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ABSTRACT 

Frequency-domain system identification was performed for the ADAPT™ Winged Compound Helicopter Scaled 
Demonstrator, a 10% scale version of the Piasecki X-49A, at four flight conditions spanning its flight envelope.  Since 

the aircraft has eight redundant control effectors – lateral cyclic, longitudinal cyclic, collective, Vectored Thrust 
Ducted Propeller (VTDP) RPM, rudder, differential flaperon, symmetric flaperon, and elevator – and exhibits a large 

amount of inter-axis coupling, the Joint Input-Output (JIO) Method was used for system identification in addition to 
the Direct Method. Based on the identified frequency responses, a hybrid model structure, which explicitly includes 
the coupled fuselage-rotor flapping dynamics and a first-order model for VTDP RPM lag, was used. State-space 

models were identified at each flight condition, and combined with trim data to form a full flight envelope s titched 
simulation model. A detailed analysis of the trends of the stitched model trim, stability and control derivatives, 
eigenvalues, and frequency responses was performed. 

 

NOTATION 1  

CR Cramér-Rao bound 
D Rotor diameter 

𝐺𝛿1𝛿1  Primary control autospectrum  

𝐺𝛿2𝛿2  Secondary control autospectrum  

I Insentivity [%] 

𝐽ave Average frequency response cost 

𝐽rms RMS fit error (time-domain cost) 
𝐿𝛽1𝑠 Lateral rotor flap stiffness [s -2] 

M Mixing matrix for control allocation 

𝑀𝛽1𝑐 Longitudinal rotor flap stiffness [s -2] 

N Dynamic (Froude) scale factor 
N Mixing matrix for virtual effectors definition 

p, q, r Angular rates (roll, pitch, yaw) 
r Vector of reference inputs 

s Laplace-domain variable 

TIC Theil inequality coefficient (time-domain cost) 
v Vector of virtual effectors 
y Vector of aircraft responses 

𝜹𝑨 Vector of individual actuators 
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𝛾𝛿1𝛿2
2  Cross-control coherence 

𝜂 VTDP RPM lag state 

𝜏f Rotor flap time constant [s] 
𝜔lag VTDP RPM lag break frequency 

𝜔n Natural frequency 
𝜁 Damping 
 

INTRODUCTION 2  

The Adaptive Digital Automated Pilotage Technology 
(ADAPT™) program, initiated by Piasecki Aircraft 
Corporation in 2014, has the goal of developing a flight 

control software that will achieve improvements in safety, 
survivability, performance, and affordability for Vertical 
Take-Off and Landing (VTOL) aircraft [1, 2]. ADAPT™ 

takes advantage of redundant control effectors, which are 
becoming increasingly common on modern VTOL platforms 

for applications such as Future Vertical Lift (FVL) and urban 
air mobility (UAM), by automatically allocating control to 
optimize performance during normal flight and re-allocating 

control in response to damage.  

Distribution Statement A: Approved for public release. Distribution 

is unlimited. 



 
2 

Previous work [2] involved development and piloted 
simulation of damage tolerant control laws using a simulated 
winged compound helicopter based on the Piasecki X-49A. 

The current effort, a follow-on collaboration between the U.S. 
Army Combat Capabilities Development Command Aviation 
& Missile Center (DEVCOM AvMC) and Piasecki, is focused 

on demonstrating ADAPT™ technology using a subscale 
flight-test vehicle based on the X-49A. The ADAPT™ Scaled 
Demonstrator program involves development of a stitched 

simulation model [3], control system, and damage tolerant 
control (DTC) for the full flight envelope. The work presented 

in this paper covers system identification at multiple flight 
conditions and stitched modeling of the Scaled Demonstrator, 
a first step in the larger effort. 

Notably, this paper provides a useful case study for system 
identification of a winged compound helicopter using the 
Joint Input-Output (JIO) Method [4, 5], a post-processing step 
applied to the frequency-domain Direct Method [6] to account 

for highly correlated redundant control effectors, at multiple 
flight conditions. It will also further understanding of the 
configuration’s flight dynamics  through development of a 

stitched model and examination of the trends of trim, stability 
and control derivatives, eigenvalues, and frequency responses 

with airspeed. 

The paper is organized as follows. First, a description of the 
Scaled Demonstrator flight vehicle is provided. Next, system 
identification methods and results are presented for two flight 

conditions and include the use of the JIO Method, state-space 
model structure selection, frequency-domain identification, 
and time-domain verification. Finally, a stitched model is 

generated using the identified point models and trim data. The 
stitched model trends are analyzed and implications for future 
work on DTC are discussed. 

FLIGHT VEHICLE DESCRIPTION 

The ADAPT™ Scaled Demonstrator is a 1:9.62 
(approximately 10%) scale version of the Piasecki X-49A 

winged compound helicopter that leverages the bare airframe 
of the Align T-Rex 760 commercial RC helicopter, which has 

a semi-rigid two-bladed main rotor (no stabilizer bar), and 
was modified to more closely match the X-49A winged 
compound configuration. Figure 1 shows the two aircraft. 

Modifications to the Align T-Rex 760 bare airframe include 
the addition of (1) carbon fiber wings with flaperons , (2) 
landing gear, and (3) a fully reconstructed tail. As shown in 
Figure 2, the reconstructed tail has elevons and a Vectored 

Thrust Ducted Propeller (VTDP), a primary feature of the X-
49A, which consists of an aerodynamic duct, 13-in-diameter 
propeller, retractable sector, and rudder at the duct outlet. In 

hover, the sector is fully deflected to direct airflow in the 
starboard direction to oppose the torque of the clockwise-

spinning main rotor. As airspeed increases, the sector is 
incrementally retracted to direct airflow along the aircraft’s 
longitudinal axis to provide forward thrust; anti-torque is 

provided by lift forces on the rudder. The rudder and sector 
are mechanically linked; both are controlled by the same 
servo via the rudder/sector fulcrum. Figure 3 shows select 

control positions scheduled with beep, a pilot control setting 
that is increased with airspeed.  

 

Figure 1. ADAPT™ Scaled Demonstrator (left) and X-
49A (right) [2]. 

 
Figure 2. Vectored Thrust Ducted Propeller component 

diagram with retracted sector (top view). 

 
Figure 3. VTDP RPM, sector, and symmetric flaperon 

versus beep setting. 
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A key difference of the Scaled Demonstrator compared with 
the full-scale X-49A is that the VTDP propeller is controlled 
by RPM instead of collective pitch. RPM is a common control 

mechanism at subscale (e.g. in commercial multirotors) due 
to its lower complexity. However, collective pitch becomes a 
more effective option at full scale due to increasing rotor 

inertia and associated challenges for RPM control with (1) 
control response lag (i.e. the time required to speed up and 
slow down the rotor) and (2) drive system torque and power 

limits [9]. 

The Scaled Demonstrator has a takeoff weight of 37.65 lb and 
uses a Pixhawk 4 IMU for flight control. It uses Align 
DS820M swashplate servos, MKS HV6130H flaperon and 

elevon servos, and a Hitec HSB-9380TH servo for the 
rudder/sector. 

In total, the Scaled Demonstrator has eight actuators, or bare-
airframe inputs (shown in Table 1): left, right, and aft 

swashplate actuators; VTDP RPM; rudder; left and right 
flaperons; and left and right elevons, which were only 

actuated symmetrically and are considered herein as a single 
elevator input.  

System identification guidelines for the Scaled Demonstrator 
were obtained by Froude scaling [7, 8] the full-scale 

guidelines given in [6]. The Froude scale factor N was 
determined as the ratio of the main rotor diameters of the 
Scaled Demonstrator (5.28 ft) and the X-49A (53.75 ft): 

𝑁 = 9.62 Equation 1 

Challenges for system identification, which had to be 
addressed in this study, as well as  flight control design, which 
will be addressed in future studies, for this configuration 
include: (1) scheduling control positions across all airspeeds, 

(2) highly coupled flight dynamics (particularly due to the 
VTDP), (3) reduced yaw authority during transition to 

forward flight as the rudder/sector rotates to align with the 
fuselage, and (4) decreasing control effectiveness of the 
aerosurfaces, and therefore control redundancy, with 

decreasing airspeed. These challenges also apply to the full-
scale X-49A.  

The following section discusses the point model identification 
methodology, and how some of the system identification 

challenges were addressed. 

POINT MODEL IDENTIFICATION 

METHODOLOGY 

Overview of the JIO Method 

Determining the aircraft response to each actuator (y/𝜹𝑨) is 

important for determining control allocation for future work 
on damage tolerant control (DTC). Frequency-domain system 

identification typically proceeds by exciting the system with 
piloted or automated inputs (e.g. frequency sweeps), 

measuring the individual actuator and aircraft responses, and 
then using the measured time history data to identify bare-
airframe frequency responses using the Direct Method [6]. 

The Direct Method can be used when the average cross-

control coherence between the primary input 𝛿1 and each 
secondary input 𝛿2 is [6]: 

                     (𝛾𝛿1𝛿2
2 )

ave
< 0.5 Equation 2 

If the above condition is not met, the Direct Method may still 
be used if all secondary control autospectra are small 
compared to the primary control autospectrum [6]: 

          (𝐺𝛿2𝛿2)ave
≤ (𝐺𝛿1𝛿1)ave

−20 dB Equation 3 

If neither of the conditions in Equations 2 and 3 are met, then 
the JIO Method must be used [4].  

For some responses, the Scaled Demonstrator requires using 
the Joint-Input Output (JIO) Method [4, 5] due to high cross-

control correlations resulting from closed-loop system 
identification, highly coupled flight dynamics, and highly 
correlated redundant control effectors. The JIO Method 

requires measurement of the external excitations, referred to 
as the reference inputs r, in additional to the individual 

actuator responses 𝜹𝑨 and aircraft responses y.  Using the JIO 

Method, the matrix of bare-airframe frequency responses to 
the individual actuator inputs (y/ 𝜹𝑨) can be determined from 

the matrix of bare-airframe frequency responses to the 
reference inputs (y/r) and individual actuator frequency 

responses to the reference inputs (𝜹𝑨/r) as follows [4]: 

[ 𝒚
 𝜹𝑨,
] = [

𝒚

𝒓
] [ 𝜹𝑨

𝒓
]
−𝟏

  Equation 4 

For the single-input single-output case, the JIO Method can 
be thought of as a “chain-rule” type of expansion. The JIO 

Method uses two intermediate Direct Method calculations 
(one for y/r and another for 𝜹𝑨/r) and a matrix multiplication, 

and therefore can be thought of as a post-processing extension 
to the Direct Method.  

It is advantageous to define reference inputs r that will excite 

symmetric and differential groups of actuators via a mixing 
matrix M (as shown in Figure 4) to concentrate the vehicle 

response to a primary axis, which will result in higher signal-
to-noise ratio and coherence during identification [5]. 

