shown the success of a frequency-

domain based turbulence modeling framework that relies on 

a control equivalent turbulence input (CETI) model. In the 
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CETI modeling approach, flight data taken in turbulence is 

used to identify a model that generates control inputs that 

would reproduce the aircraft’s response to turbulence. The 

CETI approach was first used in the development of 

turbulence models for the UH60 helicopter (Ref. 1). In that 

work, a white noise driven mixer equivalent turbulence 

simulation model was used to produce realistic turbulence 

effects at low speed and hover conditions for the UH60 

helicopter. Since then, the CETI modeling methodology has 

been used and validated to accurately predict the turbulence 

response of a quadrotor, hexacopter, octocopter and tail sitter 

UAS (Refs. 2-5). Juhasz, et al. examined the effects of signal 

length, feedback noise, and model uncertainty on the 

extraction methodology and subsequently provides a set of 

guidelines to ensure accurate CETI model extraction (Ref. 2). 

In another work, Juhasz, et al. developed a CETI model for a 

tail-sitter UAS using flight data taken in various turbulence 

levels (Ref. 3).  Lopez, et al. identified CETI models for a 

quad-, hexa-, and octocopter and used them to physically 

simulate turbulence in flight to assess gust rejection 

performance (Ref. 4). Berrios, et al. similarly identified CETI 

models for a quadcopter to simulate turbulence in flight and 
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assess optimized control laws for gust rejection capabilities. 

In these works, the extracted turbulence models were 

successfully applied to flight control design to improve gust 

rejection performance. 

Following the developments of Ref. 1, a reconfigurable 

turbulence model for conventional helicopters was 

successfully developed using the CETI approach (Ref. 6). The 

model consisted of white noise driven filters based on Dryden 

spectral models of atmospheric turbulence. This model is 

scalable with wind speed and turbulence intensity. It is 

presumed that a similar approach can be adapted for 

multirotor UAS. Hence, this research effort is motivated by 

the development of a reconfigurable turbulence model for 

multirotor UAS based on a database of empirical models.  

The work presented in this paper builds off previous 

turbulence modeling efforts and presents CETI models for 

three different multirotor UAS. CETI models are extracted 

using flight test data collected at two wind condition levels. 

Consistent with Refs. 2-5, the developed CETI models are 

validated in simulation against flight data in turbulence. This 

work provides a better understanding of the CETI modeling 

method as well as the effects of wind intensity on CETI 

modeling. This paper contributes to the development of a 

reconfigurable turbulence model by providing validated CETI 

models for three different multirotor UAS at a moderate and 

low wind condition.  

The paper is arranged as follows. First, the flight test 

methodology is discussed, including a description of the three 

test vehicles. Next, the CETI extraction method and 

formulation is presented. Then, the identified CETI models 

are shown alongside validation results. Finally, a discussion 

of the results of the paper and conclusions is provided. 

FLIGHT TEST METHODOLOGY 

Test Vehicles Description 

Flight testing was performed for the collection of turbulence 

data for the Technology Development Directorate (TDD) 

quad-, hexa- and octocopter. The three different multirotor 

configurations were constructed with common parts with 

differences only in the number and location of arms and 

rotors. The work herein uses stock control systems from 

Arducopter for data collection. Vehicle mass and size 

properties can be found in Table 1. Images of the flight 

vehicles can be found in Figure 1. 

 

 

 

 

 

Table 1. Test Vehicle Properties 

Property Quadcopter Hexacopter Octocopter 

Rotor 

Diameter (in) 
18 18 18 

Hub-to-hub 

Distance (in) 
50 50 50 

Weight (lb) 13.4 15.7 18.1 

Ixx (lb-ft2) 7.7 11.2 14.7 

Iyy (lb-ft2) 7.8 11.3 14.9 

Izz  (lb-ft2) 14.7 21.7 28.6 

 

(a) Quadcopter 

 

(b) Hexacopter 

 

(c) Quadcopter 

Figure 1. Images of each multirotor vehicle 
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Wind Information 

In recent flight testing, wind speeds and turbulence levels 

were quantified by an ultrasonic anemometer, shown in Fig. 

2. The anemometer was capable of recording wind speeds and 

direction for the entire flight test duration. The flight-testing 

set-up can be found in Fig 3. Wind speeds were recorded 

along the x, y, and z axes at vehicle level. Wind direction and 

elevation were recorded as well. Sample anemometer 

information can be found in the flight data section. 

 

Figure 2. Anemometer 

 

Figure 3. Flight Testing Set-up 

Flight Data 

Flight data collection took place in June 2018 and December 

2020. On both days, all three multirotor vehicles were flown 

at a hover flight condition and turbulence data was collected 

in the longitudinal, lateral, pedal, and collective axis. Long 

(approximately 300 sec) time histories were collected to 

ensure that the aircraft response to turbulence and low 

frequency dynamics were adequately captured. Flight test 

procedures were consistent with the CETI extraction 

guidelines described in Ref. 3. A summary of the flight data 

can be found in Table 2. 

