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Abstract

Coastal management in recent years has become more of a challenge due to increasing

human disturbance and the lack of inadequacy of a coastal management framework (Adade,

et.al., 2021). The widespread use of drone technologies has overcome this obstacle due to their

nature of autonomous operations, ease of deployment, and temporal flexibility for catching

events like low tides. The cost-effectiveness for both initial deployment and subsequent

repeated mapping, combined with their ability to capture detailed information through

high-resolution imaging (Yang, et.al, 2022), have made UAVs a potent tool for data collection.

This research incorporates the adaptation of UAVs in assessing the conditions of critical

eelgrass habitats at several sites along the Pacific Coast. This research aims to encompass the

use of drones to provide a more localized and detailed way of analyzing eelgrass, which is a

marine flowering plant that is widely recognized for its critical role in supporting and enhancing

marine ecosystems, and their habitats.multispectral camera systems mounted on the drone

enable researchers to capture high-quality images of the eelgrass to analyze their distribution.

In addition, in-situ eelgrass sample collections allow researchers to identify and quantify the

population and biodiversity of the epifauna in different eelgrass habitats. Epifauna, including

species such as crabs, sea slugs, and various shellfish, are organisms that live on the surface

of the seafloor or attach to plants like eelgrass (Whippo, et.al., 2018). Epifauna could be further

classified into mobile and sessile groups, with mobile epifauna freely moving abound and

sessile epifauna remaining fixed in one location (Talyor, 2019). They form a tight food web with

eelgrass. Therefore, understanding the distribution of eelgrass meadows and epifauna would be

vital for developing strategies for the enhancement of marine biodiversity. This research

explores the relationship between eelgrass coverage, edge length, and epifauna abundance

from multiple study sites on the Northeast Pacific Coast. The research method demonstrated in
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this study provides a more holistic and sustainable framework for coastal management and

eelgrass monitoring in the future.

Literature Review

Eelgrass & Epifauna Relationship

Eelgrass (Zostera marina) is a marine flowering plant that is widely recognized for its

critical role in supporting and enhancing marine ecosystems. It serves as an important habitat

for a variety of marine life, including fish and invertebrates. Moreover, seagrass beds are also

known for their capability to sequester and store carbon, which plays a crucial role in mitigating

the impacts of climate change (Yang, et.al, 2022). Not to mention its ability to regulate ocean pH

levels, which alleviates the adverse impacts of ocean acidification (Roman, et.al., 2021). In

addition, eelgrass offers shoreline protection by dampening wave energy (Roman, et.al., 2021).

It could also prevent coastal erosion with its stabilization of sediments by building up sediments

and capturing particles (Ferretto, et.al, 2023). In order to gain a comprehensive understanding

of the conditions and function of seagrass ecosystems, an in-depth study of the relationships

between eelgrass and epifauna is required

Epifauna are organisms that live on the surface of the seafloor or attach to plants. They

form a tight food web with eelgrass. Epiphytes play a critical role in the relationship between

eelgrass and epifauna as they are a valuable food source for epifauna that are inhabiting

eelgrass meadows (Whippo, et.al., 2018). Epifauna is dependable on epiphytes as it receives

the essential nutrients and energy for its survival and growth from them. In addition, other larger

marine animals also consume epifaunal species as their food sources, forming a nutrient cycle

within the ecosystems (Ferretto, et.al., 2023). Therefore, eelgrass meadows serve as feeding

grounds and refuges for a variety of marine organisms, enhancing the overall biodiversity and

supporting different ecosystem functions.
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Crustaceans and gastropods are some of the most abundant epifauna groups found in

the eelgrass habitats. These 2 groups of marine invertebrates play a crucial role in the eelgrass

ecosystems (Ward, et.al., 2022). They both belong to the categorization of mobile epifauna due

to their ability to move freely (Taylor, 2019). Crustaceans consist of a group of anthropods that

rely on eelgrass beds as their shelter and sources of nutrients (Briones-Fourzán, et.al., 2020).