Virtual effectors v can be defined by grouping, or ganging, the 

individual actuators 𝜹𝑨 via a mixing matrix 𝑵 (as shown in 

Figure 4), which is typically set to 𝑵 = 𝑴−𝟏 [5]. The virtual 
effectors capture the responses of the groups of actuators to 
the corresponding reference inputs (v/r), which can in turn be 

used to obtain the aircraft responses to the groups of actuators 
(y/v) via the JIO Method. The equivalent JIO Method 

equation using virtual effectors v instead of individual 

actuators 𝜹𝑨 is: 

[𝒚
𝒗
] = [

𝒚

𝒓
] [𝒗
𝒓
]
−𝟏

  Equation 5 

Figure 4 shows a notional block diagram with the key signals 
used for identification using the JIO Method. The block 

diagram elements are as follows: 𝑴 is a mixing matrix used 
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to allocate the reference signals to the individual actuators, 𝑵 
is a mixing matrix that defines the relationship between the 

virtual effectors and individual actuators, 𝑪 represents the 

control system, and 𝑯 represents the sensors.  

 

Figure 4. Block diagram showing the locations of the 
reference input frequency sweeps and other key signals 

required for the JIO Method. 

Table 1 defines the reference inputs, virtual effectors, and 
individual actuators used in this study and shown in Figure 4. 
Although the aircraft response to each individual actuator is 

desired, reference inputs and virtual effectors are used in the 
analysis to concentrate vehicle excitations to a particular axis. 
Note that although the name “VTDP RPM” is used for 

reference input r5, virtual effector v4, and actuator input 𝛿rpm, 

the signals are actually in units of PWM and not RPM. The 
term “RPM” is used here because these signals are treated as 

a surrogate for the VTDP speed. 

Table 1. Key Signals for System Identification 

Reference Inputs 
(r) 

Virtual Effectors 
(v) 

Individual 

Actuators (𝛿𝐴) 

Pilot Lateral 

Cyclic (r1) 

Lateral Cyclic 

(v1) 

Left Swashplate 

(𝛿spl) 

Pilot Lon. Cyclic 
(r2)  

Longitudinal 
Cyclic (v2) 

Right Swash. 

(𝛿spr) 

Pilot Collective 
(r3)  

Collective (v3) 
Aft Swashplate 

(𝛿spa) 

Pilot Pedal (r4) VTDP RPM (v4) 
VTDP RPM 

(𝛿rpm) 

VTDP RPM (r5) Rudder (v5) Rudder (𝛿r) 

Differential 

Flaperon (r6) 

Differential 

Flaperon (v6) 

Left Flaperon 

(𝛿fl) 

Symmetric 
Flaperon (r7)  

Symmetric 
Flaperon (v7) 

Right Flaperon 

(𝛿fr) 

Elevator (r8)  Elevator (v8) Elevator (𝛿e) 

Description of Reference Inputs 

As described in [5], the external reference input frequency 

sweeps can be injected (1) into the tracking command (i.e. 
pilot stick) path (marked 1 in Figure 4) or (2) directly into the 

actuators via a mixing matrix 𝑴 (marked 2 in Figure 4), which 
is designed to excite groups of actuators and concentrate the 

aircraft response to one primary axis. In this study, the mixing 
matrix 𝑴 is given by: 

[
 
 
 
 
 
 
 
 
 
 
 
𝛿spl

𝛿spr

𝛿spa

𝛿rpm

𝛿r

𝛿fl

𝛿fr

𝛿e ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
−0.866 −0.5 1

0.866 −0.5 1

0 1 1

𝑎 1

𝑏

1 1

−1 1

1 ]
 
 
 
 
 
 
 
 
 
 
 

⏟                            

M
[
 
 
 
 
 
 
 
 
 
 
 
𝛿lat

𝛿lon

𝛿col

𝛿ped

𝑟5

𝑟6

𝑟7

𝑟8 ]
 
 
 
 
 
 
 
 
 
 
 

 

Equation 6 

In the mixing matrix 𝑴 above, constants a and b represent the 
changes in the pilot pedal (yaw) control mode with airspeed. 

Figure 5 below shows how a and b vary with airspeed. At 
hover, a = 1 and b = 0 such that pilot pedal (r4) excites VTDP 
RPM (𝛿rpm). At 13 kt, r4 excitation is split between 𝛿rpm and 

rudder 𝛿r. At 26 and 39 kt, a = 0 and b = 1 such that pilot 
pedal (r4) excites 𝛿r only. 

 

Figure 5. The pilot yaw control mode is scheduled with 

beep such that pedal primarily controls VTDP RPM at 
low speed and rudder at high speed. 

The tracking command sweeps (r1-r4 in Figure 4) are passed 
through control system channels 𝛿lat, 𝛿lon, 𝛿col, 𝛿ped and 

since the control system for this aircraft only operates through 
the swashplate servos, VTDP RPM (for low-speed yaw 
control), and rudder (for high-speed yaw control), only those 

effectors can be excited through this method. Therefore, 
tracking command sweeps were supplemented by direct 
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actuator sweeps (r5-r8 in Figure 4) to excite the redundant 
effectors (flaperons and elevator) that were not accessible via 
the tracking command path. However, a potential 

disadvantage of closed-loop direct actuator sweeps is that 
they appear as a disturbance to the control system, which 
suppresses the aircraft responses [5]. This may result in 

reduced aircraft response and therefore lower signal-to-noise 
ratio and coherence, which was observed in this study, 
particularly at low frequency (where the control system is 

active).  

Note that, at hover and 13 kt, reference inputs r5-r8 were not 
used since the frequency sweeps of the aerosurfaces did not 
excite sufficient aircraft response for system identification. At 

26 and 39 kt, since a = 0, the r5 reference input must be used 
to excite the VTDP RPM actuator directly. 

Description of Virtual Effectors 

As previously described, the measurements of the individual 

actuators 𝜹𝑨 were grouped into virtual effectors  𝒗 via a 

mixing matrix 𝑵, which provides an intuitive understanding 
of the effect the actuators will have on a primary axis of 
aircraft response [5]. In this study, the virtual effectors were 

defined relative to the individual actuators as 𝒗 = 𝑵𝜹𝑨 where 
mixing matrix 𝑵 is based on the inverse of 𝑴, and is given 
by: 

[
 
 
 
 
 
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8 ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
−0.577 0.577 1

−0.333 −0.333 0.667

0.333 0.333 0.333

1

1

0.5 −0.5

0.5 0.5

1 ]
 
 
 
 
 
 
 
 
 
 
 

⏟                                  

N
[
 
 
 
 
 
 
 
 
 
 
 
𝛿spl

𝛿spr

𝛿spa

𝛿rpm

𝛿r

𝛿fl

𝛿fr

𝛿e ]
 
 
 
 
 
 
 
 
 
 
 

 

Equation 7 

Virtual effectors v4 and v5 are set equal to 𝛿rpm and 𝛿r such 

that mixing matrix 𝑵 is constant for all flight conditions. 

FLIGHT TEST OVERVIEW 

As shown in Table 2, flight testing was performed at hover, 
13, 26, and 39 kt and included reference input sweeps to 
identify frequency responses, doublets for time-domain 

verification, and static stability tests to improve the accuracy 

of low-frequency speed derivatives such as 𝑀𝑢 at each flight 
condition. The 13 kt increment was selected by Froude 
scaling the guideline in [6], which states that full-scale point 

models should be identified at a spacing of 40 kt to cover the 
flight envelope. Each frequency sweep was automated and 
performed three times to ensure sufficient data were obtained 

for system identification. Piloted doublet maneuvers were 
performed twice (once in each direction) to verify the models 
in the time domain. 

Table 3 summarizes frequency sweep settings used during 
flight testing. The frequency sweeps were automated using 
the function in [6] over a prescribed range of ω = 0.6-50 rad/s 

to excite the aircraft dynamics, which occur at higher 
frequency than at full scale. Since frequency Froude scales as 

1/√𝑁, this range corresponds to 0.2-16 rad/s at full scale, 

which fully covers the  typical full-scale range of 0.3-12 rad/s 
given in [6]. Five seconds of trim were collected at the 

beginning and end of each frequency sweep. 

 

Table 2. System Identification Flight Tests  

Maneuver Flight Conditions 

Pilot Lat Freq. Sweep (3) All 

Pilot Lon Freq. Sweep (3) All 

Pilot Col Freq. Sweep (3) All 

Pilot Ped Freq. Sweep (3) All 

VTDP RPM Freq. Sweep (3) 26, 39 kt 

Diff Flap Freq. Sweep (3) 26, 39 kt 

Symm Flap Freq. Sweep (3) 26, 39 kt 

Elevator Freq. Sweep (3) 26, 39 kt 

Pilot Lat Doublet (2*) All 

Pilot Lon Doublet (2*) All 

Pilot Col Doublet (2*) All 

Pilot Ped Doublet (2*) All 

Longitudinal Static Stability (1) All 

Lateral Static Stability (1) Hover only 

Steady Heading Sideslip (1) Forward flight only 

*In both directions (e.g. left/right, right/left) 
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Table 3. Frequency Sweep Settings  

Frequency Sweep Setting Value 

Minimum frequency 𝜔min [rad/s] 0.6 

Maximum frequency 𝜔max [rad/s] 50.0 

Sweep length 𝑇rec [sec] 50.0 

Start and end trim time 𝑇trim [sec] 5.0 

Fade-in time 𝑇f,in [sec] 7.0 

Fade-out time 𝑇f,out [sec] 2.0 

Low-frequency dwell time 𝑇park [sec] 10.0 

Frequency sweep amplitudes were selected to produce 
sufficient aircraft responses for system identification. Roll, 
pitch, and yaw rates of ±25 deg/s and heave accelerations of 
±3 m/s2 (±8 deg/s and ±3 m/s2 full scale, respectively) were 

found to be sufficient for system identification in hover and 
are consistent with the full-scale guidelines [6]. In addition to 
flight testing in calm weather (no wind), these response 

amplitudes help ensure sufficient signal-to-noise ratios and 
coherences to identify frequency responses. Figure 6 shows 

the key signals during a lateral cyclic (r1) reference input 
frequency sweep in hover as an example. 

 
Figure 6. Frequency sweep of the r1 reference input in 

hover. 

POINT MODEL IDENTIFICATION 

RESULTS 

This section presents the model structure used for system 

identification and the identification results at hover and 26 kt. 
It will cover special considerations for system identification 

at each flight condition, frequency-domain identification 
results, and time-domain verification results.  