Table 2. Flight Data Summary 

Flight Date Vehicle Anemometer 

Information 

Total 

Flight 

Time 

(sec) 

June 2018 Quadcopter  

No 

363 

Hexacopter 609 

Octocopter 385 

December 

2020 

Quadcopter  

Yes 

276 

Hexacopter 290 

Octocopter 266 

In data from June 2018, the average wind speed was recorded 

at 10 MPH using local weather stations. In data from 

December 2020, average wind speed was recorded at 2 MPH 

using an on-site ultrasonic anemometer. Anemometer data 

from this flight data can be found in Table 3. For the 

remainder of the paper, the flight data collected in 2018 and 

2020 will be referred to as moderate and low wind data, 

respectively.  

Table 3. Anemometer Data, December 2020 

Anemometer 

(MPH) 
Quadcopter Hexacopter Octocopter 

Average U  1.71 2.35 1.81 

Average V  2.49 2.16 2.41 

Average W  0.25 0.24 0.27 

RMS U 1.85 2.42 1.99 

RMS V 2.55 2.36 2.54 

RMS W 0.41 0.35 0.43 

 

CETI METHOD AND FORMULATION 

Extraction Methodology  

The CETI approach identifies equivalent control inputs that 

excites the aircraft in a similar way as real turbulence. This 

concept is shown in block diagram form in Fig. 4, where the 

measured aircraft response (y) is driven by the sum of the 

commanded input (x) and turbulence input (n). H is the 

aircraft bare-airframe transfer function from control input u to 

output y. The turbulence input (n) is generated by passing 

white noise (w) through the CETI transfer function T. 

 

Figure 4. CETI Block Diagram 

In equation form, the measured aircraft response is given in 

the frequency domain as:  

Y(f) = H(f) [X(f) + N(f)] (1) 
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Solving for the turbulence input gives:  

N(f) =
1

H(f)
Y(f) − X(f) (2) 

From here, the equation is multiplied by its complex 

conjugate (Ref. 7):  

NN∗ =
1

HxyH∗
xy

YY∗ −
1

Hxy

YX∗ −
1

H∗
xy

Y∗X

+ XX∗ 

(3) 

This provides the auto- and cross-spectra form of an estimate 

of Gnn:  

Ĝnn =
1

|Hxy|
2 Gyy −

1

Hxy

Gxy −
1

H∗
xy

Gyx + Gxx (4) 

Finally, the equation can be simplified to the following form:  

Ĝnn =
1

|Hxy|
2 Gyy + Gxx − 2Re (

Gxy

Hxy

) (5) 

Note that the equation for Ĝnn developed here is different 

from that used in Ref. 2, as it accounts for the correlation of 

the aircraft control input u and output y due to the feedback. 

Bare-Airframe System Identification Models 

Bare-airframe models for the quad-, hexa- and octocopter 

have been previously identified in system identification  

efforts in Ref. 5. The block diagram used in system 

identification is shown in Fig. 5. The identified bare airframe 

Q had individual actuators as inputs in units of PWM while 

the CETI approach’s bare-airframe model H uses non-

dimensional mixer input signals. Therefore, an effective 

mixer K was identified to produce the effective bare-airframe 

H, a mixer input model, for use in the CETI extraction 

formula.  

 

Figure 5. Bare-Airframe System Identification  

CETI MODEL EXTRACTION USING 

FLIGHT DATA 

Identification Methodology  

The CETI method was used to identify turbulence models for 

the TDD quad-, hexa- and octocopter vehicles using  

CIFER® (Ref. 8). Turbulence models were identified using the 

low wind and moderate wind flight data separately. A first-

order transfer function was identified from the CETI data to 

form turbulence models for the longitudinal, lateral, pedal and 

collective axes. All identified CETI models for both wind 

conditions are shown in Table 4. Non-dimensional units were 

used throughout the CETI derivation to simplify future 

reconfiguration. These signals included the mixer inputs (+1/-

1) and the measured aircraft rates (rad/sec).  