Common crustaceans include crabs, shrimps, and lobsters, which belong to the mobile epifauna

category. On the other hand, common examples of gastropods include snails and slugs, which

are identified by their “head, shells and visceral mass (TRUEMAN, 1983). Previous studies have

discovered that the presence of both gastropods and crustaceans is advantageous for eelgrass

due to their effectiveness in mitigating the shading effect (Hily, 2004). In the intricate food web of

the eelgrass ecosystem consisting of eelgrass, epiphytes, epifauna, and other marine species in

the eelgrass ecosystem, an excessiveness of any organisms could pose a threat to the growth

of eelgrass. The shading effect occurs when the presence of epiphytic algae or other

macroalgae on eelgrass leaves becomes overabundant. This leads to a decrease in light

availability due to shading, which adversely affects the photosynthetic activities of the eelgrass

(Carman and Gruden, 2018). This phenomenon ultimately diminishes the overall health and the

growth rate of eelgrass. However, research has found that certain crab species like Carcinus

maenas and Libinia dubia are beneficial for the growth of eelgrasses thanks to their role as

predators of encrusting epiphytes such as sponges (Demospongiae) and tunicates (Ascidiacea)

on eelgrass (Carman and Gruden, 2018). Moreover, studies have evaluated the impact of

certain gastropods (Gibbula umbilicalis and Jujubinus striatus) on the grazing of algae biomass

and discovered that these gastropods have efficiently reduced epiphytic cover and alleviated the

shading effect (Hily, 2004). While both crustaceans and gastropods contribute common benefits

to the eelgrass ecosystem, differences in their feeding behaviors and mobility might influence

their distribution and abundance within eelgrass meadows. For instance, gastropods typically

move more slowly and might have a more limited range of movement compared to crustaceans
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(TRUEMAN, 1983). In addition, while crustaceans are omnivores, gastropods are primarily

herbivores (TRUEMAN, 1983) (Boström, et.al., 2014).

Despite its significant contributions to marine biodiversity, eelgrass stands as one of the

most threatened ecosystems due to various natural, and anthropogenic stressors (Katwijk,

et.al., 2015). The decline in the eelgrass population can be traced back to the 19th century

(Zoffoli, et.al., 2021). Human-induced disturbances such as industrial and agricultural activities

have led to the degradation of water quality (Roman, et.al., 2021). Studies have found that

Seagrass wasting disease caused by Labyrinthula zosterae has contributed greatly to the loss

of eelgrass meadows (Yang, et.al, 2020). With the effects of the warming climate in recent

decades, it is observed that the rising sea surface temperature could be detrimental to the

eelgrass ecosystems (Graham, et.al.,2023). Eelgrass has an optimal temperature range

between 10-25°C and is vulnerable to warm temperatures (Plaisted, et.al., 2022). Ocean

temperatures exceeding 25°C could cause significant stress to eelgrass and eventually lead to

the death of the plant (Graham, et.al.,2023). With the uncertainties and vulnerabilities that

eelgrass is facing, a holistic framework of eelgrass management and conservation is required

for protecting the ecosystems and ensuring the long-term sustainability of the marine

biodiversity

Challenges in Coastal Management and Seagrass Monitoring

Coastal management has become more of a concern due to increasing human activities

and disturbance in the coastal regions. Rapid economic developments result in adverse

ecological and environmental impacts on the coastal areas. Shoreline changes have been

observed around the globe due to rapid economic growth in coastal cities, where populations

and developments tend to concentrate. A study has found that infrastructure projects in the

coastal zone near estuaries often bring in hazards such as coastal erosions to the local

residents (Tak, et. al, 2020). In addition to the construction of structures, typical commercial

activities along beaches also lead to increasing concerns about marine litter found in coastal
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dune ecosystems (Andriolo, et.al., 2021). Both studies have discussed how the traditional

coastal monitoring framework has been ineffective due to the high equipment and labor costs of

conducting coastal surveys (Tak, et. al, 2020). Moreover, the fragile physical conditions of the

lands hinder researchers and scientists from assessing the environment without creating

unnecessary pollution (Andriolo, et.al., 2021).

Traditionally, seagrass monitoring approaches revolve around the use of airborne or

satellite remote sensing techniques at a broader scale across different regions, and the smaller

scale method of in-situ field survey to take a closer look at the conditions and stressors of the

seagrass leaves (Duffy, et.al., 2019). While these measures have been successful in tracking

the status of seagrass and detecting the change of distribution over time, there are limitations

associated with them. Observations in aerial or satellite imagery only allow the view and

identification of seagrass at a relatively shallow depth due to their low resolution. (Duffy, et,al.,

2019). Publicly obtainable satellite imagery such as the Landsat dataset only offers data with a

relatively low spatial resolution of 30 m (Tahara, et.al., 2022). Although previous studies have

demonstrated that imagery from commercial satellites such as RapidEye, Planetscope, and

Quickbird provides more promising results of seagrass delineation due to their high-resolution

imagery, the associated cost with the imagery is deemed unsustainable for long-term seagrass

monitoring programs (Coffer, et.al. 2020).