Model Structure 

Based on the identified frequency responses, a hybrid model 
structure was selected to extend the six-degree-of-freedom 
(6DOF) model and explicitly include the coupled fuselage-

rotor flapping dynamics [6]. Previous work [8, 10, 11] used a 
first-order actuator model to represent the lag associated with 

an electric motor. In this work, a first-order actuator model 
with break frequency 𝜔lag was similarly added to the model 

structure to represent the lag associated with the VTDP RPM 

v4 control inputs. The equations of motion as implemented in 
CIFER® are given by: 

�̇� = 𝑋𝑢𝑢 + 𝑋𝑤𝑤 + (𝑋𝑞 −𝑊0)𝑞 + (𝑋𝑟 +𝑉0)𝑟

− (𝑔𝑐𝑜𝑠Θ0)𝜃 + 𝑋𝛽1𝑐𝛽1𝑐 + 𝑋𝜂 𝜂 + 𝑋𝑣3𝑣3
+ 𝑋𝑣7𝑣7 + 𝑋𝑣8𝑣8  

𝑣̇ = 𝑌𝑢𝑢 + 𝑌𝑣𝑣 + (𝑌𝑝+𝑊0 )𝑝 + (𝑌𝑟− 𝑈0)𝑟+ (𝑔𝑐𝑜𝑠𝛩0)𝜙

+ 𝑌𝛽1𝑠𝛽1𝑠 + 𝑌𝜂𝜂 + 𝑌𝑣5𝑣5 + 𝑌𝑣6𝑣6  

�̇� = 𝑍𝑤𝑤 − 𝑉0𝑝 + (𝑍𝑞+ 𝑈0)𝑞 − (𝑔𝑠𝑖𝑛𝛩0 )𝜃+ 𝑍𝑣2𝑣2
+ 𝑍𝑣3𝑣3 + 𝑍𝑣7𝑣7 + 𝑍𝑣8𝑣8  

�̇� = 𝐿𝑢𝑢 +𝐿𝑣𝑣 + 𝐿𝛽1𝑠𝛽1𝑠+ 𝐿𝑣3𝑣3 + 𝐿𝑣5𝑣5 + 𝐿𝑣6𝑣6  

𝑞̇ = 𝑀𝑢𝑢 + 𝑀𝑣 𝑣 +𝑀𝛽1𝑐𝛽1𝑐 + 𝑀𝑣3𝑣3 + 𝑀𝑣7𝑣7 + 𝑀𝑣8𝑣8  

�̇� = 𝑁𝑢𝑢 + 𝑁𝑤𝑤 +𝑁𝑟 𝑟 + 𝑁𝜂𝜂 + 𝑁𝑣3𝑣3 + 𝑁𝑣5𝑣5 + 𝑁𝑣6𝑣6  

�̇� = 𝑝  

�̇� = 𝑞  

𝜏f𝛽1𝑐̇ = 𝜏f𝑞 − 𝛽1𝑐 + 𝑀𝑓𝛽1𝑠𝛽1𝑠+ 𝑀𝑓𝑣1𝑣1 + 𝑀𝑓𝑣2𝑣2  

𝜏f𝛽1𝑠̇ = 𝜏f𝑝 − 𝛽1𝑠+ 𝐿𝑓𝛽1𝑐𝛽1𝑐 + 𝐿𝑓𝑣1𝑣1 + 𝐿𝑓𝑣2𝑣2  

𝜂̇ = −𝜔lag𝜂 + 𝜔lag𝑣4  

Equation 8 

Input time delay terms are also included in the identified 
model, but are omitted from Equation 8 for simplicity. 

For system identification, the trim terms were determined as 

follows: 𝑈0 ≈ 𝑉𝑇 is approximated from the known flight 

condition (0, 13, 26, 39 kt), 𝛩0 is measured, Φ0= 0, 𝑉0 =0, 
and 𝑊0 = 𝑉𝑇𝑠𝑖𝑛𝛩0 (enforcing level flight). The body-axis 
accelerations are reconstructed from accelerometer 

measurements for use in the model identification: 
 

�̇� = 𝑎𝑥−𝑊0𝑞 +𝑉0𝑟 − (𝑔𝑐𝑜𝑠𝛩0)𝜃 
�̇� = 𝑎𝑦+𝑊0𝑝 −𝑈0𝑟 + (𝑔𝑐𝑜𝑠𝛩0)𝜙 

�̇� = 𝑎𝑧−𝑉0𝑝 +𝑈0𝑞 − (𝑔𝑠𝑖𝑛𝛩0)𝜃 

Equation 9 

The aircraft responses have units of m/s 2, rad/s, and rad and 

the virtual effectors have units of PWM. Model parameters 
(stability and control derivatives in Equation 8) were 
identified in CIFER® to minimize the cost of the mismatch 

between the model and flight-data frequency responses.  
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Notably, control derivatives associated with the aerosurfaces 
– rudder (v5), differential flaperon (v6), symmetric flaperon 
(v7), and elevator (v8) – were dropped from the model 

structure at hover and 13 kt since frequency sweeps of the 
aerosurfaces did not excite sufficient aircraft response (and 
associated signal-to-noise ratio) for system identification. The 

aerosurface control derivatives are included in the model 
structure at 26 and 39 kt where aerosurface lift forces are 
sufficiently effective to identify responses. 

Note that the aircraft response to each individual actuator 
(y/𝜹𝑨) can ultimately be obtained by converting the B matrix 

of the identified state-space model, which is in terms of virtual 

effectors, to being in terms of the individual actuators. This is 
accomplished by multiplying the B matrix by the mixing 

matrix N: 

𝑩𝜹𝑨 = 𝑩𝒗𝑵      Equation 10 

Frequency-Domain System Identification and Time-
Domain Verification at Hover 

As previously discussed, identification using the JIO Method 
is required when virtual effectors exhibit high cross-control 
correlations. An example of this was the high cross-control 

correlation between the longitudinal cyclic v2 and the lateral 
cyclic v1 during the pitch r2 sweeps at hover as shown in 

Figure 7. The high cross-control correlation for this virtual 
effector is due to high pitch-roll coupling; the resulting roll 
response to pitch inputs is fed back to lateral cyclic v1 through 

the control system during closed-loop system identification. 
The JIO Method is required here since the average cross-
control correlation is greater than 0.5 and the secondary 

control autospectrum (𝐺𝑣1𝑣1) is within 20 dB of the primary 

control autospectrum (𝐺𝑣2𝑣2). In this case, however, collective 

v3 and VTDP RPM v4 had low coherences, and could be 
ignored in the JIO formulation. Therefore, a JIO case was set 

up using only lateral cyclic v1 and longitudinal cyclic v2 
(labeled Case A in Table 4).  Similarly, a second JIO case was 

setup (Case B) for collective v3 and VTDP RPM v4, which 
were highly correlated during the pilot collective r3 and pilot 
pedal r4 sweeps. The selection of JIO Case B or Direct 

Method for the v3 and v4 frequency responses (as listed in 
Table 5), will be discussed further in a later section. 

Table 4 lists the frequency response generation methods 
(Direct and JIO Method cases) used for system identification 

at hover. Table 5 lists the method used for each frequency 
response. 

 

 

 

 

 

 

 

Table 4. Freq. Response Generation Methods at Hover 

Method Sweep Type 
Identified Effector 
Responses 

Direct 

Method 

Ref. input (r) 
corresponding to 

effector (v) only 

Virtual effector (v) 

of interest only 

JIO Case A  
Pilot Lat Cyclic (r1) 
Pilot Lon Cyclic (r2) 

Lat Cyclic (v1) 
Lon Cyclic (v2) 

JIO Case B  Pilot Collective (r3) 
Pilot Pedal (r4) 

Collective (v3) 
VTDP RPM (v4) 

 
 

 

 

Figure 7. The longitudinal cyclic virtual effector (v2) has 

high cross-control correlation with the lateral cyclic 
virtual effector (v1). 
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Table 5. Method Used for Each Freq. Response at Hover 

Response Method 

�̇�/v1 JIO Case A 

p/v1 JIO Case A 

q/v1 JIO Case A 

ay/v1 JIO Case A 

�̇�/v2 JIO Case A 

p/v2 JIO Case A 

q/v2 JIO Case A 

ax/v2 JIO Case A 

�̇�/v3 Direct Method 

r/v3 JIO Case B 

az/v3 Direct Method 

�̇�/v4 Direct Method 

�̇�/v4 Direct Method 

r/v4 Direct Method 

ax/v4 Direct Method 

ay/v4 Direct Method 

As is common for single main rotor helicopters, in this study 
it was difficult to achieve satisfactory coherence at low 

frequency due to low signal-to-noise ratio and high cross-
control correlations at low frequency [6]. Although there was 

sufficient data to identify 𝑋𝑢 with good precision (as shown 

later in Table 7), the speed-stability derivative 𝑀𝑢 had a large 
insensitivity value. Therefore, 𝑀𝑢 was calculated and fixed 
during state-space model identification using an alternative 

approach [6]. First, a preliminary full-order state-space model 
was obtained from system identification at hover. Next, the 
bare-airframe model was reduced to the rigid-body six-

degree-of-freedom (6DOF) quasi-steady dynamics by 

eliminating the higher-order flapping states 𝛽1𝑐, 𝛽1𝑠. The 
6DOF form of the pitch equation of motion is given by: 

�̇� = 𝑀𝑢,eff𝑢+𝑀𝑣,eff𝑣+𝑀𝑣1,eff𝑣1
+𝑀𝑣2,eff𝑣2 

Equation 11 

In trimmed hover flight, pitch acceleration �̇� and body-axis 
velocity v are zero. Solving gives an equation for 𝑀𝑢  

𝑀𝑢 = −[𝑀𝑣1,eff
∆𝑣1
∆𝑢

+𝑀𝑣2,eff
∆𝑣2
∆𝑢
] Equation 12 

in terms of trim gradients, which were obtained from static 
stability data, and known 6DOF derivatives. An analogous 

approach was applied during system identification at the other 
flight conditions. 

The resulting hover model has an average frequency-domain 

cost of 𝐽ave = 52, which meets the guideline of 𝐽ave < 100 
given in [6] and indicates very good agreement between the 
model and flight data. 

Figure 8 shows on-axis frequency responses identified for the 

Scaled Demonstrator at hover. The on-axis p/v1 response 
exhibits a coupled lateral fuselage-rotor flapping mode at high 
frequency that is well captured by the hybrid model structure. 

The equations below provide the SISO approximation of the 

mode natural frequency and damping from the identified 
parameters, which provide physical intuition [6]: 

𝜔n ≈ √−𝐿𝛽1𝑠 Equation 13 

𝜁 ≈
1

2𝜔𝑛𝜏f
 Equation 14 

Therefore, the identified values 𝐿𝛽1𝑠 = -785.236 s -2 and 𝜏𝑓 = 

0.039 s (shown later in Table 7) are primary contributors in 

the resulting natural frequency and damping of 𝜔n = 36.1 
rad/s and 𝜁 = 0.49 obtained from the MIMO system 
eigenvalues. 

The longitudinal coupled fuselage-rotor flapping mode has an 

identified longitudinal flap stiffness 𝑀𝛽1𝑐 = -104.638 s -2 

(shown later in Table 7). The natural frequency and damping 

obtained from the MIMO system eigenvalues are 𝜔n = 8.1 

rad/s and 𝜁 = 0.99. The lower frequency and higher damping 
is evident in the on-axis q/v2 response of Figure 8, which rolls 
off at lower frequency than the corresponding lateral flapping 
mode. 

The terms 𝐿𝛽1𝑠 and 𝑀𝛽1𝑐 represent the rotor flap stiffnesses. 