The first-order transfer function model and the PSD data used  

Vehicle Wind Level Longitudinal CETI 

Model 

Lateral CETI 

Model 

Pedal CETI Model Collective CETI 

Model 

Quadcopter Moderate 0.0075

s + 0.17
 

0.011

s + 0.24
 

0.13

s + 3.4
 

0.015

s + 1.1
 

Low 0.0024

s + 0.087
 

0.0027

s + 0.17
 

0.039

s + 5.3
 

0.0014

s + 0.26
 

Hexacopter Moderate 0.0062

s + 0.062
 

0.012

s + 0.65
 

0.037

s + 0.98
 

0.0056

s + 0.59
 

Low 0.0026

s + 0.012
 

0.0045

s + 0.027
 

0.014

s + 0.95
 

0.0027

s + 0.51
 

Octocopter Moderate 0.012

s + 0.13
 

0.014

s + 0.24
 

0.053

s + 2.0
 

0.0096

s + 0.84
 

Low 0.0029

s + 0.032
 

0.0033

s + 0.049
 

0.016

s + 0.57
 

0.0024

s + 0.47
 

Table 4. Identified CETI Models 
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in the CETI identification are shown for the longitudinal axis 

in Fig. 6 for all test vehicles. The plotted lines are color 

coordinated to distinguish between the low wind (blue) and 

moderate wind (black) flight data sets. The solid lines 

represent the CETI PSD extracted using the CETI method 

(Eq. 5). The dashed lines represent the first-order transfer 

function model that was identified using CIFER®. Model fits 

were made at lower frequencies, less than 1 rad/sec, with a 

maximum model cost J = 65, which is within the adequate 

range for reliable model fits (Ref. 8). The frequency range 

used for model fitting is discussed and explained further in a 

later section. 

  

(a) Quadcopter 

 

(b) Hexacopter 

 

(c) Octocopter 

 

Figure 6. Longitudinal CETI PSD and Models 

Validation 

Time domain validation is conducted using an open-loop 

simulation in the collective axis, which is shown in block 

diagram form in Fig. 7. The collective axis is used here 

because it is the only stable axis in hover, which can be 

simulated open loop. The CETI transfer function T used in 

simulation was the first order transfer function model 

identified in CETI extraction. H is the aircraft effective bare-

airframe transfer function from control input u to output y. 

Additionally, measurement noise, m(t), is summed in at the 

output to account for the effects of output measurement noise 

in CETI extraction. For the collective axis, the simulated 

aircraft rate is vertical acceleration. 

 

Figure 7. Open-Loop Validation Block Diagram 

Time domain validation of the quadcopter’s collective axis 

CETI models is shown in Fig. 8 and Fig. 9 by comparing time 
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histories from flight data with aircraft in turbulence versus 

simulation with aircraft excited by the CETI model. For both 

time histories, the aircraft response is entirely due to 

turbulence and output measurement noise due to the absence 

of commanded inputs. Since the CETI identification process 

is unable to capture the high frequency dynamics of flight 

data, the low order form CETI model in simulation is unable 

to reproduce the high frequency content seen in flight data. 

Due to this, both time histories were filtered using a second 

order filter at 20 rad/sec, well above the range of 

identification. This filtering enables the comparison between 

actual flight data and the simulated data without high 

frequency content.  

Overall, both time domain validations show an excellent 

qualitative agreement with the flight data. Quantitatively, the 

root mean square (RMS) values for both validations are on the 

same order of magnitude. For the moderate wind CETI model 

verification, in Fig. 8, the RMS value for the simulated CETI 

response is 0.26 while the RMS value for the actual 

turbulence response is 0.30. Additionally, for the low wind 

CETI model verification, in Fig. 9, the RMS value for the 

simulated CETI response is 0.067 while the RMS value for 

the actual turbulence response is 0.071. The CETI model 

simulated response to turbulence has similar oscillations to 

the flight data. It is not expected for the flight data and 

simulation time histories to perfectly line up due to the 

random nature of turbulence, only that they have similar 

amplitudes of oscillation. 

. 

 

Figure 8. Moderate Wind CETI Model Verification 

 

Figure 9. Low Wind CETI Model Verification 

 

DISCUSSION 

Effects of Output Measurement Noise  

In CETI extraction, it is assumed that there is no output noise, 

hence there are no noise terms in Eq. 5. This is due to the fact 

that there are no independent measurements of the 

measurement noise in actual flight data. The time domain 

validation accounts for output measurement noise by 

summing in simulated measurement noise, m(t), as seen in 

Fig. 7. Following the block diagram depicting the open loop 

case, the CETI identification equation then becomes:  

Ĝnn =
1

|H|2
(Gyy − Gym − Gmy + Gmm)

+
1

H
(Gmx − Gyx)

+
1

H∗
(Gxm − Gxy) + Gxx 

(6) 

Since the validation is open loop and x(t)=0, the equation 

reduces to: 

Ĝnn =
1

|H|2
(Gyy + Gmm − 2Re(Gmy)) 

(7) 

Ignoring measurement noise, like in CETI extraction shown 

in Eq. 5, Eq. 7 simplifies to:  

Ĝnn =
1

|H|2
(Gyy) 

(8) 
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This demonstrates that when ignoring measurement noise, 

there will be a bias in the identified CETI PSD Ĝnn given by: 

Ĝnnbias
=

1

|H|2
(Gmm − 2Re(Gmy)) 

(9) 

A simulation study, using the open loop validation in the 

collective axis, was used to see the effects of output 

measurement noise on CETI extraction. This is achieved by 

using the identified CETI models in simulation with and 

without the addition of measurement noise and re-extracting 

a CETI model using the simulated data. CETI model 

extraction was performed with and without measurement 

noise in simulation to address the validity of the assumptions 

made in Eq. 5. The results from this case study are shown in 

Fig. 10.  