Advancements in UAV Technology

The utilization of Unmanned Aerial Vehicles (UAVs) in assessing the condition of

sensitive habitats has become more prevalent in recent decades. The advancement in UAV

technologies has enabled individuals and researchers to conduct studies more accurately and

efficiently. A study introduced the various types of unmanned aircraft and their advantages in

providing a safe method of collecting data in remote and inaccessible regions (Klemas, 2015). It

discussed how quadcopter UAVs have become one of the most desirable tools in environmental

mapping and habitat monitoring. In addition to their inexpensive costs, quadcopter drones also
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offer excellent maneuverability. The ease of deployment of drones allows researchers to operate

the drones freely over the study sites without endangering the susceptible physical condition of

the lands (Colomina and Molina, 2014). While drone operations are still vulnerable to

environmental factors like cloud cover and wind speed that are uncontrollable, the flexibility to

schedule a deployment is still a huge improvement over the limitations of geostationary orbit

satellites (Tahara, et., 2022). Many of the drones equipped with integrated camera systems on

the market cost even less than $1000 (Klemas, 2015). With the advantages and reliabilities that

drones have, a study has found that they could be deployed on a wide range of missions,

including emergency responses, disaster management and assessment, habitat and ecological

mapping, and urban planning and development (Kandro, et.al, 2021). The use of drones has

also demonstrated effectiveness in identifying and assessing eelgrass habitats (Favaro and

Zargarpour, 2017). With the correct adjustment of altitude, overlap, and direction of flight, the

extent of eelgrass beds could be visualized using drones.

Advancements in Remote Sensing and Image Processing

The function of autonomous mapping combined with the integrated camera systems on

drones enables high-resolution images to be captured in real-time during the mapping mission.

Captured images would be temporarily stored in an SD card and subsequently be processed by

software designated for drone image processing, such as ArcGIS Drone2Map (Yang, et.al,

2019). An orthomosaic and a Digital Surface Model (DSM) are the main products generated

from the abovementioned software. The photogrammetry technique in drone cameras and

software plays a critical feature in reconstructing the ground surface; while the image stitching

approach combines hundreds of drone images and creates a high-quality result imagery of the

mapping area (Colomina and Molina, 2014). Furthermore, various features in the orthomosaic

can be identified and classified using spatial processing tools such as ArcGIS Pro and Trimble

eCognition that contain a variety of pixel-oriented or object-oriented supervised classification

methods (Andriolo, et.al., 2021). In recent years, more studies have utilized deep learning
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techniques in classifying imageries due to their high accuracy compared to conventional

classification methods (Tahara, et., 2022).

Research Objective

In this study, we aim to investigate 2 primary research objectives regarding the

relationship between eelgrass coverage, along with edge length, and epifauna abundance. Our

first objective seeks to determine whether a higher percentage of eelgrass correlates with

increased epifauna abundance. Secondly, we explore the hypothesis of whether a longer

eelgrass edge provides greater accessibility to epifauna, potentially resulting in a higher

epifauna abundance. Concerning the type of epifauna in our study, we primarily focus on

Gastropods and Crustacea due to their different feeding behaviors and mobility. These 2

creatures often use eelgrass not only as a food source but also as a nursery and shelter (Hily,

2004). Contrasting the abundance of these 2 organisms would provide insights into how the

distribution of eelgrass would influence their habitat preference.

Despite the intricacies of the relationship between eelgrass and epifauna have

previously been investigated by other researchers (Ferretto, et.al, 2023), fewer adapted UAV

remote sensing as part of the data collection and research method. By flying at lower altitudes,

UAV mapping could achieve a 1.5 cm resolution, enabling a more precise examination of

eelgrass structure and distribution from the orthomosaic imagery (Yang, et.al, 2023). This

research aims to encompass the use of drones to provide a more localized and detailed way of

analyzing eelgrass habitats.

Methodology

Study Sites

It is well acknowledged that Unmanned aerial vehicles (UAV) technologies have been

proven to be a prominent and effective way of assessing ecosystems that are sensitive to

human intervention, due to their capabilities, endurance, and ranges (Adade, et.al., 2021).
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Therefore, the data collection framework of this study revolves around the use of drones as the

primary tool in capturing high-resolution imagery of seagrass meadows at the study sites. The

nature of this research is primarily quantitative-oriented. This research consists of 27 study sites

along the west coast of the US and Canada, as displayed in Table 1. Figure 1 illustrates the

map of the study sites, as well as images captured on-site from each region. These coastal

areas have been habitats for numerous marine organisms. However, the prevalent wasting

disease observed in seagrass meadows has led to the drastic decline of eelgrass populations in

recent years (Yang, et.al, 2022). As previous studies have examined the benefits provided by

seagrass to the surrounding coastal communities ( Ferretto, et.al, 2023), the decrease in

eelgrass quantity could potentially cause adverse impacts on the ecosystems as a whole.