The stiffnesses are relative to the roll and pitch inertias, 
respectively, thus the ratio of the roll to pitch rotor flap 
stiffness of 7.5 represents the ratio of the pitch to roll moment 

of inertia [6]. That is, the magnitude of 𝐿𝛽1𝑠 is much larger 

than that of 𝑀𝛽1𝑐 since the aircraft’s roll inertia is much 

smaller than its pitch inertia (both of which are typical). 
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Figure 8. On-axis frequency responses identified at 
hover. 

As shown in Figure 9, the off-axis p/v2 response has a 
relatively large magnitude (-51 dB at 10 rad/s) compared to 
the on-axis q/v2 response (-49 dB at 10 rad/s), which indicates 

significant pitch-roll coupling. The off-axis q/v1 response is 
also present, but has a smaller magnitude (-56 dB at 10 rad/s) 

compared to the on-axis p/v1 response (-39 dB at 10 rad/s). 
This indicates that roll-pitch coupling is also present, but to a 
smaller degree than pitch-roll coupling, which is also typical 

at full scale [6]. Discussion with the Piasecki test pilot and 
flight-test team confirmed these observations qualitatively 
during flight testing. It was noted that the highly coupled 

pitch-roll and roll-pitch dynamics may be due to the design of 
the swashplate phase offset, which could be optimized to 
reduce this cross-coupling. Additionally, the high rotor 

stiffness described by flap stiffness terms 𝐿𝛽1𝑠 and 𝑀𝛽1𝑐 is also 

a primary factor contributing to pitch-roll and roll-pitch 
coupling [6]. In Equation 8, the rotor flap control coupling 

terms 𝐿𝑓𝑣2 and 𝑀𝑓𝑣1 are inter-axis coupling terms due to the 

control inputs; the rotor flap response coupling terms 𝐿𝑓𝛽1𝑐 
and 𝑀𝑓𝛽1𝑠 are inter-axis coupling terms due to the state 

responses. These terms capture the coupled dynamics: 𝐿𝑓𝑣2 
and 𝐿𝑓𝛽1𝑐 for pitch-roll coupling and 𝑀𝑓𝑣1 and 𝑀𝑓𝛽1𝑠 for roll-

pitch coupling. The cross-coupled rotor flap responses are 
transmitted to the fuselage to produce pitch and roll moments 

via the large rotor flap stiffness terms 𝐿𝛽1𝑠 and 𝑀𝛽1𝑐. 

 

 

 

Figure 9. Off-axis  q/v1 and p/v2 responses at hover. 

Figure 10 demonstrates the importance of the first-order 
VTDP RPM lag model in matching the high-frequency roll-
off in the r/v4 response exhibited by the flight data. The figure 

overlays the final state-space model (green line), which 
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includes a model for VTDP RPM lag, compared with a 
preliminary model (red line) that does not. As given in 
Equation 8, the VTDP RPM lag model is first-order and 

represents the lag associated with speeding up and slowing 
down the VTDP propeller. The identified parameter 𝜔lag = 

9.7 rad/s is the motor lag break frequency, which effectively 

sets the bandwidth of the aircraft response to the VTDP RPM 
virtual effector and introduces lag to the system above this 
frequency. 

 

 

 
Figure 10. Addition of a first-order VTDP RPM lag 

model improves the match with the high-frequency roll-
off exhibited by the flight data. 

Table 6 shows costs associated with each frequency response. 

Overall, on-axis frequency response mismatch costs, as well 
as the average mismatch cost, are low indicating a good model 
accuracy. Table 7 shows the identified parameters and the 

associated Cramér-Rao bounds (CR) and insensitivities (I) 
[6]. All identified parameters are known to good accuracy and 
not correlated with any other parameters as indicated by their 

low insensitivity (I < 10%) and Cramér-Rao bound (CR < 
20%) values.  

Figure 11 shows time-domain verification results for a piloted 
lateral doublet at hover. For a full-scale aircraft, the time-

domain cost guidelines for an acceptable model are RMS fit 

error 𝐽rms < 2.0 and normalized Theil inequality coefficient 
(TIC) < 0.3 [6]. In previous work [12], the RMS fit error 

guideline was Froude scaled by √𝑁 for subscale aircraft. 

Examination of scale factors corresponding to each aircraft 
response indicates that this scale factor is primarily attributed 

to the angular rates, which scale as √𝑁, whereas accelerations 

and attitudes scale directly (i.e. have a scale factor of 1) [7]. 
Thus, the Froude-scaled RMS fit error guideline for the 

Scaled Demonstrator is 𝐽rms,Fr < 6.2. As shown in Table 8, the 

costs meet the 𝐽rms,Fr and TIC guidelines, indicating good 

agreement between the model and flight data. 

Table 6. Frequency Response Costs at Hover 

Response Cost Freq. [rad/s] 

�̇�/v1 16.8 2.0-30 

p/v1 20.0 2.0-42 

q/v1 80.0 2.0-25 

ay/v1 19.5 2.0-30 

�̇�/v2 120.0 2.0-40 

p/v2 142.7 2.0-40 

q/v2 39.2 2.0-40 

ax/v2 134.3 2.0-40 

�̇�/v3 9.7 0.6-10 

r/v3 29.2 1.0-30 

az/v3 11.7 0.6-15 

�̇�/v4 20.8 2.0-25 

�̇�/v4 50.5 2.0-20 

r/v4 72.9 0.6-20 

ax/v4 46.1 0.6-20 

ay/v4 20.0 1.2-20 

𝐽ave 52.1 - 

 

Table 7. Parameters Identified at Hover 

Parameter Value CR (%) I (%) 

𝜏f 0.039194 6.6 0.9 

𝑋𝑢 -0.35055 10.2 4.8 

𝑋𝑟 0b - - 

𝑋𝛽1𝑐 15.3552 6.3 0.6 

𝑋𝜂 0.0038095 3.7 1.4 

𝑌𝑣 -0.16244c - - 

𝑌𝑝 0.26005 14.7 6.3 

𝑌𝑟 0.22462 14.8 5.9 

𝑌𝛽1𝑠 −𝑋𝛽1𝑐
a - - 

𝑌𝜂 -0.0037048 4.4 1.5 

𝑍𝑤 -0.21254 22.7 10.9 

𝐿𝑢 0b - - 

𝐿𝑣 -3.3457 16.4 5.7 

𝐿𝛽1𝑠 -785.1572 7.8 1.5 

𝑀𝑢 0.51103c - - 

𝑀𝑣 0.22179 22.7 8.8 

𝑀𝛽1𝑐 -104.569 6.4 0.6 

𝑁𝑤 0.49168 14.5 6.4 

𝑁𝑟 -1.2677 12.4 4.6 
𝑁𝜂 0.018457 5.4 2.0 

𝑀𝑓𝛽1𝑠 -0.89057 10.0 3.0 

𝐿𝑓𝛽1𝑐 0.65726 6.4 1.3 

𝜔lag 9.684 7.3 1.9 

𝑍𝑣3 -0.08505 2.7 1.3 

𝑁𝑣3 -0.0079331 12 5.8 

𝑀𝑓𝑣1 0.00016509 9.5 2.7 

𝑀𝑓𝑣2 0.00037684 7.1 1.0 

𝐿𝑓𝑣1 0.00033729 7.0 1.5 

𝐿𝑓𝑣2 -0.00014599 8.8 2.0 

𝜏𝑣1 0.038648 8.0 2.5 

𝜏𝑣2 0.033918 7.2 2.3 
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Parameter Value CR (%) I (%) 

𝜏𝑣3 0.056975 8.8 4.1 

𝜏𝑣4 0.021695 16.5 5.8 
a Constrained parameter 
b Eliminated parameter from model structure  
c Fixed parameter in model  
 

 
 

 

Figure 11. Time-domain verification results for the 
Scaled Demonstrator at hover. 

 

 

 

 

Table 8. Time-Domain Costs at Hover 

Doublet Maneuver 𝐽rms TIC 

Pilot Lat Cyclic (r1) 3.60 0.24 

Pilot Lon Cyclic (r2) 3.40 0.25 

Pilot Collective (r3) 2.78 0.27 

Pilot Pedal (r4) 3.22 0.22 

 

Frequency-Domain System Identification and Time-
Domain Verification at 26 kt 

The 26 kt flight condition is the first condition at which the 
aerosurfaces (rudder, differential flaperon, symmetric 
flaperon, and elevator) become sufficiently effective for 

identification, provide control redundancy, and therefore are 
included in the model structure. As with hover, the JIO 

Method was required at 26 kt for virtual effectors that had 
high cross-control correlations. As shown in Figure 12, the 
elevator virtual effector v8 had high cross-control correlations 

with the longitudinal cyclic v2 and lateral cyclic v1 virtual 
effectors. The average cross-control correlations are greater 

than 0.5 and the secondary control autospectra (𝐺𝑣2𝑣2, 𝐺𝑣1𝑣1) 

were within (or close to being within) 20 dB of the primary 
control autospectrum (𝐺𝑣8𝑣8). The high cross-control 

correlations for this virtual effector are due to the redundancy 

of the v8 and v2 virtual effectors, which both primarily affect 
aircraft pitch motion. The resulting pitch response to elevator 
v8 inputs is fed back to longitudinal cyclic v2 through the 

control system during closed-loop system identification. As 
previously discussed for hover, at 26 kt, the large longitudinal 
cyclic v2 response in turn results in a relatively large, highly 

correlated lateral cyclic v1 response as well due to pitch-roll 
coupling. 
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Figure 12. The elevator (v8) virtual effector has high 

cross-control correlations with the longitudinal cyclic (v2) 
and lateral cyclic (v1) virtual effectors.  

Table 9 lists the frequency response generation methods 
(Direct and JIO Method cases) used for system identification 

at 26 kt. Table 10 lists the method used for each frequency 
response. 