In Fig. 10, the dashed black line is the PSD extracted from 

flight data. The red line is the PSD extracted using Eq. 8 with 

a constant noise power of 0.03 in simulation. This amount was 

consistent with the high frequency gain of the output 

autospectra. The orange line is the PSD extracted when no 

output noise is added to the system. Finally, the blue line is 

the CETI transfer function model identified from flight data 

and used in simulation. 

In Fig. 10a, the PSD extracted in simulation assuming that 

there is no output measurement noise fails to track the CETI 

transfer function model but aligns with the PSD extracted 

from flight data after 1 rad/sec. This suggests that the reason 

the flight data PSD flattens out after 1 rad/sec is because of 

output measurement noise. The flattening effect this 

assumption has is less prominent in the moderate wind PSDs, 

in Fig. 10b. This is likely due to the greater aircraft excitation 

experienced at the moderate wind condition (greater CETI 

signal to measurement noise ratio).   

 

(a) Low Wind 

 

(b) Moderate Wind 

 

Figure 10. Output Measurement Noise Effects on CETI 

PSD 

 

Effects of Wind Intensity on CETI Models  

Consistently across all test vehicles and control axes, there is 

a significant difference in gain when comparing between 

CETI models extracted using the moderate wind data versus 

the low wind data. As an example, the extracted CETI models 

for the quadcopter are shown in Fig. 11. Additionally, all 

identified CETI models in the longitudinal axis are overlayed 

in Fig. 12. The CETI models extracted using the moderate 

wind data consistently have higher gain than models extracted 

from the low wind data. This suggests that the observed 

difference in gain is proportional to the difference in wind 

speeds. The same trend is not evident when comparing the 

break frequencies of the two different sets of extracted CETI 

models. When comparing between the different control axes, 

there are similar gain differences between the longitudinal 

and lateral models which is expected due to vehicle 

symmetry.   
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(a) Longitudinal CETI 

 

(b) Lateral CETI 

 

(c) Pedal CETI 

 

 

(d) Collective CETI 

 

Figure 11. Quadcopter CETI Models 

 

 

Figure 12. Longitudinal CETI Models 
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TOWARDS A RECONFIGURABLE CETI 

MODEL FOR MULTIROTOR UAS 

All extracted CETI models in this work shared a similar 

characteristic first order form at low frequencies, seen in Eq. 

10. The extracted CETI models from the moderate wind and 

low wind data set showed a correlation between wind 

intensity and model gain. This suggests that wind speed can 

potentially be used to scale CETI model gain, K. From the 

results presented here, there is not a clear relationship 

between wind intensity and model break frequency, a. 

Additional flight data is needed to expand the database before 

scale factors and reconfiguration can be considered. 

Gδt
(s) =  

K

s + a
 

(10) 

In future work, additional CETI models should be identified 

at different wind conditions. Considering the effects of output 

measurement noise, it is suggested that model fits be made at 

lower frequency ranges when flight data is collected at lower 

wind conditions. Flight data collected in more turbulent 

conditions can provide more information at higher 

frequencies since they are less susceptible to the effects of 

output measurement noise when compared against data 

collected in ambient conditions. An anemometer is 

recommended as well as it provides thorough wind 

information and helps quantify the effects of wind intensity. 

Once additional CETI models have been identified at new 

wind speeds, a database of all models and wind information 

can be used to determine scaling factors needed for CETI 

model reconfiguration. 

CONCLUSIONS 

The work herein presented and validated turbulence models 

for a quad-, hexa-, and octocopter UAS using the control 

equivalence turbulence input modeling method. Models were 

extracted at two different wind conditions: moderate wind and 

low wind speeds. The key conclusions from this paper are:  

1. The CETI modeling method has been shown and 

validated to be effective in producing realistic 

turbulence models from flight data.  

2. Thorough wind information is needed to identify 

scaling factors needed for the development of a 

reconfigurable CETI model. 

3. The extracted CETI model gain is dependent on 

wind speeds experienced during flight data 

collection. 

4. Output measurement noise can have a distorting 

effect on extracted CETI PSDs at higher frequencies.  

Flight data collected in more turbulent conditions is 

less susceptible to the distortion caused by output 

measurement noise when compared against flight 

data collected in more ambient conditions.  
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