Data Collection

A number of drone images were captured during the flight missions at the study sites

from 2019 to 2022 using a model DJI Phantom 4 Pro drone which was equipped with an RGB

camera sensor (12.4m pixels) (Yang, et.al, 2022). Data was collected primarily during the

Summer months (June - July). To ensure a clearer and more observable assessment of the

eelgrass distribution, the flight missions were conducted during the morning hours, taking

advantage of the low tides. The flight mission was pre-defined in advance and set to cover a

subset of the coastline. A 75% overlap was set for both front and side overlaps for easier image

processing and stitching subsequently (Yang, et.al, 2022). In addition, the flight attitude was

~60m and the flight for each site lasted about 30 minutes. Figure 2 shows drone piloting on-site

capturing images of the eelgrass
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Table 1 & Figure 1. A list of all 27 study sites along the west coast of the US and Canada, as
well as a map illustrating the location of the study sites in different regions (Yang, et.al, 2022).

In addition to imagery data captured from the drone, in-situ data collection was

conducted on the scene in the meantime. Our partner team on the biological aspects

established a total of 6 transects along the coastline at each site, as part of the biological data

sampling procedures. Each transect line covered a length of 20m, and epifauna data was

gathered at 2 points along the transect tape (at 4m and 16m from the starting point). Individual

sample points were assigned unique codes for easier differentiation to facilitate later data

analysis. It was ensured that the drone’s flight path adequately covered the area where the

transect tapes were. The sample collection method involved affixing a container to a pole to

capture and collect epifauna from the water, as displayed in Figure 3. Subsequently, the

collected samples were taken to the lab for further processing- epifauna species were extracted

and identified and abundance was quantified
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Figure 2. Drone piloting on-site capturing
photos of the eelgrasses.

Figure 3. On-site epifauna data collection.

Data Analysis

Orthoimagery Generation and Image Segmentation

The captured drone images were first processed and stitched together using ArcGIS

Drone2Map. ArcGIS Drone2Map is known for utilizing the SfM-MVS photogrammetric

technology to align and merge multiple overlapping images (Yang, et.al, 2019). Output from the

program generally consists of different 2D and 3D products. An orthomosaic image was the

primary output that was utilized for the subsequent analyses.

The generated result would then be segmented using Trimble eCognition. The software

was utilized to break up the image into numerous smaller areas through the multiresolution

segmentation algorithm, an image segmentation technique. Following the parameter defined in

the previous study, the scale parameter was set to be in a range of 20 to 60, along with a 0.2

shape and 0.5 compactness parameter (Yang, et.al, 2022). The objective of this process is to

extract areas with the presence of eelgrass from the imagery. Therefore, the supervised

classification method from the program would allow users to train and select a number of

sampled zones. 2 classes were specified: Eelgrass and Others. A screening was then

performed to manually select a few training areas for each class. Then, a classification analysis

was run to assign each segmented area a new class. Figure 4 displays the interface of the
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software. The program utilized object-orientated classification, which is a technique that groups

a set of pixels into meaningful objects according to their spectral characteristics; while the

traditional pixel-based classification method takes into account the individual pixels

independently (Yang, et.al, 2019). The above-mentioned shape, scale, and compactness

parameters are all part of the spectral properties that would influence the result of the

segmentation. The shape parameter controls the sensitivity of the object shape; the

compactness parameter determines the smoothness of the object boundaries; and the scale

parameter influences the size of the smallest objects that will be segmented (Andriolo, et.al.,

2021). The results generated from the image segmentation process will then be exported to

ArcGIS Pro to conduct further analysis

Figure 4. Interface of Trimble eCognition. The image in the center would be segmented as
part of the analysis, while the sections on the left display the pending multiresolution
segmentation algorithm and the specified classes.
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The Calculation of Eelgrass Ratio and Parameter within the Studied Radius

The next step of the research analysis encompassed the utilization of ArcGIS Pro. The

study defined several studied radii around the sampling points. We decided to focus on

investigating the extent of seagrass coverage within a radius of 2 meters, 1 meter, and 0.5

meters, respectively. The choice of the radius was based on the varying active ranges and

mobilities of the epifauna; certain marine species are capable of swimming longer distances,

while others are constrained to a specific size range. While the 0.5-meter zone is used to

observe species with less mobility, the larger 1 and 2-meter radii are intended to capture the

activity of more mobile species that utilize larger areas for feeding and shelter. The various

buffer sizes offer a comprehensive view of how eelgrass morphology, patch sizes, and shapes

influence the accessibility and distribution of epifauna species. The analysis began with the

digitization of the transect lines that were visible from the drone orthomosaic. Utilizing the