Table 9. Freq. Response Generation Methods at 26 kt 

Method Sweep Type 
Identified Effector 
Responses 

Direct 
Method 

Ref. input (r) 

corresponding to 
effector (v) only 

Virtual effector (v) 
of interest only 

JIO Case A  

Pilot Lat Cyclic (r1) 
Pilot Lon Cyclic (r2) 

Pilot Collective (r3) 
Pilot Pedal (r4) 

Lat Cyclic (v1) 
Lon Cyclic (v2) 

Collective (v3) 
Rudder (v5) 

JIO Case B  

Pilot Lat Cyclic (r1) 

Pilot Lon Cyclic (r2) 
Pilot Pedal (r4) 

Diff Flap (r6) 

Lat Cyclic (v1) 

Lon Cyclic (v2) 
Rudder (v5) 

Diff Flap (v6) 

JIO Case C  
Pilot Lat Cyclic (r1) 
Pilot Lon Cyclic (r2) 
Elevator (r8) 

Lat Cyclic (v1) 
Lon Cyclic (v2) 
Elevator (v8) 

Table 10. Method Used for Each Freq. Response at 26 kt 

Identification 
Step 

Response Method 

Freq. Resp. 
Included in 

Step 1 

�̇�/v1 JIO Case A 

p/v1 JIO Case A 

q/v1 JIO Case A 

r/v1 JIO Case A 

ay/v1 JIO Case A 

�̇�/v2 JIO Case A 

�̇�/v2 JIO Case A 

p/v2 JIO Case A 

q/v2 JIO Case A 

ax/v2 JIO Case A 

az/v2 JIO Case A 

�̇�/v3 JIO Case A 

�̇�/v3 JIO Case A 

q/v3 JIO Case A 

ax/v3 JIO Case A 

az/v3 JIO Case A 

�̇�/v4 Direct Method 

ax/v4 Direct Method 

�̇�/v5 JIO Case A 

r/v5 JIO Case A 

ay/v5 JIO Case A 

Freq. Resp. 
Added in 

Step 2 

�̇�/v6 JIO Case B 

p/v6 JIO Case B 

r/v6 JIO Case B 

ay/v6 JIO Case B 

�̇�/v7 Direct Method 

�̇�/v7 Direct Method 

ax/v7 Direct Method 

az/v7 Direct Method 

�̇�/v8 JIO Case C 

𝑞/v8 JIO Case C 

Figures 13 and 14 show the on-axis frequency responses. As 
expected, the responses to the aerosurfaces – differential 

flaperon (v6), symmetric flaperon (v7), and elevator (v8) – 
which were excited using direct actuator sweeps (as opposed 
to tracking command sweeps) only have high coherence at 

high frequency, whereas the coherences for the remaining 
virtual effectors were high over a wide frequency range. As 
described earlier in the paper, this is due to the use of direct 

actuator sweeps, which were required for the aerosurfaces, 
resulting in lower signal-to-noise ratio and coherence.  

A method for combining multiple Direct and JIO Method 
cases was used for the Bell V-280 [13] to leverage the best 

quality data for state-space identification; an enhancement of 
this method using a two-step approach was developed, used, 

and discussed thoroughly herein. Figure 15 shows the 
derivatives included in the model structure and Table 10 
shows the corresponding frequency responses used during 

each step of the identification. 

In the first step, only the stability derivatives (low frequency) 
and rotor, VTDP RPM, and rudder control derivatives and 
time delays (high frequency) were included in the model 

structure and identified using the rotor, VTDP RPM, and 
rudder frequency responses only. In the second step, the 
parameters identified in the first step were frozen and only the 

remaining aerosurface control derivatives and time delays 
(high frequency) were identified using all of the frequency 

responses. This method ensured that the highest quality data 
were used to determine the core set of parameters in the 
model, which was then augmented to include the aerosurface 

parameters. The resulting model has an average frequency-

domain cost 𝐽ave = 67, which meets the 𝐽ave < 100 guideline 
and indicates good agreement between the model and flight 
data. Additionally, as shown in Figure 14, while only a small 
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frequency range was used for the second identification step, 
the model actually compares well over a wide frequency 
range (due to the fact that the low-frequency dynamics are 

frozen from the first step). A similar system identification 
approach was used at 39 kt. 

 

 

 

 

 

 
Figure 13. On-axis frequency responses for the first 
identification step (low and high frequency) at 26 kt. 
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Figure 14. On-axis frequency responses for the second 

identification step (high frequency only) at 26 kt. 

 
Figure 15. Derivatives included during each step of the 

identification.  

Table 11 shows costs associated with each frequency 
response at 26 kt. Overall, on-axis frequency response 

mismatch costs, as well as the average mismatch cost, are low 
indicating good model accuracy. Almost all of the off-axis 
responses are within the guideline for individual frequency 

response costs of 150-200 [6]. Slightly higher costs are typical 
for the off-axis responses since they have lower excitation, 
and therefore lower coherence, than the on-axis responses 

during frequency sweeps. Table 12 shows the identified 
parameters and the associated Cramér-Rao bounds (CR) and 

insensitivities (I) at 26 kt [6]. All identified parameters are 
known to good accuracy and not correlated with any other 

parameters as indicated by their low insensitivity (I < 10%) 
and Cramér-Rao bound (CR < 20%) values.  
 

Table 11. Frequency Response Costs at 26 kt 

Response Cost Freq. [rad/s] 

�̇�/v1 23.1 1.0-35 

p/v1 32.1 1.0-40 

q/v1 45.0 2.0-25 

r/v1 89.5 1.0-35 

ay/v1 77.6 2.0-30 

�̇�/v2 114.8 1.0-40 

�̇�/v2 49.1 1.0-40 

p/v2 139.4 2.0-30 

q/v2 90.5 1.0-40 

ax/v2 113.0 3.0-40 

az/v2 88.5 1.0-40 

�̇�/v3 43.3 1.0-40 

�̇�/v3 76.0 2.0-40 

q/v3 205.1 1.0-40 

ax/v3 94.7 3.0-30 

az/v3 70.7 1.0-40 

�̇�/v4 43.1 2.0-30 

ax/v4 168.7 1.0-30 

�̇�/v5 34.3 1.0-30 

r/v5 37.5 1.0-30 

ay/v5 21.0 1.0-30 

�̇�/v6 10.7 10-30 

p/v6 42.5 10-30 

r/v6 95.4 10-30 

ay/v6 13.1 10-30 

�̇�/v7 28.1 8.0-35 

�̇�/v7 50.0 20-40 

ax/v7 28.9 8.0-35 

az/v7 61.5 15-40 

�̇�/v8 24.6 8.0-35 

𝑞/v8 54.1 8.0-35 

𝐽ave 66.6 - 

 
Table 12. Parameters Identified at 26 kt 

Parameter Value CR (%) I (%) 

𝜏f 0.028614 3.0 0.5 

𝑋𝑢 -0.52144 11.3 5.2 

𝑋𝑤 0b - - 

𝑋𝑞 0b - - 

𝑋𝑟 0b - - 

𝑋𝛽1𝑐 26.5236 3.8 0.9 

𝑋𝜂 0.0015246 3.3 1.6 

𝑌𝑣 -0.22062 5.6 2.5 

𝑌𝑝 0.17785c - - 

𝑌𝑟 -0.18118c - - 

𝑌𝛽1𝑠 -𝑋𝛽1𝑐
a - - 

𝑌𝜂 -0.00084614c - - 

𝑍𝑢 0b - - 
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Parameter Value CR (%) I (%) 

𝑍𝑤 -3.0842 5.7 2.2 
𝑍𝑞 0b - - 

𝐿𝑢 0b - - 

𝐿𝑣 0.24334c - - 

𝐿𝑤 -1.0253c - - 
𝐿𝛽1𝑠 -867.38c - - 

𝑀𝑢 0.099043c - - 

𝑀𝑣 0b - - 

𝑀𝑤 -0.56921 13.1 4.7 

𝑀𝛽1𝑐 -199.8349 4.1 0.8 

𝑁𝑣 0.54568 2.1 0.9 

𝑁𝑤 -0.2101 25.2 8.9 
𝑁𝑝 -1.2929 4.4 1.0 

𝑁𝑟 -0.92996 6.8 2.9 

𝑁𝜂 0.0067278c - - 

𝑀𝑓𝛽1𝑠 -0.57536 8.2 2.6 

𝐿𝑓𝛽1𝑐 0.92931 4.7 1.5 

𝜔𝑐 -9.684c - - 
𝑋𝑣3 0.004529 9.6 4.3 
𝑋𝑣7 -0.0011237 2.7 1.3 

𝑋𝑣8 0b - - 

𝑌𝑣5 -0.001799 7.0 3.4 

𝑌𝑣6 0b - - 

𝑍𝑣2 0.013974 5.1 2.1 

𝑍𝑣3 -0.11368 3.3 1.6 

𝑍𝑣7 -0.0013982 3.8 1.9 

𝑍𝑣8 0b - - 

𝐿𝑣3 0b - - 

𝐿𝑣5 0b - - 

𝐿𝑣6 0.021876 2.6 1.1 

𝑀𝑣3
 0.060075 4.0 1.5 

𝑀𝑣7
 0b - - 

𝑀𝑣8
 -0.007473 3.0 1.5 

𝑁𝑣1 -0.019577 4.4 1.0 

𝑁𝑣3 -0.012123c - - 

𝑁𝑣5 0.0097714 3.0 1.3 

𝑁𝑣6 0b - - 

𝑀𝑓𝑣1 0.00013949 7.4 2.5 

𝑀𝑓𝑣2 0.00020999 4.0 0.9 

𝐿𝑓𝑣1 0.00035633c - - 

𝐿𝑓𝑣2 -7.9709e-05c - - 

𝜏𝑣1 0.045011 3.9 1.8 

𝜏𝑣2 0.044248 3.0 1.4 

𝜏𝑣3 0.048890 2.8 1.4 

𝜏𝑣4 0.034927 9.5 4.7 

𝜏𝑣5 0.043252 5.8 2.8 

𝜏𝑣6 0.038098 4.1 1.6 

𝜏𝑣7 0.053319 2.0 1.0 

𝜏𝑣8 0.040158 4.2 2.1 
a Constrained parameter 
b Eliminated parameter from model structure  
c Fixed parameter in model 

Figure 16 shows time-domain verification results for a 
piloted lateral doublet at 26 kt. As shown in Table 13, the 

results meet the 𝐽rms,Fr < 6.2 and TIC < 0.3 guidelines 

previously discussed indicating good agreement between the 
model and flight data. 

 
 

 
Figure 16. Time-domain verification results for the 

Scaled Demonstrator at 26 kt. 
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Table 13. Time-Domain Costs at 26 kt 

Doublet Maneuver 𝐽rms TIC 

Pilot Lat Cyclic (r1) 1.24 0.08 

Pilot Lon Cyclic (r2) 2.06 0.14 

Pilot Collective (r3) 2.74 0.20 

Pilot Pedal (r4) 2.61 0.16 

 

ADDITIONAL DISCUSSION OF 

IDENTIFICATION METHODS AND 

RESULTS  

This section covers a few points of discussion for system 
identification that are not covered elsewhere in the paper. This 

includes (1) selection of frequency responses when both the 
Direct and JIO Methods are available, (2) comparison of the 
Scaled Demons trator’s lateral rotor flap stiffness with those 

of other small-scale helicopters, and (3) challenges that were 
encountered for system identification at 13 kt. 

Frequency Response Selection When Both the Direct 
Method and JIO Method Are Available 

In this study, there were a few cases where a given frequency 

response was available from both the Direct and JIO Methods. 
Prior work on the Bell V-280 also compared the Direct and 
JIO Methods [13, 14] and it was found that Direct Method 

may produce satisfactory accuracy and better quality and 
should be used. In this study, a similar approach is used, 

expanded upon, and discussed thoroughly. 

The yaw rate frequency responses to collective (r/v3) and 

VTDP RPM (r/v4), respectively, at hover provide a good 
example of how to decide whether to use the Direct or JIO 

Method. As shown in Table 4, JIO Case B can be used to 
obtain both the r/v3 and r/v4 frequency responses. However, 
as will be discussed in this section, the JIO Method is only 

required for the r/v3 response (due to high cross-control 
correlation), whereas an accurate result for r/v4 can be 
obtained using the Direct Method. 