“Create Points Along Lines” tool to create 2 points per transect line, as shown in Figure 5, a total

of 12 points were digitized per study site per year. The 2 points referred to the locations where

the epifauna data was collected during the in-situ sample collection, which are at 4m and 16m

from the starting point.
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Figure 5. ArcGIS Pro interface of the editing tool Create Points Along Line used to digitize the
4 and 16-meter sampled points.

The framework of the study is to figure out the ratio of eelgrass within a given radius,

along with the parameter of the eelgrass. Therefore, after the creation of buffer zones for the

individual sampling points, the “Intersection” tool was run to investigate the area of eelgrass that

overlapped with the buffer zones. The objective of the analysis was to delineate the eelgrass

region, which was extracted in the previous step of image segmentation, using defined buffer

zones. Since the eelgrass areas remained in small fragmented segments that were broken up

from the segmentation process, the “Dissolve” tool was subsequently applied to merge the

individual polygons of eelgrass within each buffer zone into a single unit. Figure 6 provides a

snapshot of the ArcGIS Pro interfaces of the tools used in this process

13



Figure 6. ArcGIS Pro interfaces of the geoprocessing tools Buffer, Intersect, and Dissolve.
The section below illustrates the workflow from ArcGIS Model Builder.

To automate and expedite the process, analyses were conducted with a series of Python

codes run in ArcGIS Pro Python Window. Figure 7 indicates a Python script that was run for the

2-meter study radius. The iteration was executed for the 1-meter and 0.5-meter radius

subsequently. Last but not least, the automation from the Python codes would print out the

“Area” and “Perimeter”, which are attributions stored within the Dissolve output feature class, of

each eelgrass buffer zone in the Python window. The 2 values would help address the research

question regarding the eelgrass percentage and edges.
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Figure 7. Python script used to execute the “Buffer”, “Intersection”, and “Dissolve” tools all at
once.

Statistical Analyses

After the data of the eelgrass area and perimeter were gathered, the inputs from all the

study sites were consolidated with the corresponding epifauna abundance data to conduct a

linear regression test. The statistical analysis aimed to investigate the relationship between

eelgrass percentage coverage (ratio) and edge length and epifauna abundance. Gastropod and

crustacean abundance was a primary focus of the study. Utilizing a linear regression test would

help examine how different eelgrass coverage and edge length would influence the abundance
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of epifauna species within the buffer zones of various distances from the eelgrass at the

sampled transect points.

The linear regression model was designed with the eelgrass coverage and ratio as the

independent variables and the epifauna/ gastropod/ crustacean abundance as the independent

variables. The study was divided into 2 sets. In the first set of the analysis, data collected from

all years would be used to conduct multiple regression tests. For each buffer size of the

eelgrass converge and edge length, 3 separated regression tests were performed: 1 focusing

on eelgrass and epifauna abundance, 1 analyzing eelgrass and gastropod abundance, and 1

targeting eelgrass and crustacean abundance. Given that these analyses were conducted

across different buffer sizes (0.5, 1, and 2 meters), this methodology resulted in a total of 18

distinct regression tests. In the second set of the regression analysis, temporal variations were

incorporated as a factor into the model. We focused on data from the years of 2019 and 2021

specifically. Similar to the first set of analyses, the process would also examine the correlations

between the eelgrass ratio/edge and the biological variables of epifaunas. By focusing on the

data from specific years, we hoped to investigate whether epifauna abundance was influenced

by the distribution of eelgrass habitats over time. The second part of the analysis resulted in 36

individual regression tests. Figure 8 displays the process diagram summarizing the steps of the

research methodology
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Figure 8. Process diagram summarizing the data analysis sections- including process from
both Trimble eCognition (upper section) and ArcGIS Pro (lower section).

Result

The Generation of the Orthomosaic Imagery

A total of 92 orthomosaics were collected and processed as the products of the drone

image stitching process. The imageries were exported in TIFF format for subsequent processing

in ArcGIS Pro. Imageries were then clipped to smaller areas surrounding the deployed transect

tapes. This approach was taken since our samples were collected exclusively along these

transects and it would be essential to focus our analysis on these specific areas. The new

boundaries of the clipped imageries were ensured at least a 20 m distance away from the

transect tape, allowing enough space for the creation of buffer zones and further analysis.

Examples of these pre and post-clipped orthomosaics are provided in Figures 9 and 10
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Figure 9. The 2D orthomosaic generated from ArcGIS Drone2Map for the 5 Washington sites.

Figure 10. Orthomosaics clipped to the study area surrounding the transect tapes.
Washington 2021.

Image Segmentation and Eelgrass Classification Result

Figure 11 illustrates the result of the multi-resolution segmentation from eCognition for

the 2021 Beach Haven orthoimage (left image). The input clipped imagery was split into smaller

polygons in accordance with the parameters pre-defined. Upen discrete examination of the
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imagery, designated segments that contained eelgrass area would be selected as training data.

As the research focused solely on the area of eelgrass, other land cover types would belong to

the “Other” category when training the samples. As a result, the right image displays the output

of the classification process, with red-outlined polygons representing the eelgrass zones and

yellow-outlined polygons representing features other than eelgrass.

Figure 11. Result of multi-resolution segmentation (left) and classification (right) process for
2021 Beach Haven clipped orthomosaic.

Digitization Result

The classified eelgrass areas exported as a shapefile from eCognition were added into

ArcGIS Pro for subsequent analyses. The before (left) images depicted in Figure 12 display the

unprocessed clipped imagery along with the digitized transect tapes (as Line feature classes)

and the 4 and 16-meter sampled points (as point feature classes); while the after (right) images

showcase the addition of the exported eelgrass results, delineated in colored polygons, for the 2

example sites in Washington. The classification result accurately distinguished eelgrass from

surrounding features such as sands, rocks, algae, and water based on the selected training

data areas.
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Figure 12. Comparisons of pre and post-processing images. Left: Clipped orthomosaic
alongside the digitized transect tapes and sampled points for Beach Haven and False Bay
2021. Right: Clipped orthomosaic with the addition of Eelgrass polygon shapefile (colored
polygons) alongside the digitized transect tapes and sampled points for Beach Haven and
False Bay 2021.

Buffer Polygons and Further Clean-up

The geoprocessing tools “Buffer”, “Intersect”, and “Dissolve” were successfully executed

in ArcGIS Pro with the Python script referenced earlier for all sampled points. Figure 13

showcases the results of a specific study site, Millerton, CA. In addition to the overarching result

presented on the left, the images on the right depict a close-up view of how the respective buffer

zones interact with the eelgrass areas, as the outcome of the “Intersect” and “Dissolve” tools.
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Figure 13. Left: The result of the buffer zone generations on the sampled points and the
outcome of the “Intersect” and “Dissolve tools” alongside the digitized transect lines and
sampled points. Right: Close-up view of the intersection between the buffer polygons and the
eelgrass areas at 2, 1, and 0.5-meter radius.

However, an issue was identified in the eelgrass classification results. Despite being

actual eelgrass locations, some areas where transect tapes overlaying the eelgrass were not

considered during the classification process as they were not selected as part of the training

data. In order to address this issue and improve the accuracy of the analysis, especially the

perimeter, manual examinations and digitizations were conducted to include these areas within

the intersected buffer zones. The digitization process primarily utilized the “Trace Along”

function from ArcGIS Pro’s Editing Tools to redraw eelgrass along the outline of the transect

tapes. Figure 14 illustrates the pre and post-digitization results of the process. The left (before)

image displays the unprocessed eelgrass buffer zones, where eelgrass appears carved out due

to the absence of classification at the transect tapes; while the images on the right showcase
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the digitization result, where eelgrass was redrawn over the transect tape areas after detailed

examination.

Figure 14. Comparison of the pre and post-digitization of the eelgrass polygons on transect
tape area for one of the sampled buffer zones in Millerton, CA. The left image displays the
pre-digitization state of the eelgrass polygons, where eelgrass underneath transect tapes was
excluded from the classification process; the right image illustrates the post-digitization result,
where eelgrass polygons were digitized over the transect tape areas.