Figure 17 shows the cross-control correlation check for the 

collective v3 virtual effector at hover. It indicates that 
collective v3 control inputs are highly correlated with VTDP 
RPM v4 control inputs since the average cross-control 

coherence for v3 with v4 is greater than 0.5 and the secondary 

control autospectrum (𝐺𝑣4𝑣4) is large relative to the primary 
control autospectrum (𝐺𝑣3𝑣3). Thus, the JIO Method is 

required to obtain frequency responses to v4 accurately. The 

high correlation results from collective-yaw coupling, which 
is typical for helicopters at hover. The collective input 

produces an increase in torque from the rotor on the fuselage, 
which produces a yaw response. The yaw response is fed back 
through the control system and in turn produces a response by 

the VTDP RPM, which provides yaw control at hover.  

Figure 18 shows the cross-control correlation check for the 
VTDP RPM v4 virtual effector at hover. Conversely, it 
indicates that the VTDP RPM v4 has very low correlation with 

collective v3 since the average cross-control coherence is well 
below 0.5. Therefore, the Direct Method will provide an 
accurate frequency response. Together, the results of the 

cross-control correlation checks in Figures 17 and 18 indicate 
that the coupling is one-way: collective control inputs result 
in a correlated VTDP RPM response, but VTDP RPM inputs 

do not result in a correlated collective response.   

 

 

Figure 17. Cross-control coherence checks for collective 
(v3) at hover.  
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Figure 18. Cross-control coherence checks for the VTDP 
RPM (v4) at hover.  

Figures 19 and 20 compare the Direct and JIO Methods for 
the yaw rate frequency responses to collective (r/v3) and 

VTDP RPM (r/v4), respectively. For the r/v3 frequency 
response, there is a large difference between the two methods 
since the JIO Method correctly accounts for the effect of the 

highly correlated controls, whereas the Direct Method does 
not. Conversely, for the r/v4 frequency response, the results 
for the two methods are very similar since the cross-control 

correlations are low and the Direct Method gives an accurate 
result (with higher coherence than the JIO Method). This 

result corroborates those of the V-280 work [13, 14] where 
the Direct Method results sometimes can and should be used 
in place of the JIO Method. Thus, as shown in Table 5, the 

JIO Method frequency response was used for system 
identification for r/v3, whereas the Direct Method was used 
for r/v4. Figure 21 shows the time-domain verification of the 

yaw rate response during a pilot collective doublet, which 
confirms the accuracy of the JIO Method used for r/v3.  

 

Figure 19. The JIO Method is required since the cross-
control correlations for v3 are high. 

 

Figure 20. The Direct Method provides accurate results 
since the cross-control correlations for v4 are low. 

 

Figure 21. Time-domain verification of yaw rate 
response during pilot collective doublet confirms 

accuracy of the JIO Method used for r/v3.  

Note that the JIO Method would typically also be required to 

accurately obtain the hover �̇�/v3 and az/v3 frequency 
responses shown in Figure 22, as there was high cross-control 
correlation with v4 during the v3 sweep. However, this is a 
special case where the Direct Method also provides accurate 

results since the heave dynamics are largely decoupled in 
hover (i.e. no dynamic or control coupling from yaw to 
heave), and therefore are not affected by feedback in the yaw 

axis. This is confirmed by the frequency responses in Figure 
22, which are nearly identical between the two methods, as 

well as by the �̇� equation of motion (Equation 8) since there 
is no 𝑍𝑟 stability derivative or 𝑍𝑣4 control derivative (i.e. the 

yaw response and control input do not have any effect on the 

vertical response). Therefore, as shown in Table 5, the Direct 

Method was used for �̇�/v3 and az/v3 since it has higher 
coherence than the JIO Method.  
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Figure 22. This is a special case where the Direct Method 

is accurate since there is no dynamic or control coupling 
from yaw to collective. 

Lateral Rotor Flap Stiffness Comparison at Hover 

Table 14 compares the lateral rotor flap stiffness of the Scaled 
Demonstrator with those of other smaller-scale helicopters. 

The Scaled Demonstrator has a flybarless main rotor and is 

used as the reference scale (i.e. ℓ = 1). Since the units of rotor 
flap stiffness are s -2, the values scale directly with N [6]. 
Normalizing for scale, the table shows that the ADAPT 
Scaled Demonstrator has the third highest rotor flap stiffness 

behind the Yamaha R-MAX [15], which has a very high 
stiffness resulting from its teetering rotor head (no flapping 

hinges) with hard elastomeric restraint, and the 360CFX [16], 
another flybarless helicopter. The Raptor [17] and small-scale 
Honeybee [6] have lower normalized stiffness values. 

Table 14. Rotor Flap Stiffness 

Vehicle Rotor D [ft] ℓ |𝐿𝛽1𝑠| (scaled) 

R-MAX 10.25 0.5 588.9 (1081.8) 

ADAPT™ SD 5.58 1.0 785.2 

Raptor 50 4.41 1.3 735.5 (581.3) 

360CFX 2.67 2.1 5115.2 (2447.6) 

Honeybee 1.66 3.4 1273.0 (378.7) 

Challenges for System Identification at 13 kt 

Identifying frequency responses with sufficient coherence at 

13 kt was particularly challenging due to the highly coupled 
dynamics, lack of yaw authority, and reduced controllability 
of the Scaled Demonstrator at this flight condition. As 

previously noted, the VTDP sector is fully deflected in hover 
to direct airflow to provide anti-torque and yaw control, and 

fully retracted at 26 and 39 kt to provide forward thrust, with 
rudder providing yaw control. However, at 13 kt, the rudder 
is not yet effective for yaw control and the VTDP sector is 

only partially rotated, resulting in VTDP RPM control 
producing both yaw rate r and longitudinal speed u. The 
introduction of yaw and longitudinal motion simultaneously 

is problematic due to the highly coupled nature of the aircraft, 
which relies on the control system to decouple the responses. 

Additionally, the split of VTDP RPM control effectiveness 
between yaw and forward thrust results in limited yaw 
authority. The test pilot confirmed that these factors resulted 

in reduced controllability of the aircraft at 13 kt making it 
difficult to maintain trim. As exemplified by Figure 23, the 
resulting frequency responses obtained at this flight condition 

were generally of poorer quality than the other flight 
conditions (i.e. lower signal-to-noise ratio and coherence), 

particularly for the yaw axis. Despite this, it was still possible 

to identify a state-space model at 13 kt with cost 𝐽ave < 100, 
indicating good agreement between the model and flight data. 

 

Figure 23. Data quality at 13 kt was significantly poorer 
than other flight conditions as exemplified by the r/v4 

response at 13 kt relative to hover.  

STITCHED MODEL RESULTS 

The STITCH software tool [3] was used to generate a 
continuous full-envelope stitched model from the point 

identification models and trim data at hover, 13, 26, and 39 
kt. The stitched model is a time-varying, quasi-nonlinear 
model where the stability and control derivatives are stored in 

lookup tables and combined with the full nonlinear equations 
of motion and gravitational force equations. This modeling 

technique is in the class of quasi-linear-parameter-varying 
(qLPV) models with total x-axis body velocity U as the 
stitching parameter [18, 19]. 
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Trim Data Trends with Airspeed 

Figure 24 shows the trim data, which were obtained from the 

point models for use in the stitched model, versus airspeed. 
STITCH uses a cubic spline (not shown) to interpolate 
intermediate trim points for continuity in the stitched model. 

Note that finely spaced trim-shot data [3] was not available 
for this study, but can be used in general to improve the 

accuracy of trim data at airspeeds between the point model 
airspeeds. 

Pitch attitude trim 𝛩0 decreases (becomes more nose down) 
to tilt the rotor disc forward as necessary to provide forward 
thrust with increasing airspeed. As previously noted, the z-

body axis velocity trim was approximated as 𝑊0 = 𝑉𝑇𝑠𝑖𝑛𝛼0, 
where 𝛼0= 𝛩0 in trim (i.e. level flight). Increasingly negative 
z-body axis velocity trim 𝑊0 indicates that upward body-axis 
velocity is required to maintain level flight for the given trim 

pitch attitude 𝛩0.  

Trim states 𝛽1𝑐,0 and 𝛽1𝑠,0 were not measured and were 

instead estimated by calculating the trim gradients required to 

match the u-derivatives of the linearized stitched model to 
those of the point identification models. For brevity, this 
process is demonstrated here using a subset of the u-

derivatives (𝑋𝑢, 𝑌𝑢, 𝐿𝑢, and 𝑀𝑢) at the hover and 13 kt models 
only.  

In trim, the left-hand side of each equation of motion 

corresponding to these four derivatives (�̇�, �̇�, �̇�, and �̇�) is zero. 
Solving each equation for the corresponding u-derivative 

gives 𝑋𝑢, 𝑌𝑢, 𝐿𝑢, and 𝑀𝑢 in terms of derivatives and trim 
gradients with respect to u. For example, for the �̇� equation: 

𝑋𝑢stitch = −𝑋𝑤
∆𝑤

∆𝑢
+ (𝑔𝑐𝑜𝑠Θ0)

∆𝜃

∆𝑢
− 𝑋𝛽1𝑐

∆𝛽1𝑐

∆𝑢
− 𝑋𝜂

∆𝜂

∆𝑢

− 𝑋𝑣3

∆𝑣3

∆𝑢
− 𝑋𝑣7

∆𝑣7

∆𝑢
− 𝑋𝑣8

∆𝑣8

∆𝑢
 

Equation 15 

Since all trim gradients are known except for those of the 

flapping states, ∆𝛽1𝑐 ∆𝑢⁄  and ∆𝛽1𝑠 ∆𝑢⁄  can be solved to match 
the stitched model u-derivatives to those of the point 
identification models:  

𝑋𝑢ID − 𝑋𝑢stitch =∆𝑋𝑢 =−𝑋𝛽1𝑐
𝛥𝛽

1𝑐

𝛥𝑢
 

𝑀𝑢ID − 𝑀𝑢stitch =∆𝑀𝑢=−𝑀𝛽1𝑐

𝛥𝛽
1𝑐

𝛥𝑢
 

𝑌𝑢ID − 𝑌𝑢stitch =∆𝑌𝑢=−𝑌𝛽1𝑠
𝛥𝛽

1𝑠

𝛥𝑢
 

𝐿𝑢ID − 𝐿𝑢stitch =∆𝐿𝑢=−𝐿𝛽1𝑠
𝛥𝛽

1𝑠

𝛥𝑢
 

Equation 16 

Putting these equations in matrix form and including terms for 
two consecutive flight conditions (hover and 13 kt) gives: 

[
 
 
 
 
 
 
 
 
 
−𝑋𝛽1𝑐|0 0 0 0

0 −𝑋𝛽1𝑐|13 0 0

0 0 −𝑌𝛽1𝑠|0 0

0 0 0 −𝑌𝛽1𝑠|13
−𝑀𝛽1𝑐|0 0 0 0

0 −𝑀𝛽1𝑐|13 0 0

0 0 −𝐿𝛽1𝑠|0 0

0 0 0 −𝐿𝛽1𝑠|13]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛥𝛽1𝑐
𝛥𝑢

|0

𝛥𝛽1𝑐
𝛥𝑢

|13

𝛥𝛽1𝑠
𝛥𝑢

|0

𝛥𝛽1𝑠
𝛥𝑢

|13]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
∆𝑋𝑢|0
∆𝑋𝑢|13
∆𝑌𝑢|0
∆𝑌𝑢|13
∆𝐿𝑢|0
∆𝐿𝑢|13
∆𝑀𝑢|0
∆𝑀𝑢|13]

 
 
 
 
 
 
 
 

 

Equation 17 

This system of equations can be solved to obtain the 𝛽1𝑐 and 

𝛽1𝑠 trim gradients at each flight condition. However, the trim 
gradients can be defined explicitly in terms of the trim states 
using a forward difference method as: 

[
 
 
 
 
 
 
 
 
Δ𝛽1𝑐

Δ𝑢
|
0

Δ𝛽1𝑐

Δ𝑢
|13

Δ𝛽1𝑠

Δ𝑢
|
0

Δ𝛽1𝑠

Δ𝑢
|
13]
 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 

−1

𝑢|13− 𝑢|0

1

𝑢|13− 𝑢|0
0 0 0 0

0
−1

𝑢|26− 𝑢|13

1

𝑢|26− 𝑢|13
0 0 0

0 0 0
−1

𝑢|13− 𝑢|0

1

𝑢|13− 𝑢|0
0

0 0 0 0
−1

𝑢|26− 𝑢|13

1

𝑢|26− 𝑢|13]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝛽1𝑐 |0
𝛽1𝑐|13
𝛽1𝑐 |26
𝛽1𝑠 |0
𝛽1𝑠|13
𝛽1𝑠|26]

 
 
 
 
 
 

 

 

Equation 18 

Equation 18 can be substituted into Equation 17, which can 

then be solved to directly obtain the trim flapping states 𝛽1𝑐,0  
and 𝛽1𝑠,0 at each airspeed. The full calculation of 𝛽1𝑐,0  and 

𝛽1𝑠,0 included terms for all the u-derivatives and all flight 

conditions in the equations.  

Note that Equation 17 is an over-constrained problem (i.e., 

more equations than unknowns), and so the pseudo-inverse 
solution gives the linear least-squares approximation that best 
matches the identified u-derivatives. Also note that because 

Equation 18 is formulated with a difference scheme, it is rank 
deficient and an infinite number of solutions exist. Physically, 

this means the trim values can be shifted by a constant without 
changing their gradient. Herein, the solution is shifted such 

that the hover flapping states 𝛽1𝑐,0 and 𝛽1𝑠,0 are zero, since it 

is expected that flapping should be small when the main rotor 
is producing all of the lift and the roll moment generated by 

VTDP RPM is negligible (𝐿𝑣4 = 0 at hover).  

Figure 25 shows an example of one of the u-derivatives as a 

function of airspeed for the identified models, the stitched 
model before determining flapping state trim data, and the 

stitched model with the updated flapping state trim data. The 
updated flapping state trim data improves the match of the 
derivative to the identified value.  

The results of the 𝛽1𝑐,0 and 𝛽1𝑠,0 calculations are shown in 

Figure 24. Positive 𝛽1𝑐,0 indicates that the rotor disc is tilted 
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forward with respect to the x-body axis to provide forward 
thrust; 𝛽1𝑠,0 transitions from a small positive to negative value 

(i.e. the rotor disc tilts to the right). 

Right lateral cyclic trim v1,0 is used to eliminate the side-force 

resulting from VTDP RPM analogous to conventional 
helicopters with tail rotors at low speed [20]. Longitudinal 
cyclic trim v2,0 is increased with airspeed to tilt the rotor disc 

forward and provide forward thrust. Collective trim v3,0 
follows a trend similar to conventional helicopters where it is 

at a maximum value at hover, decreases to a minimum value 
at the minimum drag speed, and then increases again to 
provide forward thrust at high speed [20, 21, 22]. Because of 

the rotation of the VTDP sector as airspeed increases, VTDP 
RPM trim v4,0 is adjusted to provide anti-torque at hover and 
13 kt and forward thrust at 26 and 39 kt.  

As previously discussed, the aerosurfaces are only effective 

at 26 and 39 kt, where airspeed is high enough for the lift  
forces on the aerosurfaces to affect aircraft motion. The 
rudder trim v5,0 is rotated with the VTDP sector and provides 

yaw control at 26 and 39 kt. Differential flaperon v6,0 is held 
at zero such that no roll moment is provided by this effector 

in trim. At low speed, symmetric flaperon trim v7,0 is deflected 
down to reduce interference with the rotor inflow. At high 
speed, symmetric flaperon is deflected upwards to oppose 

nose down pitching moments. Elevator trim v8,0 is held at zero 
across all airspeeds. 
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Figure 24. Trim data versus airspeed. 

 

 

Figure 25. Speed-stability derivative 𝑴𝒖 vs. airspeed. 
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Stability and Control Derivative Trends with Airspeed 

This section discusses the trends of the key stability and 

control derivatives with airspeed. The location of the 
derivatives in the equations motion (Equation 8) can be 
observed to provide an understanding of how the control 

inputs and states affect the aircraft motion. 

Figure 26 shows the key on-axis stability derivatives of the 

linearized stitched model versus airspeed. Derivatives 𝑋𝑢 and 
𝑌𝑣 are the longitudinal and lateral speed-damping derivatives, 
respectively, and are negative for all airspeeds indicating that 

forces oppose perturbations in u and v. At low speed, these 
derivatives are primarily due to the rotor disc tilt aft and left 

following perturbations in u and v, respectively [20]. At 

higher speed, 𝑋𝑢 increases in magnitude linearly, which is 
typical and reflects the increasing drag on the aircraft. The 

vertical speed-damping derivative 𝑍𝑤 is negative and 
analogously indicates restorative (stabilizing) forces for 
perturbation in w. The vertical aircraft response is largely 

decoupled at low speed and therefore 𝑍𝑤 is the dominant 
stability derivative, but at high speed the vertical and pitch 
responses become more coupled.  

Stability derivatives 𝐿𝑓𝛽1𝑠 and 𝑀𝑓𝛽1𝑐 are the roll and pitch 

rotor flap stiffnesses. The increase in magnitude of each 
derivative reflects the increase of restorative roll and pitch 
moments with airspeed; similar trends were seen in a study of 

the SH-2G helicopter in [6]. The magnitude of 𝐿𝑓𝛽1𝑠 is 

significantly larger than that of 𝑀𝑓𝛽1𝑐 due to the smaller  

moment of inertia of the roll relative to pitch axis [6]. 

The parameter 𝜔lag is the motor lag break frequency that 

represents the lag associated with speeding up and slowing 

down the VTDP propeller. It appears as both a stability and 
control derivative in Figures 26 and 27, respectively, and is 

constant with airspeed. It effectively sets the bandwidth of the 
aircraft response to the VTDP RPM virtual effector and 
introduces lag at frequencies above this bandwidth.  

Figure 27 shows the on-axis control derivatives of the 

linearized stitched model for each virtual effector versus 
airspeed. The 𝐿𝑓𝑣1 control derivative increases with airspeed, 

whereas the 𝑀𝑓𝑣2 control derivative decreases with airspeed. 

The magnitude of the 𝑍𝑣3 control derivative increases with 

airspeed and indicates that collective produces larger vertical 
responses at higher airspeeds. The control derivatives 
𝑁𝑣5, 𝐿𝑣6, 𝑍𝑣7, and 𝑀𝑣8 indicate the primary axis of response 

for each aerosurface (rudder, differential flaperon, symmetric 
flaperon, and elevator, respectively). Note that a vertical 
response to elevator az/v8 would typically be expected for 

fixed-wing aircraft, but this frequency response and 
associated control derivative 𝑍𝑣8 could not be identified with 

sufficient coherence for the Scaled Demonstrator. The 
monotonic increase in the magnitudes of the aerosurface 
control derivatives is expected since they are directly related 

to the increase in lift generated by the aerosurfaces with 
airspeed.  

  
Figure 26. Key on-axis stability derivatives in the 

linearized stitched model. 
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Figure 27. On-axis control derivatives of the linearized 
stitched model for each virtual effector. 

Implications for Control Redundancy 

Table 15 summarizes the primary axis of response for each 

virtual effector for the Scaled Demonstrator. The table shows 
that control redundancy exists for roll, pitch, and vertical 
responses at 26 and 39 kt. This is a key result that shows the 

axes and airspeeds where damage tolerant control (DTC), 
which relies on control redundancy, will be effective. As 

discussed earlier, previous work [3] involved piloted 
simulation of damage tolerant control laws using a simulated 
helicopter based on the Piasecki X-49A. In that study, a 

minimum landing speed of 60 kt was set since below that 
speed the redundant aerosurface controls could no longer be 
used [2, 23]. The full-scale minimum landing speed 

corresponds to 19 kt for the Scaled Demonstrator and 
therefore provides a good estimate of the minimum speed at 

which the aerosurfaces are sufficiently effective. This 
estimate of 19 kt is consistent with the results in Table 15 
since the aerosurface responses were sufficiently effective for 

identification at 26 kt, but not at 13 kt. 

Table 15. Control Redundancy 

Virtual Effectors 
Primary Aircraft  Response by 

Flight Condition 

 Hover and 13 kt 26 and 39 kt 

Lateral Cyclic (v1) Roll 

Longitudinal 
Cyclic (v2) 

Pitch 

Collective (v3) Vertical 

VTDP RPM (v4) Yaw Forward Thrust 

Rudder (v5) 

None 

Yaw 

Differential 

Flaperon (v6) 
Roll 

Symmetric 
Flaperon (v7) 

Vertical 

Elevator (v8) Pitch 

Eigenvalue Trends with Airspeed 

Figure 28 shows the trends of the linearized stitched model 
eigenvalues with airspeed. Each subsequent plot has 
increasing levels of zoom to highlight modes at lower 

frequencies. At each flight condition, there are eight modes 
(four lateral-directional, four longitudinal) with 12 

eigenvalues total.  

Starting at high frequency, the first two modes are the coupled 
lateral and longitudinal fuselage-rotor flapping modes, which 
correspond to the rotor flapping dynamics that were explicitly 

included in the hybrid model structure. The lateral flapping 
mode is stable (left-hand plane) and has a frequency and 

damping that increase from (𝜔𝑛 = 36 rad/s, 𝜁 = 0.49) at hover 

to (𝜔𝑛 = 44 rad/s, 𝜁 = 0.69) at 39 kt. Conversely, best seen 
from the second plot, the longitudinal flapping mode is stable 

and has a frequency and damping that decrease from (𝜔𝑛 = 8 
rad/s, 𝜁 = 0.98) at hover to (𝜔𝑛 = 6 rad/s, 𝜁 = 0.82) at 39 kt.  