The Calculation of Eelgrass Ratio and Eelgrass Edges

The 2 metrics, “Area” and “Perimeter”, played a key role in assessing eelgrass

distribution and epifauna abundance. Utilizing the Python script mentioned earlier, these metrics

could be generated relatively swiftly. However, we discovered a discrepancy in our approach to

calculate the eelgrass edges (perimeter). Taking the 2-meter intersected buffer zone as an

example, Figure 15a displays the eelgrass outline that was considered as the “Perimeter” in the

initial geoprocessing approach. Yet, as shown in Figure 15b, the incorrect and over-included

yellow outline resulting from the “Intersect” tool represents the buffer zone outline rather than

the actual eelgrass edges. In fact, the outline highlighted in purple in Figure 15c illustrates the

true eelgrass edges that should have been extracted.
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Figure 15. Comparison of buffer zone outline and the actual eelgrass edges from study site
Beach Haven, Washington. Figure 15a illustrates the outline (red) of the intersected buffer
zone and eelgrass polygons; Figure 15b displays the outline (yellow) of the intersected buffer
polygon only, which was intended to be excluded; Figure 15c indicates the outline (purple) of
the actual eelgrass perimeter, which would be the final result.

Therefore, our process was refined to specifically isolate and exclude the buffer zone

outlines from the calculation of the eelgrass edges. After generating the buffer polygons, the

geoprocessing tool “Polygon to Line” was used to extract their boundaries, as displayed in

Figure 16). These boundary line feature classes were then intersected with the eelgrass

polygons, similar to the approach taken for the buffer polygons. Subsequently, the outlines were

further dissolved, and the result (Figure 12b) was subtracted from the original eelgrass

perimeter (Figure 15a). The supplementary steps would result in the output illustrated in Figure

15c. Figure 17 depicts a revised Python script showcasing the additional geoprocessing tools

that were utilized.

Figure 16. ArcGIS Pro interface of the geoprocessing tool Polygon to Line used to convert the
Buffer polygons to Buffer lines
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Figure 17. Revised Python script used to execute this process refinement

Linear Regression Result

To reinstate the statistical analysis process, 2 sets of linear regression tests were

performed to assess the potential correlation between eelgrass coverage/edge length and the

abundance of various epifauna species. The analyses looked into several buffer sizes across

different years. While the first set of regression tests investigated combined data from all years,

the second set evaluated data from 2019 and 2021 separately.

Table 2 below displays the results of the first set of analyses. Despite the fact that the

results for the 0.5 m and 1 m buffer zones from the eelgrass coverage side did not achieve any

statistical significance at p-value <=0.1, it was observed that the 2 m buffer zone showed an
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exception with the p-value from the regression test between eelgrass coverage and gastropod

and crustacean abundance being <=0.1. Specifically, the correlation between eelgrass coverage

(ratio) and gastropod abundance from the 2 m buffer results showed a p-value of 0.042741.

Similarly, the relationship between eelgrass coverage and crustacean abundance indicated a

p-value of 0.067126. These results suggested a potentially significant interaction between

eelgrass coverage and gastropod and crustacean abundance. However, it was noticed that the

R-squared value from both results was relatively low, with eelgrass coverage and gastropod

abundance being 0.010123 and eelgrass coverage and crustacean abundance being 0.008273.

These numbers indicated that only a small proportion of the variance in the number of

gastropod and crustacean abundance could be explained by the coverage of the eelgrass,

which signified that despite the statistical significance shown from the p-value, the relationship

between the 2 variables is rather weak. On the other hand, no statistically significant correlation

was observed between the eelgrass edge and epifauna, gastropod, and crustacean abundance

due to the p-values from the results being <=1.

Table 2. Summary of the 18 linear regression tests conducted for the first set of studies,
where data from all years are taken into consideration. Cells indicating a statistically
significant p-value are highlighted in yellow

Table 3 presents the results of the second set of analyses, which separated the data by

the years of 2019 and 2021. The results displayed a generally minimal relationship between

eelgrass and the epifauna species. In the regression tests between eelgrass coverage and

epifauna/ gastropod/ crustacean abundance, it was noted that the analyses from 2019 for the
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0.5 m buffer zone showed surprising results, where p-values of 0.083801 and 0.099705 resulted

from the regression testes between eelgrass and epifauna and crustacean abundance,

respectively. Despite the statistically significant results for epifauna and crustacean abundance,

gastropod abundance has a p-value of 0.403081, where no statistical significance was

observed. Similarly, the results from the 2 m buffer zones also indicated a strong correlation

between those 2 variables. Moreover, 2021 results highlighted a significant relationship between

eelgrass and gastropod abundance in the 2 m buffer, with a p-value of 0.014995. Despite the

significant correlation present between eelgrass coverage and some of the biological variables,

the correlation between the 2 variables is relatively weak on a scale of 0 - 1. On the other hand,

similar to the first set of analyses, the results on the eelgrass edge length side indicated a

non-significant relationship as they are mostly in a range of 0.3 - 0.9.

Table 3. Summary of the 36 linear regression tests conducted for the second set of studies,
where data from the years of 2019 and 2021 are separated. Cells indicating a statistically
significant p-value are highlighted in yellow

Discussion and Conclusion

Enhanced Eelgrass Habitat Mapping with Drones

The use of drone technology in this study produced high-resolution imagery for the

assessment of eelgrass coverage and eelgrass edge length along coastal regions. The

enhanced quality of the orthomosaic enabled detailed analyses, including the classification and

26



delineation of eelgrass meadows and the digitization of transect lines, on the eelgrass habitats.

In terms of obtaining high-quality imagery data, this improved data collection method with

drones offered a relatively more cost-efficient and flexible approach compared to traditional

commercial satellite data. The advancement of UAV technology has proven crucial for

examining various habitat dynamics in the study. Moreover, the ongoing development of remote

sensing and classification methods would provide more accurate results for future ecological

assessment.

Eelgrass Coverage/Edge Length and Epifauna Abundance

The p-values and R-squared resulted from the linear regression tests provide vital

information on the statistical significance and correlation between the dependent and

independent variables. From the results, it was noticed that the statistical relationship between

eelgrass coverage and epifauna (including gastropods and crustaceans) was generally

moderate, and the eelgrass edge length and epifauna abundance showed minimal statistical

significance. However, in larger buffer zones (2 m), the results indicated a significant correlation

between the 2 variables. This likely suggested that a broader area of eelgrass meadows

potentially provided more resources for the surrounding epifauna, which could support a higer

abundance of the more mobile species. While the p-value is within the threshold, the low

R-squared value might signify that eelgrass was not the sole factor that influenced epifauna

abundance. Other environmental and ecological variables might contribute to a stronger and

more significant relationship to the epifauna. Potential independent variables such as water

quality, temperature, and seabed sediment quality could be incorporated into future studies.

Temporal Variability of Eelgrass and Epifauna Relationships

The second set of statistical analyses incorporated temporal variability in studying how

eelgrass characteristics impacted epifauna abundance across different years. Similarly, we

noticed a more statistically significant relationship between eelgrass coverage and some

epifauna abundance in the 2-m buffer zones, while eelgrass edge length presented statistical
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significance. In addition, the results from the 0.5-m buffer zones showed a significant

relationship between the 2 variables in 2019 but not in 2021. While it was uncertain on the

specific factors that caused this temporal variation, it was presumed that environmental factors

such as the eelgrass wasting disease and the warming of sea surface temperatures could play

a key role in the change of the eelgrass distribution across years (Graham, et.al.,2023), which

potentially led to the results indicated in our studies.

Limitation and Future Studies

It is presumed that several limitations in the study might influence the result of the

analyses. For instance, some of the sampling point locations were inferred due to the lack of the

exact coordinates of transect points in the 2020 data, which could potentially introduce

discrepancies between the epifauna data location and the buffer zones of the eelgrass. In

addition, there was missing epifauna data for the years of 2020 and 2021 in certain sites due to

COVID-19, which potentially led to a smaller and less representative sample size. Moreover, the

lack of statistical significance in the relationship between eelgrass edge length and epifauna

abundance could have originated from the manual digitization of the eelgrass from the transect

tape-filling process. The inferred location of the eelgrass at transect tapes might have

introduced errors when calculating the eelgrass edge length. Since the eelgrass classification

process conducted in eCognition was a supervised classification method, there was a significant

challenge when distinguishing eelgrass from similar-looking aquatic vegetations like algae due

to their similar color. Eelgrass could sometimes be indistinguishable from algae in drone

images, which could potentially lead to misclassification and inaccuracies in the training data. To

address these limitations in future studies, improvements could be made to the data selection

process to only analyze the sample points that locations are certain of. Moreover, increasing the

number of sampling points for the eelgrass coverage and epifauna data could help create more

represented data. Last but not least, revisions of the parameters set in the segmentation

process would allow the better delineation of the eelgrass segments, which might further
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enhance the accuracy of the sample selections and classification. Refining these aspects could

mitigate limitations and improve the overall reliability and precision of the analyses.This

larger-scale study covering the entire Northeast Pacific coast provides a comprehensive view of

the variations in eelgrass coverage and epifauna abundance. To better understand and address

these regional differences, future studies could explore the use of different statistical methods

like linear mixed model.

In conclusion, our research has proven drone-assisted mapping to be a transformative

tool for coastal ecology studies. The framework developed in this study provides insights into

the conservation and management of eelgrass habitats and epifauna diversity. We hope that as

drone and remote sensing technologies continue to mature and evolve, more innovative coastal

management strategies can be established and implemented.
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