The third mode is the VTDP RPM motor lag break frequency 
𝜔lag = 9.68 rad/s, which is represents the lag associated with 
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speeding up and slowing down the VTDP propeller. The 
fourth mode is the heading integrator located at the origin.  

At hover, the fifth and sixth modes are the vertical speed-

damping derivative 𝑍𝑤 = -0.21 and yaw stability derivative 
𝑁𝑟 = -1.26, which set the break frequencies of the yaw and z-
body axis velocity responses, respectively. At higher speeds, 

the vertical mode transitions to become a coupled pitch-roll 
subsidence mode, which is stable and increases in frequency 

to 13 rad/s at 39 kt. At higher speeds, the yaw mode decreases 
in frequency and becomes a stable spiral mode.  

At hover, the seventh and eighth modes are the lateral and 
longitudinal phugoid modes. The lateral phugoid is a stable 

complex pair that increasing in frequency (𝜔𝑛 = 1.5 to 4 rad/s) 

and decreases in damping (𝜁 = 0.22 to 0.11) with airspeed; it 
becomes the typical fixed-wing Dutch roll mode at high 
speed. As shown in the third plot, the longitudinal phugoid is 

an unstable complex pair at low speed, then transitions to 
consist of two real eigenvalues (one stable, one unstable) at 
high speed. At around 13 kt, the eigenvalues associated with 

the longitudinal phugoid mode are even farther into the right-
half plane (and therefore more unstable) than at hover, which 
may have contributed to the challenges for system 

identification at 13 kt discussed earlier in the paper. 

Frequency Response Trends with Airspeed 

Figure 29 shows the on-axis frequency response trends of the 
linearized stitched model with airspeed for each virtual 
effector. The changes in the on-axis roll response p/v1 and 

pitch response q/v2 with airspeed reflect the transition from 
hovering dynamics to fixed-wing-like dynamics at higher 
speeds [6]. The changes are larger at low frequency and are 

associated with the lateral phugoid/Dutch roll and 
longitudinal phugoid modes. At high frequency, the p/v1 

response magnitude gradually and monotonically increases 
similar to fixed-wing aircraft [6]. As was shown in the hover 
system identification results section, the p/v1 response at each 

airspeed exhibits the lateral rotor flapping mode, which shifts 
the frequency response magnitude up at high frequency and 
has a break frequency associated with the  
lateral rotor flap stiffness 𝐿𝛽1𝑠. The high-frequency magnitude 

of q/v2 also increases slightly with airspeed.  

The changes in the z-body axis velocity response to collective 
w/v3 are also most noticeable at low frequency. At hover and 

13 kt, the magnitude exhibits the characteristic k/s shape and 
associated -20 dB/decade roll-off across the full frequency 
range. This indicates that the response is largely decoupled 

from other axes and is well approximated by a first order 
transfer function with a break frequency associated with the 

vertical speed-damping derivative, which is 𝑍𝑤 = -0.21 at 
hover. At 26 and 39 kt, the heave and pitch modes become 

coupled, which is typical of fixed-wing aircraft and results in 
distortion of the magnitude curve at low frequency [6].  

 

 

 

 
Figure 28. Linearized stitched model eigenvalue trends 

with airspeed. Each subsequent plot is zoomed in to 

highlight modes at higher, then lower frequency.  
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At hover, the yaw rate response to VTDP RPM r/v4 similarly 
exhibits a k/s shape at high frequency with a break frequency 

associated with the yaw stability derivative 𝑁𝑟 = -1.26. At 
high frequency, there is an additional -20 dB/decade roll-off 
(-40 dB/decade total) associated with the VTDP RPM lag 

break frequency at 𝜔lag = 9.68 rad/s. At higher speeds, yaw 

and roll become coupled and form the Dutch roll mode, which 
results in distortion of the magnitude curve at low frequency. 

At high frequency, the magnitude progressively decreases due 
to the rotation of the VTDP sector, which directs airflow to 
provide yaw control at hover, and then forward thrust at 

higher speeds.  

The x-body axis velocity response to VTDP RPM u/v4 
exhibits some distortion at low frequency due to the 
longitudinal phugoid mode. At high frequency, the response 

magnitude decreases with airspeed, due to the decrease in 
VTDP RPM trim setting from 0-26 kt (as shown in Figure 21). 

This comes from the relationship between thrust and RPM, 

which can be approximated as 𝑇 ∝ RPM2 [21]. Thus, the 

control derivative varies as 
𝜕𝑇

𝜕RPM
∝ RPM such that the ratio of 

forward thrust to RPM decreases as RPM decreases. 

The on-axis responses to all the aerosurfaces – r/v5 (yaw rate 
to rudder), p/v6 (roll rate to differential flaperon), w/v7 (z-body 
axis velocity to symmetric flaperon), and q/v8 (pitch rate to 
elevator) – are only available at 26 and 39 kt where the 

aerosurfaces were sufficiently effective to identify responses. 
The magnitudes for all aerosurfaces responses increase with 

dynamic pressure and airspeed as expected. The r/v5 response 
peaks at around 4 rad/s, which is indicative of the typical 
fixed-wing Dutch roll mode and consistent with the mode 

natural frequency shown in Figure 28 at higher speeds. 
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Figure 29. Linearized stitched model frequency response 
trends with airspeed. 

LESSONS LEARNED 

This section summarizes several key findings and lessons 
learned from this study involving the ADAPT™ Scaled 

Demonstrator, a 10% scale version of the Piasecki X-49A. 
These items may be useful to consider for system 

identification and full-envelope modeling and simulation of 
related subscale (and possibly even full-scale) aircraft. They 
are as follows: 

1. A spacing of 13 kt (40 kt full scale) between point models 

and associated trim data was sufficient to produce a full 
flight envelope stitched simulation model. However, 
future work on aircraft with aerosurfaces should consider 

using a finer spacing near the flight condition at which 
the aerosurfaces become sufficiently effective to identify 
frequency responses. For example, for the Scaled 

Demonstrator, an additional point model could have been 
obtained at around 19 kt. This would help improve the 
accuracy of identified aerosurface control derivatives at 

low airspeed where the signal-to-noise ratio and 
coherence is low. Additionally, since the VTDP sector is 
still partially rotated at around 19 kt, having an additional 

point model would help to accurately model the yaw and 
forward thrust responses to VTDP RPM at this flight 
condition. 

 
2. Automated frequency sweeps producing roll, pitch, and 

yaw rates of ±25 deg/s and heave accelerations of ±3 m/s2 
(±8 deg/s and ±3 m/s2 full scale, respectively) were found 
to be sufficient for system identification (provide 

sufficient signal-to-noise and produce good quality 
frequency responses) and are consistent with the full-
scale guidelines in [6]. 

 
3. Due to its highly coupled flight dynamics and redundant 

control effectors, system identification of the Scaled 
Demonstrator required using the Joint-Input Output (JIO) 
Method in addition to the Direct Method. The JIO 

Method was able to accurately identify the aircraft 
response to each virtual effector, even in the presence of 
highly correlated secondary inputs. In cases where 

accurate frequency responses were available from both 
the Direct and JIO Methods, the response with the higher 

coherence was used for state-space identification.  
 

4. As is common for single main rotor helicopters, in this 

study it was difficult to achieve satisfactory coherence at 
low frequency due to low signal-to-noise ratio and high 
cross-control correlations at low frequency. Although 

there was sufficient data to identify 𝑋𝑢 with good 

precision, the speed-stability derivative 𝑀𝑢 had a large 

insensitivity value. Therefore, 𝑀𝑢 was calculated and 
fixed during state-space model identification. This also 
highlights the importance of static stability data at each 

flight condition, which were used to obtain trim gradients 

for the calculation of 𝑀𝑢. 
 

5. Since sweeps directly into the actuators (rather than into 
the tracking commands) were required to excite the 

aerosurfaces, the aerosurface frequency responses had 
poor coherence, particularly at low frequency. Therefore, 
a two-part identification approach was successfully 

applied. First, only the stability derivatives (low 
frequency) and rotor, VTDP RPM, and rudder control 

derivatives and time delays (high frequency) were 
included in the model structure and identified using the 
rotor, VTDP RPM, and rudder frequency responses only. 

Next, the parameters identified in the first step were 
frozen and only the remaining aerosurface control 
derivatives and time delays (high frequency) were 

identified using all of the frequency responses. This 
method ensured that the highest quality data was used to 

determine the core set of parameters in the model, which 
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was then augmented to include the aerosurface 
parameters. 
 

6. Trim-shot data [3] was not available for this study, but 
would be highly recommended for future work to 
improve the accuracy of trim data at intermediate 

airspeeds in the stitched model. This is particularly true 
for aircraft such as the Scaled Demonstrator that have 
large changes to the trim control positions (e.g. VTDP 

sector, RPM, symmetric flaperon) with airspeed.    
 

7. A new method was used to calculate trim for the rotor 
flapping states, which were not measured, from the 
linearized stitched model u-derivatives. This provides 

physical understanding of the lateral and longitudinal 
rotor disc tilt with airspeed. 

CONCLUSIONS 

This study covered system identification and stitched 
modeling of the ADAPT™ Scaled Demonstrator winged 
compound helicopter. State-space models were identified at 

four flight conditions spanning the flight envelope with 
frequency- and time-domain costs meeting the guidelines, 

indicating very good agreement between the model and flight 
data. A full-envelope stitched model was developed from the 
point identification models and associated trim data. Trends 

of the stitched model trim, stability and control derivatives, 
frequency responses, and eigenvalues with airspeed were 
analyzed. The key findings of this study are as follows: 

1. A combination of Direct and JIO Methods worked well 

to identify frequency responses for a highly coupled 
subscale winged compound helicopter with redundant 
effectors. 

 
2. A hybrid model structure, which explicitly includes the 

fuselage-rotor flapping dynamics and a first-order VTDP 
RPM lag model, was required to accurately capture the 
system dynamics across the flight envelope. It resulted in 

low model mismatch costs in both the frequency and time 
domains.  

 

3. Control redundancy exists for roll, pitch, and vertical 
responses at 26 and 39 kt. The redundancy provides the 

axes and airspeeds at which future work on damage 
tolerant control (DTC) will be done. 
 

4. Key lessons learned from this study were summarized 
and provide useful guidance for system identification and 
full-envelope modeling and simulation of subscale and 

full-scale aircraft with redundant effectors. It was 
determined that finer spacing of point models and trim 

data would be advantageous at the transition airspeeds 
where the VTDP sector is rotating and the aerosurfaces 
are becoming sufficiently effective to identify. 

 
5. A new method was developed to calculate trim for the 

rotor flapping states, which were not measured. The 

method relies on simultaneously solving for the trim 

values at all flight conditions to minimize errors between 
the stitched model and identified u-derivatives. The 
updated trim resulted in physically reasonable trends and 

improved the match of the stitched model u-derivatives 
with those of the point models. 
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